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1. Introduction

The ‘Lepage equivalents’ of a Lagrangian are important tools for studying variational problems on fibred manifolds:
they are differential forms having the same extremals as the Lagrangian form, with a further property ensuring that their
differentials give rise to the Euler–Lagrange form. The classical example of a Lepage equivalent is the Cartan form in
mechanics. In this paper we study differential forms which play a rôle similar to that of Lepage forms but in the context
of homogeneous variational problems; there is a close relationship, described below, between the two types of problems,
and we believe that studying the homogeneous context can shed some light on an existing unsolved problem regarding
Lepage equivalents of null Lagrangians.
In the context of a fibred manifold π : E → M with dimM = m, a Lagrangian is an m-form λ ∈ ΩmJkπ ; any Lepage

equivalent θ of λwill be defined on a jet manifold J lπ (with, in general, l ≥ k) and will satisfy the conditions that θ − π∗l,kλ
should be contact, and that for any vector field Z ∈ X(J lπ) vertical over E the contraction iZdθ should also be contact. The
Euler–Lagrange form ε is then the 1-contact part of dθ . In mechanics, for example, if we take coordinates (t, qa, q̇a) and a
Lagrangian λ = L dt then

θ = L dt +
∂L
∂ q̇a

(dqa − q̇a dt).

See, for instance, [1–4] for various approaches to the construction of Lepage equivalents.
Global Lepage equivalentsmay always be found for a given Lagrangian, and ifm = 1 then they are unique. They are never

unique when m > 1, because adding an arbitrary non-zero 2-contact form to any Lepage equivalent will give a different
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Lepage equivalent, although such a modification will not affect the Euler–Lagrange form. Nevertheless, when the order k of
the Lagrangian is no more than 2 then it is possible to make a canonical choice of Lepage equivalent; this cannot, however,
be done when k ≥ 3 without the specification of some additional structure in the problem.
A particularly important question concerns the relationship between Lepage equivalents and null Lagrangians: that is,

Lagrangians whose Euler–Lagrange forms vanish. Clearly if a Lagrangian has a closed Lepage equivalent then it will be null;
and whenm = 1 then the unique Lepage equivalent of a null Lagrangian is closed. But whenm > 1 then a choice of Lepage
equivalent would be needed, and it is not immediately obvious how this choice should be made.
An answer to this question for first-order Lagrangians was found by Krupka [5], and also subsequently by Betounes [6].

In coordinates xi onM and fibred coordinates (xi, ua) on E, the Lepage equivalent

θ = Lω +
min{m,n}∑
r=1

1
(r!)2

∂ rL
∂ua1i1 · · · ∂u

ar
ir

θ a1 ∧ · · · ∧ θ ar ∧ ωi1···ir ,

of a Lagrangian Lω (whereω = dx1∧ · · ·∧ dxm andωi1···ir = i∂/∂xir ωi1···ir−1 , and where θ
a
= dua− uai dx

i) is closed precisely
when Lω is null. We say that a Lepage equivalent constructed according to this formula satisfies the closure property. This
property is significant in the context of symmetries because, as was pointed out in [6], it allows us to conclude that any
symmetry of an arbitrary first-order Lagrangian is also a symmetry of its corresponding form θ , whereas this need not
be the case for other Lepage equivalents. An illustration of this phenomenon is given by Example 2 of that paper, where
symmetries of the electromagnetic Lagrangian on R4 are considered. It is therefore natural to ask whether it is possible to
find Lepage equivalents with a similar property for higher-order Lagrangians. To date, though, no such formula has been
found for second-order (or higher-order) Lagrangians, and even the existence of Lepage equivalents having this additional
property is unclear.
In this paper we look at homogeneous problems, where the idea of a Lepage equivalent is not directly appropriate.

These homogeneous problems are defined on a manifold E without any given fibration over a space of independent
variables, where the solution to the variational problem is a submanifold with an orientation but without any preferred
parametrization. Instead of using jet bundles for these problems, the Lagrangian is defined instead on the bundle of kth-
orderm-frames F k

(m)E in the manifold [7] (this is also called the bundle of regular kth-orderm-velocities). The Lagrangian is
a function L rather than anm-form, and is required to satisfy a certain homogeneity condition.
Homogeneous variational problems arise in geometry more directly than in physics: for instance Finsler geometry

considers the homogeneous problem with m = 1 and k = 1, and the study of minimal surfaces involves a homogeneous
problem with m = 2. There is, nevertheless, a straightforward relationship between the two types of problem, and
the paradigm of this is the ‘homogenisation trick’ of classical mechanics. Given a time-dependent Lagrangian 1-form
L(t, qi, q̇i) dt defined on the jet bundle J1π where π : R×M → R, the corresponding homogeneous Lagrangian function is

L̃(t, ṫ, qa, q̇a) = ṫL
(
t, qa, ṫ−1q̇a

)
defined on a suitable open subset of T (R×M).
A similar relationship between the two types of problem holds in the general case. Factoring the bundle ofm-frames by

the vector fields used to specify the homogeneity condition gives rise to the bundle Jk
+
(E,m) of kth-order oriented contact

elements of dimensionm; a Lagrangianm-form λ on this bundle gives rise to a homogeneous function L on the frame bundle.
If a fibration π : E → M is given then there is an inclusion Jkπ ⊂ Jk

+
(E,m), and a Lagrangian form on Jkπ gives rise to a

homogeneous function L on an open subset of the frame bundle. More details of the relationship between the two types
of problem in the general case may be found in [7], and given this relationship it is of some interest to search for m-forms
related to homogeneous Lagrangians having the closure property described above.
It was shown in [7] that, given any Lagrangian function L on F k

