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a b s t r a c t

In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally
graded filiformLie algebrann,1.We introduce a Fockmodule for the algebrann,1 andprovide
classification of Leibniz algebras L whose corresponding Lie algebra L/I is the algebra nn,1
with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by
squares of elements from L.

We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the
action I × nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification
up to isomorphism of such Leibniz algebras is given for the case of n = 4.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Leibniz algebras are generalizations of Lie algebras and they have been firstly introduced by Loday in [1] as a non-
antisymmetric version of Lie algebras.

However this kind of algebras was previously introduced and studied under the notion of D-algebras by A. Bloh [2]. Since
1993when Loday’s workwas published, many researchers have been attracted to Leibniz algebras, with remarkable activity
during the last decade. Namely, the investigations have been mainly focused on low dimensional, nilpotent, solvable and
other special classes of algebras (see [3–10]).

Recall that the variety of Leibniz algebras is defined by the fundamental identity

[x, [y, z]] = [[x, y], z] − [[x, z], y].

In fact, each non-Lie Leibniz algebra contains a non-trivial ideal (further denoted by I), which is the subspace spanned
by squares of elements of the algebra [11]. Moreover, it is readily seen that this ideal belongs to right annihilator of L, that
is [L, I] = 0. Note also that the ideal I is the minimal ideal with the property that the quotient algebra L/I is a Lie algebra.

One of the approaches to investigation of Leibniz algebras is a description of such algebras whose quotient algebra with
respect to the ideal I is a given Lie algebra. In particular in [12] the description has been obtained for finite-dimensional
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complex Leibniz algebras whose quotient algebra is isomorphic to the simple Lie algebra sl2. In [13] D. Barnes showed that
any finite-dimensional complex Leibniz algebra can be decomposed into a semidirect sum of the solvable radical and a
semisimple Lie subalgebra (the analogue of Levi’s theorem). Hence, we conclude that if the quotient algebra of a Leibniz
algebra is isomorphic to a semisimple Lie algebra, then given a module over this semisimple Lie algebra we can rebuilt the
initial Leibniz algebra.

Therefore, it is important to study the case when the quotient Lie algebra is solvable, or moreover is nilpotent. Since the
Heisenberg and filiform Lie algebras are well-known, it is natural to consider a Leibniz algebra whose quotient Lie algebra
is the Heisenberg algebra Hn or the filiform Lie algebra nn,1. On the other hand, we recall that Heisenberg and filiform
Lie algebras play an important role in mathematical physics and geometry, in particular in Quantum Mechanics (see for
instance [14–17]). Indeed, the Heisenberg Uncertainty Principle implies the non-compatibility of position and momentum
observables acting on fermions. In [18] some Leibniz algebras with the quotient algebra being Heisenberg algebra are
described. In particular, a classification theorem was obtained for Leibniz algebras whose corresponding Lie algebra is Hn
and that the Hn-module I is isomorphic to its Fock module.

In order to achieve the goal of our study we organize the paper as follows. The first two sections are devoted to
introduction and preliminaries. In Section 3 we introduce the Fock module for the filiform Lie algebra nn,1 and give the
classification of Leibniz algebras with corresponding Lie algebra nn,1 under the condition that the nn,1-module I is Fock
module. In this section we also consider a generalization of this class of algebras by considering the direct sum of filiform
Lie algebras as the corresponding Lie algebras, and provide the classification theorems. Finally, in Section 4 we deal with
the category of Leibniz algebras with nn,1 as corresponding Lie algebra and such that the action I × nn,1 → I gives rise to a
minimal faithful representation of nn,1. A complete description of this class of algebras is givenwhen dimension is equal to 4.

2. Preliminaries

In this section we give necessary definitions and preliminary results.

Definition 1. An algebra (L, [−, −]) over a field F is called a Leibniz algebra if for any x, y, z ∈ L, the so-called Leibniz
identity

[x, y], z


=

[x, z], y


+

x, [y, z]


holds.

For a Leibniz algebra L consider the following lower central series:

L1 = L, Lk+1
= [Lk, L1] k ≥ 1.

Since the notions of right nilpotency and nilpotency coincide, we can define nilpotency as follows:

Definition 2. A Leibniz algebra L is called nilpotent if there exists s ∈ N such that Ls = 0.

Definition 3. A Leibniz algebra L is said to be filiform if dim Li = n − i, where n = dim L and 2 ≤ i ≤ n.

Now let us define a natural gradation for a filiform Leibniz algebra.

Definition 4. Given a filiform Leibniz algebra L, put Li = Li/Li+1, 1 ≤ i ≤ n − 1, and Gr(L) = L1 ⊕ L2 ⊕ · · · ⊕ Ln−1.
Then [Li, Lj] ⊆ Li+j and we obtain the graded algebra Gr(L). If Gr(L) and L are isomorphic, then we say that the algebra L is
naturally graded.

From [19] it is well known that there are two types of naturally graded filiform Lie algebras. In fact, the second type will
appear only in the case when the dimension of the algebra is even.

Theorem 1 ([19]). Any complex naturally graded filiform Lie algebra is isomorphic to one of the following non isomorphic
algebras:

nn,1 : {[xi, x1] = −[x1, xi] = xi+1, 2 ≤ i ≤ n − 1.

Q2n :


[xi, x1] = −[x1, xi] = xi+1, 2 ≤ i ≤ 2n − 2,
[xi, x2n+1−i] = −[x2n+1−i, xi] = (−1)i x2n, 2 ≤ i ≤ n.

Let L be a Leibniz algebra. The ideal I generated by the squares of elements of the algebra L, that is by the set ⟨[x, x] : x ∈ L⟩,
plays an important role in the theory since it determines the (possible) non-Lie property of L. From the Leibniz identity, this
ideal satisfies

[L, I] = 0.

Clearly, quotient algebra L/I is a Lie algebra, called the corresponding Lie algebra of L. The map I × L/I → I , (i, x) → [i, x]
endows I with a structure of L/I-module (see [20,12]).
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Denote by Q (L) = L/I ⊕ I , then the operation (−, −) defines the Leibniz algebra structure on Q (L), where

(x, y) = [x, y], (x, i) = [x, i], (i, x) = 0, (i, j) = 0, x, y ∈ L, i, j ∈ I.
Therefore, given a Lie algebra G and a G−moduleM , we can construct a Leibniz algebra (G,M) by the above construction.
The main problem which occurs in this connection is a description of Leibniz algebras L, such that the corresponding

Leibniz algebra Q (L) is isomorphic to an a priory given algebra (G,M).
In the present paper we restrict our attention on the case where the Lie algebra G is the naturally graded filiform Lie

algebra nn,1 and the G−moduleM is the Fock module or a minimal faithful module.

