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Abstract

We address the problem of finding Abelian instantons of finite energy on the Euclidean Schwarz-
schild manifold. This amounts to construct self-ddlharmonic 2-forms on the space. Gibbons
found a non-topological? harmonic form in the Taub-NUT metric, leading to Abelian instantons
with continuous energy. We imitate his construction in the case of the Euclidean Schwarzschild
manifold and find a non-topological self-duaf harmonic 2-form on it. We show how this gives
rise to Abelian instantons and identify them w@hi(2)-instantons of Pontryagin number2found
by Charap and Duff in 1977. Using results of Dodziuk and Hitchin we also calculate the%ull
harmonic space for the Euclidean Schwarzschild manifold. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

An Abelian instanton is a self-dual solution to Euclidean Maxwell’'s equations. In the case
of the Taub-NUT metric oi* such a non-trivial solution was found by Eguchi and Hanson
[6]in 1979. In mathematical terms, a self-dual solution to Euclidean Maxwell’s equations
with finite energy is a self-dudl? harmonic 2-form with integer cohomology class. In this
context the Eguchi—-Hanson solution was reinvented by Gibbons [7] in 1996. Motivated by
Sen’sS-duality conjecture he constructed a non-topological self-didalarmonic 2-form
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in the Taub-NUT metric. In general, we call a non-trividd harmonic form on a complete
Riemannian manifolehon-topologicalf either it is exact or not cohomologous to a com-
pactly supported differential form. Roughly speaking the existence of non-topoldgical
harmonic forms are not predictable by topological means (cf. [13]). A curious feature of the
above mentioned form in the Taub-NUT metric is that living on a space with no topology, it
is cohomologically trivial, producing a family of Abelian instantons with continuous energy.

Gibbons’ construction is geometric in nature; indeeditRé@armonic 2-form is obtained
as the exterior derivative of a 1-form dual to a Killing field of some nattrél)-action. In
1999, Hitchin [10] completed the proof of Sers'sduality conjecture in the Taub-NUT case
by showing that thevhole L2 harmonic space is spanned by the Eguchi-Hanson-Gibbons
2-form.

In this note we imitate this construction of Gibbons for the case of the Euclidean
Schwarzschild metric. It is a Ricci-flat metric @®? x $2 [14] and was constructed by
Hawking [9] in 1976 as the Wick rotation of the Schwarzschild space—time.

We show that the rotation on tHi&? part induces a Killing field such that the exterior
derivative of the dual 1-form has finite energy. On a Ricci-flat manifold it follows from
Killing’s equations that the form obtained in this way solves Maxwell's equations [14].
However, unlike the Taub-NUT case, this form is not self-dual (this fact is related, cf.
[10, Theorem 4]), to the observation that the Euclidean Schwarzschild manifold is not
hyperké&hler while the Taub-NUT manifold is). Self-dualizing the form produces a self-dual
L? harmonic 2-form, which is not trivial cohomologically (though it is non-topological,
since onM every compactly supported 2-form is exact). Thus in order to obtain Abelian
instantons, we have to quantize the form to have integer cohomology class. In this way we
get Abelian instantons lying oti (1)-bundles of first Chern numbetsand first Pontryagin
numbers 22.

On the other hand®U(2)-instantons on the Euclidean Schwarzschild manifold were
constructed by Charap and Duff [2] in 1977. They considepgd)-invariant instantons,
where the action of) (3) is induced from the symmetry group 8. In this way their ansatz
was reduced to a system of three relatively simple partial differential equations. They were
able to find three kind of solutions of this system. The first was the trivial flat connection;
the second the non-trivial “metric connection” of second Chern number 1 obtained earlier
in [3]; and the third was a family of solutions which gave rise to instantons of second Chern
number 22. Apparently they refer to this last family as non-Abelian dyons and give no
geometrical interpretation.

