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a b s t r a c t

We provide a construction of Saito primitive forms for Gepner singularity by studying
the relation between Saito primitive forms for Gepner singularities and primitive forms
for singularities of the form Fk,n =

∑n
i=1 x

k
i invariant under the natural Sn-action.
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1. Introduction

The Gepner singularity Gk,n is the quotient of the singularity of Fk,n =
∑n

i=1 x
k
i at the origin by the action of Sn by the

permutation of coordinates.
The interest in the Gepner singularities appeared after the isomorphism of the chiral ring of a SU(n+1)k−n−1/(SU(n)k−n×

U(1)) Kazama–Suzuki model, the Milnor ring of the Gepner singularity Gk,n and the cohomology ring of the Grassmannian
Gr(n, k) were established in [9]. The further explorations of the relation between the Gepner singularities and topological
conformal field theories (TCFTs) continued in [10,19].

All three sides of the isomorphism of [9] admit the natural deformations equipped with a structure of Frobenius
manifold: deformations by Witten’s descent [7] for chiral rings of TCFTs, Saito structure for Milnor rings of singularity [16]
and quantum cohomology for cohomology rings. It appears that the Frobenius structure of quantum cohomology of
Grassmannian is not isomorphic to the other two structures even in the simple cases. However, in [7] it was proved
that the Saito structure for the singularity zk+1 is isomorphic to the Frobenius manifold for the SU(2)k/U(1) Kazama–
Suzuki model (also known as minimal models). This leads to a natural conjecture of relation between a Saito structure for
Gepner singularity and the Witten’s descent deformations of chiral ring of Kazama–Suzuki model formulated in [4]. More
precisely, there should be a certain Saito primitive form providing Frobenius manifold isomorphic to the one coming from
the Witten’s descent deformations. Further study of primitive forms for Gepner singularities and corresponding Frobenius
structures continued in [2,3,5,15].

The notion of a primitive form was introduced in [16] in the setting of versal deformations of a singularity. A choice of
a primitive form endows the space of versal deformations of a singularity with a structure of a Frobenius manifold. The
key existence theorem of primitive forms for general singularity was proved in [17]. In [11] the dimension of the moduli
space of primitive forms for a given singularity was computed. The dimension grows fast as the singularity becomes more
complicated. There are only a few examples of explicit constructions of primitive forms.
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In the current paper we explore the relation between primitive forms for the Gepner singularity Gk,n and for the singu-
larity Fk,n. More precisely, we use the construction of [6] of a Frobenius manifold from a data of a Frobenius manifold with
a finite group action to construct primitive forms for Gk,n starting from the primitive form for Fk,n invariant with respect to
natural Sn-action. It is a natural singularity theory analogue of one of the cases of the abelian/nonabelian correspondence
in [6] relating the quantum cohomology of the Grassmannian Gr(n, k) and the product of projective spaces (Pk−1)×n.

Remarkably, the relation we study should also impose a relation between the SU(n + 1)k−n−1/(SU(n)k−n × U(1))
Kazama–Suzuki model and the tensor product of n copies of the minimal SU(2)k/U(1) model, which is to be investigated.

One of the interesting prospects for the work would be the generalization of the results of the paper to the case of a
singularity invariant under the action of a complex reflection group and the corresponding quotient. Another interesting
question is to understand the relations with the equivariant singularity theory.

Sections 2–4 consist of definitions and preliminary facts. In Section 5 we introduce the construction of [6] for Frobenius
manifold with a finite group action. In Sections 6, 7 we construct primitive forms for Gepner singularities. In Section 8
we compare our construction with previously known constructions of primitive forms in the known cases.

2. Preliminaries on singularity theory

Let z = (z0, . . . , zn), let C{z} be the ring of germs of holomorphic functions in z at the origin and let f = f (z) ∈ C{z}
be a function with an isolated singularity at the origin. The Milnor ring of f is defined to be a quotient Jf := C{z}/If ,
where If := ( ∂ f

∂z0
, . . . ,

∂ f
∂zn

) is a Milnor ideal. Under the isolated singularity assumption µ := dim Jf is finite and is called
the Milnor number.

Let V be a vector space with coordinates t = (t1, . . . , tm). The germ of a holomorphic function at the origin F =

F (z, t) ∈ C{z, t} is said to be a deformation of f if F (z, 0) = f (z) for all z as germs at the origin.
Let (V , F ) be a deformation of f and let TV be a C{t}-module of germs of holomorphic vector fields at the origin of V .