2.1. Fock module over the algebra nn,1

First we recall the notion of Fock module over the Heisenberg algebra H1, which was introduced in [18]. It is known that
if we denote by x the operator associated to position and by ∂

∂x the one associated to momentum (acting for instance on the

space V of differentiable functions on a single variable), then [x, ∂
∂x ] = 1V . Thus we can identify the subalgebra generated by

1, x and ∂
∂x with the three-dimensional Heisenberg algebra H1 whosemultiplication table in the basis {1, x, ∂

∂x } has a unique

non-zero product [x, ∂
∂x ] = 1.

For a given Heisenberg algebra H1 this representation gives rise to the so-called Fock module over H1, the linear space
F[x] of polynomials on x (F denotes the algebraically closed field with zero characteristic) with the action induced by

(p(x), 1) → p(x)
(p(x), x) → xp(x)

p(x),
∂

∂x


→

∂

∂x
(p(x))

(1)

for any p(x) ∈ F[x].
Now for any filiform Lie algebra nn,1 we define Fock module over nn,1. The algebra nn,1 is characterized by the existence

of a basis {x1, x2, . . . , xn} (see Theorem 1) and we denote

δ

δx
= x1, xn−i = (n − i)!xi, 2 ≤ i ≤ n. (2)

Then the action on nn,1 is the linear space F[x], defined by

(p(x), 1) → p(x)
(p(x), xi) → xip(x)

p(x),
δ

δx


→

δ(p(x))
δx

.

(3)

In Section 3 we study the class of Leibniz algebras L satisfying that its corresponding Lie algebra is a filiform Lie algebra
nn,1 and the nn,1-module I is isomorphic to its Fock module.

This algebra will be called filiform Fock type Leibniz algebra and denoted by FR(nn,1), hence we will consider the filiform
Lie algebra together with its Fock representation.

2.2. Minimal faithful representation on the algebra nn,1

It is known that theminimal faithful representations of nn,1 have dimension n. More precisely, if {x1, x2, . . . , xn} is a basis
of nn,1, then as a minimal faithful representation we take the embedding ϕ into the Lie algebra nn,1 to the algebra End(V )−

defined as follows:

ϕ(x1) =

n−2
i=1

Ei,i+1, ϕ(xi) = En+1−i,n 2 ≤ i ≤ n,

where Ei,j is a matrix with (i, j)th entry equal to 1 and others are zero (see [21]).
In other words, any element x = a1x1 +

n
i=2 an+1−ixi has the image in the matrix form

ϕ(x) =



0 a1 0 . . . 0 a2
0 0 a1 . . . 0 a3
0 0 0 . . . 0 a4
...

...
...

. . .
...

...
0 0 0 . . . a1 an−1
0 0 0 . . . 0 an
0 0 0 . . . 0 0


.
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Now, we construct a module V × nn,1 → V , such that

(e, x) = ϕ(x)e.

Then we obtain
(ei, x1) = ei−1, 2 ≤ i ≤ n − 1,
(en, xj) = en+1−j, 2 ≤ j ≤ n,

the remaining products in the action being zero.
In Section 4 we deal with the category of Leibniz algebras with nn,1 as corresponding algebra and such that the action

I × nn,1 → I gives rise to a minimal faithful representation of nn,1.

3. Classification of filiform Fock type Leibniz algebras

3.1. Classification of FR(nn,1)

Consider the naturally graded filiform Lie algebra nn,1 with its FockmoduleF[x] under the action (3). SinceF[x] is infinite-
dimensional we obtain a family of infinite-dimensional Leibniz algebras.

Theorem 2. The Leibniz algebra FR(nn,1) admits a basis
1, x, x2, . . . , xn−2,

δ

δx
, xt

 t ∈ N ∪ {0}


such that the multiplication table in this basis has the form:

xi,
δ

δx


= ixi−1, 1 ≤ i ≤ n − 2,

δ

δx
, xi


= −ixi−1, 1 ≤ i ≤ n − 2,

[xt , xi] = xt+i, 1 ≤ i ≤ n − 2,

[xt , 1] = xt ,


xt ,

δ

δx


= txt−1,

where the omitted products are equal to zero.

Proof. Taking into account the action (3) we conclude that
1, xi,

δ

δxi
, xt11 xt22 · · · xtkk

 ti ∈ N ∪ {0}, 1 ≤ i ≤ k


is a basis of FR(nn,1) and

[xt , 1] = xt ,


xt ,

δ

δx


= txt−1, [xt , xi] = xt+i, 1 ≤ i ≤ n − 2.

Let us denote
δ

δx
, 1


= q(x), [1, 1] = r(x), [xi, 1] = pi(x), 1 ≤ i ≤ n − 2,

taking the following change of basis:

δ

δx

′

=
δ

δx
− q(x), 1

′
= 1 − r(x), xi

′

= xi − pi(x), 1 ≤ i ≤ n − 2,

we derive

[xi, 1] = 0,


δ

δx
, 1


= 0, [1, 1] = 0, 1 ≤ i ≤ n − 2.
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We denote
δ

δx
,

δ

δx


= a(x), [xi, xj] = bi,j(x), 1 ≤ i, j ≤ n − 2,

1,
δ

δx


= c(x),


xi,

δ

δx


= ixi−1 + di(x), 1 ≤ i ≤ n − 2,

[1, xi] = gi(x),


δ

δx
, xi


= −ixi−1 + hi(x), 1 ≤ i ≤ n − 2.

