‘H

e JOURNAL OF
?ﬁ@ GEOMETRY o
PHYSICS
ELSEVIER Journal of Geometry and Physics 37 (2001) 63-93

Einstein—Weyl geometry, the dKP equation and
twistor theory
Maciej Dunajskit, Lionel J. Mason, Paul Tod

The Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
Received 12 April 2000

Abstract

It is shown that Einstein—~Weyl (EW) equations ir-2 dimensions contain the dispersionless
Kadomtsev—Petviashvili (dKP) equation as a special case: if an EW structure admits a constant-
weighted vector then it is locally given by= dy? — 4 dx dr — 4u dr?, v = —4u, dr, whereu =
u(x, y, t) satisfies the dKP equatiaqn; — uu,), = uyy. Linearised solutions to the dKP equation
are shown to give rise to four-dimensional anti-self-dual conformal structures with symmetries. All
four-dimensional hyper-Kéhler metrics in signatg#e+ ——) for which the self-dual part of the
derivative of a Killing vector is null arise by this construction. Two new classes of examples of
EW metrics which depend on one arbitrary function of one variable are given, and characterised.
A Lax representation of the EW condition is found and used to show that all EW spaces arise
as symmetry reductions of hyper-Hermitian metrics in four dimensions. The EW equations are
reformulated in terms of a simple and closed two-form on@#&-bundle over a Weyl space. It
is proved that complex solutions to the dKP equations, modulo a certain coordinate freedom, are
in a one-to-one correspondence with mini-twistor spaces (two-dimensional complex magifolds
containing a rational curve with normal bundi®2)) that admit a section of ~1/4, wherex is
the canonical bundle of. Real solutions are obtained if the mini-twistor space also admits an
anti-holomorphic involution with fixed points together with a rational curve and sectiarm bf
that are invariant under the involution. © 2001 Elsevier Science B.V. All rights reserved.
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1. Three-dimensional Einstein—Weyl spaces

The aim of this paperisto study the Einstein—Weyl (EW) equations in relation to integrable
systems, and in particular the dispersionless Kadomtsev—Petviashvili (dKP) equation. We
begin by collecting various definitions and formulae concerning three-dimensional EW
spaces (see [25] for a fuller account). In Section 2, we construct and characterise a class
of new EW structures in21 dimensions out of solutions to the dKP equation. We then
show that the dKP solutions give rise to hyper-Kahler metrics in four dimensions. We abuse
terminology and call hyper-Kahler (hyper-complex, hyper-Hermitian) metrics which in
signaturg+ + ——) should be referred to as pseudo-hyper-Kéahler (pseudo-hyper-complex,
pseudo-hyper-Hermitian). A null vector field (with conformal weight) will play a central
role in our discussion so most of our constructions only make sense for EW spaces with
Lorentzian signature, or complex holomorphic EW spaces (i.e. the complexification of real
analytic EW spaces) and for the most part, we work with the latter and restrict to a real slice
when reality conditions play a role.

In Section 3, we construct some new examples of EW structures. We obtain all solutions
of the dKP equation with the property that the associated EW space admits a family of
divergence-free, shear-free geodesic congruences. These solutions give rise to new EW
metrics depending on one arbitrary function of one variable.

In Section 4, a Lax representation of the general EW equations is given, together with a
reformulation of the EW equations in terms of a closed and simple two-form on the bundle
of spinors. A full twistor characterisation of dKP EW structures and the corresponding
hyper-Kahler metrics will be given in Section 5. In Section 6, we summarise our present
knowledge of conformal reductions of four-dimensional hyper-Kéahler metrics in split signa-
ture. In Appendix A, we show how to obtain the dKP equation as a reduction offiRliitsa
second heavenly equation [26].