Representing/ (1) as a subgroup @U(2) we obtainSU(2) instantons with second Chern
numbers (i.e. instanton numbersdrom our integer.? harmonic forms. The main result
of the present note is that this family coincides with the third grougldf2)-instantons
found by Charap and Duff. In spite of a few works dealing with or mentioning the Charap—
Duff instantons [8,11,12], apparently its Abelian character has not been recognized yet.

Using a recent result of Hitchin [10] we conclude our paper by showing that there are no
other Abelianinstantons, i.e. self-duzl harmonic 2-forms on the Euclidean Schwarzschild
manifold. Indeed with the help of a result of Dodziuk [4] we are able to determinetibke
L? harmonic space.
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2. Construction of the Abelian instanton

Hawking invented the Euclidean Schwarzschild manifold to argue for the thermal nature
of particle creation at a Schwarzschild black hole.

Mathematically the Euclidean Schwarzschild 4-maniftddis a complete solution to
the Euclidean vacuum Einstein’s equations with zero cosmological constant, and has the
non-trivial topologyM = R? x §2. In other words, it is a Ricci-flat manifold. It is not a
gravitational instanton (such as e.g. the Taub-NUT metric or the Eguchi—-Hanson metric) in
thatits curvature tensor is not self-dual. Thus itis not hyperk&hler either, whose property will
affect our considerations (cf. [10, Theorem 4]) in the form of the existence of non-self-dual
L? harmonic forms or/.

According to (14.3.11) of [14], we have a particularly nice form of the mgtda a dense
open subsetR? \ {0}) x §2 ¢ M = R? x §2 of the Euclidean Schwarzschild manifold.
It is convenient to use polar coordinatest) on R? \ {0} in the range € (2m, co) and
7 € [0, 8wm), wherem > 0 is a fixed constant. The metric then takes the form

2 2m\ "t
m2=<1—-ﬂ>ch2+<1———) dr? + r2d2?,
r r

where d2? stands for the line element of the unit rous?d In sphere coordinates < (0, )
and¢ € [0, 2r) itis

d2? = dO? + sirfe dp?
on the open coordinate chaf® \ ({S}U{N})) c S2. Consequently the above metric takes
the following form on the open, dense coordinate cliart= (R? \ {0}) x (52 \ ({S} U
(N}) c M =R? x §%

r

-1
m2:<1—§f)ch2+(1—%@) dr? + r2(d@? + sirfe d¢?). 1)
r

Despite the apparent singularity of the metric at the origire R?, it can be extended
analytically to the whol®? x $? as demonstrated in [14, p. 407].
The U (1)-action defined by +— t + 4mx for €* € U(1) leaves this metric invariant,
and thus defines the Killing field
109
= Ea_rv
which (together with thé/ (1)-action itself) clearly extends to a Killing field on the whole
Euclidean Schwarzschild manifold, which we will also denotekby
Now consider the differential 1-forth := ¢g(X, -) dual toX. In our coordinate chat,
it takes the form

dm r

General considerations about Killing’s equations on a Ricci-flat manifold yield ¢thét d
a harmonic 2-form, which on a complete manifold is equivalent to saying that it is closed



G. Etesi, T. Hausel/Journal of Geometry and Physics 37 (2001) 126-136 129

and co-closed. For a proof see [14, pp. 442—-443]. In our situation we can check it by hand
that our form

1
df = —ﬁdf Adr
is co-closed. For this we need to calculat . Evoking the local coordinate representation
of the general Hodge operation (e.g. [1, p. 5]), the Hodge-operatia@?(M) — 22(M)
on the Euclidean Schwarzschild manif@i®, g) can be written as

xdr A dr = r2sin® dO A dg,

*dO A dp = dr A dr,

r2sin®

om\ L
*dr AdO = — (1— —m> sSin® dr A do,

r

*dr/\d¢=—<1—2—m> ,1

dr A dO,
r /) sin®

2n\ 7t 1
sdr Adp=(1— — ——dr AdO,
r sin®

*dr AdE® = (1— %> sSin® dr A do.
r

The orientation is fixed such that,¢4 = 1. From here we can see that
xdf = —3sinO dO A dg

is closed. Thus & is indeed harmonic. Now we show that it i$ by calculating the
Maxwell action of it: using the parameterization of the Euclidean Schwarzschild manifold
given above we find