Consider the Leibniz identity
δ

δx
,

δ

δx


, 1


=


δ

δx
,


δ

δx
, 1


+


δ

δx
, 1


,

δ

δx


= 0,

on the other hand,
δ

δx
,

δ

δx


, 1


= [a(x), 1] = a(x),

which implies a(x) = 0.
Similarly, from the Leibniz identities

bi,j(x) = [bi,j(x), 1] = [[xi, xj], 1] = [xi, [xj, 1]] + [[xi, 1], xj] = 0,

c(x) = [c(x), 1] =


1,

δ

δxi


, 1


=


1,


δ

δxi
, 1


+


1, 1


,

δ

δxi


= 0,

di(x) = [ixi−1 + di(x), 1] =


xi,

δ

δx


, 1


=


xi,


δ

δx
, 1


+


[xi, 1],

δ

δx


= 0,

gi(x) = [gi(x), 1] = [[1, xi], 1] = [1, [xi, 1]] + [[1, 1], xi] = 0,

hi(x) = [−ixi−1 + hi(x), 1] =


δ

δx
, xi


, 1


=


δ

δx
, [xi, 1]


+


δ

δx
, 1


, xi


= 0,

we obtain

c(x) = 0, bi,j = 0, 1 ≤ i, j ≤ n − 2,
di(x) = 0, gi(x) = 0, hi(x) = 0, 1 ≤ i ≤ n − 2. �

3.2. Classification of generalized filiform Fock type Leibniz algebras

In this subsection we are focused in the description of the structure of infinite-dimensional Leibniz algebras, such that
their corresponding Lie algebras are a finite direct sums of filiform Lie algebras nn1,1 ⊕ nn2,1 ⊕ · · · ⊕ nns,1 and their actions
on I are induced by Fock representation.

Since each algebra nni,1 has a standard basis {xi,1, xi,2, . . . , xi,n} we put

δ

δxi
= xi,1, xn−j

i = (ni − j)!xi,j, 2 ≤ j ≤ ni. (4)

For the algebra nn1,1 ⊕nn2,1 ⊕· · ·⊕nns,1 the Fock module on nn1,1 ⊕nn2,1 ⊕· · ·⊕nns,1 is the linear space F[x1, x2, . . . , xs]
with the action induced by

(p(x1, x2, . . . , xs), 1i) → p(x1, x2, . . . , xs), 1 ≤ i ≤ s,

(p(x1, x2, . . . , xs), x
j
i) → xjip(x1, x2, . . . , xs),

p(x1, x2, . . . , xs),
δ

δxi


→

δ(p(x1, x2, . . . , xs))
δxi

,

for any p(x1, x2, . . . , xs) ∈ F[x1, x2, . . . , xs].
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We denote

[xji, 1k] = aji,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,
δ

δxi
, 1j


= bi,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s,

[1i, 1j] = ci,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s.

Taking the change of basis

xji
′

= xji − aki,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

δ

δxi

′

=
δ

δxi
− bi,i(x1, x2, . . . , xs),

1i
′
= 1i − ci,i(x1, x2, . . . , xs),

we derive

[xji, 1i] = 0,


δ

δxi
, 1i


= 0, [1i, 1i] = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2.

Let us introduce notations:

[xji, x
t
k] = dj,ti,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, 1 ≤ t ≤ nk − 2,

δ

δxi
,

δ

δxj


= ei,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s,

xji,
δ

δxi


= ixj−1

i + f ji,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,
xji,

δ

δxk


= f ji,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, i ≠ k,

δ

δxi
, xji


= −ixj−1

i + g j
i,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

δ

δxk
, xji


= g j

k,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2, i ≠ k,

[1k, x
j
i] = hj

k,i(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,
1i,

δ

δxj


= qi,j(x1, x2, . . . , xs), 1 ≤ i, k ≤ s.

Consider the Leibniz identity

[[xji, 1k], 1i] = [xji, [1k, 1i]] + [[xji, 1i], 1k] = 0.

On the other hand

[[xji, 1k], 1i] = [aji,k(x1, x2, . . . , xs), 1i] = aji,k(x1, x2, . . . , xs)

which implies

aji,k(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2.

Similarly from the Leibniz identities

bi,j(x1, x2, . . . , xs) =


δ

δxi
, 1j


, 1i


=


δ

δxi
, [1j, 1i]


+


δ

δxi
, 1i


, 1j


= 0,

ci,j(x1, x2, . . . , xs) = [[1i, 1j], 1i] = [1i, [1j, 1i]] + [[1i, 1i], 1j] = 0,

we obtain

bi,j(x1, x2, . . . , xs) = 0, ci,j(x1, x2, . . . , xs) = 0, 1 ≤ i, j ≤ s.
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In a similar way, from the Leibniz identities

dj,ti,k(x1, x2, . . . , xs) = [[xji, x
t
k], 1i] = [xji, [x

t
k, 1i]] + [[xji, 1i], xtk] = 0,

ei,j(x1, x2, . . . , xs) =


δ

δxi
,

δ

δxj


, 1i


=


δ

δxi
,


δ

δxj
, 1i


+


δ

δxi
, 1i


,

δ

δxj


= 0,

f ji,i(x1, x2, . . . , xs) = [ixj−1
i + f ji,i(x1, x2, . . . , xs), 1i] =


xji,

δ

δxi


, 1i


=


xji,


δ

δxi
, 1i


+


[xji, 1i],

δ

δxi


= 0,

f ji,k(x1, x2, . . . , xs) =


xji,

δ

δxk


, 1i


=


xji,


δ

δxk
, 1i


+


[xji, 1i],

δ

δxk


= 0,

g j
i,i(x1, x2, . . . , xs) = [−ixj−1

i + g j
i,i(x1, x2, . . . , xs), 1i] =


δ

δxi
, xji


, 1i


=


δ

δxi
, [xji, 1i]


+


δ

δxi
, 1i


, xji


= 0,

g j
k,i(x1, x2, . . . , xs) = [g j

k,i(x1, x2, . . . , xs), 1i] =


δ

δxk
, xji


, 1k


=


δ

δxk
, [xji, 1k]


+


δ

δxk
, 1k


, xji


= 0,

hj
k,i(x1, x2, . . . , xs) = [hj

k,i(x1, x2, . . . , xs), 1k] = [[1k, x
j
i], 1k] = [1k, [x

j
i, 1k]] + [[1k, 1k], x

j
i] = 0,

qi,j(x1, x2, . . . , xs) = [qi,j(x1, x2, . . . , xs), 1i] =


1i,

δ

δxj


, 1i


=


1i,


δ

δxj
, 1i


+


[1i, 1i],

δ

δxj


= 0,

we derive

dj,ti,k(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, 1 ≤ t ≤ nk − 2,
ei,j(x1, x2, . . . , xs) = 0, 1 ≤ i, j ≤ s,
f ji,k(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,
g j
k,i(x1, x2, . . . , xs) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

hj
k,i(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,

qi,j(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s.