Let W be a three-dimensional complex manifold (one can also define Weyl spaces in
arbitrary dimension) with a torsion-free connectibrand a conformal metridi]. We shall
call W a Weyl space if the null geodesics @f are also geodesics fd. This condition is
equivalent to

Dihjk = vihjk (1.2)

for some one-formv. Herehj is a representative metric in the conformal class. The indices
i, j,k,... go from 1 to 3. If we change this representative loy— ¢2h, theny —

v + 2dIn¢. The one-formv ‘measures’ the difference betwedh and the Levi-Civita
connectionV of i:

DiVI = Vv — L8/ + 87 v; — hyvd ) VE. (1.2)
2\"i k

The Ricci tensoWj; and scala of D are related to the Ricci tens®;; and scalaR

1 Parts of this work appeared in the D.Phil. Thesis of one of the authors (MD) [5].
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of V by

Wij = Rjj + Viv; — %Vjvi + %vivj + hij(—%vkvk + %Vkvk),
W= hIWy = R+ 2V — Sokug.

A tensor object’ which transforms a§ — ¢™ T whenh; — ¢2hij is said to be confor-
mally invariant of weightn. The Ricci scala#, and the Ricci tensoj; have weights-2
and 0, respectively.

Let B be ap-form of weightm. The covariant exterior derivative

DB :=dB—3mvAB

is a well-defined  + 1)-form of weightm. The formula for a covariant weighted derivative
of a vector of weighin is

Div?i = vivI — 35luvE — Lm + Duivi + 2ol v (1.3)

We say that a vectokK is a symmetry of a Weyl structure if it preserves the conformal
structure f], the Weyl connection, and the compatibility (1.1) between these two. These
conditions imply

Lxh=vh,  Lgv=dy, (1.4)

where(h, v) is a Weyl structure, and g is the Lie derivative along .
The conformally invariant EW condition aiw, &, v) is

1
Wiij) = 3Wh.

If the above equation is satisfied ands a gradient, then is conformal to a metric with
constant curvature.
In terms of the Riemannian data, the EW equations are

Xij = Rij + %V(iv.j) + %v,-vj — %(R + %Vkvk + %vkvk)hij =0. (1.5)

Hereyjj is a conformally invariant tensor (the trace-free part of the Ricci tensor of the Weyl
connection). Weyl spaces which satisfy (1.5) will be called EW spaces.

Inthree dimensions, the general solution of (1.1)—(1.5) depends on four arbitrary functions
of two variables [4]. The equations of the Weyl geodesics are

doaL oL Fioc i)

—— — — = F(x’,x7),

dsax’  axi '
wheref = %hijxifcf andF; = %;(x/v;) — %v,-(jcij). Here overdot stands for/ds, the
derivative with respect to a parametett is evident that for nulk’, the geodesics coincide
with the null geodesics for].
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2. EW structures from the dKP equation

In this section, we shall construct EW structures out of solutions to the dKP equation. In
Section 2.1, we shall find a class of hyper-Kéhler metrics in four dimensions which reduce
to dKP EW metrics.

The full Kadomtsev—Petviashvili equation for:= U(X"), X' = (X, Y, T)

(Ur — UUx — 5Uxxx0x = Uyy (2.6)

arises as a compatibility condition for the linear systeg¥ = L1¥ = 0, wherey =
w(X,Y,T)and

Lo=dy — 305U, Li=dr—305—-Udx—W

for someW = W(X, Y, T). To take a dispersionless limit of (2.6) [11], we introduce the
slow coordinates’ := €X' (note that our notation for ‘slow’ and ‘fast’ coordinates is
different from the usual one), and definéx’) := U(X"), w(x’) := W(X'). The linear
system is replaced by

Sy=382+u, S =312+uS +w. 2.7)

HereS := S(x') isthe action defined by (X*) = exp [ ~1S(x")], and higher order terms in
€ have been neglected. Formulae (2.7) can be treated as a pair of Hamilton—Jacobi equations
Sty + Ha(Sx, x,t4) = 0, witht4 = (y,t) andHs = (Hp, H3), where

Hy .= %X2+u, H3 = %X3+Xu+w

foru = u(x,y,t) andw = w(x, y, ). Nowx’ anddS/ox’ = (A, Ho, H3) form a set of
canonically conjugate variables on an ‘extended phase-space’, with the symplectic form

n:dxiAd%:dxAdI\eryAdeerzAng. (2.8)
This two-form is closed by definition. It is also simple iffandw satisfy

Wy = Uy, ur — Uly = wy.
Eliminatingw yields the dKP equation

(ur — Uly)x = uyy. (2.9)