Then there is a well defined Kodaira–Spencer map of C{t}-modules:

KS: TV → C{z, t}/
( ∂F
∂z0

, . . . ,
∂F
∂zn

)
,

defined as follows. For a germ of vector field ξ pick its lift ξ̃ to a germ on V × Cn+1 and put KS(ξ ) to be equal to the
image of a derivative ξ̃ (F ).

The deformation (V , F1) is said to be induced from (U, F2) with respect to holomorphic map h: V → U mapping the
origin in V to the origin in U if F1(z, t) = F2(z, h(t)). The deformation (Vf , f̃ ) is said to be versal if every deformation is
induced from it and it is of minimal dimension among such.

The versal deformation always exists and is unique up to isomorphism, moreover Vf ≃ Jf , in particular dim Vf = µ.
The Kodaira–Spencer map is an isomorphism if and only if the deformation is versal.

For proofs and further details we refer to [1].

2.1. Gepner singularities

Let us fix two positive integers n and k and let Fk,n =
∑n

i=1 x
k
i be a polynomial in variables x = (x1, . . . , xn). Let us

define y = (y1, . . . , yn) by yi = σi(x), where σi is the ith elementary symmetric function in n variables, so that

1 +

n∑
i=1

yiT i
=

n∏
i=1

(1 + xiT ).

Since the polynomial Fk,n is symmetric, there is a polynomial Gk,n, such that Fk,n(x1, . . . , xn) = Gk,n(y1, . . . , yn). It is not
hard to verify that

Proposition 2.2 ([9,15]). If k > n then Gk,n has an isolated singularity at the origin y = 0. In this case the Milnor number of
Gk,n is equal to

(k−1
n

)
.

In what follows we will assume that k > n. We will call this singularity a Gepner singularity.

3. Frobenius manifolds

Let V be a finite dimensional vector space over a field k of characteristic 0 and let V∨ be its dual. Then let us put
M = Spf (k[[V∨

]]) to be the formal completion of V at the origin, so that the functions on M are formal series in V∨. We
denote by TM its tangent sheaf which is canonically isomorphic to V ⊗ OM .

Definitions 3.1. The formal Frobenius manifold on M is the collection of data: (•, g, e, E) , where
(1) g is a OM-linear nondegenerate pairing on TM such that the corresponding connection ∇ is flat;
(2) • is OM-linear, associative, commutative product on TM , such that ∇c is symmetric where c is the tensor defined

as c(u, v, w) = g(u • v,w);
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(3) e is a formal vector field on M , which is the identity for • and such that ∇e = 0;
(4) E is a formal vector field on M , which is called an Euler vector field, and satisfies

∇∇E = 0, LEg = Dg, LE(•) = •, LE(e) = −e,

where L denote the Lie derivative and D ∈ k is a constant.

For further discussions of the notion we refer to [8,12,14].

4. Saito structures and primitive forms

We introduce the notions of pre-Saito structure and a primitive section following [14].

Definitions 4.1. We will call pre-Saito structure the following data: (M, E, g,∇,Φ, R0, R∞), where
(1) M is a formal completion at the origin of a finite-dimensional vector space V over field k of characteristic 0;
(2) E is a free OM-module of finite rank with a flat connection ∇ and a OM-bilinear form g flat with respect to ∇;
(3) Φ, R0 and R∞ are OM-linear morphisms Φ: TM ⊗OM E → E and R0, R∞: E → E, satisfying the conditions

∇∂ti
Φ∂tj

= ∇∂tj
Φ∂ti

, [Φ∂tj
,Φ∂ti ] = 0, [R0,Φ∂ti ] = 0,

∇(R∞) = 0, Φ∂ti + ∇∂ti
R0 = [Φ∂ti

, R∞],

Φ∗

∂ti
= Φ∂ti

, R∗

0 = R0, R∗

∞
+ R∞ = −w Id,

where w ∈ Z is a fixed integer called the weight, ∗ stands for g-adjoint, {ti} are the coordinates on M induced by a basis
of V and Φξ : E → E is the map obtained by the substitution of the section ξ of TM into Φ .

Definitions 4.2. A section ω ∈ Γ (M, E) is called a homogeneous primitive section if
(1) it is flat: ∇(ω) = 0,
(2) the morphism φω: TM → E given by ξ ↦→ Φξ (ω) is an isomorphism and
(3) R∞ω = qω for some q ∈ k.

