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a b s t r a c t

In this paper, we consider Mθ , a pointwise slant submanifold and prove that every bi-
warped product M⊥ ×f1 MT ×f2 Mθ in a locally product Riemannian manifold satisfies a
general inequality:

∥σ∥
2

≥ n2∥∇⃗
T (ln f1)∥2

+ n3 cos2 θ∥∇⃗θ (ln f2)∥2,

where n2 = dim(MT ), n3 = dim(Mθ ) and σ is the second fundamental form and ∇
T (ln f1)

and ∇
θ (ln f2) are the gradient components along MT and Mθ , respectively. We also

discuss the equality case of this inequality. Furthermore, we give some applications and
non-trivial examples.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In [12], B.-Y. Chen and F. Dillen introduced a generalized class of CR-warped products, called multiply CR-warped
product submanifold M = MT ×fi N in an arbitrary Kaehler manifold M̃ , where N =f1 M1

⊥
×f2 M2

⊥
× · · · ×fk Mk

⊥
is a

product of k-totally real submanifolds and MT is a holomorphic submanifold of M̃ . They have obtained the following
sharp inequality for the squared norm of the second fundamental form ∥σ∥

2
≥ 2

∑k
i=1 ni∥∇(ln fi)∥2 in terms of the

warping functions, where ni = dimM i
⊥
, for each i = 1, . . . , k. They also discussed the equality case and provided some

examples to illustrate the obtained inequality. Recently, H.M. Tastan [22] studied bi-warped product submanifolds of the
form M = MT ×f1 M⊥ ×f2 Mθ in a Kaehler manifold M̃ , where MT , M⊥ and Mθ are holomorphic, totally real and proper
pointwise slant submanifolds of M̃ , respectively. Notice that bi-warped product submanifolds are spacial case of multiply
warped product submanifolds which were introduced by S. Nolker [19] and B.-Y. Chen and F. Dillen [12].

In our previous paper, we studied bi-warped product submanifolds in locally product Riemannian manifolds. We
showed that only Mθ ×f1 MT ×f2 M⊥ bi-warped products exist in a locally product Riemannian manifold M̃ , where MT , M⊥

and Mθ are invariant, anti-invariant and proper slant submanifolds of M̃ , respectively. On the other hand, we proved that
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the bi-warped products of the form M = MT ×f1 M⊥ ×f2 Mθ are Riemannian product manifolds, i.e., both f1 and f2 are
constant on M in a locally product Riemannian manifold M̃ , while the bi-warped products in the form M⊥ ×f1 MT ×f2 Mθ

are single warped products [18]. In the third case, if we consider Mθ , a pointwise slant fibre instead of slant, then these
kinds of bi-warped products exist, which is the case we have to discuss in the present paper.

The purpose of this paper is to investigate the geometric properties of bi-warped product submanifolds of the form
M = M⊥ ×f1 MT ×f2 Mθ of a locally product Riemannian manifold M̃ , where MT , M⊥ and Mθ are invariant, anti-invariant
and proper pointwise slant submanifolds of M̃ , respectively. We prove that for any bi-warped product submanifold in a
locally product Riemannian manifold M̃ , the second fundamental form σ of M⊥ ×f1 MT ×f2 Mθ in M̃ satisfies the following:

Theorem 1. Let M = M⊥ ×f1 MT ×f2 Mθ be a D⊥
− Dθ mixed totally geodesic bi-warped product submanifold in a locally

product Riemannian manifold M̃, where MT , M⊥ and Mθ are invariant, anti-invariant and proper pointwise slant submanifolds
of M̃, respectively. Then, we have

(i) The second fundamental form σ and the warping functions f1, f2 satisfy

∥σ∥
2

≥ n2∥∇⃗
T (ln f1)∥2

+ n3 cos2 θ∥∇⃗θ (ln f2)∥2 (1.1)

where n2 = dimMT , n3 = dimMθ and ∇⃗
T (ln f1) and ∇⃗

θ (ln f2) are the gradient components of ln f1 and ln f2 along MT
and Mθ , respectively.

(ii) If the equality sign holds identically in (i), then M⊥ is a totally geodesic submanifold of M̃ and MT and Mθ are totally
umbilical in M̃. Moreover, M is D⊥-geodesic submanifold of M̃.

The paper is organized as follows. In Section 2 we provide some basic notations, formulas, definitions and results.
Section 3 is devoted to the study of bi-warped product submanifolds of locally product Riemannian manifolds. In Section 4,
we prove Theorem 1 and in Section 5, we give some applications. Section 6, we provide some non-trivial examples of
bi-warped product submanifolds in Euclidean spaces.

2. Preliminaries

Anm-dimensional Riemannian manifold M̃ is said to be an almost product Riemannian manifold (see, for instance, [1,25])
if there is a (1, 1) tensor field F satisfying F 2

= I and F ̸= ±I and a Riemannian metric g such that

g(FX, FY ) = g(X, Y ), (2.1)

for any vector fields X, Y on M̃ . It is easy to see that for an almost product Riemannian manifold, we have g(FX, Y ) =

g(X, FY ), for any X, Y ∈ Γ (TM̃), where Γ (TM̃) is the Lie algebra of vector fields on M̃ . In addition, if (∇̃XF )Y = 0, where
∇̃ is the Riemannian connection with respect to g , then M̃ is called a locally product Riemannian manifold [5,17].