The simplicity of/7 implies [0y + X p,, 0, + X ;] = 0, whereXy := H, d; — H; d, denotes

the Hamiltonian vector field with respect ta d dx, holdings andy constant. This gives a
Lax pair for the dKP equation in terms of Hamiltonian vector fields. To obtain a Lax pair,
which is linear in the spectral parameter, put

Loy =8 + Xy — 2y + Xp,) = 8 — udy — Ady + uyd;,
Ly =3y + Xy, = dy — Adyx + u,d;. (2.10)
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The dKP equation is equivalent to
[Lo, Ly] = —uxLy.
Define a triad of vectors
Vyr = 0, Vov = 0y, Voo (= 0; — udy

SOLy =8 Vap + fards, wheren? = (1, —1) and far = (uy, uy).
We can find a one-form such thatV 4z is a null triad for an EW metric, as given by
the following preposition.

Proposition 2.1. Letu := u(x, y,t) be a solution of the dKP equatig®.9). Then the
metric and the one-form

h = dy? — 4dx dr — 4u dr?, v = —du,dr (2.11)
give an EW structure
Proof. Letx!:=1t,x?:=y, x3:= x. Five (out of six) EW equationg;j = O are satisfied

identically by ansatz (2.11). The equatign; = O is equivalent to (2.9). We also find
W = —3uxx. O

Example. Solutions which yield EW structures conformal to Einstein metrics (i.e. those
for whichv is exact) are of the form

_ 1 /dfi)
ulx,y, t) =x f1(t) + > ( i

where f1(t), f2(¢), f3(t) are arbitrary functions of one variable.

fl(t)2> Y2+ f2(0)y + f3(0), (2.12)

One can verify that the vect@y, in the EW space (2.11) is a covariantly constant null
vector in the Weyl connection with Weight%. Now, we shall prove the converse, and show
that solutions (2.11) are characterised by the existence of a constant-weighted vector.

Proposition 2.2. If a three-dimensional EW space has a constant-weighted vectot field
then coordinates can be chosen to put the EW metric and one-form in thg2otf).

We shall need the following lemma.

Lemma 2.3. Let!/ be a constant-weighted vector on a three-dimensional EW space. Then
either the EW space is flat #is null (so on a real slice, the signature(s- — —)) and has

; 1
weight—3.

Proof. Assume thatk, v) isacomplex EW structure (we shall specify the reality conditions
later in the proof). Commuting the Weyl derivatives yields

[Di, Dj]lk = %m(Divj — Djl)i)lk = Wr]%ijlm,
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whereW,’;ij is the curvature of the Weyl connection, amds the weight ofi*. It can be

decomposed as
k
Winii = =& €m'Spa — S, Fij» (2.13)
whereFjj = V[;v;], andsSj is a conformally invariant tensor of weight 0. If the EW equa-
tions are satisfiedj is given by

Si = 3Fj + Wh;. (2.14)
Egs. (2.13) and (2.14) imply
(m+ DFI* = =3l 1" e Foq + EW (5L — 8411). (2.15)

In three dimensions, any non-zero two-foffy has a non-trivial kernel, i.e. there exists a
non-zero vectoL’/ with FjL/ = 0, which implies

Fj = FsijkLk (2.16)

for some non-zerd'. We have to consider three cases:
e Suppose first that is a null vector and contract (2.15) wifty to find

0= —LefenFepqrl 1" LI + AW (I, LI — L¥). (2.17)
Contracting this with_; yieldsWI; L/ = 0. If W = 0, then (2.17) implies thdt and L'
are proportional, s¢f is null. If W # 0, so that ; L/ = 0 then (2.17) reduces to

0= %FL@lmLie,’;q — 2wy L
from which agairi’ is null. Therefore/’ andL’ are both null and orthogonal and so (as
we work in three dimensions) they have to be proportional. Now (2.17) fdktes 0.
Eq. (2.15) is now satisfied only i = —3.

e If Li is not null, we can choose an orthogonal frame With = F # 0, andFy» =
Fi3 = 0, and use (2.15) to examine component&gf in this frame. This yields

