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1. Background and main results

A semi-Riemannian manifold (M, g) is homogeneous if it admits a transitive action by a group of isometries, i.e., for each
pair of points p and q in M there is an isometry of (.M, g) that maps p to q. In the spirit of Felix Klein’s Erlanger Programm to
characterise geometries by their symmetry group, homogeneous manifolds are fundamental building blocks in geometry.
Homogeneity is strongly tied to the geometry and the curvature of a manifold. For example, homogeneous Riemannian
manifolds are geodesically complete, and, as an example for the link to curvature, any Ricci-flat homogeneous Riemannian
manifold is flat [1]. A weaker version of homogeneity is local homogeneity: a semi-Riemannian manifold (M, g) is locally
homogeneous if for each point p € M there is a neighbourhood U such that the Killing vector fields of (U, g|y) span T, M
when evaluated at p.

Here we will study local homogeneity for a certain class of Lorentzian manifolds, the so-called pp-waves and the plane
waves. A pp-wave is a Lorentzian manifold (M, g) that admits a parallel null vector field V, i.e., V # 0,g(V,V) = 0 and
VV = 0, and curvature endomorphism R : A2TM — A2TM is non-zero and satisfies

Rlyipt =0, (1.1)
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where V! = {X € TM | g(X, V) = 0}. A plane wave is a pp-wave with

VyR=0 forallU e V+. (1.2)
Locally, an (n + 2)-dimensional pp-wave has coordinates (x~, x', ..., x", x*) such that

g = 2dx"(dx~ + Hdx") + §;dx'd, (1.3)
where H = H(x', ..., x" x¥) is a smooth function not depending on x~. For a plane wave, this function is required to be

quadratic in the x”’s with x*-dependent coefficients. In general, they are not homogeneous.

Four-dimensional pp-waves were discovered in a mathematical context by Brinkmann [2] as one class of Einstein spaces
that can be mapped conformally onto each other. In physics, plane waves and pp-waves appeared in general relativity
(see for example [3,4] for references), where they continue to play an important role as metrics for which the Einstein
equations become linear. Solutions of this type describe the propagation of gravitational waves with flat surfaces as wave
fronts. Later Penrose discovered that when “zooming in on null geodesics” every space-times has a plane wave as limit [5].
More recently, the conditions under which the homogeneity of a Lorentzian manifold is inherited by its Penrose limit were
studied extensively by Figueroa-O’Farrill, Meessen and Philip [6,7]. Moreover, having a large number of parallel spinor fields,
higher-dimensional pp-waves constitute supergravity backgrounds, e.g. in [8], and there is now a vast amount of literature
on them. For more recent results on homogeneity see the work by Figueroa-O’Farrill et al. in [9-11].

A systematic study of 4-dimensional pp-waves was undertaken by Jordan, Ehlers and Kundt in [4] (see the English
republication [12] and also [ 13], where the name pp-wave for plane fronted with parallel rays was introduced). Among other
aspects, in [4] the isometries of 4-dimensional, gravitational (i.e. Ricci-flat) pp-waves are considered and the Killing equation
is solved completely. As a consequence, the possible dimensions of the space of Killing vector fields are given and in each
case the form of the metric is determined explicitly. This rather satisfying result allows [4] to conclude:

(A) If a4-dimensional Ricci-flat pp-wave (M*, g) is locally V+--homogeneous, then it is a plane wave. In particular, if (M*, g)
is Ricci-flat and locally homogeneous, then it is a plane wave.

Here, local V+-homogeneity is a generalisation of local homogeneity taking into account the vector distribution V- that is
given on a pp-wave: A semi-Riemannian manifold (.M, g) with a vector distribution D is locally D-homogeneous if for each
point p € M there is a neighbourhood U in M such that the Killing vector fields of (U, g|v) span £, when evaluated at p.

Proving (A) amounts to showing that local homogeneity (in V1 -directions) forces H to be at most quadratic in the x!
coordinates. The methods used in [4] in order to solve the Killing equation are restricted to dimension 4 and also use that
the function H is harmonic, as a consequence of Ricci-flatness.

Statement (A) is no longer true without the assumption of Ricci-flatness: Sippel and Goenner in [14] determined all
solutions to the Killing equation for a 4-dimensional pp-wave (M*, g) without assuming Ric = 0 and gave an example of a
homogeneous pp-wave that is not a plane wave (see our Example 4.3). However, it turns out that the metric in this example
decomposes into a product of a 3-dimensional pp-wave and R. Note that in [4] such a decomposition was implicitly excluded
by the Ricci-flatness: if a 4-dimensional Ricci-flat manifold splits as a Riemannian product, then it is flat. Hence, the results
in [14, Table II, p. 1234] establish the following result:

(B) If a 4-dimensional indecomposable pp-wave (M*, g) is locally V- -homogeneous, then it is a plane wave. In particular,
if (M*, g) is indecomposable and locally homogeneous, then it is a plane wave.

Here, the manifold is indecomposable, if the holonomy algebra acts indecomposably. Therefore, when looking for a
generalisation of (A) or (B) to arbitrary dimensions the notion of indecomposability is relevant. We say that a semi-
Riemannian manifold (M, g) is strongly indecomposable if (M, g) does not split as a local semi-Riemannian product
anywhere, i.e, there is no point in M that has a neighbourhood on which g is a product metric. Clearly, by the local
version of the de Rham-Wu splitting theorem, the holonomy algebra of a strongly indecomposable manifold acts
indecomposably (i.e. without non-degenerate invariant subspace), but the converse in general is not true. In addition to
strong indecomposability we will need another condition on the curvature tensor R of a pp-wave. From the very definition
of a pp-wave it follows that the rank of R when acting on 2-forms does not exceed dim(-M) — 2. For a generalisation of
statement (B), we assume that generically the rank of R is larger than one:

Theorem 1. Let (M, g) be a pp-wave of arbitrary dimension with parallel null vector field V. Assume that (M, g) is strongly
indecomposable and in addition that almost everywhere the rank of its curvature endomorphism acting on A>T M is larger than
one. Then (M, g) is a plane wave if it is locally V+-homogeneous.

Here by “almost everywhere” we mean that there is no open set on which the rank of the curvature endomorphism
is <1. Note that the assumption on the rank of the curvature prevents us from applying Theorem 1 to 3-dimensional
pp-waves. Indeed, in Example 4.1 we exhibit a 3-dimensional, locally homogeneous pp-wave that is not a plane wave.
Three-dimensional homogeneous pp-waves were recently classified by Garcia-Rio et al. [15] and our example belongs to
their class M.

As Ricci-flat pp-waves always satisfy the assumption on the curvature (Lemma 3.3), we obtain a generalisation of
statement (A) to arbitrary dimensions:
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Corollary 1. A strongly indecomposable, Ricci-flat and locally V-+-homogeneous pp-wave is a plane wave.

It is well known [ 16, Section 7.3] that in locally homogeneous manifolds any two points have neighbourhoods that are
isometric to each other. Hence, a locally homogeneous manifold is strongly indecomposable whenever it is indecomposable,
and the rank of the curvature endomorphism is constant. This yields

Corollary 2. An indecomposable, locally homogeneous pp-wave is a plane wave if, at one point, the rank of the curvature
endomorphism is greater than one.

Locally homogeneous plane waves are reductive (see Section 4.3.3) and have been classified by Blau and O’Loughlin [17]
(see our Section 4.3.2). As a consequence, with the exception of the curvature rank one case, our reduction to the plane waves
yields a classification of indecomposable locally homogeneous pp-waves in terms of possible functions H (see Section 4.3.2).
In appropriate coordinates, we have either

xTelog(x++b)F selog(forfb)Fx
(X+ + b)2

for b € R, a skew symmetric matrix F and a symmetric matrix S.