Let M be a submanifold of a Riemannian manifold M̃ with induced metric g . Let Γ (TM) be the Lie algebra of vector
fields of M in M̃ and Γ (T⊥M), set of all vector fields normal to M . Then, the Gauss and Weingarten formulas are given
respectively by (see, for instance, [10,11,25])

∇̃XY = ∇XY + σ (X, Y ), (2.2)

∇̃XN = −ANX + ∇
⊥

X N, (2.3)

for any vector fields X, Y ∈ Γ (TM) and N ∈ Γ (T⊥M), where ∇ and ∇
⊥ are the induced connections on the tangent and

normal bundles of M , respectively, and σ denotes the second fundamental form, A the shape operator of the submanifold.
The second fundamental form σ and the shape operator A are related by (see, [7,25])

g(σ (X, Y ),N) = g(ANX, Y ). (2.4)

Let M be an n-dimensional submanifold of a Riemannian m-manifold M̃ . We choose a local frame field e1, . . . , en, en+1,

. . . , em in M̃ such that restricted to M , the vectors e1, . . . , en are tangent to M and hence en+1, . . . , em are normal to M .
Let {σ r

ij }, i, j = 1, . . . , n; r = n + 1, . . . ,m denote the coefficients of the second fundamental form σ with respect to the
local frame field. Then, we have

σ r
ij = g(σ (ei, ej), er ) = g(Aer ei, ej), ∥σ∥

2
=

n∑
i,j=1

g(σ (ei, ej), σ (ei, ej)). (2.5)

The mean curvature vector H⃗ is defined by H⃗ =
1
n trace σ =

1
n

∑n
i=1 σ (ei, ei), where {e1, . . . , en} is a local orthonormal

frame of the tangent bundle TM of M . A submanifold M is called totally geodesic, if σ (X, Y ) = 0; totally umbilical if
σ (X, Y ) = g(X, Y )H⃗ and minimal if H⃗ = 0.

For any X ∈ Γ (TM), we write

FX = TX + ωX, (2.6)
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where TX is the tangential component of FX and ωX is the normal component of FX . Similarly, for any vector field N
normal to M , we put

FN = BN + CN, (2.7)

where BN and CN are the tangential and normal components of FN , respectively.
The invariant and anti-invariant submanifolds of an almost product Riemannian manifold M̃ depend on the behaviour

the tangent spaces under the action of the almost product structure F . A submanifold M is said to be invariant (resp.
anti-invariant) if F (TpM) ⊆ TpM, ∀ p ∈ M (resp. F (TpM) ⊆ Tp ⊥M, ∀ p ∈ M).

A submanifold M of an almost product Riemannian manifold M̃ is called slant (see [8,9,20]) if for each non-zero vector
X ∈ TpM , the angle θ (X) between FX and TpM is constant, i.e., it does not depend on the choice of p ∈ M and X ∈ TpM .

First, we give the following non-trivial example of a slant submanifold of an almost product Riemannian manifold.

Example 1. Consider a 4-Euclidean space R4
= R2

× R2 with the cartesian coordinates (x1, x2, y1, y2) and the almost
product structure

F
(
∂

∂xi

)
= −

∂

∂xi
, F

(
∂

∂yj

)
=

∂

∂yj
, 1 ≤ i, j ≤ 2.

Let M be a submanifold of R4 defined by immersion

ψ(u, v) = (u,
1

√
3
(u + v), v,

1
√
3
(u − v)).

If we put

Z1 =
∂

∂x1
+

1
√
3

∂

∂x2
+

1
√
3

∂

∂y2
, Z2 =

1
√
3

∂

∂x2
+

∂

∂y1
−

1
√
3

∂

∂y2
,

then we find

FZ1 = −
∂

∂x1
−

1
√
3

∂

∂x2
+

1
√
3

∂

∂y2
, FZ2 = −

1
√
3

∂

∂x2
+

∂

∂y1
−

1
√
3

∂

∂y2
.

Thus, we observe that M is a slant submanifold of R4 with slant angle θ = cos−1
( 3
5

)
.

As an extension of slant submanifolds, F. Etayo [15] introduced the notion of pointwise slant submanifolds under the
name of quasi-slant submanifolds. Later, these submanifolds of almost Hermitian manifolds were studied by B.-Y. Chen
and O.J. Garay in [13]. On the similar line of B.-Y. Chen, we introduced pointwise slant and semi-slant submanifolds (for
instance, see [2,23]).

A submanifold M of an almost product Riemannian manifold M̃ is said to be pointwise slant submanifold, if for each
point p ∈ M , the Wirtinger angle θ (X) between FX and TpM is independent of the choice of the non-vanishing vector
field X ∈ TpM . In this case, the Wirtinger angle gives rise to a real-valued function θ : TM − {0} → R, which is called
the slant function of M . Notice that a pointwise slant submanifold M is slant, if its slant function θ is globally constant
on M . Moreover, invariant and anti-invariant submanifolds are pointwise slant submanifolds with slant functions θ = 0
and θ =

π
2 , respectively. A pointwise slant submanifold is proper if it is neither invariant nor anti-invariant.

Now, we give the following non-trivial examples of pointwise slant submanifolds of almost product Riemannian
manifolds.