Wh=0, FI'=0 IFP+iwLb=0 IFV2-1lWk=0, (2.18)

(m+DFIt =0, (m+DFI?=iWk = 3FI%  (m+DFP=—iWh = 3F3

Therefore/! = 0, and (2.18) implyim + 2)FI2 = 0, im + 3)FI® = 0. But/! # 0,
som = —3. Egs. (2.18) also imply that is null.

e If F = 0 = dv = 0 (Einstein case), choose a conformal gauge in whieh 0. Now
D;l/ = V;l/ = 0 impliesR = 0. Therefore, the metria is flat andl/ is a constant
vector. (]

Proof of Proposition 2.2. Lemma 2.3 and the formula (1.3) with = —% imply
Dil/ = Dil! + %vil! = 0. (2.19)

Therefore,D;l; = 3vil;, sod = 3v Al (herel is the one-form dual té).
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This implies that we can rescale the metric and hdnse thatl = —2dr for some
functionz. We must then have = b dr for some functiorb. Choose coordinatesandy
so that/(y) = 0 and/(x) = 1 and(x, y, t) is a coordinate system. At this point, we have

h = Fdy?+ Gdydr — 4dxdr — 4u dr?, v =bdr,

whereF, G, b andu are functions of, y, t. The formulae (1.2) and (2.19) impW;/; =
$vil; — 3v;l;. Symmetrising this expression yiel&;/;) = —v;l;, which implies that

F, = G, =0, and 4, = —b. We are still free to change — x + P(y, t), which gives
h = Fdy? 4+ Gdydr — 4(dx + Py dy + P, dr) dr — 4u dr?, v = —du, dr.

We can findK such that ¢ := +/Fdy + K dr is exact, and eliminate thejdl term in
the metric by choosing A, = —2K + G/~/F. This (after redefining: by adding to it a
function of (y, r) so thatv remains unchanged) yields the EW structure (2.11).

Remark. The above coordinate conditions fix the coordinates:andly up to the freedom
(x,y,t) =~ (X, 9,0, u(x,y,t) = (X, y,1), where

(x,y,0) =G = f'§—g.5—2f. 1),
ﬁ(f,&,;)=M(i—f/57—g,57_2f,f)—yf”_f/z_g/, (220)

wheref andg are arbitrary functions of and prime denotes the derivative with respect to

Furthermore, the conformal scale is only fixed up to arbitrary functionsiof—> i =
£22h. Such a rescaling leads to a redefinitiory of — 7 given byt = ¢(7), where2 =
¢’=2/3, where now and in the following, prime denotes the derivative with respect to
This leads to the redefinitions, y, ) — (%, ¥, 1), u(x, v, t) — ii(x, y, ) given by

. C// B . 5
(x,y,0) = (c/l/sx + g2y ¢, c(t)> :

” Ny =2 3" 7"\ 2
E 5,0 = 2Pu (V5 + 32 235, e )+ o+ [ - —4( 5 ) ).
6c'2/3 c

(2.21)

From the point of view of the EW spaces, the transformations above are equivalences;
however, from the point of view of the dKP equations, they map one solution of the dKP
equations to another allowing one to deduce solutions depending on three functions of one
variable from a given solution.

Corollary 2.4. Letu(x, y, t) be a solution to the dKP equation, thgat, y, 7) is another
solution wherei is given in terms of either of the formuldg.21)or (2.20).
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2.1. Hyper-Kahler structures from the dKP equation

In this section, we shall show that EW structures given by (2.11) give rise to four-dimen-
sional hyper-Kahler structures with symmetry. We shall start by summarising some results
about anti-self-dual (ASD) four manifolds with Killing vectors, and the Lax representation
of hyper-Hermitian four manifolds.

All three-dimensional EW spaces can be obtained as spaces of trajectories of conformal
Killing vectors in four-dimensional manifolds with ASD conformal curvature.