Hx,x") =x"e"'Fse™ Fx or H(x,x") = , (1.4)

Corollary 3. Indecomposable, Ricci-flat and locally homogeneous pp-waves are plane waves whose metric is locally given by H
in formulae (1.4) with a trace-free matrix S.

Corollary 3 is an instance of the phenomenon that Ricci-flat pp-waves with some additional conditions have to be plane
waves. Another instance of this phenomenon is given in [ 18], where it is shown that compact Ricci-flat pp-waves are plane
waves.

If the local Killing vector fields spanning VpL are actually sections of V-, we can drop the assumption on the rank of the
curvature:

Theorem 2. Let (M, g) be a strongly indecomposable pp-wave such that every point p admits a neighbourhood U with Killing
vector fields defined on U that are sections of V|, and which span V+ |p- Then (M., g) is a plane wave.

This is a version of a result for commuting Killing vector fields tangent to V1:

Theorem 3. Let (M, g) be a semi-Riemannian manifold of dimension m and assume that there are commuting Killing vector
fields that span a null distribution (i.e., a distribution on which g degenerates) of rank m — 1. Then (M, g) admits a parallel null
vector field V and its curvature satisfies

R(X,Y)Z=0 and VxR=0,
forallX,Y,Z e V*. In particular, if (M, g) is Lorentzian, then it is a plane wave.

Jordan, Ehlers and Kundt [4, Theorem 4.5.2] proved Theorem 3 for 4-dimensional Lorentzian manifolds, but their proof
works in any dimension and signature (see our Section 3). In contrast, our proofs of Theorems 1 and 2 use completely
different methods than those in [4]. In fact, our proof of Theorem 1 does not require a full solution of the Killing equation
(which we derive in Section 4) but a detailed analysis of its consequences (in Section 5). Moreover, we use algebraic results
such as the classification of subalgebras of the Lie algebra of similarity transformations sim(n) = (R@®so(n)) x R" of R" that
act indecomposably on R'"*1 via sim(n) C so(1, n + 1). This classification is due to Bérard-Bergery and Ikemakhen [19],
and plays an important role in the classification of indecomposable Lorentzian holonomy algebras in [20].

As we have pointed out above, Example 4.1 shows that, at least in dimension 3, the condition on the rank of the curvature
cannot be dropped. However, obvious generalisations of Example 4.1 lead either to non-homogeneous pp-waves (as in [13],
see our Example 4.2) or to decomposable homogeneous pp-waves (as in [14], our Example 4.3). Hence, we are tempted to
conjecture (see Section 4.2 for more details):

Conjecture. Any indecomposable locally homogeneous pp-wave of dimension larger than 3 is a plane wave.

In relation to this we should point out that the rank assumption is independent from the assumption of strong
indecomposability: in Example 3.2 we present a 4-dimensional, strongly indecomposable plane wave metric whose
curvature has rank 1. The curvature rank one case remains open for further study. Also we believe that our methods
employed in Section 5 are useful in a wider context and will give a better understanding of the more general class of
indecomposable locally homogeneous Lorentzian manifolds.
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2. Killing vector fields and locally homogeneous spaces

Let (M, g) be a semi-Riemannian manifold with Levi-Civita connection V. A Killing vector field K € I' (T.M) is a vector
field whose flow ¢, consists of local isometries of g,i.e. ¢; : (U, g) — (¢:(U), g) is anisometry, where U is a neighbourhood
of p on which ¢, is defined. If K is complete, then all ¢,’s are global isometries. Clearly, K is a Killing vector field if and only
if the (2, 0)-tensor g(VK, -) is skew-symmetric, i.e.

g(VxK,Y)+gX,VyK) =0 forallX,Y e TM. (2.1)

Let us denote the real vector space of Killing vector fields of (.M, g) by £. The Lie bracket of vector fields equips ¢ with a Lie
algebra structure.

In order to derive the integrability conditions for the Killing equation (2.1), we recall the classical approach by
Kostant [21]. Let us denote by so(TM, g) := {¢ € End(TM) | g(¢p(X), Y) +g(¢(Y), X) = 0} the bundle of skew-symmetric
endomorphisms. For a Killing vector field K, we define the section ¢* := VK of so(T M, g). A straightforward computation
shows that the Killing equation (2.1) implies that

Vx¢* = —R(K, X), (2.2)
where R denotes the curvature tensor of g defined by R(X, Y) = [Vx, Vy] — V|x.y;. Hence, if we define the vector bundle
K=TMDso(TM,g) —> M
and furnish it with the covariant derivative
X <1<> _ ( VxK — ¢(X) )
X\p)- Vx¢ +RK, X))’
we get the vector space isomorphism

¢ =~ {parallel sections of (X, V*)}.

This shows that dim(¢) < rk(X) = %m(m 4+ 1), where m = dim(M), and that a Killing vector field K is uniquely determined
by the values K|, € T,.M and VK], € so(T,:M, g,) at a point p € M. This yields an injection

Kot so(TyM, g) x TyM, K> — (VK| Kp). (2.3)

By definition, (M, g) is locally homogeneous if and only if for each point the evaluation map combined with the projection
on R"* is surjective.

By fixing an orthonormal basis e; with g(e;, ;) = ¢;5;;, we can identify so(T,.M, g,) x T,.M with the Lie algebra of semi-
Euclidean motions so(r, s) x R"*, where (r, s) is the signature of g. The minus sign in front of the image ensures that for the
flat metric on R"* this map is a Lie algebra isomorphism (instead of an anti-isomorphism) between the Killing vector fields
and the Lie algebra of Euclidean motions. In general, this map is not a Lie algebra homomorphism. For example, the Killing
vector fields of the m-sphere are isomorphic to so(m + 1) rather than so(m) x R". In fact, a computation reveals

VIK, K] = [VK, VK] — R(K, K),

where the right-hand side bracket is the commutator of linear maps, which yields

Kk([K, K1) — [k (K), k(K)] = —(Ry(K,, Kp), 0), (2.4)

again with the second Lie bracket the one in so(Tp M, gp) x Ty M.
Returning to the integrability condition for the Killing equation, we compute the curvature R” of V¥ and we get

% K\ _ 0
0 (4) = (v n @ pocn):

where ¢ - R denotes the canonical action of an endomorphism on (3, 1)-tensors. Hence the existence of a parallel section
(K, ¢) of KX gives the integrability condition

VkR=¢ -R, (2.5)

where ¢ = VK and R is the curvature of g.
Now, assume that (M, g) enjoys the existence of a parallel vector field V. We define two vector spaces

tV) ={Ket|gK,V)=0}, €V)={Ket|VyK=0}
and observe
Lemma 2.1. If V is a parallel vector field, then we have the following inclusion of subalgebras

eV) CE(V) Ct
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Proof. First we check the inclusion £(V) C € (V). Indeed, for a Killing vector field K € ¢, the derivative of the function
g(V, K) satisfies

X(g(K,V)) = g(VxK, V) = —g(VvK, X). (2.6)
First, this implies that if K € £(V) then we also have VyK = 0,i.e,K € ¥ (V).