Example 2. Let R4
= R2

×R2 be a Euclidean space with the cartesian coordinates (x1, x2, y1, y2) and the almost product
structure defined in Example 1. Consider a submanifold M of R4 defined by immersion

ψ(u, v) = (cos(u − v),
1

√
2
(u + v), sin(u − v), −

1
√
2
(u + v))

such that u, v (u ̸= v) are non-vanishing real valued functions on M . Then the tangent space of M is spanned by the
following vector fields

Z1 = − sin(u − v)
∂

∂x1
+

1
√
2

∂

∂x2
+ cos(u − v)

∂

∂y1
−

1
√
2

∂

∂y2
,

Z2 = sin(u − v)
∂

∂x1
+

1
√
2

∂

∂x2
− cos(u − v)

∂

∂y1
−

1
√
2

∂

∂y2
.

Thus, clearly we obtain

FZ1 = sin(u − v)
∂

∂x1
−

1
√
2

∂

∂x2
+ cos(u − v)

∂

∂y1
−

1
√
2

∂

∂y2
,
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FZ2 = − sin(u − v)
∂

∂x1
−

1
√
2

∂

∂x2
− cos(u − v)

∂

∂y1
−

1
√
2

∂

∂y2
.

Then, we find that the slant function θ = cos−1
( cos 2(u−v)

2

)
. Since u, v(u ̸= v) are non-vanishing real valued functions on

M , hence the slant function θ is not a constant. Thus M is a pointwise slant submanifold of R4.

Example 3. Consider a 6-Euclidean space R6
= R3

× R3 with the cartesian coordinates (x1, x2, x3, y1, y2, y3) and the
almost product structure

F
(
∂

∂xi

)
= −

∂

∂xi
, F

(
∂

∂yj

)
=

∂

∂yj
, 1 ≤ i, j ≤ 3.

If M is a submanifold R6 defined by the immersion ψ as follows

ψ(u, v) = (cos u, cos v, u, sin u, sin v, v)

for any non-vanishing functions u and v such that u ̸= v, then, the tangent space of M is spanned by

Z1 = − sin u
∂

∂x1
+

∂

∂x3
+ cos u

∂

∂y1
, Z2 = − sin v

∂

∂x2
+ cos v

∂

∂y2
+

∂

∂y3
.

Hence, we find

FZ1 = sin u
∂

∂x1
−

∂

∂x3
+ cos u

∂

∂y1
, FZ2 = sin v

∂

∂x2
+ cos v

∂

∂y2
+

∂

∂y3
.

Then, we find two slant functions θ1 = cos−1
( 1+cos 2u

2

)
and θ2 = cos−1

( 1+cos 2v
2

)
. Since u, v (u ̸= v) are non-vanishing

functions on M . Thus, M is a pointwise bi-slant submanifold with slant distributions D1 = Span{Z1} and D2 = Span{Z2}
with slant functions θ1 and θ2, respectively. The idea of pointwise bi-slant submanifolds is introduced by B.-Y. Chen and
the second author in [14].

In a similar way of B.-Y. Chen’s result (Lemma 2.1) of [13], it was shown in [16,23] that a Riemannian submanifold M
of an almost product Riemannian manifold M̃ is pointwise slant if and only if

T 2
= (cos2 θ )I, (2.8)

for some real-valued function θ on M , where I is the identity transformation of the tangent bundle TM of M .
The following relations are straightforward consequences of the above relation

g(TX, TY ) = cos2 θg(X, Y ), (2.9)

g(ωX, ωY ) = sin2 θg(X, Y ), (2.10)

for any vector fields X, Y tangent to M .
Also, for a pointwise slant submanifold of an almost product Riemannian manifold, we have the following useful

relations.

(i) BωX = (sin2 θ )X, (ii) CωX = −ωTX (2.11)

for any X ∈ Γ (TM).

3. Bi-warped product submanifolds of locally product Riemannian manifolds

Let M1, M2, M3 be Riemannian manifolds and let M = M1 × M2 × M3 be the Cartesian product of M1, M2, M3. For
each i, denote by πi : M → Mi the canonical projection of M onto Mi, i = 1, 2, 3. Then, if f2, f3 : M1 → R+ are positive
real valued functions, then

g(X, Y ) = g(π1∗X, π1∗Y ) + (f2 ◦ π1)
2 g(π2∗X, π2∗Y ) + (f3 ◦ π1)

2 g(π3∗X, π3∗Y )

defines a Riemannian metric g on M , called a bi-warped product metric, for any X, Y tangent to M and ∗ denotes the
symbol for tangent maps. The product manifold M endowed with this metric denoted by (M1 ×f2 M2 ×f3 M3, g) is called a
bi-warped product manifold. In this case, f2 , f3 are non-constant functions, called warping functions on M . It is clear that if
both f2, f3 are constant on M , then M is simply a Riemannian product manifold and if anyone of the functions is constant,
then M is a single warped product manifold. Also, if neither f2 nor f3 is constant, then M is a proper bi-warped product
manifold.

Remark 1. If M = B ×f F be a warped product manifold, then, B is totally geodesic in M and F is totally umbilical in M
(for instance, see, [6,10]).



362 A. AL-Jedani, S. Uddin, A. Alghanemi et al. / Journal of Geometry and Physics 144 (2019) 358–369

Let M = M1 ×f2 M2 × ×f3M3 be a bi-warped product submanifold of a Riemannian manifold M̃ . Then, we have

∇XZ =

3∑
i=2

(X(ln fi)) Z i, (3.1)

for any X ∈ D1, the tangent space of M1 and Z ∈ Γ (TN), where N =f2 M2 × ×f3M3 and Z i is Mi-component of Z , for each
i = 2, 3, and ∇ is the Levi-Civita connection on M (for instance, see [24]).