Given a pre-Saito structure (M, E, g,∇,Φ, R0, R∞) and a homogeneous primitive section ω for it, one constructs a
structure of Frobenius manifold on M by taking ω

∇ := φ−1
ω ∇φω , ξ • η := −Φξ (φω(η)), e := φ−1

ω (ω), E := φ−1
ω (R0(ω)),

ωg(ξ, η) := g(φω(ξ ), φω(η)).

4.3. Primitive forms for an isolated singularity [16,18]

Let us return to the notations of Section 2. Let Mf be a formal completion of Vf at the origin. Note that the Kodaira–
Spencer isomorphism endows TMf with a OM-bilinear product •. We also define vector fields E := KS−1 (̃f ) and e :=

KS−1(1).
Consider a C{t}-module consisting of germs of forms of top degree in z-variables ϕ(z, t) dz0 ∧ · · · ∧ dzn modulo the

image of the wedge multiplication by 1-form d̃f . After passing to the formal completion at the origin we obtain a vector
bundle Ωf̃ on Mf . It possesses the bilinear residue pairing

g(ω1, ω2) := Res

⎡⎣ϕ1ϕ2dz0 ∧ · · · ∧ dzn
∂̃ f
∂z0

, . . . ,
∂̃ f
∂zn

⎤⎦ ∈ OMf ,

for ωi = ϕidz0 ∧ · · · ∧ dzn.
The multiplication of a form by a function together with the Kodaira–Spencer isomorphism provides a bilinear map

Φ: TMf ⊗OMf
Ωf̃ → Ωf̃ . Then, as above, a form ω ∈ Γ (Mf ,Ωf̃ ) defines a map φω: TMf → Ωf̃ given by ξ ↦→ Φξ (ω). We

then put ωg(ξ, η) := g(φω(ξ ), φω(η)).
We will call such ω a primitive form if (•,ωg, e, E) provides a Frobenius manifold structure on Mf . Primitive forms always

exist [17] but, in general, are not unique.
If f = zk+1 then the class dz ∈ Γ (Mzk+1 ,Ωz̃k+1 ) is the unique (up to scalar multiplication) primitive form. We will call

the corresponding Frobenius manifold Ak.

5. Frobenius manifold with finite group action

Let (M, •, g, e, E) be a Frobenius manifold and let W be a finite group acting on M by automorphisms in a way
compatible with the Frobenius structure.

Let us consider the fixed point set of the W -action MW . Then MW is a smooth formal subscheme of M , W acts
OMW -linearly on TM |MW and TMW = (TM |MW )W .
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Let us fix a non-trivial character sgn:W → ±1 and consider the corresponding antisymmetrization morphism
a: TM |MW → TM |MW given by a(ξ ) =

∑
w∈W sgn(w)w(ξ ). We denote its image by E. It is a locally free OM-module. Note

that we have a g-orthogonal direct sum decomposition TM |MW = ker a ⊕ E and the restriction of g to E is nondegenerate.
We denote by ∇ the restriction of the connection on TM |MW to E.

There is a natural OMW -linear multiplication Φ: (TM |MW )W ⊗E → E coming from multiplication on TM and the operator
R0 := E•. We also put R∞ := ∇E − Id. It is easy to check that R0 and R∞ preserve E and

Lemma 5.1 ([6], Lemma 2.3.1). The above (MW , E, g,∇,Φ, R0, R∞) is a pre-Saito structure.
We then have

Proposition 5.2 ([6], Proposition 2.3.2). Suppose there is a ∇-horizontal R∞-eigensection ω ∈ Γ (MW , E) such that the
morphism φω: TMW → E given by ξ ↦→ ξ • ω is surjective. Then every smooth formal subscheme N ⊂ MW such that the
restriction of the above morphism TN → E is an isomorphism has a natural Frobenius structure.

6. Main construction

Consider the tensor product of Frobenius manifolds Mk,n := A
⊗n
k−1 (see [12] for the definition). Note that the underlying

space is naturally identified with MFk,n .

Remark 6.1. It follows from [13], Theorem 3.2.3, that there is a primitive form for Fk,n, which provides the Frobenius
manifold MFk,n .

The Frobenius manifold Mk,n naturally comes with an action of W = Sn by permutation of the factors. We now apply
the construction of Section 5 to it.

Proposition 6.2. There is a section ω of E satisfying the conditions of Proposition 5.2.

Proof. Since we work locally at the origin it follows from Nakayama lemma as in [14] Remark VII.3.7 that it is sufficient
to construct ω at the origin and use the flat connection ∇ to translate it.