(m)E, it is possible to construct an m-form on F 2k−1
(m) E

called the Hilbert–Carathéodory form having the same extremals as L and giving rise to a suitable Euler–Lagrange form. The
Hilbert–Carathéodory form is projectable to the bundle of contact elements when m = 1 or k ≤ 2. This form does not, in
general, have the closure property. It was subsequently shown in [8] that, in the case of a first-order Lagrangian function,
there is another m-form on F 1

(m)E with the property that it is closed precisely when the Lagrangian is null. This second m-
form is projectable to the bundle of first-order contact elements, and if there is a fibration of E over some m-dimensional
manifold then the restriction to the corresponding jet bundle takes the coordinate form shown above. We call this second
m-form the fundamental form of the Lagrangian.
The present paper is a report on the second stage of a project to generalise the latter construction to Lagrangians of

arbitrary order: we have a candidate for the fundamental form, and our task is to show that it satisfies the closure property.
The construction involves a sequenceΘ0,Θ1, . . . ,Θm of vector-valued forms,whereΘr is an

∧m−r R∗-valued r-form;Θm is
thus a scalarm-form, and is our candidate. Our strategy for proving the closure property is to show thatΘr may be obtained
fromΘr+1 by contraction with total derivatives. The proof of this for r = 0 is straightforward; the proof for r = 1 forms the
significant content of this paper, and involves a substantial level of complexity. Combining this with a general result about
such contractions shows that, in the case of a homogeneous Lagrangian of arbitrary order in two independent variables,
the scalar 2-formΘ2 satisfies the closure property. A previous note [9] gave a version of this construction for second-order
Lagrangians in two variables.
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In Sections 2 and 3 of this paper we therefore recall the properties of homogeneous variational problems in the context
of a bicomplex of vector-valued forms, and in Section 4 we collect together some preliminary results. The main theorem of
the paper is in Section 5, and we offer a discussion of some consequences of this result in Section 6. We also suggest that,
subject to overcoming the computational difficulties, it should be possible to extend the present results to Lagrangians in
arbitrarily many independent variables.

2. Homogeneous variational problems

We consider a smooth manifold E of dimension n, and its bundles τk : F k
(m)E → E of kth-order m-frames. Important

objects defined intrinsically on these bundles are the total derivatives and the vertical endomorphisms. The former are
vector fields Tj along the map τk+1,k : F k+1

(m) E → F k
(m)E, and are described in coordinates as

Tj =
k∑
|I|=0

uαI+1j
∂

∂uαI
,

and the latter are type (1, 1) tensor fields S i on F k+1
(m) E described in coordinates as

S i =
k∑
|I|=0

∂

∂uαI+1i
⊗ duαI .

Here and subsequently we use local coordinates (uα) on E and the corresponding jet coordinates (uαI ) on F k
(m)E, where I is

a multi-index. Intrinsic definitions of the operators Tj and S i may be found in [7,10].
We also need to use the fundamental vector fields∆Ij defined by

∆Ij = S
I(Tj)

where the tensor fields S i and S j commute, so that S I may be defined by iteration; these vector fields are well defined on the
manifold F k+1

(m) E (rather than along the map τk+1,k).
We shall let ij denote the action of the vector field Tj on differential forms by contraction, and let dj denote the action as

a Lie derivative; iIj and d
I
j will, similarly, denote the actions of the vector field ∆

I
j . We shall use the symbol S

i to denote the
contraction of the tensor field with a form, as well as denoting the tensor field itself. The symbol S I will denote the iterated
contraction, and we shall write S̃ I to denote the (single) contraction of the composite tensor field with the form; in the case
of the action on a 1-form these are the same.
As was demonstrated in [7], a Lagrangian function L on F k

(m)E whose extremals have no preferred parametrization must
be homogeneous, in that it must satisfy the properties

dijL = δ
i
jL, dIjL = 0 for |I| ≥ 2.

Associated with such a Lagrangian are itsm Hilbert forms. These are the 1-forms ϑ i on F 2k−1
(m) E defined by

ϑ i =

k∑
|I|=0

(−1)|I|

I!(|I| + 1)
dIS I+1i dL = P i dL

and are generalisations of the Hilbert form used in Finsler geometry. We shall need to use several properties of the Hilbert
forms, and we record these below.

Lemma 2.1. The Hilbert forms ϑ i have the following properties:

ikϑ i = δki L,

iKk ϑ
i
= 0 when |K | > 0 and

dIiϑ
j
= −

∑
M

(−1)|M|

M!
CI,M,i,jdMS I+M−1i+1j dL

where the coefficient CI,M,i,j is given by

CI,M,i,j = M(i)
(
|I|!|M|! + (−1)|I|(|I| + |M| − 1)!

(|I| + |M| + 1)!

)
− I(i)

(
(|I| − 1)!(|M| + 1)! − (−1)|I|(|I| + |M| − 1)!

(|I| + |M| + 1)!

)
+ δ

j
i

(
|I|!|M|! − (−1)|I|(|I| + |M|)!

(|I| + |M| + 1)!

)
.
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Proof. These results are all derived in [7]: they are Lemma 5.5, Proposition 6.1 and the calculation immediately preceding
Theorem 6.3. �

The Hilbert forms are used to construct the Euler–Lagrange form

ε = dL− diϑ i

on F 2k
(m)E. In coordinates

ε =

k∑
|I|=0

(−1)|I|dI

(
∂L
∂uαI

)
duα

incorporating the Euler–Lagrange equations for the variational problem defined by L. More details of this construction may
be found in [7].
The fact that we have a family of Hilbert forms for multiple-integral problems suggests that it might be advantageous to

consider them as the components of a vector-valued form. Spaces of suitable vector-valued forms were introduced in [10];
these are the spaces

Ω
r,s
k = Ω

r(F k
(m)E)⊗

s∧
Rm∗

of r-forms onF k
(m)E taking their values in the vector space of alternating s-linear forms onRm. We denote the standard basis

of Rm∗ suggestively by (dt i), so that an element Φ ∈ Ω r,sk would be written in components as φi1···is ⊗ dt
i1 ∧ · · · ∧ dt is ,

where the φi1···is are scalar r-forms completely skew-symmetric in their indices.
A significant feature of these spaces is that they may be used to form a family of variational bicomplexes, rather like the

variational bicomplex of scalar forms on jet bundles. Themappings between the spaces are the ordinary de Rhamdifferential
d : Ω r,sk → Ω

r+1,s
k acting on the individual components of the form, and the total derivative operator dT : Ω

r,s
k → Ω

r,s+1
k+1

defined by

dT
(
φi1···is ⊗ dt

i1 ∧ · · · ∧ dt is
)
=
(
djφi1···is

)
⊗ dt j ∧ dt i1 ∧ · · · ∧ dt is .