In a previous paper, we proved that the bi-warped product submanifold M = M⊥ ×f1 MT ×f2 Mθ of a locally product
Riemannian manifold M̃ is a single warped product submanifold, where MT , M⊥ and Mθ are invariant, anti-invariant and
proper slant submanifolds of M̃ , respectively [18]. If Mθ is a pointwise slant submanifold, then such warped product exists
and we provide some nontrivial examples in the last section.

In this section, we study bi-warped products of the form M = M⊥ ×f1 MT ×f2 Mθ with pointwise slant factor Mθ . For
the simplicity, we denote the tangent bundles of MT , M⊥ and Mθ by D, D⊥ and Dθ , respectively.

First, we have the following useful results.

Lemma 1. Let M = M⊥ ×f1 MT ×f2 Mθ be a bi-warped product submanifold of a locally product Riemannian manifold M̃ such
that MT , M⊥ and Mθ are invariant, anti-invariant and proper pointwise slant submanifolds of M̃, respectively. Then, we have

(i) g(σ (X, Z), FW ) = 0,
(ii) g(σ (X, Y ), FZ) = −Z(ln f1) g(X, FY ),
(iii) g(σ (Z,W ), ωV ) = −g(σ (Z, V ), FW ),
(iv) g(σ (U, V ), FZ) + g(σ (Z,U), ωV ) = −Z(ln f2) g(U, TV ),

for any X, Y ∈ Γ (D), Z,W ∈ Γ (D⊥) and U, V ∈ Γ (Dθ ).

Proof. For any X ∈ Γ (D) and Z,W ∈ Γ (D⊥), we have

g(σ (X, Z), FW ) = g(∇̃ZX, FW ) = g(∇̃ZFX,W ).

Using (3.1), we get

g(σ (X, Z), FW ) = Z(ln f1)g(FX,W ) = 0,

which is the first part of the lemma. Similarly, we have

g(σ (X, Y ), FZ) = g(∇̃XY , FZ) = g(∇̃XFY , Z) = −g(FY , ∇̃XZ).

Again, using (3.1), we derive

g(σ (X, Y ), FZ) = −Z(ln f1)g(X, FY ),

which is second part of the lemma. Now, for any V ∈ Γ (Dθ ), we have

g(σ (Z,W ), ωV ) = g(∇̃ZW − ∇ZW , FV − TV )

= g(∇̃ZFW , V ) − g(∇̃ZW , TV ) − g(F∇ZW , V ) + g(∇ZW , TV ).

Since ∇ZW ∈ Γ (D⊥), for any Z,W ∈ Γ (D⊥) (see, Remark 1), then the last two terms in the right hand side of the above
equation are identically zero. Thus, by using (2.3), we derive

g(σ (Z,W ), ωV ) = −g(AFWZ, V ) + g(∇̃ZTV ,W ).

Then from (2.4) and (3.1), we obtain

g(σ (Z,W ), ωV ) = −g(σ (Z, V ), FW ) + Z(ln f2)g(TV ,W ).

By orthogonality of vector fields, the second term in the right hand side of above relation is identically zero and hence
we find the third relation. Now, we have

g(σ (Z,U), ωV ) = g(∇̃UZ − ∇UZ, FV − TV )

= g(∇̃UFZ, V ) − g(∇̃UZ, TV ) − g(∇UZ, FV ) + g(∇UZ, TV ),

for any Z ∈ Γ (D⊥) and U, V ∈ Γ (Dθ ). Using (2.2), (2.3), (2.4) and (3.1), we derive

g(σ (Z,U), ωV ) = −g(σ (U, V ), FZ) − Z(ln f2)g(U, TV ),

which is the fourth part of the lemma. Hence, the proof is complete. ■

Theorem 2. Let M = M⊥ ×f1 MT ×f2 Mθ be a bi-warped product submanifold of a locally product Riemannian manifold M̃.
Then, either M is a D⊥

−Dθ mixed totally geodesic bi-warped product in M̃ or ωDθ has no component of σ (D⊥,Dθ ) or both
statements are true.



A. AL-Jedani, S. Uddin, A. Alghanemi et al. / Journal of Geometry and Physics 144 (2019) 358–369 363

Proof. For any Z ∈ Γ (D⊥) and U, V ∈ Γ (Dθ ), we have

g(σ (Z,U), ωV ) = g(∇̃ZU − ∇ZU, FV − TV ) = g(∇̃ZFU, V ) − g(∇̃ZU, TV ).

Using (2.6), (2.2) and (3.1), we obtain

g(σ (Z,U), ωV ) = g(∇̃ZTU, V ) + g(∇̃ZωU, V ) − Z(ln f2)g(U, TV ).

Again, using (2.2), (2.1) and (3.1), we derive

g(σ (Z,U), ωV ) = Z(ln f2)g(U, TV ) + g(F ∇̃ZωU, FV ) − Z(ln f2)g(U, TV )

= g(∇̃ZBωU, FV ) + g(∇̃ZCωU, FV ).

Then, from (2.11), we find

g(σ (Z,U), ωV ) = sin2 θ g(∇̃ZU, FV ) + sin 2θ Z(θ )g(U, FV ) − g(∇̃ZωTU, FV ).

Using (2.6), (2.1) and (3.1), we get

g(σ (Z,U), ωV ) =Z(ln f2) sin2 θ g(U, TV ) + sin2 θ g(σ (Z,U), ωV )

+ sin 2θ Z(θ )g(U, TV ) − g(∇̃ZFωTU, V ).