1
1E 1720y = I €I Foas) = 5oz /Mds A *0E

1 [t (7 oo p8TmginE 1
= 9 dg = <. 2
8712/0 /(; /m/o 2 dz dr d® d¢ > (2)

In this way we have produced a two-dimensional spacé%harmonic 2-forms on/
spanned by & andxdg, and a one-dimensional subspace of (anti)self-difaharmonic
forms spanned by := d¢ £ xd&. From now on, without loss of generality we focus on
self-dual forms only, i.e. we will use the notatien= «. . Hence the self-dual form looks
like

1
a):—} —dt Adr+sin® de A dg 3)
2\ r2

onU. By (2), the Maxwell action oL.2-norm of the self-duab is given by

1 1
2
= — =—= | 2ds AxdE = 1. 4
lolly 24, 87T2/Ma)/\w SJTZ/M A xd& 4
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The self-dual 2-formw is not trivial topologically; indeed its cohomology class can be
easily identified with the first Chern class of thig1)-bundle H whose restrictiorH | 2 is
nothing but the HoptJ (1)-bundle (i.e. the positive generator B (52, Z)) through the
isomorphismH2(R? x S2, Z) = H2(S2, Z) via the integral

= | 1/ ds 1/2ﬂ/ﬂsin()d()d¢> 1 (5)
_——_— = —— % = — ~ ) =
2 Szwsz 2m Jg2 47 Jo  Jo ’

where we embeddesf into M asS? = {p} x $2 ¢ M = R? x §2, where for the sake of
simplicity p € R? differs from the origin.

According to (5)(1/2r)w € H?(M, Z) is an integer form, thus there is a connectibn
on H, whose curvature satisfids, = wk, where we used the identificatioil) = kR.
Furthermore it is unique, since;(M) = 1, consequently any flat connection must be
the trivial one. Similarly thel/ (1)-bundle H" admits a unique connectiafi, such that
Fa, = nok.

Now we write downA,, locally on two charts and explain how to glue them together: Let
us denote byH* the northern and southern hemisphereSfespectively, in other words,
HT is the set of points, wher® < m/2, andH ~ is the set, wher® > 7 /2. Consider the
coordinate chart®/* := R2 x H* of the space¥ = R? x S2. ClearlyM = Ut U U~
andUT N U~ = R? x S is given by the points satisfying = /2. By integrating (3),
in our coordinate chai/ and an appropriate trivialization éf”, the connectiom,, takes
the form ¢1, c2 are arbitrary real constants):

n

AE = > ((61 — }) dr + (c2 + cos@)d¢> K.
r

For this to extend to the North polé& = 0) and respectively to the South pal® = ),
we need to choose = —1 onU™ and respectively, = 1 onU~. Thus our connection
A, takes the following shape on the chaits:

n

1

AE = > ((cl — —) dr + (F1+4 cos®) d¢> k. (6)
r

Note that these connection forms are regular aléfig) U ~ and are related by the Abelian

gauge transformation

Af — A, = —ndgpk

given by "%k ¢ (1) alongU™* N U~. We recognize the above connections asiife
harmonic generalizations for the Euclidean Schwarzschild case of the connections appearing
in the well-known bundle-theoretic description of the Dirac magnetic monopole, see e.g.
[5, pp. 231-232]. The extra terfa — 1/r) dr can be interpreted as a scalar potential that

will cause our solutions to carry electric charge.