The initial part of such a bicomplex is shown in Fig. 1 below, where we have writtenΞ rk for the quotientΩ
r,m
k /dT(Ω

r,m−1
k−1 ),

and used an overline for the spaces of vector-valued functions in the first column to denote quotients by the constant
functions. Of course the forms in row s of a full bicomplex must necessarily be defined on F k

(m)E where k ≥ s, but there
are also partial bicomplexes which omit the top part of the diagram, starting in row swith forms defined on E, and finishing
in rowmwith forms defined on F m−s

(m) E.
The rows of each bicomplex are of course locally exact. The columns of each individual bicomplex are not exact, even

locally; but if weworkmodulo pull-backs then each column apart from the first is in fact globally exact: that is, if the vector-
valued formΦ ∈ Ω r,sk satisfies dTΦ = 0 then there is a formΨ ∈ Ω

r,s−1
l with l ≥ k such that dTΨ = Φ . By diagram chasing,

therefore, the first column is also locally exact modulo pull-backs. The homotopy operator used to show global exactness in
this sense is the map P : Ω r,sk → Ω

r,s+1
(r+1)k−1 defined (see [10]) by

PΦ = P j(s)(φi1···is)⊗
{
∂

∂t j
y
(
dt i1 ∧ · · · ∧ dt is

)}
= sP j(s)(φji2···is)⊗ dt

i2 ∧ · · · ∧ dt is

where P j(s) is the differential operator on scalar r-forms defined by

P j(s) =
rk−1∑
|J|=0

(−1)|J|(m− s)!|J|!
r |J|+1(m− s+ |J| + 1)!J!

dJS J+1j .

The homogeneous variational problems described above fit comfortably within this framework, where we use the
notation

dmt = dt1 ∧ · · · ∧ dtm, dm−1tj =
∂

∂t j
y dmt.

If we let the Hilbert forms ϑ j be the components of a vector-valued 1-form Θ1 ∈ Ω
1,m−1
2k−1 so that Θ1 = ϑ

j
⊗ dm−1tj, and if

we let Θ0 ∈ Ω
0,m
k be the equivalence class of the vector-valued function L dmt , then the formula for the Hilbert forms may
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Fig. 1. The homogeneous variational bicomplex.

be written simply asΘ1 = PdΘ0. If, similarly, we let E0 denote the vector-valued 1-form ε ⊗ dmt then the Euler–Lagrange
formula is simply E0 = dΘ0 − dTΘ1.

3. The fundamental form of a homogeneous Lagrangian

The simplicity of the formulaΘ1 = PdΘ0 for the vector of Hilbert forms suggests that we might wish to consider higher
powers of the operator Pd acting on the Lagrangian. Put

Θq = (Pd)qΘ0 ∈ Ωq,m−q

Eq = (Pd)qE0 ∈ Ωq+1,m−q

}
0 ≤ q ≤ m,

where we have omitted explicit mention of the order of the manifold on which these forms are defined as its complicated
expression tends to obscure the overall message.

Lemma 3.1.

Eq = (−1)q(dΘq − dTΘq+1) 0 ≤ q ≤ m− 1.
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Proof. If this relationship holds for some given value of q then

Eq+1 = PdEq = (−1)q+1PddTΘq+1 = (−1)q+1PdTdΘq+1
= (−1)q+1(dΘq+1 − dTPdΘq+1) = (−1)q+1(dΘq+1 − dTΘq+2),

and the relationship is certainly true for q = 0. �

Our main interest will be in Θm ∈ Ωm,0 as this takes its values in the 1-dimensional vector space
∧0 Rm∗ and may be

identified with a scalarm-form; we shall call this the fundamental form of the Lagrangian L. If we consider the case of a first-
order Lagrangian, we can use the formula for P to give an explicit description of the fundamental form: in this case eachΘq
is also first order, and we see easily that

Θm =
1
m!
(S1d) · · · (Smd)L;

this is just them-formdescribed in [8] and shown there to satisfy the closure property. It is also shown that this form, defined
on F 1

(m)E, is projectable to the bundle of contact elements, and that if L is derived by homogenisation from a Lagrangian on
a jet bundle then the projection ofΘm is just the fundamental Lepage equivalent found by Krupka and Betounes.
It is now natural to ask whether a similar property holds for higher-order Lagrangians. The construction of Θm may be

carried out for a Lagrangian of arbitrary order, and so we are led to the following conjecture.

Conjecture. Let L be a homogeneous Lagrangian defined on F k
(m)E; then L is null if, and only if, dΘm = 0.

In one direction the proof is straightforward, and has nothing to do with homogeneity. Suppose that E0 = 0, so that
dΘ0 = dTΘ1. Then, recursively,

dΘq = dTΘq+1 0 ≤ q ≤ m− 1;

for if this relationship holds then

PdTdΘq+1 = PddTΘq+1 = Pd2Θq = 0

so that

dΘq+1 = dTPdΘq+1 = dTΘq+2
using the homotopy formula and the definition ofΘq+2. In particular dΘm−1 = dTΘm; so finally, therefore,

dΘm = PdTdΘm = PddTΘm = Pd2Θm−1 = 0.