Consider an antisymmetric polynomial wn :=
∏

1≤i<j≤n(xi − xj) as an element of the Milnor ring JFk,n . Note that, since
k > n we have wn ̸= 0. Moreover, it is a homogeneous element. It can be viewed as an element of E0, the fibre of E at
the origin. At the origin the map φω|0: JWFk,n → E0 is obviously surjective. Then the statement follows. □

Let us now choose a subscheme N ⊂ MW
k,n appropriate for the application of Proposition 5.2. We will start with the

following

Proposition 6.3. There is a short exact sequence:

0 → ker(wn·) → JWFk,n → JGk,n → 0, (6.1)

where JWFk,n is the subring of W-invariants in the Milnor ring JFk,n and ker(wn·) is a kernel in JWFk,n of multiplication by wn ∈ JFk,n

wn·: JWFk,n → JFk,n
(cf. (3.1.2) in [6]).

Proof. The first arrow is the natural embedding. Let us construct the second arrow. Let IFk,n ⊂ C{x} be the Milnor ideal
of Fk,n, let IWFk,n ⊂ C{y} be its W -invariant part and let IGk,n ⊂ C{y} be the Milnor ideal of Gk,n. To obtain a surjective map
JWFk,n → JGk,n it is sufficient to prove that IWFk,n ⊂ IGk,n . Note that by the chain rule we have:

∂Fk,n
∂xi

=

n∑
j=1

∂σj(x)
∂xi

∂Gk,n

∂yj
(σ (x)).

Therefore, we have IFk,n ⊂ IGk,nC{x}. Also, we, obviously have IWFk,nC[x] ⊂ IFk,n . Thus, I
W
Fk,n

C{x} ⊂ IGk,nC{x} and IWFk,n ⊂ IGk,n .
It remains to check the exactness in the middle term of the sequence. To show that the composition of the two arrows

is zero it is sufficient to show that wnIGk,nC{x} ⊂ IFk,n . But, the determinant of the Jacobi matrix with the entries ∂σj(x)
∂xi

is
equal to wn. Therefore, we have

wn
∂Gk,n

∂yj
(σ (x)) =

n∑
j=1

aij
∂Fk,n
∂xi

,

for some polynomials aij ∈ C{x} (minors of the Jacobi matrix) and the embedding wnIGk,nC{x} ⊂ IFk,n follows.
Finally, the dimension of the cokernel of the first arrow is equal to the dimension of the antiinvariants of W in JFk,n ,

which is equal to the dimension of the space of the antisymmetric polynomials in x modulo xk−1
i . And this is equal to the
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number of monomials of the form xi11 x
i2
2 . . . x

in
n with k − 1 > i1 > i2 > · · · > in ≥ 0. By simple combinatorial calculation

this is
(k−1

n

)
. It is the same as the dimension of JGk,n and the proposition follows. □

Let us now choose a splitting of the short exact sequence (6.1) as a sequence of vector spaces: ι: JGk,n → JWFk,n . The map
ι naturally gives us a formal subscheme N ≃ MGk,n ⊂ MW

k,n.
Note that the same argument as in proof of Proposition 6.3 together with the Nakayama lemma provides a short exact

sequence

0 → ker(ω·) → (TMk,n |MW
k,n

)W → TN → 0 (6.2)

of bundles over N . Therefore, we have an isomorphism φω: TN
∼

−→E = im(ω·). This implies

Lemma 6.4. The above N satisfies the conditions of Proposition 5.2.

We obtain

Theorem 6.5. There is a Frobenius structure on MGk,n depending on the choice of the splitting of the short exact sequence (6.1).
Moreover, the data of (•, e, E) (with the metric omitted) for this Frobenius manifold and a Frobenius manifold provided by a
primitive form for Gk,n coincide.

Proof. The first half follows from Propositions 5.2, 6.2 and Lemma 6.4. Let us prove the second part.
By construction, the second maps of (6.1) and (6.2) are algebra homomorphisms with the multiplication on TN being

the multiplication on a Milnor ring of the deformed polynomial G̃k,n. Then the map Φ: TN ⊗ E → E provides a free rank 1
module structure over TN on E and the multiplication on TN provided by Proposition 5.2 is the same as the multiplication
on TN described above. Thus, the multiplication • and the identity vector field e coincide for these two Frobenius manifolds.