Therefore, we have proved

Theorem 3. The above Leibniz algebra denoted by FR(nn1,1 ⊕ nn2,1 ⊕ · · · ⊕ nns,1) admits a basis
1i, x

j
i,

δ

δxi
, xt11 xt22 · · · xtkk

 ti ∈ N ∪ {0}, 1 ≤ i ≤ s, 1 ≤ j ≤ ni


in such that the multiplication table in this basis has the form:

xi,
δ

δxi


= 1,


δ

δxi
, xi


= −1, 1 ≤ i ≤ k,

[xt11 xt22 · · · xtkk , 1] = xt11 xt22 · · · xtkk ,

[xt11 xt22 · · · xtkk , xji] = xt11 · · · xti−1
i−1 x

ti+j
i xti+1

i+1 · · · xtkk ,
xt11 xt22 · · · xtkk ,

δ

δxi


= tix

t1
1 · · · xti−1

i−1 x
ti−1
i xti+1

i+1 · · · xtkk .

Where the omitted products are equal to zero.

4. Leibniz algebras associated with minimal faithful representation of nn,1

In this section we are going to study the Leibniz algebras L such that L/I ∼= nn,1 and the nn,1-module I is the minimal
faithful representation. In this case we have that dim L = 2n and {x1, x2, . . . , xn, e1, e2, . . . , en} is a basis of L. We also have

[ei, x1] = ei−1, 2 ≤ i ≤ n − 1,
[en, xj] = en+1−j, 2 ≤ j ≤ n. (5)
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Further we should define the multiplications [xi, xj] for 1 ≤ i, j ≤ n. We put

[xi, xj] =



xi+1 +

n
k=1

αk
i,1ek, j = 1, 2 ≤ i ≤ n − 1,

−xj+1 +

n
k=1

αk
1,jek, i = 1, 2 ≤ j ≤ n − 1,

n
k=1

αk
i,jek, otherwise.

(6)

In the following Lemma we define the multiplications in the case of i = 1 or j = 1 and j = n.

Lemma 1. There exists a basis {x1, x2, . . . , xn, e1, e2, . . . , en} of L such that
[x1, x1] = α1en−1 + α2en, [x1, xj] = −xj+1, 2 ≤ j ≤ n − 1,
[x2, x1] = x3 + α3en, [xi, x1] = xi+1 − α2en+2−i, 3 ≤ i ≤ n − 1,
[x1, xn] = α4e1 + α2e2, [xn, x1] = −α4e1 − 2α2e2,
[x2, xn] = α5e1 + α3e2, [xi, xn] = 0, 3 ≤ i ≤ n.

(7)

Proof. In the multiplication (6) taking the transformation of basis

x′

1 = x1 −

n−2
k=1

αk
1,1ek+1 − (αn−1

2,1 + αn−1
1,2 )en, x′

2 = x2 −

n−2
k=1

(αk
2,1 + αk

1,2)ek+1,

x′

j = xj −
n

k=1

αk
1,j−1ek + (αn−1

2,1 + αn−1
1,2 )en+2−j, 3 ≤ j ≤ n,

we obtain [x1, x1] = αn−1
1,1 en−1 + αn

1,1en, [x2, x1] = x3 + αn
2,1en, [x1, xj] = −xj+1, 2 ≤ j ≤ n − 1.

Using the Leibniz identity we derive

[x3, x1] = −[[x1, x2], x1] = −[x1, [x2, x1]] − [[x1, x1], x2]
= [−x1, x3 + αn−1

2,1 en−1 + αn
2,1en] − [αn−1

1,1 en−1 + αn
1,1en, x2] = x4 − αn

1,1en−1.

From the Leibniz identity, [[x1, xi], x1] = [x1, [xi, x1]] + [[x1, x1], xi] recurrently we obtain
[xi, x1] = xi+1 − αn

1,1en+2−i, 3 ≤ i ≤ n − 1,

[xn, x1] = −αn
1,1e2 −

n
k=1

αk
1,nek.

On the other hand, from

0 = [x1, [xn, x1]] = [[x1, xn], x1] − [[x1, x1], xn] =

n−1
k=2

αk
1,nek−1 − αn

1,1e1,

we get

α2
1,n = αn

1,1, αk
1,n = 0, 3 ≤ k ≤ n − 1.

Now, we consider the Leibniz identity

0 = [x1, [xn, xj]] = [[x1, xn], xj] − [[x1, xj], xn]

= [α1
1,ne1 + αn

1,1e2 + αn
1,nen, xj] + [xj+1, xn] = αn

1,nen+1−j + [xj+1, xn].

Hence, we have

[xj+1, xn] = −αn
1,nen+1−j, 2 ≤ j ≤ n − 1.

On the other hand, from the equalities

0 = [x2, [x1, xn]] = [[x2, x1], xn] − [[x2, xn], x1]

= [x3 + αn
2,1en, xn] −


n−1
k=1

αk
2,nek, x1


= −αn

1,nen−1 + αn
2,1e1 −

n−2
k=1

αk+1
2,n ek,

we obtain

αn
2,1 = α2

2,n, αn
1,n = 0, αk

2,n = 0, 3 ≤ k ≤ n − 1. �
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Put

Q0,1 = 1, Q0,k =
1
2
, k ≥ 2, Q1,k =

k + 1
2

,

Qm,k =
k(k + 1) · · · (k + m − 2)(k + 2m − 1)

2(m!)
, m ≥ 2.

It is not difficult to check that
Qm,k = Qm,k−1 + Qm−1,k. (8)

Now we will define the products [xi, xj] for i + j ≤ n + 1.

Lemma 2. We have

[x2, x2] =

n−2
k=1

βkek,

[xi+1, xi] =

n−1
k=1

γi,kek, 2 ≤ i ≤

n
2


,

[xi, xi+j] =


j+1
2


s=0

(−1)sQs,j+2−2s

n−2−j+2s
k=1

γi+s−1,j+1−2s+kek, 0 ≤ j ≤ n − 5, 3 ≤ i ≤


n + 1 − j

2


,

[x2, xj] = −(j − 2)α3en+2−j +

n−j
k=1

βj−2+kek

+


j+1
2


s=2

(−1)s+1Qs−1,j+2−2s

n−2−j+2s
k=1

γs,j+1−2s+kek, 3 ≤ j ≤ n − 1,

(9)

where ⌊a⌋ is the integer part of a.
Proof. Taking into account the notation (6), from the Leibniz identity

0 = [xi, [xj, xk]] = [[xi, xj], xk] − [[xi, xk], xj] =


n

t=1

αt
i,jet , xk


+


n

t=1

αt
i,ket , xi


= αn

i,jen+2−k − αn
i,ken+2−j, 2 ≤ i, j, k(j ≠ k) ≤ n,

we get

αn
i,j = 0, 2 ≤ i, j ≤ n.