From (2.7), we deduce that

cos2 θ g(σ (Z,U), ωV ) =Z(ln f2) sin2 θ g(U, TV ) + sin 2θ Z(θ )g(U, TV )

− g(∇̃ZBωTU, V ) − g(∇̃ZCωTU, V ).

Again, using (2.11) and (3.1), we derive

cos2 θ g(σ (Z,U), ωV ) =Z(ln f2) sin2 θ g(U, TV ) + sin 2θ Z(θ )g(U, TV ) − Z(ln f2) sin2 θ g(TU, V )

− sin 2θ Z(θ )g(TU, V ) + g(∇̃ZωT 2U, V ).

Then, using (2.8), we find that

cos2 θ g(σ (Z,U), ωV ) = cos2 θ g(∇̃ZωU, V ) − sin 2θ Z(θ )g(ωU, V ).

By orthogonality of vector fields and using (2.3), we obtain

g(σ (Z,U), ωV ) = −g(σ (Z, V ), ωU). (3.2)

On the other hand, from Lemma 1(iv), we have

g(σ (U, V ), FZ) + g(σ (Z,U), ωV ) = −Z(ln f2) g(U, TV ). (3.3)

By polarization identity, we derive

g(σ (U, V ), FZ) + g(σ (Z, V ), ωU) = −Z(ln f2) g(TU, V ). (3.4)

From (3.3) and (3.4), we get

g(σ (Z, V ), ωU) = g(σ (Z,U), ωV ). (3.5)

Then, from (3.2) and (3.5), we find that g(σ (Z, V ), ωU) = 0, which means that either M is D⊥
−Dθ mixed totally geodesic

or σ (D⊥,Dθ ) ⊥ ωDθ . Hence, the theorem is proved completely. ■

From Lemma 1, we have the following useful results.

Corollary 1. A bi-warped product M = M⊥ ×f1 MT ×f2 Mθ of a locally product Riemannian manifold M̃ is a single warped
product submanifold of the form M = M⊥ × MT ×f2 Mθ , i.e., f1 is constant on M if and only if σ (D,D) ⊥ FD⊥.

Proof. The proof follows from Lemma 1(ii). ■

Corollary 2. Let M = M⊥ ×f1 MT ×f2 Mθ be a D⊥
− Dθ mixed totally geodesic bi-warped product submanifold of a locally

product Riemannian manifold M̃. Then, M is a single warped product submanifold of the form M = M⊥ ×f1 MT × Mθ , i.e., f2
is constant on M if and only if σ (Dθ ,Dθ ) ⊥ FD⊥.

Proof. The proof follows from Lemma 1(iv) by using mixed totally geodesic condition. ■
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4. Proof of Theorem 1

In this section, we prove Theorem 1. In order to prove our main theorem, first we state the following result.

Lemma 2. Let M = M⊥ ×f1 MT ×f2 Mθ be a bi-warped product submanifold of a locally product Riemannian manifold M̃.
Then, we have

(i) g(σ (X, Z), ωV ) = 0,
(ii) g(σ (X, V ), FZ) = 0

for any X ∈ Γ (D), Z ∈ Γ (D⊥) and V ∈ Γ (Dθ ).

Proof. For any X ∈ Γ (D), Z ∈ Γ (D⊥) and V ∈ Γ (Dθ ), we have

g(σ (X, Z), ωV ) = g(∇̃ZX − ∇ZX, FV − TV )

= g(∇̃ZFX, V ) − g(F∇ZX, V ).

Using (3.1) and orthogonality of vector fields, the right hand side of above relation is identically zero and hence the first
part of the lemma is proved. For the second relation, we find that

g(σ (X, V ), FZ) = g(∇̃VX, FZ) = −g(∇̃UZ, FX),

for any X ∈ Γ (D), Z ∈ Γ (D⊥) and V ∈ Γ (Dθ ). Using (3.1), we get

g(σ (X, V ), FZ) = −Z(ln f2)g(FX, V ) = 0,

which is the second relation. This ends the proof. ■

Now, we construct the following frame fields for a bi-warped product submanifold. Let M = M⊥ ×f1 MT ×f2 Mθ be
an n-dimensional bi-warped product submanifold of an m-dimensional locally product Riemannian manifold M̃ . Then the
tangent and normal bundles of M respectively are decomposed by

TM = D ⊕ D⊥
⊕ Dθ , T⊥M = FD⊥

⊕ ωDθ
⊕ µ (4.1)

where µ is the F-invariant normal subbundle of T⊥M . Let us consider the dimensions of dimM⊥ = n1, dimMT = n2 and
dimMθ = n3 and their corresponding tangent spaces are denoted by D⊥, D and Dθ , respectively. We set the orthonormal
frame fields of D⊥ as follows

{e1, e2, . . . , en1}

and the orthonormal frame fields of D and Dθ , respectively are

{en1+1 = ê1 = F ê1, . . . , en1+k = êk = F êk, en1+k+1 = êk+1 = −F êk+1

· · · , en1+n2 = ên2 = −F ên2},
{en1+n2+1 = e∗

1 = sec θTe∗

1, . . . , en = e∗

n3 = sec θTe∗

n3}.