Consider now the associatéd(2)-bundle Py ) = H" @ H~", via the diagonal em-
bedding ofU (1) x U(1) ¢ U(2), and the associated connectifp = A, & A_, with
curvature formF,, @ F4_, onit. SinceH*(M, Z) = 0, the principall (2)-bundle Py ()
of H" @ H™" is trivial. Moreover, its determinari (1)-bundle is trivial and thusy
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reduces to the triviaBU(2)-bundle which we denote by = M x SU2). Furthermore
the U (2)-connectionB,, induces a trivial connection on the determinaritdll)-bundle,
so it reduces to aBU(2)-connection onP. In our coordinate chart&’* the connection
B, is induced by the embeddiddR = u(1) C su(2) = ImH. In other words self-dual
L? harmonic 2-forms may be regarded as the curvature 2-forms of (reducible) self-dual
Yang—Mills SU(2)-connections given locally by the formula (6).
Using (4) we find that the second Chern numbers of these self-dual Yang-SUii5s-
connectionsB,, = A, ® A_, on the associate8U(2)-bundlesH” @& H~" satisfy

1 1
—_— tr(FAn@FA—n/\FAn@FAfn)Z_v/\ ZFA’I/\FA"ZZ}'IZ,
87'[2 M 87'[2 M
since we have-tr(AB) = 2 Regxy) for the Killing-form on the Lie algebrau(2) = Im H.
Note that if we calculate the first Pontryagin number of the connectipon the real
plane bundleH” (here we made the identificatidn(l) = SQ2)), we also find

1
— | Fa, A Fa, =20
47T2,/1v1 An An

In the following section, we prove that the reduciBlg(2)-instantons just derived coincide
with the third group of instantons found by Charap and Duff [2].

3. Identification with instantons of Charap and Duff

Now we will follow [2]. In this paper solutions of type (II) of the self-duality equations
on P are referred to as “non-Abelian dyons” of Pontryagin numbers Ret us denote
them asA,,. In this section we show that they are in fact reducible, i.e. Abelian connections
and identify them with the connectior;, defined above. To round things off, we finish
this section by giving the explicit local gauge transformations which identify our Abelian
connections (6) with Charap—Duff's (8).

Let n be an integer and focus our attention to solution (II), more precisely the self-dual
one, which means that we choose all the functions of positive sign. Putting solution (1l) into
the spherical symmetric ansatz (5) of [2] and adjusting notations of [2] to ours via the iden-
tification su(2) = ImH given by{c1/2,62/2,63/2} +— {i/2,j/2,k/2}, the coordinate
transformation

(r, x%, x%, x3) > (nt, r Sin® cosne), r sin® sin(ne), r cosO), 7)
and the notation
Qs 1= SINO cosne)i + sinO sin(ng)j + cosOEKk,

we get the new form for the self-dual connection

A, = g <<c — ;1> dr + cos® d¢> Qn — %d(ﬁ k + %d@(sin(ncb)i — cogne)j).
(8)
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A long but straightforward calculation shows that the curvature takes the form
Fj, =noQy. (9)

Consider now thd/(1)-sub-bundleH, of P whose smooth sections are given Hy=
exp(fq,), where exp :su(2) — SU?2) is the exponential map ang is any smooth
function onM. We show that the covariant derivative; 2%ad(P)) - 2@dP)) on
the associated bundle @) leaves the real line bundle éf,,) C ad(P) invariant. We thus
calculate in our coordinate chart

VAHS = V,gn(fCIn) = d(an) + [An» fqn],

where by abuse of notatiofi, denotes the connection matrix 4f, in the gauge (8) The
first term equals:

d(fq,) =dfqg, + fd(sin® cogne)i + sin® sin(ng)j + cos@k)
=dfq, + fdO(cos® cogneg)i 4+ cosO sin(ng)j — sin@k)
+fndg (— sin® sin(ng)i + sin® cogne)j),

and the second one gives

[Anv fau] = |:E ((C - }> dr + cos® d(j)) On — Edqbk
2 r 2

1 . . .
+§d@(sm(n¢>)| — cogng))), fqn]

= [_gd¢ K+ %d@)(sin(mp)i — cosng))). fqn:|
= fnd¢(sin® sin(ng)i — sin® cogne)j)
+f dO®(— c0osO cogng)i — cosO sin(ng)j + sinOk).
Adding the two above expressions we see that
Vi, (fOn) =dfan,

showing thatA, reduces to & (1)-connection onH, C P. Now (9) shows that this

U (1)-connection orH, has the same curvature ag, therefore they should coincide, in
particularH,, = H". Thus we proved that the Charap—Duff connection (8) is equivalent to
our connection (6).