The converse, that the closure ofΘm implies the nullity of L, is much harder, and homogeneity is essential: for instance,
in the single-integral case, take a non-zero Lagrangian depending on only the position coordinates. Such a Lagrangian is
certainly not null, butΘ1 = 0 so thatΘ1 is certainly closed.
As a first step towards a proof, suppose that the recovery formula holds: that is, that

Θq =
1

m− q
iTΘq+1, 0 ≤ q ≤ m− 1,

where iT denotes contraction with the total derivative operator,

iT
(
φi1···is ⊗ dt

i1 ∧ · · · ∧ dt is
)
=
(
ijφi1···is

)
⊗ dt j ∧ dt i1 ∧ · · · ∧ dt is;

note that dT = diT + iTd and that iTdT + dTiT = 0.

Lemma 3.2. If the recovery formula holds then

Eq =
1

m− q
iTEq+1.

Proof.

iTEq+1 = (−1)q+1(iTdΘq+1 − iTdTΘq+2)

= (−1)q+1(dTΘq+1 − diTΘq+1 + dTiTΘq+2)

= (−1)q+1(dTΘq+1 − (m− q)dΘq + (m− q− 1)dTΘq+1)
= (−1)q(m− q)(dΘq − dTΘq+1)
= (m− q)Eq. �

Lemma 3.3. If the recovery formula holds and dΘm = 0 then the Lagrangian is null.
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Proof.

Em−1 = (−1)m−1(dΘm−1 − dTΘm)
= (−1)m−1(diTΘm − (diTΘm + iTdΘm))
= (−1)miTdΘm
= 0.

It now follows from Lemma 3.2 that

E0 =
1
m!

Em−1 = 0

so that the Lagrangian is null. �

We are therefore led to the question of whether the recovery formula holds for a general homogeneous Lagrangian. The
rest of this paper is devoted to proving that the first two steps hold, so that

Θ0 =
1
m
iTΘ1, Θ1 =

1
m− 1

iTΘ2.

4. Some preliminary results

In order to achieve our objective, we need to consider the scalar components of the vector-valued forms iTΘ1 and iTΘ2.
It is convenient to introduce the operatorDp on scalar forms, defined by

Dp =
∑
|I|=p

1
I!
dIS I .

For some calculations we shall need to use the equivalent expression for Dp using a list of ordinary indices rather than a
single multi-index, and this is

Dp =
1
p!
di1···ipS

i1···ip;

the sum over the ordinary indices is understood. The conversion between the two types of notation involves, for a given
multi-index I , the quantity |I|!/I! known as itsweight; this quantity is the ratio between symmetrized and non-symmetrized
index expressions.
Write

Θ1 = ϑ
j
⊗ dm−1tj, Θ2 = ϑ

ij
⊗ dm−2tij

where

ϑ j = P j(1) dL, ϑ ij = P j(2)ϑ
i
− P i(2)ϑ

j
;

we then have

P j(1) =
k∑
p=0

(−1)p

p+ 1
DpS j,

P j(2) =
2k−1∑
p=0

(−1)pp!
2p+1(p+ 2)!

DpS j.

Evaluating the contraction with a total derivative thus involves moving ij to the right of DpS j, so that we can use the
homogeneity properties of L; we therefore need to consider commutators.

Lemma 4.1. The commutators of total derivative operators and vertical endomorphisms are given by the following formulæ:

[iIi , dj] = I(j)i
I−1j
i [dIi , S̃

J
] = −J(i)̃S J+I−1i

[iIi , S̃
J
] = iI+Ji [dIi , dj] = I(j)d

I−1j
i .

Proofs of these formulæ may be found in [7], or are easy consequences of the results there. �
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Lemma 4.2.

S JDp =
|J|∑
q=0

|J|!
q!(|J| − q)!

Dp−qS J

where we adopt the convention that Dp−q = 0 when q > p.

Proof. We use induction on the length of the multi-index J , and also [7, Lemma 2.1] which in the present notation reads

S jDp = (Dp +Dp−1)S j.

So suppose the proposed formula is true for every multi-index of length r , and that |K | = r + 1. Put K = J + 1j so that
|J| = r , and then

SKDp = S jS JDp

= S j
|J|∑
q=0

|J|!
q!(|J| − q)!

Dp−qS J

=

|J|∑
q=0

|J|!
q!(|J| − q)!

(Dp−q +Dp−q−1)S jS J

=

|J|∑
q=0

|J|!
q!(|J| − q)!

Dp−qSK +
|J|∑
q=0

|J|!
q!(|J| − q)!

Dp−q−1SK

=

|J|∑
q=0

|J|!
q!(|J| − q)!

Dp−qSK +
|J|+1∑
q=1

|J|!
(q− 1)!(|J| − q+ 1)!

Dp−qSK

=

|J|+1∑
q=0

|J|!((|J| − q+ 1)+ q)
q!(|J| − q+ 1)!

Dp−qSK

=

|K |∑
q=0

|K |!
q!(|K | − q)!

Dp−qSK

as required; of course when |J| = 1 this is just [7, Lemma 2.1]. �

For convenience we shall put

G|J|,q =
|J|!

q!(|J| − q)!
,

and if we do not wish to use the convention regardingDp−q when q > p then we simply write the sum as

S JDp =
min{|J|,p}∑
q=0

G|J|,qDp−qS J .

Lemma 4.3.

ikDp =
p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J iKk .

Proof. We carry out the proof using ordinary indices, and we claim that

ikDp = di1 · · · dip
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq i
iq+1···ip
k

(summed, of course, over i1, . . . , ip). For suppose that this is true for some value of p; then

ikDp+1 =
1
p+ 1

ikdjDpS j =
1
p+ 1

djikDpS j

=
1
p+ 1

djdi1 · · · dip
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq i
iq+1···ip
k S j
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=
1
p+ 1

djdi1 · · · dip
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq(S ji
iq+1···ip
k + i

iq+1···ipj
k )

=
1
p+ 1

di1 · · · diq+1 · · · dip+1
p∑
q=0

1
q!(p− q)!