Next we note that both ¢(V) and ¢ (V) are subalgebras: Clearly, if V is parallel, V* is involutive and hence &(V) is closed
under the bracket. Moreover, for K, K € ¥ (V) we have that

Vy[K, K] = VyVkK — Vy ViK = VigyK = Viz K =0,
since V_.R = 0 and [K, V] = —VyK = 0. Hence, also ¢ (V) is a subalgebra. 0O
This lemma implies the following: Let stab(V|,) be the stabiliser of V|, in so(T,M, gp). Then
K e(V) = stab(V[,) x VEp.
When proving the main results, we will work with a different vector space of Killing vector fields, namely with
(V) ={Ket]|gK, V)|, =0},

for a fixed point p € M. In general, this is not a Lie algebra, however, for pp-waves it is, as we will see in Corollary 5.3. This
fact turns out to be very useful for our approach.

Finally, note that a locally homogeneous manifold is strongly indecomposable (as defined in Section 1) whenever it is
indecomposable (i.e., the holonomy algebra acts indecomposably, that is without non-degenerate invariant subspace): if
a locally homogeneous manifold is a local product somewhere, it is a local product everywhere and hence the holonomy
algebra has a non-degenerate invariant subspace.

This does not hold in the case of local V+--homogeneity for a parallel null vector field V. This can be seen for pp-waves
asin(1.3)on R"™: here V = 9_ = (,XL_ and the leaves of V! are given as x* = ¢ constant. If H(x', ..., x",x*) = 0 for
x" € (a, b) but det(3;0j(H) |1, x+)) # O for some other x™, then the holonomy algebra acts indecomposably. However,
near a point with x* € (a, b) the metric is flat.

3. pp-waves and plane waves
Here we recall some basic properties of pp-waves and plane waves as defined in Section 1. First note that the defining
Eq. (1.1) is equivalent to

RX,Y)U e RV forallU e VtandX,Y e TM. (3.1)

A general pp-wave has an abelian holonomy algebra contained in R", where R" is an abelian ideal in the stabiliser so(n) x R"
ins0(1, n 4+ 1) of a null vector. The holonomy algebra is indecomposable if and only if it is equal to R". A pp-wave has the
following coordinate description:

Lemma 3.1. Let (M, g) be a pp-wave and let p € M. Then there are local coordinates ¢ = (x~,x = (x',...,x"),x") ona
neighbourhood U of p and a function H € C*° (¢ (W)) such that H = H(x™, X) not depending on x~ and,

g = 2dxT(dx™ + (H o @)dx™) + §;dxdx, (3.2)
where §; is the Kronecker symbol and where we use the summation convention. In these coordinates the parallel null vector field
isgivenby V|y = 0_ = axi* These coordinates are usually called Brinkmann coordinates after [2].

Moreover, these coordinates can be chosen such that ¢(p) = 0 and
oH
HE' 0 =0, —=x".0=0, (33)
X

for all x* from an interval around zero. We call these coordinates normal Brinkmann coordinates centred at p.

Proof. It is well known that a pp-wave admits local Brinkmann coordinates ¢ = (x*, x™, X) as in (3.2). We have to show
that the remaining freedom allows to chose these coordinates to be normal and centred at p. The general transformations
preserving the form (3.2) are of the form

1 - ~
X = - —exH)TA) + BT, X=Ax+c(x"), X" =ax"+b, (3.4)
a

where c is a vectorial function and 8 a real function both of x*, A € O(n) a constant matrix and a # 0 and b real numbers.
After such a transformation the new function H is given as

H(X, %) = THE 2 +éxH) A + B — Lexh) Te@h). (3.5)
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Clearly, by applying a translation we can centre these coordinates at p. Moreover, consider a transformation (3.4) with
A=34jb=0,a=1andletc = (cy, ..., c,) be the solution to the ODE

. a
G(t) = ——=H(t, —c(1)),
0x
fori = 1, ..., nwith one initial condition ¢;(0) = 0. Given such a solution ¢ = (cy, ..., Cy), let 8 be the solution to the ODE
B©) = 1e®)Té(r) — H(t, —e(©)),

with the initial condition 8(0) = 0. Eq. (3.5) shows that after such a transformation we have

- OH
Hlz+ 9 =0, ﬁ|&+,0) =0,

for all T, and hence the new coordinates satisfy Eqs. (3.3) forallx™. O
In Brinkmann coordinates the non-vanishing components of V are
Vo = ;(H)dxt ® a_, Vi, =dH ® d_ — dx* ® grad(H), (3.6)
where grad(H) = 899;(H) 0; denotes the gradient of H with respect to the flat metric S,jdxidxj on R". This property justifies
the term “normal” in Lemma 3.1: the covariant derivatives vanish at ¥ = 0. The covariant derivatives of the corresponding
1-forms dx' = g(9;, -), dx™ = g(0_, -) and dx~ = g(d, — 2HJ_, -) are
Vdxt =0, Vdx¥ =3Hdx" ® dx",  Vdx = —2dHdx".
For a pp-wave the parallel null vector field V defines a parallel null distribution V- of rank n + 1 for which the connection
induced by the Levi-Civita connection on the leaves of V* is flat. In Brinkmann coordinates, each leaf is defined by x* = ¢

constant and parametrised by the coordinates x~, x', ..., x". Moreover, Egs. (3.6) imply that all the curvature components
vanish apart from
R(9;, 04, 9, 04) = 0;0;H, (3.7)

and the components that are determined by this term via the symmetries of R, i.e.,
R = 43;3;H(dx' A dx™)(d¥ A dx™).

Here we use Einstein’s summation convention, the alternating and the symmetric product of two tensors. Hence, the Ricci
tensor of a pp-wave is given by

Ric = —AH(dx")?,
where A = Z?:l 83 is the flat Laplacian. Moreover, the covariant derivative of R is
VR = 4dH; ® (dx' A dx™)(d¥ A dx™),

including the differentials of the functions H; := 0;0;H. This shows that for a pp-wave to be a plane wave it requires
30;0¢H = 0. Therefore, for a plane wave the function H is a quadratic polynomial in the x"s, i.e., in normal Brinkmann
coordinates we have

2H(xT, %) = x'S(xD)x

where x denotes the column vector (x', ..., x") and S(x*) is a symmetric n x n-matrix depending on x*. Plane waves satisfy
the vacuum Einstein equations, i.e., are Ricci-flat if and only if S(x™) is trace-free for all x*.

A subclass of plane waves are the solvable Lorentzian symmetric spaces, the Cahen-Wallach spaces [22]. As symmetric
spaces, they satisfy VR = 0 which forces the matrix S to be constant. The Cahen-Wallach spaces for which S is trace-free
provide remarkable examples of Ricci-flat, non flat symmetric spaces, contrasting the Riemannian situation where Ricci-flat
symmetric spaces are flat.

The relation (3.7) on a coordinate neighbourhood shows that the rank of R as an endomorphism of A?T.M is equal to
n if and only if det(Hess(H)) # 0. Indeed, the rank is smaller than n if and only if there is a vector X = £%9; € V= such
that R(X A d;) = 0 which is equivalent to R(X, d, 9;, 9;) = O for all j, i.e,, sfa,-ajH = 0. The curvature of a pp-wave and
its derivatives are mapped into its holonomy algebra at p as follows, where we work with normal Brinkmann coordinates
centred at p:

0 (Xi...Xe(&(3H .. .)))|0)]’?=1 0
0 0 :
0 0 0

This shows that if there is one point where the Hessian of H has determinant not zero, then the pp-wave is indecomposable.
However, the following example shows that the converse not true, i.e., there are indecomposable pp-waves, for which the
rank of the curvature endomorphism is smaller than n on an open set.