From the Leibniz identities for the triples of elements [x1, [xi, xj]], [xi, [x1, xj]], we derive the following relations
[xi+1, xj] = [xj+1, xi], 2 ≤ i, j ≤ n − 1,
[x2, xj+1] + [x3, xj] = −α3en+1−j + [[x2, xj], x1], 2 ≤ j ≤ n − 1,
[xi, xj+1] + [xi+1, xj] = [[xi, xj], x1], 3 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 1,
[xn, xj+1] = [[xn, xj], x1] 2 ≤ j ≤ n − 1.

(10)

From the first equality in (10) it is easy to see that it is sufficient to define the multiplications [xi, xj] for j ≥ i − 1. Put,

[x2, x2] =

n−1
k=1

βkek, [xi+1, xi] =

n−1
k=1

γi,kek, 2 ≤ i ≤

n
2


.

Applying, if necessary, the change of basis x′

2 = x2 − βn−1en we can suppose that βn−1 = 0 and we will express other
product by means of the structure constants βi and γi,j.

First we will prove the third equation from (9) by induction on j. From the relations (10) we get [xi, xi] = [xi+1, xi−1] and
[xi, xi] + [xi+1, xi−1] = [[xi, xi−1], x1] which imply the assertion of Lemma for j = 0, i.e.,

[xi, xi] =
1
2
[[xi, xi−1], x1] =

1
2

n−2
k=1

γi−1,k+1ek, 3 ≤ i ≤


n + 1
2


.

Then from the relations (1) we obtain [xi, xi+1] + [xi+1, xi] = [[xi, xi], x1]. Using the assertion of Lemma for j = 0, we get

[xi, xi+1] =
1
2
[[[xi, xi−1], x1], x1] − [xi+1, xi] =

1
2

n−3
k=1

γi−1,k+2ek −

n−1
k=1

γi,kek, 3 ≤ i ≤

n
2


.

Hence the assertion of the Lemma is true for j = 1.
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Let us suppose that the assertion of the Lemma is true for indices less or equal to j and we will prove it for j + 1.
From the relations (10) we obtain [xi, xi+j+1]+ [xi+1, xi+j] = [[xi, xi+j], x1]. Using the assumption of the induction we get

[xi, xi+j+1] = [[xi, xi+j], x1] − [xi+1, xi+j]

=

⌊
j+1
2 ⌋

s=0

(−1)sQs,j+2−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek −

⌊
j
2 ⌋

s=0

(−1)sQs,j+1−2s

n−1−j+2s
k=1

γi+s,j−2s+kek

= Q0,j+2

n−3−j
k=1

γi−1,j+2+kek +

⌊
j+1
2 ⌋

s=1

(−1)sQs,j+2−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek

−

⌊
j
2 ⌋+1
s=1

(−1)s−1Qs−1,j+3−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek.

If j is odd then ⌊
j+1
2 ⌋ = ⌊

j
2⌋ + 1 = ⌊

j+2
2 ⌋ and using the equality (8) we get

[xi, xi+j+1] = Q0,j+2

n−3−j
k=1

γi−1,j+2+kek +

⌊
j+1
2 ⌋

s=1

(−1)sQs,j+3−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek

=

⌊
j+2
2 ⌋

s=0

(−1)sQs,j+3−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek.

If j is even then ⌊
j+1
2 ⌋ = ⌊

j
2⌋ and we get

[xi, xi+j+1] = Q0,j+2

n−3−j
k=1

γi−1,j+2+kek +

⌊
j
2 ⌋

s=1

(−1)s(Qs,j+3−2s)

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek

+ (−1)⌊
j+2
2 ⌋

n−1
k=1

γi+⌊
j
2 ⌋,kek =

⌊
j+2
2 ⌋

s=0

(−1)sQs,j+3−2s

n−3−j+2s
k=1

γi+s−1,j+2−2s+kek.

The products [x2, xj] are also obtained by induction on j, using the equality (10) and the multiplication [x3, xj−1]. �

In the following lemma we define the products [xi, xj] for i + j ≥ n + 2.

Lemma 3. We have

[xi, xn+2−i] = (−1)iα5e1 + (−1)i(n − 5)α3e2 + (−1)i+1βn−2e1

+

i−2
s=2

(−1)s+i
s

t=1

Qs−t,n+1−2s

2s−2
k=1

γs,n+1−2s+kek

+

⌊
n
2 ⌋

s=i−1

(−1)s+i
i−2
t=1

Qs−t,n+1−2s

2s−2
k=1

γs,n+1−2s+kek,

[xi, xn+3−i] = (−1)i+1(i − 3)(n − 5)α3e1

+

i−3
s=2

(−1)s+i+1
s

t=1

(i − 2 − t)Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek

+

⌊
n
2 ⌋

s=i−2

(−1)s+i+1
i−3
t=1

(i − 2 − t)Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek,

[xi, xn+p−i] =

i−p
s=⌊

p
2 ⌋+1

(−1)s+i+p
s

t=1

i − 2 − t
p − 2


Qs−t,n+1−2s

2s−p
k=1

γs,n+p−1−2s+kek

+

⌊
n
2 ⌋

s=max{i−p+1;⌊ p
2 ⌋+1}

(−1)s+i+p
i−p
t=1

i − 2 − t
p − 2


Qs−t,n+1−2s

2s−p
k=1

γs,n+p−1−2s+kek,

(11)

where 4 ≤ p ≤ n − 1, p + 1 ≤ i ≤ ⌊
n+p+1

2 ⌋.
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Proof. First we will find the products [xi, xn+2−i].

According to Lemma 1 we have [x2, xn] = α5e1 + α3e2 and using Lemma 2 from relations (10) we obtain

[x3, xn−1] = −α3e2 − [x2, xn] + [[x2, xn−1], x1] = −α5e1 − (n − 5)α3e2

+

⌊
n
2 ⌋

s=2

(−1)s+1Qs−1,n+1−2s

2s−2
k=1

γs,n+1−2s+kek.

Similarly, from the equality [xi−1, xn+3−i] + [xi, xn+2−i] = [[xi−1, xn+2−i], x1], for 3 ≤ i ≤ k + 1, by induction we obtain

[xi, xn+2−i] = (−1)iα5e1 + (−1)i(n − 5)α3 + (−1)i+1βn−2e1

+

i−3
s=2

(−1)s+i
s

t=1

Qs−t,n+1−2s

2s−2
k=1

γs,n+1−2s+kek +

⌊
n
2 ⌋

s=i−2

(−1)s+i
i−3
t=1

Qs−t,n+1−2s

2s−2
k=1

γs,n+1−2s+kek

+

⌊
n+4−2i

2 ⌋
s=0

(−1)sQs,n+5−2i−2s

2s+2i−6
k=1

γi+s−2,n+5−2i−2s+kek.