S i1 · · · S iqS iq+1 i
iq+2···ip+1
k

+
1
p+ 1

di1 · · · dipdip+1
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq i
iq+1···ipip+1
k

where in the first sum we have relabelled the indices iq+1, . . . , ip as iq+2, . . . , ip+1 and then relabelled the index j as iq+1,
and in the second sum we have just relabelled the index j as ip+1. But now, in the first sum, replace q by q− 1 to give

ikDp+1 =
1
p+ 1

di1 · · · dip+1
p+1∑
q=1

1
(q− 1)!(p+ 1− q)!

S i1 · · · S iq i
iq+1···ip+1
k

+
1
p+ 1

di1 · · · dip+1
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq i
iq+1···ip+1
k

=
1
p+ 1

di1 · · · dip+1
p+1∑
q=0

q+ (p+ 1− q)
q!(p+ 1− q)!

S i1 · · · S iq i
iq+1···ip+1
k

= di1 · · · dip+1
p+1∑
q=0

1
q!(p+ 1− q)!

S i1 · · · S iq i
iq+1···ip+1
k

as required.
We now need to reinstate the multi-indices, and so finally we have

ikDp = di1 · · · dip
p∑
q=0

1
q!(p− q)!

S i1 · · · S iq i
iq+1···ip
k

=

p∑
q=0

1
q!(p− q)!

∑
|K |=q

∑
|J|=p−q

|J|!|K |!
J!K !

dJ+K S J iKk

=

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J iKk . �

There is one further formula we need; this is a straightforward property of the Hilbert forms ϑ i.

Lemma 4.4.

S iϑ j = S jϑ i.

Proof. Using [7, Lemma 2.1] in the form given above we have

S iϑ j = S i
k∑
p=0

(−1)p

p+ 1
DpS j dL

=

k∑
p=0

(−1)p

p+ 1
(Dp +Dp−1)S iS j dL

= S jϑ i. �

5. The recovery formula

Wenowgive, as advertised, the proofs of steps 1 and2of the recovery formula. The proof of step 1 is, in fact, comparatively
straightforward.

Theorem 5.1.

Θ0 =
1
m
iTΘ1.
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Proof. We have

iTΘ1 = iiP j dL⊗ dt i ∧ dm−1tj
= iiP j dL⊗ δijd

mt

= ijP j dL⊗ dmt,

and

ijP j dL =
k∑
p=0

(−1)p

p+ 1
ijDpS j dL;

but from Lemmas 4.1 and 4.2 we have

ijDpS j dL =
p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J iKk S

j dL

=

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J(S jiKj + i

K+1j
j ) dL.

Now S J iKj dL = 0 because i
K
j dL is a 0-form, and i

K+1j
j dL = 0 unless K = 0 by homogeneity. But then S J ijj dL = 0 unless J = 0,

so we have ijDpS j dL = 0 when p > 0. We conclude that

iTΘ1 = ijP j dL⊗ dmt = i
j
j dL⊗ d

mt = mL⊗ dmt = Θ0. �

Corollary 5.2. The fundamental formΘ1 of a single-integral homogeneous Lagrangian L satisfies the closure condition. �

The second step is, however, considerably more complicated.

Theorem 5.3.

Θ1 =
1

m− 1
iTΘ2.

Proof. Wemust show that

ij
(
P j(2) dϑ

i
− P i(2)ϑ

j
)
= (m− 1)ϑ i where P j(2) =

∑
p

(−1)pp!
2p+1(p+ 2)!

DpS j,

in other words that

ij

(∑
p

λpDpS j dϑ i −
∑
p

λpDpS iϑ j
)
= (m− 1)ϑ i where λp =

(−1)pp!
2p+1(p+ 2)!

.

Now

ik
∑
p

λpDpS j dϑ i =
∑
p

λpikDpS j dϑ i

=

∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J iKk S

j dϑ i

=

∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K (S J+1j iKk dϑ

i
+ S J i

K+1j
k dϑ i)

=

∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K (S J+1jdKk ϑ

i
+ S Jd

K+1j
k ϑ i)−

∑
p

λp
∑
|J|=p

1
J!
dJS J+1jd(δikL)

using Lemma 2.1; we consider the contributions of the two sums separately. The second sum is just

−δik

∑
p

λpDpS j dL
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and so in the required skew combination gives

− δij

∑
p

λpDpS j dL+ δ
j
j

∑
p

λpDpS i dL = (m− 1)
∑
p

λpDpS i dL; (1)

it is the first sum which will require more careful attention. We split it into two parts. The first, in the required skew
combination, is∑

p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K (S J+1jdKj ϑ

i
− S J+1idKj ϑ

j);

but S jdKk = d
K
k S
j
+ δ

j
k̃S
K so that

S jdKj ϑ
i
− S idKj ϑ

j
= (dKj S

j
+ δ

j
j̃S
K )ϑ i − (dKk S

j
+ δij̃S

K )ϑ j

= dKj (S
jϑ i − S iϑ j)+ (m− 1)̃SKϑ i

= (m− 1)̃SKϑ i

using Lemma 4.4, so this part becomes

(m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J S̃Kϑ i.

In fact, as ϑ i is a 1-form, we can replace S̃K by SK to obtain

(m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S JSKϑ i = (m− 1)

∑
p

λp

p∑
q=0

1
q!(p− q)!

dk1···kpS
k1···kpϑ i

= (m− 1)
∑
p

2pλp
p!
dk1···kpS

k1···kpϑ i

= (m− 1)
∑
p

(−1)p

2(p+ 2)!
dk1···kpS

k1···kpϑ i

= (m− 1)
∑
K

(−1)|K ||K |!
2(|K | + 2)!K !

dK SKϑ i.