Then the orthonormal frames of the normal subbundles FD⊥, ωDθ and µ, respectively are

{en+1 = ẽ1 = Fe1, . . . , en+n1 = ẽn1 = Fen1},
{en+n1+1 = ẽn1+1 = csc θωe∗

1, . . . , en+n1+n3 = ẽn1+n3 = csc θωe∗

n3};

{en+n1+n3+1 = ẽn1+n3+1, . . . , em = ẽm−n−n1−n3}.

Clearly dimµ = m − n − n1 − n3.

Proof of Theorem 1. Now, we are able to prove the main theorem of this paper.

Proof. From (2.5), we have

∥σ∥
2

=

n∑
i,j=1

g(σ (ei, ej), σ (ei, ej)) =

m∑
r=n+1

n∑
i,j=1

g(σ (ei, ej), er )2.

Then, with the help of (4.1), we derive

∥σ∥
2

=

n1∑
r=1

n∑
i,j=1

g(σ (ei, ej), Fer )2 +

n3∑
r=1

n∑
i,j=1

g(σ (ei, ej), csc θωe∗

r )
2
+

m−n−n1−n3∑
r=n1+n3+1

n∑
i,j=1

g(σ (ei, ej), ẽr )2. (4.2)
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Leaving the positive third µ-components term on the right hand side of (4.2) and using the constructed frame fields, we
find

∥σ∥
2

≥

n1∑
r=1

n1∑
i,j=1

g(σ (ei, ej), Fer )2 +

n1∑
r=1

n2∑
i,j=1

g(σ (êi, êj), Fer )2 +

n1∑
r=1

n3∑
i,j=1

g(σ (e∗

i , e
∗

j ), Fer )
2

+ 2
n1∑
r=1

n1∑
i=1

n2∑
j=1

g(σ (ei, êj), Fer )2 + 2
n1∑
r=1

n1∑
i=1

n3∑
j=1

g(σ (ei, e∗

j ), Fer )
2
+ 2

n1∑
r=1

n2∑
i=1

n3∑
j=1

g(σ (êi, e∗

j ), Fer )
2

+ csc2 θ
n3∑
r=1

n1∑
i,j=1

g(σ (ei, ej), ωe∗

r )
2
+ csc2 θ

n3∑
r=1

n2∑
i,j=1

g(σ (êi, êj), ωe∗

r )
2
+ csc2 θ

n3∑
r=1

n3∑
i,j=1

g(σ (e∗

i , e
∗

j ), ωe
∗

r )
2

+ 2 csc2 θ
n3∑
r=1

n1∑
i=1

n2∑
j=1

g(σ (ei, êj), ωe∗

r )
2
+ 2 csc2 θ

n3∑
r=1

n1∑
i=1

n3∑
j=1

g(σ (ei, e∗

j ), ωe
∗

r )
2

+ 2 csc2 θ
n3∑
r=1

n2∑
i=1

n3∑
j=1

g(σ (êi, e∗

j ), ωe
∗

r )
2. (4.3)

We have no relation for the first, eighth, ninth and last twelfth terms on the right hand side of the above equation.
Therefore, we can leave these positive terms. On the other hand, by using Lemmas 1 and 2 with D⊥

− Dθ mixed totally
geodesic condition, all the terms of above relations vanish identically except the second and third terms. Then, using
Lemma 1(ii)–(iv) in the second and third terms, we obtain

∥σ∥
2

≥

n1∑
r=1

n2∑
i,j=1

(−er ln f1)2 g(êi, F êj)2 +

n1∑
r=1

n3∑
i,j=1

(−er ln f2)2 g(e∗

i , Te
∗

j )
2.

Since F êj = êj, ∀ j = 1, . . . , k or F êj = −êj, ∀ j = k + 1, . . . , n2 and e∗

j = sec θTe∗

j , ∀ j = 1, . . . , n3, which means that
Te∗

j = cos θe∗

j . Thus, we get

∥σ∥
2

≥ n2

n1∑
r=1

(er ln f1)2 + n3 cos2 θ
n1∑
r=1

(er ln f2)2

= n2∥∇⃗
T (ln f1)∥2

+ n3 cos2 θ∥∇⃗θ (ln f2)∥2,

which is the inequality (i) of Theorem 1. For the equality case, we have from the leaving third term in (4.2)

σ (TM, TM) ⊥ µ (4.4)

From the leaving first term and vanishing seventh term in (4.3), we find

σ (D⊥,D⊥) ⊥ FD⊥ and σ (D⊥,D⊥) ⊥ ωDθ . (4.5)

Then from (4.4) and (4.5), we obtain

σ (D⊥,D⊥) = 0. (4.6)

Since M is D⊥
− Dθ mixed totally geodesic, then we have

σ (D⊥,Dθ ) = 0. (4.7)

Also, from the vanishing fourth and tenth terms on the right hand side of (4.3), we get

σ (D,D⊥) ⊥ FD⊥ and σ (D,D⊥) ⊥ ωDθ . (4.8)

Then from (4.4) and (4.8), we conclude that

σ (D,D⊥) = 0. (4.9)

On the other hand, from the leaving eighth term in (4.3) and (4.4), we find that

σ (D,D) ⊂ FD⊥. (4.10)

Similarly, from the leaving ninth term in (4.3) and (4.4), we obtain

σ (Dθ ,Dθ ) ⊂ FD⊥. (4.11)

And, from the vanishing sixth term and leaving twelfth term in (4.3) , we get

σ (D,Dθ ) ⊥ FD⊥ and σ (D,Dθ ) ⊥ ωDθ . (4.12)
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Then from (4.4) and (4.12), we find