Taking s′ = s + i − 2 in the last sum, we obtain

⌊
n+4−2i

2 ⌋
s=0

(−1)sQs,n+5−2i−2s

2s+2i−6
k=1

γi+s−2,n+5−2i−2s+kek =

⌊
n
2 ⌋

s=i−2

(−1)s+iQs−i+2,n+1−2s

2s−2
k=1

γs,n+1−2s+kek.

Placing this equality to above one we obtain the first equality of the lemma.
Now we will deduce the products [xi, xn+3−i].

Using [x3, xn] = 0 from the relation [x3, xn] + [x4, xn−1] = [[x3, xn−1], x1] we get

[x4, xn−1] = −(n − 5)α3e1 +

⌊
n
2 ⌋

s=2

(−1)s+1Qs−1,n+1−2s

2s−3
k=1

γs,n+2−2s+kek.

Using the products [xi, xn+2−i] from the equality [xi−1, xn+4−i] + [xi, xn+3−i] = [[xi−1, xn+3−i], x1], for 4 ≤ i ≤ k + 2, by
induction on i similarly to the previous case we obtain

[xi, xn+3−i] = (−1)i+1(i − 3)(n − 5)α3e1 +

i−3
s=2

(−1)s+i+1
s

t=1

(i − 2 − t)Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek

+

⌊
n
2 ⌋

s=i−2

(−1)s+i+1
i−3
t=1

(i − 2 − t)Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek.

The last equality from (11) follows by the induction on p and i (first by p, then by i.). �

Now we define some restrictions to the structure constants βi and γi,j.

From the equality (10) we obtain

[x⌊
n
2 ⌋+l, x⌊

n
2 ⌋+l] =

1
2
[[x⌊

n
2 ⌋+l, x⌊

n
2 ⌋+l−1], x1], 1 ≤ l ≤

n
2


.

Let n be even. Then in the case of l = 1 we get

[x⌊
n
2 ⌋+1, x⌊

n
2 ⌋+1] =

1
2
[[x⌊

n
2 ⌋+1, x⌊

n
2 ⌋], x1] =

1
2

n−2
k=1

γ⌊
n
2 ⌋,k+1ek.

On the other hand, from Lemma 3 we obtain

[x⌊
n
2 ⌋+1, x⌊

n
2 ⌋+1] = (−1)⌊

n
2 ⌋+1α5e1 + (−1)⌊

n
2 ⌋+1(n − 5)α3e2 + (−1)⌊

n
2 ⌋βn−2e1

+

⌊
n
2 ⌋−1
s=2

(−1)s+⌊
n
2 ⌋+1

s
t=1

Qs−t,n+1−2s

2s−2
k=1

γs,n+1−2s+kek −

⌊
n
2 ⌋−1
t=1

Q⌊
n
2 ⌋−t,1

n−2
k=1

γ⌊
n
2 ⌋,k+1ek.
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Comparing the coefficients at the basis elements we obtain the following restrictions:

α5 − βn−2 +

⌊
n
2 ⌋

s=2

(−1)sγs,n+2−2s

 s
t=1

Qs−t,n+1−2s


− (−1)⌊

n
2 ⌋

1
2
γ⌊

n
2 ⌋,2 = 0,

(n − 5)α3 +

⌊
n
2 ⌋

s=2

(−1)sγs,n+3−2s

 s
t=1

Qs−t,n+1−2s


− (−1)⌊

n
2 ⌋

1
2
γ⌊

n
2 ⌋,3 = 0,

⌊
n
2 ⌋

s=⌊
k+3
2 ⌋

(−1)sγs,n+1−2s+k

 s
t=1

Qs−t,n+1−2s


− (−1)⌊

n
2 ⌋

1
2
γ⌊

n
2 ⌋,k+1 = 0, 3 ≤ k ≤ n − 2.

(12)

If l ≥ 2, then we have

[x⌊
n
2 ⌋+l, x⌊

n
2 ⌋+l] =

1
2
[[x⌊

n
2 ⌋+l, x⌊

n
2 ⌋+l−1], x1]

=
1
2

⌊
n
2 ⌋−l+1
s=l+1

(−1)s+⌊
n
2 ⌋+l−1

s
t=1

n
2


+ l − 2 − t
2l − 3


Qs−t,n+1−2s

2s−2l
k=1

γs,n+2l−1−2s+kek

+
1
2

⌊
n
2 ⌋

s=max{⌊ n
2⌋−l+2;l+1}

(−1)s+⌊
n
2 ⌋+l−1

⌊
n
2 ⌋−l+1
t=1

n
2


+ l − 2 − t
2l − 3


Qs−t,n+1−2s

2s−2l
k=1

γs,n+2l−1−2s+kek.

On the other hand, in the equality (11) for p = 2l and i = ⌊
n
2⌋ + lwe deduce

[x⌊
n
2 ⌋+l, x⌊

n
2 ⌋+l] =

⌊
n
2 ⌋−l

s=l+1

(−1)s+⌊
n
2 ⌋+l

s
t=1

n
2


+ l − 2 − t
2l − 2


Qs−t,n+1−2s

2s−2l
k=1

γs,n+2l−1−2s+kek

+

⌊
n
2 ⌋

s=max{⌊ n
2 ⌋−l+1;l+1}

(−1)s+⌊
n
2 ⌋+l

⌊
n
2 ⌋−l
t=1

n
2


+ l − 2 − t
2l − 2


Qs−t,n+1−2s

2s−2l
k=1

γs,n+2l−1−2s+kek.

Comparing the coefficients at the basis elements we get

⌊
n
2 ⌋

s=⌊
k+1
2 ⌋+l

(−1)sγs,n+2l−1−2s+k

min{s,⌊ n
2 ⌋−l}

t=1

n
2


+ l − 2 − t
2l − 2


+

1
2

n
2


+ l − 2 − t
2l − 3


Qs−t,n+1−2s

+

⌊
n
2 ⌋

s=max{⌊ n
2 ⌋−l+1;⌊ k+1

2 ⌋+l}

1
2
(−1)sγs,n+2l−1−2s+kQs−⌊

n
2 ⌋+l−1,n+1−2s = 0,

(13)

where 2 ≤ l ≤ ⌊
n
2⌋ − 1, 1 ≤ k ≤ n − 2l.