We now, of course, need to replace SKϑ i by its expression in terms of dL. We get

(m− 1)
∑
K

(−1)|K ||K |!
2(|K | + 2)!K !

dK
∑
M

(−1)|M||M|!|K |!
(|M| + |K | + 1)!M!

dMSM+K+1i dL

and so we need to replace the double sum by a single one. As before, we transform the multi-indices into ordinary indices
before attempting this. We have

(m− 1)
∑
K

∑
M

(−1)|K |+|M||K |!
2(|K | + 2)!(|M| + |K | + 1)!

|K |!|M|!
K !M!

dK+MSK+M+1i dL

= (m− 1)
∑
p,q

∑
|K |=p

∑
|M|=q

(−1)p+qp!
2(p+ 2)!(p+ q+ 1)!

|K |!|M|!
K !M!

dK+MSK+M+1i dL

= (m− 1)
∞∑
p=0

∞∑
q=0

(−1)p+qp!
2(p+ 2)!(p+ q+ 1)!

dk1···kpkp+1···kp+qS
k1···kpkp+1···kp+q i dL

= (m− 1)
∞∑
r=0

r∑
p=0

(−1)rp!
2(p+ 2)!(r + 1)!

dk1···kr S
k1···kr i dL

on replacing p+ q by r; but

p!
(p+ 2)!

=
1

(p+ 1)(p+ 2)
=

1
p+ 1

−
1
p+ 2
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so that
r∑
p=0

p!
(p+ 2)!

= 1−
1
r + 2

=
r + 1
r + 2

.

We are therefore left with

(m− 1)
∞∑
r=0

(−1)r(r + 1)
2(r + 2)!

dk1···kr S
k1···kr i dL,

and restoring the multi-indices gives

(m− 1)
∞∑
|K |=0

(−1)|K |

2(|K | + 2)K !
dK SK+1i dL

which we may equivalently write as

(m− 1)
∞∑
p=0

(−1)p

2(p+ 2)
DpS i dL. (2)

We now move on to the final part of the expression we are analysing. The third formula in Lemma 2.1 gives

d
K+1j
j ϑ i − dK+1ij ϑ j =

∑
M

(−1)|M|

M!

(
CK+1i,M,j,jdMS

M+K+1i dL− CK+1j,M,j,idMS
M+K+1i dL

)
=

∑
M

(−1)|M|

M!

(
CK+1i,M,j,j − CK+1j,M,j,i

)
dMSM+K+1i dL,

and from the expression for CI,M,i,j we obtain

CK+1i,M,j,j − CK+1j,M,j,i = (m− 1)
(
|K |!|M|! + (−1)|K |(|K | + |M|)!

(|K | + |M| + 1)!

)
.

We shall write (m− 1)F|K |,|M| for this latter coefficient, so that

d
K+1j
j ϑ i − dK+1ij ϑ j = (m− 1)

∑
M

(−1)|M|

M!
F|K |,|M|dMSK+M+1i dL.

Thus ∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

1
J!K !
dJ+K S J(d

K+1j
j ϑ i − dK+1ij ϑ j)

= (m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

∑
M

(−1)|M|

J!K !M!
F|K |,|M|dJ+K S JdMSK+M+1i dL

and we need to move S J to the right of dM . We get

(m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

∑
M

(−1)|M|

J!K !M!
F|K |,|M|dJ+K S JdMSK+M+1i dL

= (m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

∑
r

(−1)r

J!K !
F|K |,rdJ+K S JDrSK+1i dL

= (m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

∑
r

(−1)r

J!K !
F|K |,rdJ+K

min{|J|,r}∑
q=0

G|J|,qDr−qS J+K+1i dL

= (m− 1)
∑
p

λp

p∑
|K |=0

∑
|J|=p−|K |

∑
r

min{|J|,r}∑
q=0

∑
|N|=r−q

(−1)r

J!K !N!
F|K |,rG|J|,qdJ+K+NS J+K+N+1i dL.
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We now have a complicated coefficient times a sum dJ+K+NS J+K+NS i dL, and the task is to replace the combined multi-
index J + K + N with a single multi-index, as before. We start by combining J and K , setting s = |K |, so that we have

(m− 1)
∑
p

λp

p∑
s=0

∑
|K |=s

∑
|J|=p−s

∑
r

min{p−s,r}∑
q=0

∑
|N|=r−q

(−1)r

J!K !N!
Fs,rGp−s,qdJ+K+NS J+K+N+1i dL

= (m− 1)
∑
p

λp

p∑
s=0

∑
r

min{p−s,r}∑
q=0

∑
|N|=r−q

(−1)r

s!(p− s)!N!
Fs,rGp−s,qdNdk1···ksks+1···kpS

k1···ksks+1···kpSNS i dL.

Replacing q by r − q gives

(m− 1)
∑
p

λp

p∑
s=0

∑
r

r∑
q=max{r−(p−s),0}

(−1)r

s!(p− s)! q!
Fs,rGp−s,r−qdk1···kpkp+1···kp+qS

k1···kpkp+1···kp+qS i dL

and replacing q by q− p gives

(m− 1)
∑
p

λp

p∑
s=0

∑
r

p+r∑
q=max{r+s,p}

(−1)r

s!(p− s)!(q− p)!
Fs,rGp−s,r−q+pdk1···kqS

k1···kqS i dL.

Our task is now to pull the sum over q to the front. The restrictions on q will mean that we have q ≥ r + s, q ≥ p and
q ≤ p+ r; we implement these as follows.
• q ≥ r+ s: we already have s ≤ p ≤ q, so this does not constrain s. It does, however, constrain r , so we set the upper limit
of the sum over r to be q− s.
• q ≥ p: we set the upper limit of the sum over p to be q.
• q ≤ p+ r: we set the lower limit of the sum over r to be q− p.