(Vx, ... VxR)(9;, 05) =
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Example 3.2. We give an example of a strongly indecomposable 4-dimensional plane wave whose curvature has
everywhere rank 1. Given two functions a; and a, on R with a2 + a3 # 0 we consider the matrix

2
ai a aay
S= (al az) = ! 2
az aay a,

which has constant rank one. Then S defines a plane wave metric
g = 2dxT(dx™ 4+ &' S(xT)xdx™) + dx’.

Its curvature tensor is given by the matrix S and hence has everywhere rank 1. However the derivative of the curvature is
given by the matrix

(Va,R) (04, 3, 04, 9)) = aia; + ;G
with determinant det(S) = — (a;a, — a;,)%, which in general is not zero. Therefore, as the first derivative of the curvature

has no kernel, the holonomy of g is equal to R? and hence g is strongly indecomposable.
We can even choose the matrix S in a way that the resulting plane wave is homogeneous. Indeed, if we set

1 0 0 -1
then

i wtFe xtF cos(x)? —cos(x™) sin(x™)
S =€ 5" = (— cos(x™) sin(x™) sin(x™)? ’

has constant rank 1. According to [17] (see also Section 4.3.2), S defines a homogeneous plane wave metric on R* and
det(S) = —1 shows that it is indecomposable.

In order to deduce Corollaries 1 and 3 from Theorem 1 we observe

Lemma 3.3. If a pp-wave is Ricci-flat and its curvature endomorphism has rank <1, then it is flat.
Proof. If the curvature endomorphism has rank 1 and zero trace at a point p, then it has to vanish and so g is flat. O

When analysing the Killing equation, the following observation will be useful.

Lemma 3.4. On a pp-wave (M, g), let U be simply connected patch of Brinkmann coordinates and let L = a'd; be a non-zero
vector field on M with constant coefficients a' such that R(X, Y)L = O forallX, Y € TU. Then the holonomy of (U, g) is properly
contained in R", i.e., it does not act indecomposably. Moreover, g is locally a product metric.

Proof. Since L = a'd; has constant coefficients and no d,-component, it is easy to see that its parallel transport along a
curve y is given as P, (L], o)) = Ad— + L|, (1) for some A € R depending on the curve. Since L as well as 9_ are annihilated
by the curvature tensor, we get that

R(X,Y)oP,(L) =R(X,Y)(Ao_ +L) =0.

Using the Ambrose-Singer holonomy theorem, this shows that not only the null vector d_ but also the space-like vector
L is invariant under the holonomy algebra of (U, g|+), which, as a consequence is reduced from R" to a decomposable
subalgebra. The reminder of the statement follows from the local version of the de Rham-Wu decomposition theorem. O

We conclude this section with a proof Theorem 3. It generalises the proof in [4] but avoids the use of coordinates.

Proof of Theorem 3. Let (M, g) be a semi-Riemannian manifold of dimensionn + 2 and K_, Ky, . . ., K, commuting Killing
vector fields such that K_ is null and the K; are orthogonal to K_. We will show that this implies that V := K_ is parallel and
that R(X, Y)Z = 0 and VxR = 0 whenever X, Y, Z € V. Since the VK; are skew and the K; are mutually commuting, we
get

g(VKiI(ja Kk) =0 (3.8)
fori,j,k=—,1,...,n. Setg; := g(K;, K;). Clearly, g_; = 0 but also
dgi (Ki) = g(VgK;, Ki) + g(Vi, K, Kj) = 0. (3.9)

Now we show that V = K_ is parallel. To this end fix a null vector field Z such that g(V,Z) = 1and g(Z,K;) = 0 for
i=1,...,n.Clearly we have g(V;K;, Z) = 0, and

0 = g(VzKi, Kj) + g(ViKi, 2) = g(IZ, Kil, Kj).
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This implies that

8(%7K, ) = ~8(VigKi, 2) = 22(gy),

and in particular that VzV = 0 and V¢,V = 0, i.e, that V = K_ is parallel. Moreover, we obtain that
Vi K = —%Z(gg)v,

which yields

2R(K;, KKk = (IK;, Z1(gi) — [Ki, Z1(gi)) V = 0, (3.10)

because of (3.9) and since the equation 0 = g([Z, K;], V) from above shows that [Z, K;] has no Z-component. Hence, we
have shown that R(K;, Kj)Kx = 0, i.e,, that g is a pp-wave in the case when g is Lorentzian. In order to show that VxR = 0
for all X e V* we use the integrability condition (2.5). Denote by ¢; := VK;. Obviously ¢_ = 0 and ¢; K) = — %Z(gij)v and
¢i(Z) € span(K;)}L_,. This and (3.10) together with the integrability condition (2.5) gives us

ViR =¢;-R=0,

and hence the statement of Theorem 3 holds. O

4. The Killing equation for pp-waves

4.1. The Killing equation in normal Brinkmann coordinates

Here we derive the Killing equation in Brinkmann coordinates and then specialise this to normal Brinkmann coordinates
found in Lemma 3.1. Mostly we follow [17] where the Killing equation for plane waves is solved. We fix Brinkmann
coordinates (x_,x = (x',...,x"), x") and, using (3.6), compute the Lie derivative .£xg of the metric g in direction of a
vector field

K=K d_4+Kd+K"a,,
as
1Lxg = 0_KT(dx")? + 8;0kK'dx*d¥ + (K~ + K'H; + KTH + 2HK ") (dx™)?
+ (850_K' + 3K ") dxdx' + (3K~ + K" + 2HK ") dx'dx" + (9_K~ + 2HI_K ™ + KT) dx~dx™,

where we write H; := 3;H, H' = 8'7Hj, and a dot for d, derivatives. Following the arguments in [17, Sec. 2.3], one can show
that Lxg = 0 if and only if the components of K are given as

Kt =ax+at, K =-da"x +A", K =-ax +A (4.1)
for constants a;, a function a™ of x* and functions A~ and A’ of (x', ..., x", x*) subject to the equations
— (@ 4+ aHY)X" +A" +AH; + (ax' + o "H 4+ 2HaT =0 (4.2)
A + A =0 (4.3)
&A™ + A"+ 2Ha; = 0. (4.4)

Differentiating (4.2) with respect to x~ and then with respect to ¥ we obtain
a,»ajaiH =0. (45)

Recalling formula (3.7), this shows that the vector field L = a'd; on M, for a' := a; constants, is annihilated by the curvature
tensor Rof g,i.e, R(X, Y)L=0forallX,Y € TM.