σ (D,Dθ ) = 0. (4.13)

Thus, M⊥ is totally geodesic in M̃ by using Remark 1 and (4.6), (4.7) and (4.9). Again, from (4.10), (4.9) and Remark 1, we
conclude that MT and Mθ are totally umbilical in M̃ . Using all conditions (4.6)–(4.13), M is a D⊥-geodesic submanifold
of M̃ . ■

5. Applications of Theorem 1

We have the following applications of Theorem 1.
In Theorem 1, if n3 = 0, then M is a single warped product of the form M = M⊥ ×f1 MT , which has been studied

in [3,4,21]. In this case, Theorem 1 implies:

Corollary 3 (Theorem 4.1 of [4] and Theorem 4.2 of [21]). Let M = M⊥×f1 MT be a warped product semi-invariant submanifold
in a locally product Riemannian manifold M̃, where MT and M⊥ are invariant and anti-invariant submanifolds of M̃, respectively.
Then, we have

(i) The second fundamental form σ of M satisfies

∥σ∥
2

≥ n2∥∇⃗
T (ln f1)∥2 (5.1)

where n2 = dimMT and ∇⃗
T (ln f1) is the gradient component of ln f1 along MT .

(ii) If the equality sign holds identically in (i), then M⊥ is a totally geodesic submanifold of M̃ and MT is totally umbilical in
M̃. Moreover, M is mixed totally geodesic submanifold of M̃.

On the other hand, if n2 = 0, then warped product takes form M = M⊥ ×f2 Mθ , studied in [2]. In this case, Theorem 1
gives:

Corollary 4 (Theorem 5.1 of [2]). Let M = M⊥ ×f2 Mθ be a D⊥
− Dθ mixed totally geodesic warped product pointwise pseudo-

slant submanifold in a locally product Riemannian manifold M̃, where M⊥ and Mθ are anti-invariant and proper pointwise
slant submanifolds of M̃, respectively. Then, we have

(i) The second fundamental form σ of M satisfies

∥σ∥
2

≥ n3 cos2 θ∥∇⃗θ (ln f2)∥2 (5.2)

where n3 = dimMθ and ∇⃗
θ (ln f2) is the gradient component of ln f2 along Mθ .

(ii) If the equality sign holds identically in (i), then M⊥ is a totally geodesic submanifold of M̃ and Mθ is totally umbilical in
M̃. Moreover, M is a mixed totally geodesic submanifold of M̃.

Another application of Theorem 1 is to describe the Dirichlet energy of the warping functions f1 and f2, which is a
useful tool in physics. The Dirichlet energy of a function f on a compact manifold M is defined as

E(f ) =
1
2

∫
M

∥∇⃗(f )∥2 dV (5.3)

where ∇⃗(f ) is the gradient of the function f and dV is the volume element.
Theorem 1 and (5.3) imply the following.

Theorem 3. Let M = M⊥ ×f1 MT ×f2 Mθ be a compact D⊥
−Dθ mixed totally geodesic bi-warped product submanifold in a

locally product Riemannian M̃. Then

n2E(ln f1) + n3 cos2 θE(ln f2) ≤
1
2

∫
M

∥σ∥
2dV

where dV is the volume element and n2 = dimMT , n3 = dimMθ ; while E(ln fi) is gradient of ln fi, i = 1, 2.

Theorem 5 and Corollaries 3–4 imply:

Theorem 4. Let M = M⊥ ×f MT be a compact semi-invariant warped product submanifold in a locally product Riemannian
M̃. Then

E(ln f ) ≤
1

2n2

∫
M

∥σ∥
2dV

where dV is the volume element and n2 = dimMT ; while E(ln f ) is gradient of ln f .
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Theorem 5. Let M = M⊥ ×f Mθ be a compact D⊥
− Dθ mixed totally geodesic warped product pseudo-slant (hemi-slant)

submanifold of a locally product Riemannian M̃. Then

E(ln f ) ≤
1

2n3
sec2 θ

∫
M

∥σ∥
2dV

where dV is the volume element and n3 = dimMθ ; while E(ln f ) is gradient of ln f .

6. Examples of bi-warped products

In this section, we construct the following non-trivial examples of bi-warped product submanifolds of the form
M⊥ ×f1 MT ×f2 Mθ in Euclidean spaces.

Example 4. Consider a submanifold of R8
= R4

× R3
× R with the cartesian coordinates (x1, x2, x3, y4y1, y2, y3, z) and

the almost product structure

F
(
∂

∂xi

)
= −

∂

∂xi
, F

(
∂

∂yj

)
=

∂

∂yj
, F

(
∂

∂z

)
= −

∂

∂z
, 1 ≤ i ≤ 4, 1 ≤ j ≤ 3.

Let M be defined by the immersion ψ as follows

ψ(u, v, t) = (cos u, sin u, u sin t, u cos t, u sin v, u cos v, u, v),

for any non-vanishing function u on M . Then, the tangent space TM of M is spanned by the following vectors

Z1 = − sin u
∂

∂x1
+ cos u

∂

∂x2
+ sin t

∂

∂x3
+ cos t

∂

∂x4
+ sin v

∂

∂y1
+ cos v

∂

∂y2
+

∂

∂y3
,

Z2 = u cos v
∂

∂y1
− u sin v

∂

∂y2
+
∂

∂z
, Z3 = u cos t

∂

∂x3
− u sin t

∂

∂x4
.