We finish this section by writing down the explicit gauge transformation& rwhich
transform our connection (6) to Charap—Duff's (8). From (9) we can guess that the gauge
transformations we are looking for should rotate the vegtointo the unit vectok. This
transformation cannot be carried out continuously over the whilby using only one
transformation but there is no obstruction if we use two gauge transformations on the charts
U* which are related along* N U~ by an Abelian gauge transformation. Consider the
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gauge transformationg: U+ — SU?2) = $3 c H given by

- - n¢ i@ K"
g, (t,r,0,¢) = exp<ik 5 > exp< j 2) exp( k 5 )

By abuse of notation we will regard the unit quaternidrjsk either elements of the Lie
algebrasu(2) = Im H or of the groupSU(2) = $2 c H depending on the context.

In this form we only see thaf" are smooth gauge transformationdorin order to be well
defined as smooth mags : U — SU(2) we have to show that they extend analytically
over the appropriate poles. We show this fjr here, the case ¢f, being similar. It is
easily checked that the following gauge transformation in Descartes coordinates gives rise
to g, after the coordinate transformation (7):

-1/2
x3 1 x3 1 .x2 .x3
(5*5) (z+§"§‘lz)- (10)

In this form we see that the magf” : U — SU(2) extends analytically t&/* \ U, that is
to points of M, where® = 0 or equivalentlyxz/r = 1.

Let us prove that the above gauge transformations do indeed transform (8) into (6)! First,
we show that it rotates, intok: Writing g, = Sin® cogn¢)i+sin® sin(ng)j +cos@k =
exp(kng) sin®i + cos®k, we can proceed as follows:

¢ (expkng) sin®i 4 cosOk)(gf) 1
= exp(ik%) exp<—j%> (Sin®i 4 cosOk) exp(]%) eXP(“%) :

Since sinPi + cos@k = exp(j @)k, we can go further by writing

ne ngy\
exp(ik7) k exp(;k;) =Kk,

proving that the above gauge transformatigjissendq,, into k.
Finally we calculate that at one hand

grdgh) ! = :F%dqﬁ K+ %dq& exp(ik%) exp(—j©) exp(;k%) K
1
+§d(~) exp(xtkng)j,

on the other hand

n 1 . . . _
o (—Edd)k + 5dO (sin(mg)i - cos(n¢>1>) (&)™
1
= —%d(ﬁ exp(ik%) exp(—j®) exp<¢k%> k — Ed@ exp(:kng)j.
But these terms cancel each other exceéh d¢ k demonstrating the desired result

gEAngDH) +gfd(ghH ™t = AF,
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whereA: is given by (6). Note that the two gauge transformations are related &iong/ ~
by the Abelian gauge transformation

expkng)g, = gF

yielding againd,, —kndgp = A;f.

Thus we gave two proofs that the Charap—Duff instantons coincide with ours proving
that these solutions are nothing but Abelian dyons carrying magnetic charggelectric
chargen. Indeed, the electric charge is given by the integration of the electric field over an
embedded two-sphere. By self-duality,

- *w|le2 =1,

2 2 |52
hence it is clear that the general solution has electric chatge. In summary we see that
the basic characteristic numbers of these solutions are their magnetic chregesented
by the first Chern class of tHé(1)-bundleH” instead of the first Pontryagin number22

4. L2-cohomology

In this section, we show that we have found all the Abelian instantons on the Euclidean
Schwarzschild manifold.

Theorem 4.1. Letn be anL? harmonic form on M. Then it is a linear combinationdsf
andsdg. Consequently, a self-duaf harmonic2-form on M is some constant multiple of
w = d€ 4 xd¢.