We therefore have

(m− 1)
∑
q

q∑
p=0

λp

p∑
s=0

q−s∑
r=q−p

(−1)r

s!(p− s)!(q− p)!
Fs,rGp−s,r−q+pdk1···kqS

k1···kqS i dL

and then, replacing r by r + q− p, we get

(m− 1)
∑
q

q∑
p=0

λp

p∑
s=0

p−s∑
r=0

(−1)r+q−p

s!(p− s)!(q− p)!
Fs,r+q−pGp−s,rdk1···kqS

k1···kqS i dL

which we shall write as

(m− 1)
∑
q

HqDqS i dL

where

Hq =
q∑
p=0

λp

p∑
s=0

p−s∑
r=0

(−1)r+q−p q!
s!(p− s)!(q− p)!

Fs,r+q−pGp−s,r

=

q∑
p=0

p∑
s=0

p−s∑
r=0

(−1)r+qp!q!
2p+1r!s!(p+ 2)!(q− p)!(p− s− r)!

(
s!(r + q− p)! + (−1)s(s+ r + q− p)!

(s+ r + q− p+ 1)!

)
= A+ B.

We now assert that

Hq =
(−1)q

2(q+ 2)
+
(−1)q(2q+1 − 1)q!
2q+1(q+ 2)!

(3)

and demonstrate this by considering the terms A and B separately.
First, take

A =
q∑
p=0

p∑
s=0

p−s∑
r=0

(−1)q+rp!q!(r + q− p)!
2p+1(p+ 2)!r!(q− p)!(p− s− r)!(q+ 1− (p− s− r))!

;

we shall show that

A =
(−1)q

2(q+ 2)
.
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Interchange the summations over r and s; replace s by p− r − s; and reverse the last two summations again:

A =
q∑
p=0

p∑
s=0

(−1)qp!q!
2p+1(p+ 2)!s!(q+ 1− s)!

p−s∑
r=0

(−1)r(r + q− p)!
r!(q− p)!

.

Now consider the sum over r: it is the coefficient of xq−p in
p−s∑
r=0

(−1)r(1+ x)r+q−p = (1+ x)q−p
p−s∑
r=0

(−(1+ x))r

=
(1+ x)q−p + (−1)p−s(1+ x)q−s+1

2+ x
.

The right-hand side is a polynomial of degree q− s. Write it as b0 + b1x+ · · · + bq−sxq−s: then

(2+ x)(b0 + b1x+ · · · + bq−sxq−s) = (1+ x)q−p + (−1)p−s(1+ x)q−s+1.

We want bq−p. By comparing coefficients of powers of xwe obtain a recurrence relation for the bs which is easily solved to
give

bq−p =
p−s∑
r=0

(−1)r2p−r−s
(q+ 1− s)!

(q+ 1− r − s)!r!
.

But now we have

A =
q∑
p=0

p∑
s=0

p−s∑
r=0

(−1)q+rp!q!
2r+s+1(p+ 2)!r!s!(q+ 1− r − s)!

.

Move the summation over p through to the right:

A =
q∑
s=0

q−s∑
r=0

(−1)q+rq!
2r+s+1r!s!(q+ 1− r − s)!

q∑
p=r+s

1
(p+ 1)(p+ 2)

.

Now
q∑

p=r+s

1
(p+ 1)(p+ 2)

=

q∑
p=r+s

(
1

(p+ 1)
−

1
(p+ 2)

)
=

1
(r + s+ 1)

−
1

(q+ 2)
,

and thus

A =
q∑
s=0

q−s∑
r=0

(−1)q+rq!
2r+s+1r!s!(q+ 1− r − s)!

(
1

(r + s+ 1)
−

1
(q+ 2)

)
.

Now set r + s = t in the right-hand summation, and reverse the order of summation to obtain

A =
q∑
t=0

t∑
s=0

(−1)q+s+tq!
2t+1(t − s)!s!(q+ 1− t)!

(
1

(t + 1)
−

1
(q+ 2)

)
.

But
t∑
s=0

(−1)s

(t − s)!s!
= 0 for t > 0,

so only the term with t = 0 = s remains, and therefore

A =
(−1)qq!
2(q+ 1)!

(
1−

1
(q+ 2)

)
=

(−1)q

2(q+ 1)

(
q+ 1
q+ 2

)
=

(−1)q

2(q+ 2)

as required.
Now consider

B =
q∑
p=0

p∑
s=0

p−s∑
r=0

(−1)r+q+sp!q!
2p+1r!s!(p+ 2)!(q− p)!(p− s− r)!(s+ r + q− p+ 1)

.
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Replacing r by p− r − s and interchanging the sums over s and r gives

B =
q∑
p=0

p∑
r=0

(−1)p+q−rp!q!
2p+1(p+ 2)!(q− p)!r!(q− r + 1)

p−r∑
s=0

1
(p− r − s)!s!

;

we may then use
p−r∑
s=0

1
(p− r − s)!s!

=
2p−r

(p− r)!

to give

B =
q∑
p=0

p∑
r=0

(−1)p+q−rp!q!
2r+1(p+ 2)!(q− p)!r!(q− r + 1)(p− r)!

.

Next, interchange the sums over p and r and then replace p by p+ r to give

B =
q∑
r=0

(−1)qq!
2r+1r!(q− r + 1)

q−r∑
p=0

(−1)p(p+ r)!
(p+ r + 2)!p!(q− r − p)!

.

The sum over pmay be obtained by evaluating the double integral∫ 1

0

(∫ y

0
xr(1− x)q−r dx

)
dy

in two different ways. Expanding the inner bracket gives
q−r∑
p=0

(−1)p(q− r)!
p!(q− r − p)!