From now on we will assume that (M, g) is strongly indecomposable, i.e., that the holonomy algebra of (U, g|) acts
indecomposably. Under this assumption, Lemma 3.4 implies by (4.5) that all the constants a; vanish. With the g; being zero,
we can again proceed as in [ 17, Sec. 2.3] and obtain that «* = ax* + b is linear, that A’ is of the form

A, LX) = ) X
with ' functions of x*, f} = —f” a skew-symmetric matrix, and moreover that

A (xt, %) = —x" ¥ (xY) + o(xh)
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with a function ¢ of x*, where we write ¥ = (y!,...,¥"). Plugging this back into Eqs. (4.1) we obtain that on an
indecomposable pp-wave (.M, g) in Brinkmann coordinates K is of the form

K=—(ax + o) +xT¥@H)) - + (F (") +Fx) 8 + (ax* + b)dy, (4.6)
wherea,band F = (fj.) € so(n) are constant,and ¢ and ¥ = (!, ..., ¥") are functions of x* satisfying the equation
—¥Tx— ¢ +grad(H)" (¥ + Fx) + (ax" 4+ b)H + 2aH = 0. (4.7)

Now, in normal Brinkmann coordinates, we can simplify Eq. (4.7):

Theorem 4.1. Let (M, g) be a strongly indecomposable pp-wave, p € M, and let (U, (xT,x~,x = (x',...,x"))) be normal
Brinkmann coordinates centred at p with 2H := g(d,., d;.). Then K is a Killing vector field if and only if

K=(C—ax —¥"%)0_+ (¥ +Fx)' 9; + (ax* + b)d., (4.8)
wherea, b, c € R, F € so(n) are constant and ¥ € C*° (R, R") subject to the equation
U Tx — grad(H) " (¥ + FX) — (ax* + b)H — 2aH = 0. (4.9)

Moreover, for the commutator K = [K7, K;] of two Killing vector fields Ky, K, the parameters are

a=0

b = azbl — a1b2

c = ljllT'pz — W]lelz — a6y + a0 (4]0)
F = —[F, K]

W =F W —F W+ (@ixt + b))% — (axt + by) ¥y

Proof. Clearly, K in (4.8) is a Killing vector field as its components satisfy Eq. (4.7) with ¢(x7) = —c.

On the other hand, we have seen that every Killing vector field in Brinkmann coordinates is of the form (4.6) with
components satisfying Eq. (4.7). Choosing the Brinkmann coordinates to be normal at p, Eq. (4.7) when taken alongx = 0
becomes ¢ = 0, which we solve by p(x*) = —c.

Finally, one checks that the Lie bracket is of the form (4.10). O

Theorem 4.1 allows us to compute the covariant derivatives of K explicitly as

VaiK = —aa‘,_
VaK = — (¥ — (ax* + b)diH) o + £ %3 (4.11)
Ve, K = (V' — (ax* + b)9;H) 9; + aE,

where E; = d; —Hd_ and where we use Eq. (4.7) to obtain the last derivative. Hence, at zero, the Killing vector in (4.6) and
its covariant derivative is given by

Klo = cd_ + ¥'(0)8; + bd,
VQ7K|0 = —ao_
L 4.12
VaKlo = =9/ (003 + f; 0 (4.12)
Vy, Klo = ¥'(0)3; + ady.
Moreover, differentiating equation (4.9) yields
¥ + Fgrad(H) — Hess(H)(¥ + Fx) — (ax™ + b)grad(H) — 2a grad(H) = 0. (4.13)

By the properties of the normal Brinkmann coordinates from Lemma 3.1, this becomes a second order linear ODE system
for¥ = (¥, ..., ¥"™) when taken along x = 0:

@ (t) — Hess(H)(t, 0)¥ (t) = 0. (4.14)

Fixing initial conditions ¥ (0) and ¥ (0) gives a unique solution to this system. This illustrates how K is completely
determined by the initial conditions. Moreover it shows that the c in (4.10) is indeed a constant.
In the remainder of the section we will consider some special cases, known results, and examples.
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4.2. Transversal Killing vector fields

We will see that a crucial issue of the Killing equation on pp-waves is the existence of Killing vector fields that are
transversal to the parallel null distribution V+ of rankn + 1.

First note that, if H = 0, then there is always the transversal Killing vector field 9., but in general transversal Killing
vector fields are much harder to find and the situation is much more involved. For example, for certain pp-waves there exist
Killing vector fields with b = 0 but a # 0 being tangent to V- only along the leaf x* = 0 but transversal elsewhere, i.e.,
pp-waves for which £(V) and ¢,(V), as defined in Section 2 are different. Note that Theorem 4.1 and formulae (4.11) show
that ¢’ and its subalgebra £(V) are actually ideals in the Lie algebra ¢ of Killing vector fields. In fact we have that [, ¢] = €.
Killing vector fields that are transversal at some point project onto non-zero elements in the quotient Lie algebra ¢/¢(V).

Corollary 4.2. The Lie algebra t/¢(V) is isomorphic to a subalgebra of aff(1), the Lie algebra of affine transformations of R. In
particular, if ¢/¢(V) is 2-dimensional, then there are two Killing vector fields K and K such that

K=x"0, modV*, K=20, modV™ .

Proof. Theorem 4.1 shows that there is a Lie algebra homomorphism
£ (axT +b)d; + K9+ K~ o_ — —(a, b) € aff(1),
the kernel of which is £(V). Hence ¢/¢(V) injects homomorphically into aff(1). If ¢/&(V) is 2-dimensional, we can invert this

map obtaining two Killing vector fields of the required form. O

Example 4.1. Here we will give an example of a 3-dimensional pp-wave for which the Lie algebra ¢/¢(V) is indeed 2-
dimensional, and more importantly, which is locally homogeneous but not a plane wave, showing that the assumption on
the curvature in Theorem 1 is essential. Consider the pp-wave (M, g) where M = R> and

g = 2dxT (dx™ + e¥*dx™) + dx?,

where a € R \ {0} is a constant and (x*, x~, x) are the standard coordinates in R>. In particular, H(x*, x) = H(x) = e,
The algebra of Killing vector fields ¢ is 3-dimensional and spanned by

3_, 8+, ax+3+ —ax 0_ — 8X.

Since g(K, V) = ax*, we have ¢(V) = R - d_ and thus dim(¢/€(V)) = 2. Moreover, the Killing vector fields span the tangent
space T, .M at any point p € M, so (M, g) is a locally homogeneous pp-wave. However, (M, g) is strongly indecomposable
since

0 2qe** 0
R, 9:)=1{0 0 —2ae*™ | £0,
0 0 0

for any x € R, but (M, g) clearly is not a plane wave since
(Va,R) By, 9+) = 2aR(3y. 3;) # 0.

This has recently been observed in [ 15] where 3-dimensional homogeneous pp-waves were classified.

Example 4.2 (Ehlers & Kundt). Similar examples with dim(¢/¢(V)) = 2 but in dimension 4 were given by Ehlers and Kundt
in [13, Table 2-5.1] as a correction to [4]. For one class of examples H is given as the real part of the complex function e** of
z = x' + ix* witha > 0.Then 8_ and 9, and

—a(x 9_ +x19y) — 0

span the Killing vector fields. For the other class, H is given as the real part of e%¢'"®@ with a # 0. Here, the Killing vector
fields are spanned by d_ and 9, and

—a(x"9_ +x79y) +x'9, — x%0;.

Note that with dim(¢) = 3 and dim(,(V)) = 2 both metrics are neither homogeneous nor V-+-homogeneous.

Example 4.3 (Sippel & Goenner). Another example of this type with dim(¢/¢(V)) = 2 in dimension 4 was given by Sippel
and Goenner in [ 14, Table II, no. 9]. These examples are pp-wave metrics on R* which are locally homogeneous but not plane
waves. However, they turn out to be decomposable. The pp-wave metric is defined by

H(X1, X2) —c ea1x1 7a2x2’
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with ¢, ay, a, constants with af + a% # 0. The Killing vector fields are given by d_, d; and
K == x1(a201 + a18;) + (@2x' + a1x%)9_ € #(d_),
K= 3 +a(xto, —x ),

fori = 1, 2, and span the tangent space. However, a coordinate transformation
x=ax' — mx°, y=ax + ax

reveals that this metric is decomposable.

For plane waves we can show

Proposition 4.3. A strongly indecomposable plane wave satisfies dim(¢/e(V)) < 1.

Proof. Assume there are two linearly independent Killing vector fields that are not tangent to V. They are of the form
K =x"8, + (¥ +Fo) o + K o_
K=0,+@+Fx)f+K o_.