Proposition 2.5(Jones and Tod [16])Let (M, g) be an ASD four-manifold with a con-
formal Killing vector K. The EW structure on the spag® of trajectories ofK (which is
assumed to be non-pathologité defined by

hi=|K|%8 — |K|™*K O K, vi=s* (2K %5 (K AdK)), (2.22)

where|K |2 := gapK*K?, K is the one-form dual to K and; is taken with respect t@
ands : W — M is an arbitrary section of the fibration — W. All EW structures arise
in this way

Conversely, leth, v) be a three-dimensional EW structuredh and let(V, «) be a pair
consisting of a function of weight1 and a one-form oV which satisfy the generalised
monopole equation

#p(dV + 3vV) = da, (2.23)
wherex;, is taken with respect th. Then
g = Vh+ V7ldz + a)? (2.24)

is an ASD metric with an isomet = d,. The negative sign i{2.24)is chosen if: has
signature(+ + —).

In what follows, we shall consider ASD structures which are also (complexified) hyper-
Hermitian.
A smooth manifoldM equipped with three almost complex structu¢ésJ/, K) satis-
fying the algebra of quaternions is called hyper-complex iff the almost complex structure
J.. = al + bd+ cK s integrable for anya, b, ¢c) € $2. We usex = (a + ib)/(c — 1), a
stereographic coordinate ¢ which we view as a complex projective li&!. Let g be
a Riemannian metric oM. If (M, 7,) is hyper-complex ang(7, X, J,.Y) = g(X,Y)
for all vectorsX, Y on M then the tripla M, 75, g) is called a hyper-Hermitian structure.
We shall restrict ourselves to oriented four-manifolds. In four dimensions, a hyper-
complex structure defines a conformal structure, which in explicit terms is represented
by a conformal orthonormal frame of vector fields, IX, JX, KX), foranyX € TM. Itis
well known [1] that this conformal structure is ASD with the orientation determined by the
complex structures.
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If there exists a choice of a conformal factor such that a two-fafndefined by
(X, Y) = g(X, 7Y) is closed (with fixed\) for all » € CP?! and all vectorgX, Y)
then(M, J,, g) is called hyper-Kéhler.

We will, in practice, be interested in complexified or indefinite hyper-Hermitian metrics
with signature(+ + ——) for which the tensorg/, J, K) must necessarily be complex.
Taking the(+ + ——) real sections is accomplished by the reduction of the structure group
form Sp4, C) to Sp(4, R). In signature(+ + ——) we can arrange for one of the complex
structures to be real and for the other two to be pure imaginary. SettiagiS, T := iK
yields

—12=82_-712_-1, IST=1,

andS and7 determine a pair of transverse null foliations. Note (@, TY) = g(SX SY)
= —g(X, Y) for any pair of real vectorX, Y. The endomorphisni endowsM with the
structure of a two-dimensional complex Kéhler manifold, as does every other complex
structureal 4+ bS+ cT parametrised by the points of the hyperbolafd— b2 — ¢ = 1.

We shall use the following characterisation of the hyper-Hermiticity condition.

Proposition 2.6(Dunajski [6] and Mason and Newman [21]) et Vax be four independent
real vector fields on a four-dimensional real manifold, and let

Lo = Voo — AVor, L1=Vjiy —AV1r, wherea e CP.

[Lo,L1] =0 (2.25)

for everya, then Vau is a null tetrad for a(+ + ——) hyper-Hermitian metric onM.
Every(+ + ——) hyper-Hermitian metric arises in this way. Moreover, if the veclosg
preserve a volume fornaol, on M, then f~1Van is a null tetrad for a(+ + ——)
hyper-Kahler metric on\. Here, f2 = volg (Voo V1o, Vor, Vir).
Now we shall use (2.11) and Proposition 2.5 to construct ASD metrics out of solutions to
the dKP equation, and Proposition 2.6 to show that they are hyper-Kéahler.

Assume that andv are as in (2.11). Taking the exterior derivative of the generalised
monopole equation (2.23) yields

0=V,V'V+2(Vv)V+ 30V;V = Vyy — Vi + UVox + 20, Vi +usxV (2.26)

which is just a linearisation of the dKP equation (2.9) (note thatu:fer 0, (2.26) is just

the wave equation relative to the flat metrig?d- 4 dx dr). One solution is/ = %ux. One

could find a correspondingand write down a metric using formula (2.24) (see the remarks

after Proposition 2.7), but we shall present a different method based on the Lax operators.
Take the Lax operators (2.10) and introduce a new spectral parameten. — z for

somez. The functionu(x, y, t) does not depend arso we can replacg by d;. This yields

(with dropped primes and added tildes)

Lo=d —udy — 28y +uyd; — Ady, L1 =128y — 20y + uxd; — Ady.
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To obtain a pair of exactly commuting operators take

Ly :=L1 =0y — 28y + uyd; — Ady,
Lo = Zo + ZI:1 =0 — (u+ Zz)ax + (My + uyz)o; — A(ay + 20y).