Let n be odd. Then in the case of l = 2 we get [x⌊
n
2 ⌋+2, x⌊

n
2 ⌋+2] =

1
2 [[x⌊

n
2 ⌋+2, x⌊

n
2 ⌋+1], x1] and using the first equality of

(11) we obtain

[x⌊
n
2 ⌋+2, x⌊

n
2 ⌋+2] =

1
2
(−1)⌊

n
2 ⌋(n − 5)α3e1 +

1
2

⌊
n
2 ⌋

s=2

(−1)s+⌊
n
2 ⌋

s
t=1

Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek.

On the other hand, from the second equality of (11) for i = ⌊
n
2⌋ + 2 we get

[x⌊
n
2 ⌋+2, x⌊

n
2 ⌋+2] = (−1)⌊

n
2 ⌋+1(⌊

n
2
⌋ − 1)(n − 5)α3e1

+

⌊
n
2 ⌋−1
s=2

(−1)s+⌊
n
2 ⌋+1

s
t=1

n
2


− t

Qs−t,n+1−2s

2s−3
k=1

γs,n+2−2s+kek

−

⌊
n
2 ⌋−1
t=1

n
2


− t

Q⌊

n
2 ⌋−t,2

n−4
k=1

γ⌊
n
2 ⌋,k+3ek.
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Comparing the coefficients at the basis elements we derive

n
2


−

1
2


(n − 5)α3 +

⌊
n
2 ⌋

s=2

(−1)sγs,n+3−2s

s
t=1

n
2


− t +

1
2


Qs−t,n+1−2s = 0,

⌊
n
2 ⌋

s=⌊
k+4
2 ⌋

(−1)sγs,n+2−2s+k

s
t=1

n
2


− t +

1
2


Qs−t,n+1−2s = 0, 2 ≤ k ≤ n − 4.

(14)

If l ≥ 3, then we have

[x⌊
n
2 ⌋+l, x⌊

n
2 ⌋+l] =

1
2
[[x⌊

n
2 ⌋+l, x⌊

n
2 ⌋+l−1], x1]

=
1
2

⌊
n
2 ⌋−l+2
s=l

(−1)s+⌊
n
2 ⌋+l

s
t=1

n
2


+ l − 2 − t
2l − 4


Qs−t,n+1−2s

2s−2l+1
k=1

γs,n+2l−2−2s+kek

+
1
2

⌊
n
2 ⌋

s=max{⌊ n
2 ⌋−l+3;l}

(−1)s+⌊
n
2 ⌋+l

⌊
n
2 ⌋−l+2
t=1

n
2


+ l − 2 − t
2l − 4


Qs−t,n+1−2s

2s−2l+1
k=1

γs,n+2l−2−2s+kek.

On the other hand, in the equality (11) for p = 2l − 1 and i = ⌊
n
2⌋ + lwe have

[x⌊
n
2 ⌋+l, x⌊

n
2 ⌋+l] =

⌊
n
2 ⌋−l+1
s=l

(−1)s+⌊
n
2 ⌋+l−1

s
t=1

n
2


+ l − 2 − t
2l − 3


Qs−t,n+1−2s

2s−2l+1
k=1

γs,n+2l−2−2s+kek

+

⌊
n
2 ⌋

s=max{⌊ n
2 ⌋−l+2;l}

(−1)s+⌊
n
2 ⌋+l−1

⌊
n
2 ⌋−l+1
t=1

n
2


+ l − 2 − t
2l − 3


Qs−t,n+1−2s

2s−2l+1
k=1

γs,n+2l−2−2s+kek.

Comparing the coefficients at the basis elements we get

⌊
n
2 ⌋

s=⌊
k
2 ⌋+l

(−1)sγs,n+2l−2−2s+k

min{s,⌊ n
2 ⌋−l+1}

t=1

n
2


+ l − 2 − t
2l − 3


+

1
2

n
2


+ l − 2 − t
2l − 4


Qs−t,n+1−2s

+

⌊
n
2 ⌋

s=max{⌊ n
2 ⌋−l+2;⌊ k

2 ⌋+l}

1
2
(−1)sγs,n+2l−2−2s+kQs−⌊

n
2 ⌋+l−2,n+1−2s = 0,

(15)

where 3 ≤ l ≤ ⌊
n
2⌋, 1 ≤ k ≤ n − 2l.

Therefore, we obtain following main Theorem of this section.

Theorem 4. Let L be a Leibniz algebra such that L/I ∼= nn,1 and I is the L/I-module with theminimal faithful representation. Then
L admits a basis {x1, x2, . . . , xn, e1, e2, . . . , en} such that the multiplication table for this basis has the form (5), (7), (9), (11)with
the restrictions (12), (13), (14), (15).

Now we are in position to give a classification of such algebras up to isomorphism for the case n = 4.
In this case we get the following family of algebras denoted by µ(α1, α2, α3, α4, β1, β2, γ1, γ2):

[e2, x1] = e1, [x3, x1] = x4 − α2e3,
[e3, x1] = e2, [x4, x1] = −α4e1 − 2α2e2,
[e4, x2] = e3, [x2, x2] = β1e1 + β2e2,
[e4, x3] = e2, [x3, x2] = γ1e1 + γ2e2 − 2α3e3,
[e4, x4] = e1, [x4, x3] = −α3e1,

[x1, x2] = −x3, [x3, x3] =
1
2
γ2e1 − α3e2,

[x1, x3] = −x4, [x4, x2] =
1
2
γ2e1 − α3e2

[x1, x1] = α1e3 + α2e4, [x2, x3] = (β2 − γ1)e1 − γ2e2 + α3e3,

[x2, x1] = x3 + α3e4, [x2, x4] = −
3
2
γ2e1 − α3e2,

[x1, x4] = α4e1 + α2e2.
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Theorem 5. Let L be an 8-dimensional Leibniz algebra such that L/I ∼= n4,1 and I is the L/I-module with the minimal faithful
representation. Then L is isomorphic to one of the following pairwise non isomorphic algebras:

µ(α1, α2, 1, 1, β1, β2, 0, 1) µ(α1, 1, 1, 0, β1, β2, 0, 1) µ(1, 0, 1, 0, β1, β2, 0, 1) µ(α1, 1, 1, 1, β1, β2, 0, 0)
µ(1, 0, 1, 1, β1, β2, 0, 0) µ(0, 0, 1, 1, 1, β2, 0, 0) µ(0, 0, 1, 1, 0, 1, 0, 0) µ(0, 0, 1, 1, 0, 0, 0, 0)
µ(1, 1, 1, 0, β1, β2, 0, 0) µ(0, 1, 1, 0, 1, β2, 0, 0) µ(0, 1, 1, 0, 0, 1, 0, 0) µ(0, 1, 1, 0, 0, 0, 0, 0)
µ(1, 0, 1, 0, 1, β2, 0, 0) µ(1, 0, 1, 0, 0, 1, 0, 0) µ(0, 0, 1, 0, 1, β2, 0, 0) µ(0, 0, 1, 0, 0, 1, 0, 0)
µ(0, 0, 1, 0, 0, 0, 0, 0) µ(α1, 1, 0, 1, 0, β2, γ1, 1) µ(α1, 0, 0, 1, 0, 1, γ1, 1) µ(α1, 0, 0, 1, 0, 0, 1, 1)
µ(α1, 0, 0, 1, 0, 0, 0, 1) µ(α1, 1, 0, 0, 0, 1, γ1, 1) µ(α1, 1, 0, 0, 0, 0, 1, 1) µ(α1, 1, 0, 0, 0, 0, 0, 1)
µ(1, 0, 0, 0, 0, 1, γ1, 1) µ(1, 0, 0, 0, 0, 0, 1, 1) µ(1, 0, 0, 0, 0, 0, 0, 1) µ(0, 0, 0, 0, 0, 1, γ1, 1)
µ(0, 0, 0, 0, 0, 0, 1, 1) µ(0, 0, 0, 0, 0, 0, 0, 1) µ(1, 1, 0, 1, β1, β2, γ1, 0) µ(0, 1, 0, 1, 1, β2, γ1, 0)
µ(0, 1, 0, 1, 0, 1, γ1, 0) µ(0, 1, 0, 1, 0, 0, 1, 0) µ(0, 1, 0, 1, 0, 0, 0, 0) µ(1, 0, 0, 1, 1, β2, γ1, 0)
µ(1, 0, 0, 1, 0, 1, γ1, 0) µ(1, 0, 0, 1, 0, 0, 1, 0) µ(1, 0, 0, 1, 0, 0, 0, 0) µ(0, 0, 0, 1, 1, 1, γ1, 0)
µ(0, 0, 0, 1, 1, 0, 1, 0) µ(0, 0, 0, 1, 1, 0, 0, 0) µ(0, 0, 0, 1, 0, 1, 1, 0) µ(0, 0, 0, 1, 0, 1, 0, 0)
µ(0, 0, 0, 1, 0, 0, 1, 0) µ(0, 0, 0, 1, 0, 0, 0, 0) µ(1, 1, 0, 0, 1, β2, γ1, 0) µ(1, 1, 0, 0, 0, 1, γ1, 0)
µ(1, 1, 0, 0, 0, 0, 1, 0) µ(1, 1, 0, 0, 0, 0, 0, 0) µ(1, 0, 0, 0, 1, 1, γ1, 0) µ(1, 0, 0, 0, 1, 0, 1, 0)
µ(1, 0, 0, 0, 1, 0, 0, 0) µ(1, 0, 0, 0, 0, 1, 1, 0) µ(1, 0, 0, 0, 0, 1, 0, 0) µ(1, 0, 0, 0, 0, 0, 1, 0)
µ(1, 0, 0, 0, 0, 0, 0, 0) µ(0, 1, 0, 0, 1, 1, γ1, 0) µ(0, 1, 0, 0, 1, 0, 1, 0) µ(0, 1, 0, 0, 1, 0, 0, 0)
µ(0, 1, 0, 0, 0, 1, γ1, 0) µ(0, 1, 0, 0, 0, 0, 1, 0) µ(0, 1, 0, 0, 0, 0, 0, 0) µ(0, 0, 0, 0, 1, 1, γ1, 0)
µ(0, 0, 0, 0, 0, 1, γ1, 0) µ(0, 0, 0, 0, 1, 0, 1, 0) µ(0, 0, 0, 0, 1, 0, 0, 0) µ(0, 0, 0, 0, 0, 0, 1, 0)
µ(0, 0, 0, 0, 0, 0, 0, 0)

with α1, α2, β1, β2, γ1 ∈ C.

Proof. Let L be an 8-dimensional Leibniz algebra given by µ(α1, α2, α3, α4, β1, β2, γ1, γ2). We make the following change
of basis:

x′

1 =

4
k=1

Pkxk +

4
k=1

Qkek,

x′

2 =

4
k=1

Mkxk +

4
k=1

Nkek,

e′

4 =

4
k=1

Rkxk +

4
k=1

Tkek,

while the other elements of the new basis (i.e. e′

1, e
′

2, e
′

3, x
′

3 and x′

4) are obtained as products of the above elements.
The table of multiplication in this new basis implies the following restrictions on the coefficients:

P2 = M1 = Rk = 0, 1 ≤ k ≤ 4,

T3 = −
T4P3
P1

, T2 = −
T4P4
P1

, N4 = α3M3,

Q4 =
α2P1M3

M2
,

Q3 = −
−α3P2

3M2 − α1P2
1M3 + α2P1P3M3

P1M2
,

Q2 = −
−2α2T1P2

1M2 + γ2T4P2
3M2 − 2α3T4P3P4M2 + 2α2T4P1P4M3 − 2α1T4P2

1M4

2T4P1M2
,

N3 = −
α3P4M2

2 − α3P3M2M3 + α2P1M2
3 − α2P1M2M4

P1M2
,

N2 = −
−α3T1P1M2

2 + β2T4P3M2
2 − γ2T4P4M2

2 + γ2T4P3M2M3 − α3T4P3M2M4 + α2T4P1M3M4

T4P1M2
,

T4P1M2 ≠ 0.

Calculating new parameters we obtain:

α′

1 =
α1P2

1

T4M2
, α′

2 =
α2P2

1

T4
,

α′

3 =
α3P1M2

T4
, α′

4 =
α4P1
T4

,
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β ′

1 =
2β1M2

2 + γ2M2
3 − 2γ2M2M4

2T4P2
1M2

,

γ ′

1 =
γ1M2

2 − α3M2
3 + 2α3M2M4

T4P1M2
,

β ′

2 =
β2M2

T4P1
, γ ′

2 =
γ2M2

T4
.

Considering all the possible cases we obtain the families of algebras listed in the theorem. �
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