Now, differentiating Eq. (4.13) again we obtain

W+ Fx)*9;Hess(H) + [F, Hess(H)] + (ax* + b)Hess(H) + 2aHess(H) = 0. (4.15)

For a plane wave in normal Brinkmann coordinates with S = Hess(H) we have that 9;,S = 0. Thus, when taking Eq. (4.15)
along x = 0, we obtain for K and K that

[F,S]+x"S+25=0, [F,S]+S=0.
This implies that
[F—x"F,S]+2S =0,

for all x™. Since the map S +— [F — x*F ,S] when acting on symmetric matrices is skew-symmetric with respect to
the trace form, which, on the other hand, is positive definite on symmetric matrices, we obtain that S = 0, which is a
contradiction. O

Afundamental question is whether, in dimensions greater than 3, (V--) homogeneity and indecomposability force ¢/¢(V)
to have dimension 1. Because of the additional term d;Hess(H), we are not able to prove Proposition 4.3 for arbitrary (V*-)
homogeneous pp-waves, but we conjecture that it is true:

Conjecture 4.4. For an indecomposable locally homogeneous pp-wave of dimension greater than 3, the Lie algebra ¢/e(V) is
1-dimensional.

The proof of Theorem 1 in Section 5 will show that if this conjecture is true, then in dimensions >3 we can drop the
assumption on the curvature in Corollary 2 (see Remark 5.7).

4.3. Plane waves

In this section we will recall how the Killing equation for plane waves is completely solved in [17].

4.3.1. Plane waves and the Heisenberg algebra
For a plane wave defined by a matrix S(x*) the Lie algebra (V) always contains the Heisenberg algebra he(n). Indeed,
for a plane wave we have

— 1,7 +
H=3;x Sx"x
for a symmetric x™-dependent matrix S, and hence
grad(H) = Sx, Hess(H) = S.

For such H, multiplying the differentiated equation (4.13) by x implies the Killing equation (4.9), which therefore becomes
equivalent to (4.13). On the other hand, when setting F = 0 and a = b = 0, Eq. (4.13) is equivalent to the linear ODE system
(4.14) which, for a plane wave, becomes

¥ — Sy =0. (4.16)
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Hence, we have Killing vector fields

L == ¢ka — XTCbi 8_, K; .= ,-"ak — lePi 8_, (4.17)
@;(0) =0, ®;(0) = e
(0) = e, ¥i(0) =0,
which span he(n). Clearly, d_ commutes with the K;’s and L;’s and we have
[Li, Kj] = (&, & — &, )0 = —5;0_ (4.18)

because the term qsth[/] — leT @; is constant as a consequence of Eq. (4.14).

For plane waves, there are commuting Killing vector fields X, . . ., X,, 9_ spanning the null distribution V. Theorem 3
shows that this can only happen for plane waves.

4.3.2. Locally homogeneous plane waves
For plane waves, Eq. (4.13) becomes the following ODE:

[Sxh), F1+ (axt + b)S(xt) + 2aS(xT) = 0. (4.19)

Since ¢ contains a Heisenberg algebra, a plane wave is locally homogeneous if and only if at each point p there is a Killing
vector field K transversal to V| p»- Hence, when working with normal Brinkmann coordinates centred at p, one has to find a
solution of Eq. (4.19) with b # 0. Blau and O’Loughlin in [17] determined all such solutions and hence gave a classification
of locally homogeneous plane waves as follows:

Let (M, g) be a locally homogeneous plane wave with parallel null vector field V and let p € M. Then, for the non-
empty set of Killing vector fields that are transversal to VHP two cases can occur: it contains a Killing vector field K with
VyK|, = 0 or it does not. In the first case, using normal Brinkmann coordinates ¢ = (x™, &, x¥) centred at p, there is a
solution K = K(a, b, ¢, ¥, F) to Eq. (4.19) with the parameter a = 0, and we may assume that b = 1. From Eq. (4.19) we
see that F satisfies

[S&x"),F1+Sx™) = 0.
This is an ODE for S(x") and its general solution is
S(x+) — ex*FSOe—ﬁF

with a constant skew symmetric matrix F and a constant symmetric matrix So. Hence, the metrics in the first case are of the
form

g = 2dxTdx™ 4 (x"e* FSpe ™ Fa) (dx)? + da?. (4.20)

When defined on all of R"*?, g is geodesically complete (see for example results by Candela, Flores and Sinchez
[23, Prop. 3.5]).

In the second case there is no solution K = K(a, b, ¢, ¥, F) to Eq. (4.19) that is transversal to V+ |, and with a = 0. We
may assume that such a solution has a = 1. It satisfies Eq. (4.19), which becomes an ODE with singularity at x* = —b,

&+ b)SEH) + S, F1+2S5x") = 0.
Its general solution is

1 + +
+y log(x™+b)F log(—(x™+b))F
ST = 12 +b)2(e Soe )

again for constant (skew) symmetric matrices F and Sy. Hence, locally homogeneous plane wave metrics in the second family
are of the form

1 + +
g= 2dxtdx 4 m (xTelog(X +b)F50elog( (x +b))Fx) (dx+)2 + dXz, (4.21)
for constants F, Sg and b. They are only defined for x™ > —b and hence geodesically incomplete. Clearly, metrics for different
b can be pulled back by a translation x* + x* + b to the metric with b = 0 on {x* > 0}. Hence, for given F and Sy, metrics
with different b are isometric to each other.

This provides a classification of locally homogeneous plane waves as it shows that the local form of the metric is either
given by (4.20) or by (4.21). Note that non flat metrics in (4.20) and (4.21) cannot be locally isometric: the metric in (4.20)
admits s local Killing vector field K with g(V, K) # 0 and VyK = 0, whereas the metric in (4.21) does not, unless Sy = 0.In
both cases the metric g is Ricci-flat if and only if Sy is trace-free.
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4.3.3. Reductivity of homogeneous plane waves

Here we will show that homogeneous plane waves are always reductive. This means that for some subalgebra £, of ¢
generating a (locally) transitive group action, the stabiliser h := {K € ¢ | K|, = 0} in &, of a point p has a vector space
complement m in £y with [h, m] € m.

Proposition 4.5. Homogeneous plane waves are reductively homogeneous.
Proof. For a homogeneous plane wave, we take £, to be the subalgebra generated by
Ky, 0, Ky,...,Kp, Ly, ..., Ly,
where K;, L; are defined in (4.17) and Ky = —ax~0_ + (Fx)'d; + (ax™ + b)d, foracertain F = (fﬂ) € so(n) is transversal to
V+, which exists for homogeneous plane waves according to [ 17, (2.42)]. Working at p with normal Brinkmann coordinates,

we see that § is spanned by the L;’s defined in (4.17). Then the h-invariant complement m is spanned by d_, K and the n
Killing vector fields

M; = [Ky, Li].
This implies that

Milp = bg{ (0)dl, = bl
Hence, since also K|, = bd.|p, the vector space m defined in this way is indeed a complement to h. Moreover, since both
M; and L; are tangent to v+ and without rotational component we obtain from (4.10) that

[Lj, Mi] = ca—

for a constant c. Therefore we have [, m] € m and the plane wave is reductive. O

4.3.4. Cahen-Wallach spaces

For Cahen-Wallach spaces, the matrix S(x") is constant and thus Eq. (4.19) always has a solution withb = 1, F = 0 and
a = 0 yielding a Killing vector field transversal to V. Generically, ¢ contains the oscillator algebra R x he(n). The stabiliser
algebra is equal to the holonomy algebra R". A Cahen-Wallach space may have additional Killing vector fields in addition
to R x he(n). In fact, the additional Killing vector fields are isomorphic to the centraliser in so(n) of the constant matrix S.
Hence, it might have at most %n(n — 1) additional symmetries.