If u(x,y,t)is a solution to (2.9), then these operators satigfy, L1] = 0 and so, by
Proposition 2.6, the vectors

Vig = ay — 20x + Uy 0, Vir = 0y,
Voo =& — (u + 220y + (uy +uy2)d;,  Vor = (dy +z8y),

form a hyper-Hermitian frame. The vectovay preserve the volume form vpol= dr A
dy A dx A dz, andf? = %ux. Therefore, we have the following.

Proposition 2.7. Letu = u(x, y, t). The metric

2 d 2
g = ’%x(dyz —4dvdr —dudi®) — = (dz - “"2 Y uy dt) (2.27)

X

is (pseudo) hyper-Kahler

Remarks.
e The above metric has a Killing vectéy with the dual

2 uy, dy
R YPRE Y

and the formulag2.22)give rise to the EW structur@.11).The self-dual part ofiK is
a simple two-formIn Section5, we shall show that all hyper-Kéhler metrics with such
symmetries are locally given [§2.27).

e Note thatu, # 0 for (2.27)to be well defined. To obtain a flat metric, take= —x /¢
which is a special case ¢2.12).The metriq2.27)becomes

2
g=2dx% —Zx%—Fthzz—i-Zdzdy.

Puttingx = Xt+ z%r/2,y = Y — zt yields the flat metric
g=2dXdr+2dzdy.

e The metrig(2.27)could be found directly from the monopole equati@r23)as follows:
rewrite the metri2.11)in an orthonormal triadh = e2 + €3 — €2, where

e1 = dy, er =dx + (u — 1) dr, e3=dx + (u + 1) dr.
The duality relations,e1 = e3 A e2, xpe2 = e1 A e3, ¥pe3 = e1 A e Yield

*x,dt = dr Ady, xp,dy = 20dr A dx, *,dx = dy Adx 4+ 2udy A dr.
(2.28)
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TakeV = %ux, and use the above relations to write the monopole equdfidt8)as
%uxxdy Adx 4 uxydr A dx + (u)zc + Ulky — %Mxt) dy A df = da.

Choosing the gauge in whieh= w1 dy + o dr (this is always possible by redefining a
coordinatez along the orbits of a Killing vectgrgives

(@D)x = —3uxx,  (@2)x = —Uxy,  (@2)y — (1) = Suxt —uyy.  (2.29)
All solutions to this system of equations are gauge equivalent to
=—1u.d d
o= —35uydy —u,yQar.

SubstitutingV, « and# to (2.24)yields(2.27).

e The Lax pair(2.10)can be obtained from the hyper-Kahler Lax pair by a symmetry re-
duction: the distribution(K, Lo, L1) is not integrableas[ K, Lo] = —d, and[K, L1] =
—d,. To obtain an integrable distribution, one needs tokifto the correspondence space
by K = K — 3,. Then(K, Lo, L1) is an integrable distributionbut K () # 0, which
forces us to introduce an invariant spectral parametet A + z. This implies that in the
Lax pair, we replace alb, by K + 0;. Now we restrict ourselves to invariant solutions
to Lo¥ = L1¥ = 0,and so we ignor& in the Lax pair The reduced Lax pair is given
by (2.10).