Proof. First of all, the volume of M, g) is infinite. It can be seen by calculating

2r pm poo p8mwm
/ *1:/ / / f r?sin® dr dr dO d¢ = oo,
M 0 0 J2m JO

where we have used again the parameterization of the Euclidean Schwarzschild manifold
given in the previous section. This implies that there aréfbarmonic 0- or equivalently
4-forms. Now, asM is Ricci-flat and complete, Corollary 1 of Dodziuk [4] implies that
there are no 1- and equivalently 3-forms &h

It remains to show that any.? harmonic 2-form is a linear combination of cand
xdg. For this we use a recent result of Hitchin, namely [10, Theorem 3] which we cite in
full.

Theorem 4.2(Hitchin). Let M be a complete oriented Riemannian manifold and let G be
a connected Lie group of isometries such that the Killing vector fields X it defines satisfy

1X| < c’p(xo.x) +c".

Then each.? cohomology class is fixed by. G
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(Here p is the distance function of the Riemannian manifold.) We would like to apply
this result toM with G = SQ(3) acting onM by isometries ofs2. A glance at the metric
(1) assures us that the Killing fields of this action have indeed linear growth. Thus it is
sufficient to find allSQ(3)-invariant harmonic 2-forms oM. Letn be such a form. In our
coordinate chart/, it must have the shape

n=f(tr,r)dt Adr +a.(z,r) Adt + o, (z,r) Adr + B(z, 1),

where £ (r, 7) is an SQ(3)-invariant function ons?, moreovere, (t, r) ande,(z, r) are
SQ3) invariant 1-forms ons?, and finally 8(z, r) is an SQ(3)-invariant 2-form ons?2.
However, there are very fe®Q(3)-invariant forms ors2. Namely, only the constant func-
tions and constant times the volume form of the rosAdare SO(3)-invariant. It follows
because&s(Q(3) acts transitively showing that only the constant functions and equivalently
constant multiples of the volume form are t8€(3)-invariant 0- and 2-forms, respectively.
Moreover there are no non-trivi8iQ(3)-invariant 1-forms ors2, which could be seen by
looking at the dual vector field and seeing that the action oftik® stabilizator of any
point on the tangent space at that point has only the origin as its fixed point.

It follows that ourSQ(3)-invariant 2-form must have the form

n= f(r,r)dt Adr+ h(z,r)sin® dO A de,

where— sin® d® A dg is the volume form of the uni§2 and f (t, r) andh(z, ) stand for
a function onM depending only onr andr. Its Hodge-dual is given by

*n = h(t, r)r—lzdr Adr + r2f(t, r)sin® de A d¢.

In order that both; andsxn be closed, we need that neithigir, t) nor 2 f (r, ) depends
ont orr, which means thag must have the form

dr Adr+c2SiNO dO A do
;

exactly as claimed. The result follows.

5. Concluding remarks

Previously we have proved that the self-dual solutions t&th@) Yang—Mills equations
overthe Euclidean Schwarzschild manifold found by Charap and Duff correspond to Abelian
dyons rather than non-Abelian ones. From the mathematical point of view we have seen that
the curvatures of these solutions represent elements of the non-trivial second, reduced
cohomology group of the Euclidean Schwarzschild manifold. This identification enabled
us to find all the Abelian instantons over this manifold.

The physical interpretation of these solutions is more subtle, however. In light of our
results these solutions seem to describe a static electromagnetic dyon configuration sur-
rounding the Schwarzschild black hole. Accepting this, we can interpret their Pontryagin
numbers 22 as their three-dimensional energy rather than their Euclidean action. Indeed, it
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is straightforward that the Euclidean Schwarzschild metric tends tththe dimensional
flat metric of R x $2 and can be extended as the flat metric to the widlasm — 0 (i.e.
as the Hawking temperature of the black hole tends to infinity), while neither solutions (6)
nor their Euclidean action depends an Henceforth in the limitn — 0, we recover the
static dyon of chargén, n) on flat space and such a configuration has enengya2 it is
well known.

The general (non-self-dual) dyons of chaxgen) correspond to the general elements
of the integer lattic&Z ® Z ¢ R = FILZZ(M, ) in the reduced.?-cohomology group of
(M, g).
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