4.4. Dimension four

In [4] the Killing equation (4.9) for 4-dimensional pp-waves is explicitly solved under the assumption that (M, g) is
Ricci-flat, i.e., that H is harmonic, so that methods from complex analysis can be used. In particular, in [4, table on p. 79], the
dimension of the space of Killing vector fields of a 4-dimensional, indecomposable, Ricci-flat pp-wave has been determined
to be one of dim(¢) = 1, 2, 3, 5, 6, and the metrics are explicitly given for each case. Moreover, in [ 14] the assumption of
Ricci-flatness was dropped and new algebras of dimension 5, 6 and 7 appeared, almost reaching the upper bound of 8 we
will deduce from Theorem 4.1 in Corollary 5.2.

5. Proofs of the main results

In this section we will draw the conclusions from Theorem 4.1 that eventually will lead to a proof of Theorem 1. We
assume that (M, g) is a strongly indecomposable pp-wave with parallel null vector field V. First we note:

Corollary 5.1. A Killing vector field satisfies VyK € RV.

Proof. Letp € M be an arbitrary point and choose normal Brinkmann coordinates centred at p. In these a Killing vector field
K is of the form (4.8) with its covariant derivative asin (4.11).Since V = d_ on the coordinate patch, we get VyK = —aV. 0O

We describe the evaluation map « at a point p € M, at which we choose normal Brinkmann coordinates, and in a basis
of T, M,

E-=0_lp, E=dlp Eo=(@ —Ho)|,=0d, (5.1)
in which

g(E_Er) =1,  gE, E) =6,
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wherei,j = 1,...,n, and all other g,(E,, Eg) = Ofore, B € {—,+, 1, ..., n}. By Theorem 4.1, for each K € ¢ there are
real numbers a, b, ¢, X', Y', F = () € so(n) such that

K|, = cE_ + X'E; + bE,.

Ve_Klp —aE_

ViKl, = —YiE_ +f,"Ex

Ve K|, = Y'E; + aE,.
Furthermore, we write Y = (Y;), X" = (X;) for the row vectors and X = (X!), YT = (Y/) for the column vectors.

If we denote by v € R™! the null vector that is the image of V under the evaluation map «, i.e. k (V) = (0,v) €

so(1,n+ 1) x RV by Corollary 5.1 for ¢ = VK we have

¢ € stab(Rv) C so(1,n+ 1),
which is equal to the Lie algebra of similarity transformations of R",

a u 0 aeR
stab(Rv) = sim(n) = (R @ so(n)) x R" = 0 F -—u F € so(n)
0 0 -—a ueRr"

(5.2)

This is the minimal parabolic subalgebra in so(1, n 4+ 1). Hence we obtain

Corollary 5.2. The evaluation map « in (2.3) is an injective vector space homomorphism

Kkt <> sim(n) x R
ayY 0 —C
K — 0—F —YT ,(—X) ' (53)
0 0 —a -b

In particular,
1
1 <dim(¢) < (2n+3)+ En(n - 1.

The map in (5.3) is not a Lie algebra homomorphism. In fact, a direct computation using the bracket formula (4.10)
confirms formula (2.4),

[ (K), & (R)] — ke ([K, K]) = (R(K, Ry, o)

0 (bSX —bsx)T 0
= 0 0 bsx —bsx |.0]. (54)
0 0 0

where S = Hess(H)|, and the second equality uses the basis in (5.1). As a remedy, we consider the vector space
,E(V) ={K et|gK, V), =0}

According to Theorem 4.1, when using normal Brinkmann coordinates around p, elements in €,(V) are characterised by the
condition b = 0. Hence, consulting formula (4.10) for the Lie bracket of two Killing vector fields, we make the following
observation:

Corollary 5.3. ¢,(V) is a Lie subalgebra of t. Moreover, the evaluation map at p, when restricted to ¢,(V), is an injective Lie
algebra homomorphism,

Kk (V) < co(n) x he(n)

a Y ¢
K— |0 —F X],
0 0 O

where co(n) = R @ so(n) denotes the conformal Lie algebra and he(n) the (2n + 1)-dimensional Heisenberg algebra.

Proof. That the evaluation map « at p becomes a Lie algebra monomorphism follows from (5.4) and the defining property
of pp-waves, which ensures that R(K, K, -, -)|, = 0 whenever K, K € £,(V). Moreover, if b = 0, the image of K, lies in vt
ie., k(€ (V) C sim(n) x vt A direct computation shows that

(65 2)GD-6

is indeed a Lie algebra isomorphism between sim(n) x v and co(n) x be(n). O
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Next, note that the Lie algebra co(n) x he(n) contains an abelian ideal

0 0 O

Therefore, the quotient (co(n) x he(n))/a is a Lie algebra which turns out to be isomorphic to the Lie algebra of Euclidean
motions so(n) x R" via

T
a Y ¢ _F X
0 —F X]+ar| 4 o)
0 0 O

a Y ¢
u:={<0 0 0)‘YG]R“,GE]R,CGIR]Cco(n)lxbe(n).

Hence, we obtain

Corollary 5.4. The evaluation map « induces a Lie algebra homomorphism A : ¢,(V) — so(n) x R" given by

£,(V) —> so(n) x R"

—F X
K|—><O 0).

Moreover, if €,(V) at p spans vt |p, then g := A(8,(V)) C so(n) x R" is a subalgebra that acts indecomposably on R“™1 via

0 X" 0
0 —F X
0 0 0

Proof. Since there are Killing vector fields that span V| p» by the definition of A for the projection pryn : so(n) x R" — R"
onto the translations we have that

pren(A(8,(V))) = R™.
This implies that g = A(¢,(V)) acts indecomposably on R O
We have seen in Lemma 2.1 that Killing vector fields ¢(V) = {K € ¢ | g(K, V) = 0} form a subalgebra of ¢ In analogy to
Corollary 5.4, for £(V) we have:
Corollary 5.5. The evaluation map « induces a Lie algebra homomorphism X : ¢(V) — so(n) x R". Moreover, if ¢(V) spans V+,
then b :== A(¢(V)) C so(n) x R is a subalgebra that acts indecomposably on R as in Corollary 5.4.
For the proof of Theorem 1 we will need a description of subalgebras of sim(n) that act indecomposably on R""*1, Such

a classification is due to Bérard-Bergery and Ikemakhen [19]:

Proposition 5.6. Let g C sim(n) act indecomposably on R'""*1. Then either g contains the translations R", or g contains RN for
1 < N < n, in which case there is a subalgebra i C so(q) and a surjective linear map ¢ : h — R" N such that

0 X' oF)T 0
~Jlo F 0 —X
=110 o 0 —¢(F)

0 0 0 0

FepXerN}. (5.5)

The important property in this proposition is that the rotational part F of a transitively acting group of similarity
transformations acts only on RN and annihilates the corresponding translational part ¢ (F). With this at hand we are ready
to prove Theorem 1.