Then, we find

FZ1 = sin u
∂

∂x1
− cos u

∂

∂x2
− sin t

∂

∂x3
− cos t

∂

∂x4
+ sin v

∂

∂y1
+ cos v

∂

∂y2
+

∂

∂y3
,

FZ2 = u cos v
∂

∂y1
− u sin v

∂

∂y2
−
∂

∂z
, FZ3 = −u cos t

∂

∂x3
+ u sin t

∂

∂x4
.

It is easy to see that FZ1 ⊥ TM = Span{Z1, Z2, Z3} and thus we consider D⊥
= Span{Z1} is an anti-invariant distribution,

D = Span{Z3} is an invariant distribution and Dθ
= Span{Z2} is a pointwise slant distribution with slant function

θ = arccos
(

u2−1
u2+1

)
. It is easy to observe that D,Dθ and D⊥ are integrable (each distribution is spanned by a single

vector field). If we denote the integral manifolds of D, Dθ and D⊥ by MT , Mθ and M⊥, respectively, then the metric tensor
of M is given by

ds2 = 4du2
+ (1 + u2)dv2 + u2dt2.

Thus M is a bi-warped product submanifold of the form M = M⊥ ×f1 MT ×f2 Mθ in R8 with the warping functions f1 = u
and f2 =

√
1 + u2.

Example 5. Let R17 be the 17-Euclidean space endowed with the cartesian coordinates (x1, . . . , x8, y1, . . . , y8, z) and
the usual Euclidean metric ⟨. , .⟩. We define the almost product structure F : R17

→ R8
× R8

× R by:

F
(
∂

∂xi

)
=

∂

∂xi
, F

(
∂

∂yk

)
= −

∂

∂yk
, F

(
∂

∂z

)
= −

∂

∂z
, 1 ≤ i, k ≤ 8

which verifies F 2
= I(F ̸= ±I) and ⟨X, FY ⟩ = ⟨FX, Y ⟩, for any X, Y ∈ R17. Let ψ : M → R17 be an immersion defined by

ψ(u, v, w, r, t) =(u cos θ, u sin θ, v cos θ, v sin θ, u cosw, u sinw, v cosw, v sinw,
u cos r, u sin r, v cos r, v sin r, u cos t, u sin t, v cos t, v sin t, kw)

for k ̸= 0 and the non-vanishing functions u and v, where M = {(u, v, w, r, t) | v, u ̸= 0; w, r, t ∈ R}. We can find the
local orthonormal frame on TM as follows:

Z1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ cosw

∂

∂x5
+ sinw

∂

∂x6
+ cos r

∂

∂y1
+ sin r

∂

∂y2
+ cos t

∂

∂y5
+ sin t

∂

∂y6
,

Z2 = cos θ
∂

∂x3
+ sin θ

∂

∂x4
+ cosw

∂

∂x7
+ sinw

∂

∂x8
+ cos r

∂

∂y3
+ sin r

∂

∂y4
+ cos t

∂

∂y7
+ sin t

∂

∂y8
,
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Z3 = −u sinw
∂

∂x5
+ u cosw

∂

∂x6
− v sinw

∂

∂x7
+ v cosw

∂

∂x8
+ k

∂

∂z
,

Z4 = −u sin r
∂

∂y1
+ u cos r

∂

∂y2
− v sin r

∂

∂y3
+ v cos r

∂

∂y4
,

Z5 = −u sin t
∂

∂y5
+ u cos t

∂

∂y6
− v sin t

∂

∂y7
+ v cos t

∂

∂y8
.

Clearly, we obtain

FZ1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ cosw

∂

∂x5
+ sinw

∂

∂x6
− cos r

∂

∂y1
− sin r

∂

∂y2
− cos t

∂

∂y5
− sin t

∂

∂y6
,

FZ2 = cos θ
∂

∂x3
+ sin θ

∂

∂x4
+ cosw

∂

∂x7
+ sinw

∂

∂x8
− cos r

∂

∂y3
− sin r

∂

∂y4
− cos t

∂

∂y7
− sin t

∂

∂y8
,

FZ3 = −u sinw
∂

∂x5
+ u cosw

∂

∂x6
− v sinw

∂

∂x7
+ v cosw

∂

∂x8
− k

∂

∂z
,

FZ4 = u sin r
∂

∂y1
− u cos r

∂

∂y2
+ v sin r

∂

∂y3
− v cos r

∂

∂y4
,

FZ5 = u sin t
∂

∂y5
− u cos t

∂

∂y6
+ v sin t

∂

∂y7
− v cos t

∂

∂y8
.

We note that FZ1 and FZ2 are perpendicular to TM . Then D⊥
= Span{Z1, Z2} is an anti-invariant distribution, D =

Span{Z4, Z5} is an invariant distribution and Dθ
= Span{Z3} is a pointwise slant distribution with slant function

θ = arccos
(

u2−v2−k2

u2+v2+k2

)
. All the distributions D,Dθ and D⊥ are completely integrable. Let MT , Mθ and M⊥ be the integral

manifolds of D, Dθ and D⊥, respectively. Then the induced Riemannian metric tensor of M is given by

ds2 = 4(du2
+ dv2) + (k2 + u2

+ v2)dw2
+ (u2

+ v2)(dr2 + dt2).

Hence, M = M⊥ ×f1 MT ×f2 Mθ is a bi-warped product submanifold of R17 with the warping functions f1 =
√
u2 + v2 and

f2 =
√
k2 + u2 + v2.
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