∫ 1

0

(∫ y

0
xp+r dx

)
dy =

q−r∑
p=0

(−1)p(q− r)!
(p+ r + 1)(p+ r + 2)p!(q− r − p)!

which is (q− r)! times the sum we want; on the other hand, repeated integration by parts with respect to x gives
q−r∑
p=0

(q− r)!r!
(q+ 1− p)!p!

∫ 1

0
yq+1−p(1− y)p dy.

But ∫ 1

0
yq+1−p(1− y)p dy =

(q+ 1− p)!p!
(q+ 2)!

,

again using repeated integration by parts, so we have
q−r∑
p=0

(q− r)!r!
(q+ 2)!

=
(q− r + 1)!r!
(q+ 2)!

for the double integral, and therefore
q−r∑
p=0

(−1)p(p+ r)!
(p+ r + 2)!p!(q− r − p)!

=
(q− r + 1)r!
(q+ 2)!

.

Thus, returning to our original calculation, we have

B =
q∑
r=0

(−1)qq!
2r+1(q+ 2)!

=
(−1)q(2q+1 − 1)q!
2q+1(q+ 2)!

as asserted.
We may finally combine Eqs. (1), (2) and (3) to give

ij

(
∞∑
p=0

λpDpS j dϑ i −
∞∑
p=0

λpDpS iϑ j
)
= (m− 1)

∞∑
p=0

(−1)pp!
2p+1(p+ 2)!

DpS i dL+ (m− 1)
∞∑
p=0

(−1)p

2(p+ 2)
DpS i dL

+ (m− 1)
∞∑
p=0

(
(−1)p

2(p+ 2)
+
(−1)p(2p+1 − 1)p!
2p+1(p+ 2)!

)
DpS i dL



1696 D.J. Saunders, M. Crampin / Journal of Geometry and Physics 60 (2010) 1681–1697

= (m− 1)
∞∑
p=0

(−1)p(p! + 2p+1(p+ 1)! + (2p+1 − 1)p!)
2p+1(p+ 2)!

DpS i dL

= (m− 1)
∞∑
p=0

(−1)pp!(p+ 2)
(p+ 2)!

DpS i dL

= (m− 1)
∞∑
p=0

(−1)p

p+ 1
DpS i dL

= (m− 1)ϑ i

so that iTΘ2 = (m− 1)Θ1 as required. �

Corollary 5.4. The fundamental formΘ1 of a double-integral homogeneous Lagrangian L satisfies the closure condition. �

6. Discussion

There are two significant issues raised by the proof of Theorem 5.3 given above, and by the resulting Corollary. The first
concerns the restriction, in the present homogeneous formulation, to problems in two independent variables; the second
concerns the relationship of these results to variational problems on jet bundles. We consider the second issue first.
It is known that, on a jet bundle, it is always possible to find a Lepage equivalent for any given Lagrangian. There are,

however, questions about whether such a Lepage equivalent is unique, and whether – if not unique – it nevertheless arises
from a natural construction and so transforms appropriately under a change of coordinates. The first of these questions is
straightforward, because any two Lepage equivalents must differ by a form which is at least 2-contact, and so the result is
unique if, and only if, there is just a single independent variable. The second was answered in [11]: in the case of several
independent variables, there is a natural construction of a Lepage equivalent only in the case of first- and second-order
Lagrangians. A similar result must of course hold for Lagrangians defined on bundles of contact elements. But the results
for homogeneous Lagrangians are rather different: in that context it is always possible to construct anm-form which plays
the same rôle as a Lepage equivalent, regardless of the order of the Lagrangian [7]. This m-form is, however, projectable to
the bundle of contact elements only whenm = 1 or when the Lagrangian is first or second order; the result in the case of a
first-order Lagrangian is the Carathéodory form, a natural Lepage equivalent which has been known for many years [12].
We are therefore prompted to consider the projectability of the fundamental form of a homogeneous Lagrangian, in the

cases where we have demonstrated its existence; of course we need consider only multiple-integral problems. We already
know that the fundamental form is projectable for first-order Lagrangians [8], and we cannot expect such a form to be
projectablewhere the Lagrangian is third order or higher. There remains, however, the question of second-order Lagrangians.
We have demonstrated the existence of a fundamental form for a second-order Lagrangian in two independent variables;
if this were projectable then it would give a partial answer to an open question about the existence of fundamental Lepage
equivalents for second-order Lagrangians on jet bundles.
In general, however, such a form is not projectable, and a suitable counter-example is given in [9]. The reason for the

lack of projectability appears to be that the construction of the fundamental form for two independent variables involves
two applications of the homotopy operator P , so that the result for a second-order Lagrangian cannot any longer be defined
on a third-order bundle; the form constructed then does not survive a reparametrization. This does not, of course, show
conclusively that a fundamental Lepage equivalent for a second-order Lagrangian cannot exist; but it is, we believe, evidence
that its existence is doubtful.
We now turn to the issue of extending our results in this paper to the case of homogeneous Lagrangians inmore than two

independent variables. In principle, the approach would be the same as that adopted above, namely to prove the validity
of the remaining stages of the recovery formula. The strategy would also be the same: we would express a given vector-
valued form Θr in terms of its scalar components ϑ i1···ir and consider the contractions of these scalar forms with the total
derivatives;wewould use various commutator formulæ to reduce this to the contractions and Lie derivatives ofϑ i1···ir−1 with
total derivatives and fundamental vector fields. These in turn would be presumed known from the properties of ϑ i1···ir−2 ,
and so on. It is evident that the calculations would be even more complex than those involved in the proof of Theorem 5.3
above. But whereas single-integral variational problems are quite different from multiple-integral ones, we are not aware
of any serious difference between problems in two independent variables and problems in three or more, and so we would
not expect any inherent obstruction to the construction beyond the complexity just mentioned. Work therefore continues
on the project.
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