Proof of Theorem 1. By the defining property (1.2) of a plane wave, we have to show that at each point p € M we have
VuR|p, =0forallU € vt |p. Working with a basis of the form (5.1), it follows that the only possibly non-vanishing terms of
VRare Vg, R(E4, E;, E4, Ej) and

ViR == Vg R(Ey, Ei, E+, E)) (5.6)

fori,j,k = 1, ..., nand, because of the Bianchi identity, being symmetric in its indices. We will now use the integrability
condition (2.5) to show that this term also vanishes. Because of our assumption that the curvature has rank greater than 1
almost everywhere, it suffices to work at a p € .M at which the rank of R is greater than 1. Hence, the rank of the matrix

Rj .= R(E4, E;, E4, E))

is greater than 1.
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Since there are Killing vector fields that span V+ |p, we can apply Corollary 5.4 and Proposition 5.6 to g = A(£,(V)) giving

two possible cases for g. In the first case, g contains the translations R", i.e., there are Killing vector fields K1, . . ., K, with
0 e O
AMKd)=[0 0 —e| €sim@m).
0 O 0

By the definition of A and recalling (5.2), this implies K|, = Ex + cxE_. Since E_ is a Killing vector field, we can assume that
¢ = 0. Then, for ¢, = VK|, we have

o(E) € RV, forj=1,...,n,

Gi(E) = ad;  mod V4, 5.7)
fork = 1, ..., n. Without loss of generality we may assume that all but one g; are equal to zero,a; = --- = a,_; = 0. Then
the integrability condition (2.5) becomes

—ViRj = R(k(E4), Ei, Ex, Ej) + R(Ex, ¢k (Ei), E, Ej) +R(dw(E4), Ej, i, ED) + R(Es, ¢u(E)), E, Ei)

= 2akRj, (5.8)
fori,j,k =1, ..., n. Therefore, we get

ViR =0,
fork=1,...,n—1andi,j=1,...,naswellas

2a,Ry = —VyR =0,
foralli=1,...,nandk =1, ..., n — 1. Hence, if a, was not zero, R,, would be the only non-vanishing component of R;;

which contradicts the assumption that its rank is greater than one. Hence, also a, = 0 and therefore V\R; = 0 for all i, j, k.

This gives us an idea how to proceed in the other case, in which g does not contain R", but only an RN, for 1 < N < n.
Here, according to Proposition 5.6, g is of the form (5.5). In the following, we will use indices A,B,C ... € {1,...,N} and
b,c,d,...e {N+1,...,n}andi,j, k € {1, ..., n}. For such g’s we have N Killing vector fields such that

0 e 0 O
o 0 0 —eq n
MKy) = 0 0 o 0 € so(n) x R",
0 0 O 0
with
Kalp = Ea
Pa(E-) = —apo_

¢a(E)) € RV,, fori=1,...,n (5.9)

¢a(Ex) = azd; mod V',

and n — N Killing vector fields Kj, with

0 0 e O
(b
rMKy)=|0 F O 0 | eso(n) x R".
0 0 0 —e
00 0 0

(b)
Note that by Proposition 5.6 all the F € so(N) are non-zero. By the definition of X, and looking at (5.2), this implies for
d)b = VKb|p that

Kplp = Ep
¢p(E-) = —ayd_
(b)
¢p(Ex) = f SEp mod RV, (5.10)
dp(E)) € RV,
¢p(E4) = apd4 mod VL|p,
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As before, without loss of generality, we can assume that ay and a, are the only a;’s that are possibly non-zero. Then we
have

—ViRj = 2a4R;; (5.11)

—VpRea = 2apReg (5.12)

—VpRea = 2apRa+ 3?) ARcp (5.13)

—ViRag = 2a,Rp5 + 2 3?)  Rec. (5.14)
With our assumptiona; = ---ay_1 = ady41 = - = ay—1 = 0Eq.(5.11) gives

VaRj =0, forallA#N (5.15)
and thus

ayRs =0, forallA #N. (5.16)
Similarly, Eq. (5.12) yields

ViR =0, forallb#n (5.17)
and hence

azRpc =0, forall (b, c) # (n, n). (5.18)

Furthermore, using the total symmetry of V;Rj, we observe that Eq. (5.13) gives

(b
2aaRpc = 2apRea+ f fRes (5.19)
and (5.14) yields

(0)
2a4Rp. = 2acRpp+ f (QRB)D~ (5.20)
With all these relations, the total symmetry of V;R; implies that

—VnRyv = 2anRyy

—ViRnn = 2a,Rpy

—VnRav = anRyny = 2a,Ryn+ (fn)NCRNc (5.21)
“ViRon = GuRen = 20,Ru+ | o,

Now we consider two cases: First assume that ay £ 0. In this case Eq. (5.16) implies that
Ry =0 forallA#N. (5.22)

Evaluating (5.19) for A = N yields
(b) B
2anRpe = 2apRev+ f YRz = 2apReny = 2a.Rpn (5.23)

(b) (b)
since F is skew and hence f ,\’,\’ = 0. Evaluating this for b £ n we get that

Ry =0, forall (b, c) # (n,n). (5.24)
Moreover, Eq. (5.20) for A = B = N for ¢ # n gives

© p
2anRye =f nRvp =0

©)
again because of (5.22) and the skew-symmetry of F.So we get
Ryp =0 forb # n. (5.25)

Putting (5.22),(5.24) and (5.25) together we get that Ryy, Rn; and Ry, are the only non vanishing components of R;;. According
to the last two equations of (5.21) they are related by

anRuy = 2 azRyy
anRnn = 2 a;Rpn.
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This implies that a, # 0 because otherwise Ryy would be the only non-vanishing component of Ry, which contradicts to
the rank of R;; being greater than one. But this implies

Rvv - Rwn
det =0,
nan €€ <RnN Rnn

which finally leads a contradiction to the rank of R; being greater than one.
It remains to derive a contradiction in the case when ay = 0. If also a, = 0 we are done, so we assume a, # 0. In this
case (5.18) implies that

Rpe =0, forall (b, c) # (n, n). (5.26)

(n) (n)
Moreover (5.19) for b = n implies that each (Rdg)’g;] is an eigenvector of F. Since a, # 0isreal and F skew, this implies
that R;g = O for all ¢ and B.
Moreover Eq. (5.20) for c = n becomes

(n) N (m) D (n) N (m) B
—2a,Rag =f 4 Rep+ f gRap=f 4, Rep— f pRap

()
which just means that the matrix (Ryp) is an eigenvector with eigenvalue —2a, for the adjoint action of F € so(n) on the
symmetric matrices, i.e.,

(n)
—2a,R=[F,R]. (5.27)

Since (Fn), when acting on symmetric matrices via the commutator, is skew-symmetric with respect to the trace form, which,
on the other hand, is positive definite on symmetric matrices, (5.27) implies R4 = 0. Hence, again R, is the only non-
vanishing component of R;; which contradicts our assumption that the rank of the curvature endomorphism is larger than
one. This concludes the proof of Theorem 1. O

This proof and Corollary 5.5 immediately give us a proof of Theorem 2 when taking into account that Killing vector fields
from€¢(V) havea; =0fori=1,...,n.

Remark 5.7. Note that our proof shows that for indecomposable homogeneous pp-waves with 1-dimensional Lie algebra
£/¢(V), we could drop the assumption on the rank of the curvature in Corollary 2. Indeed, if (.M, g) is homogeneous, at each

point p we have, in addition to the Killing vector fields V, Ky, . . ., K, spanning V.-, a Killing vector field K transversal to Vpl.
In normal Brinkmann coordinates this vector field would have b = 1 and hence, by the assumption dim(¢/¢(V)) = 1, all
the K;’s would have a; = 0. The proof of Theorem 1 then shows that (M, g) is a plane wave.
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