Since the image of F̃k,n in TN under the second map in (6.2) is equal to the image of G̃k,n in TN the Euler fields
coincide. □

Conjecture 6.6. The above Frobenius structure does not depend on the choice of the splitting ι.

7. Primitive forms for gepner singularities

Let us fix a splitting in Theorem 6.5. In this section we prove the following result

Theorem 7.1. There is a primitive form ζ for Gk,n such that the induced Frobenius structure on MGk,n is isomorphic to the
Frobenius structure of Theorem 6.5.

Proof. We only need to provide the compatibility of the metrics.
By Remark 6.1 there is the primitive form for Fk,n providing the Frobenius structure of Mk,n. Let us denote by

η = ϕ(x, t)dx1 . . . dxn ∈ Γ (N,ΩF̃k,n ) its restriction to N . The Sn-equivariance of Mk,n implies that ϕ is symmetric in xi.

Lemma 7.2. There is an isomorphism j:ΩG̃k,n
∼

−→ ΩW
F̃k,n

|N preserving the residue pairings.

Proof. We define j to be a morphism induced by the change of variables {x} ↦→ {y}. More precisely, let ψ(y, t)dy1 . . . dyn
be an element of ΩG̃k,n then j(ψ(y, t)dy1 . . . dyn) = ψ(x, t)wndx1 . . . dxn ∈ ΩW

F̃k,n
|N . The map is well defined since

d̃Fn,k equals d̃Gn,k on N after the change of variables. The map is an isomorphism, since sections of ΩW
F̃k,n

|N are exactly
sections θ (x, t)wndx1 . . . dxn of ΩF̃k,n |N with θ (x, t) symmetric in xi. Verification of compatibility with the pairing is
straightforward. □

Consider now the diagram

TMk,n |N
φη

∼
→→ ΩF̃k,n |N

E|N ∼

φη →→↗↘

↑↑

ΩW
F̃k,n

|N
↗↘

↑↑

TN

φω ∼

↑↑

→→ ΩG̃k,n .

j ∼

↑↑
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We define the lower arrow to be the composition j−1
◦ φη ◦ φω . It is easy to see that this map is φζ for ζ =

ω
wn
ϕ(y, t)dy1 . . . dyn. Moreover, it follows from the diagram and Lemma 7.2 that the Frobenius structure of Theorem 6.5

is induced by ζ . This implies the theorem. □

Remark 7.3. One can construct the corresponding element of the filtered de Rham complex (see [16,18] for the definition)
in a similar way.

8. Examples of primitive forms

Let us look at what our results provide in the simplest examples. Let us first list the simplest singularities among
Gepner singularities. It follows immediately from [15] that

Theorem 8.1. (a) The singularities Gk,1,Gk+1,k,Gk+2,k,G5,2 are the only simple [1] singularities among all Gk,n. In these cases
they have respectively the types Ak−1, A1, Ak+1,D6.

(b) The singularities G6,2 and G6,3 are the only unimodal [1] singularities among all Gk,n. In these cases they are simple
elliptic singularities of the type Ẽ8, i.e. they are equivalent up to stabilization to the hypersurface singularity given by
x2 + y3 + z6 + σy2z2 = 0 for some fixed values of parameter σ , such that 4σ 3

+ 27 ̸= 0.

It follows from [11] that simple singularities are the only singularities for which there is a unique primitive form (up
to multiplicative constant) and unimodal singularities are the only singularities for which the moduli space of primitive
forms (up to multiplicative constant) is one-dimensional. It, therefore, follows that if Gk,n is a simple singularity then the
primitive form provided by Theorems 6.5 and 7.1 is the unique primitive form for this singularity and if Gk,n is a unimodal
singularity this primitive form is a point in the one-dimensional space of all primitive forms.

The primitive forms for the simple elliptic singularities are constructed in [16]. For the singularity of the type Ẽ8
the construction goes as follows. To the family of marginal deformations x2 + y3 + z6 + σy2z2 = 0 one associates the
family of elliptic curves Eσ . Then for a choice of a cycle A ∈ H1(Eσ ,C) one defines a function πA(σ ) as a certain period
integral over cycle A. This function satisfies a hypergeometric Picard–Fuchs equation. Now the primitive form is given by
ζ = ζ (σ ) =

dx∧dy∧dz
πA(σ )

. We refer to [16] for more details.
It is now natural to ask

Question 8.2. For unimodal Gepner singularities G6,2 and G6,3, what are the relations between the choice of a splitting
in Theorem 6.5 and the choice of a cycles A in [16]?
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