In the covariantly constant primed spin frame, the null tetrad is

dz —u, dr /
0 = —uy dr, el = $, O = dz —u, dy — (uy + zu,) dr,
Ux

/ dz — u, dr
et =dx+udt+zi,

Ux

and the metriq2.27)is 2(e%9 et — ¢01¢10). The basis of SD two-form is in this frame
given by

200 —dzadr, XY =dzady +du+zd) Adr,
VY =y dx Ady — uudy A df + uydx A dt

+d(u2) A df + dz A (dx + zdy + z2 dr).
They satisfy
2300 A 1V = 0T\ 20T gx00 — g5t —gxtt =0

which again implies that the metri@.27)is hyper-Kahler. Note that the Killing vector
K = 9. does not preserve the Kahler foref' Y.
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3. Examples
3.1. dKP EW spaces witt symmetry

In this section, we shall construct EW structures depending on one arbitrary function of
one variable.

To find some explicit examples of (2.11), assume thiatindependent of. Therefore, it
satisfies the simple equatiom, = u,, all solutions of which are given in an implicit form

ulx,t) = f(x +tu(x,1r))

(more general hodograph transformations for dKP arising from its connection with equations
of hydrodynamic type were studied in [12,17]). Hefeis an arbitrary function of one
variables := x + tu(x, #). The idea is to write the EW structure (2.11) making use of the
‘hodograph transformation’. We have

h=dy? —4d(dx +ud) =dy? —4dr(ds — 7 du) = dy? — 4drds + 4r de d f (s),

where we performed a coordinate transformationy, t) — (s, y, t). Defining F(s) =
df/ds and replacing:, by F/(1 — tF) yields the EW structure
F(s)
h = dy? + 4(tF(s) — 1) dr ds, =4_—""d 3.30
¥+ 4(tF(s) — 1) dr ds V=dEs 1 (3.30)
which depends on one arbitrary functiéigs) (which we shall take to be strictly negative)
of one variable. This structure has signatise+ —). If ¢+ > 0, then it is well-defined on
St x Rt x R.
We shall now show that formulae (3.30) give a class of EW structures on prirtipal
bundles over Weyl manifolds.

Proposition 3.1. Let (\V, [H], vy) be a two-dimensional manifold with a Wey! structure
of signature(+—) and letr : W — N be ans?! bundle oveV. If

h:=dy?+ 7*H, v i=na%vy

(wherey is a coordinate on a fibjds an EW structure oV, then it can be put in the form
(3.30).

Proof. We can use isothermal coordinat@ss) on A" and choose a representative of a
conformal class#] such that: andv are

h =dy? 4+ 2G5, 1) ds dr, v=KG,1)dt. (3.31)

Each EW structure of this formis equivalent to (3.30). This can be seen as follows: equations
x13 = 0, x22 = 0 imply thatK = 4G,/G + f(t). The functionf (t) can be absorbed in

the definition ofG. Then the vanishing ofs3 (all remaining EW equations are satisfied
trivially) yields G(5,1) = —2F1(5) + 2tF2(5) for arbitrary F; and F>. Now we define

a new coordinate by ds := F1(5) ds. Equivalence between (3.30) and (3.31) is finally
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obtained by putting©(s) := Fa(s)/Fi(s). The metric (3.30) is not Einstein @&, # 0,
G13 # 0 andR = —2F,/(tF — 1)3 is not constant (unlesE is constant). To visualise
the two-dimensional surfac®” on which H is defined, one can restrict a flat + ——)
metric onR%, ¢ = df dw — ds dr to the intersection of the paraboloid = %tz with the
hyper-surfacef = f(s). d

The hyper-Kahler metric corresponding to (3.30) has an additional null Killing vagtor
and is (with definitions @ := —F ds, F(w) := F~1) given by
g =dwdr +dzdy + (¢t — F(w))dz?,

whereF (w) is arbitrary.
Other examples (without a Killing vector) can be obtained from

_ dA(t) x y/x 1/2
=ty _t+t(t+A(t)) :

whereA(¢) is arbitrary.

3.2. dKP metrics which are hyper-CR

Letusrecall thatan EW metricis called hyper-CR (or special) ifit admits a two-parameter
family of shear-free, divergence-free geodesic congruences [3]. All hyper-CR EW spaces
arise as reductions of hyper-Kahler metrics by tri-holomorphic homotheties [9]. In this
section, we shall find all EW metrics intZ dimensions which are both dKP and hyper-CR.
This will lead to a class of solutions to the dKP equation depending on one arbitrary function
of one variable.

Proposition 3.2. All EW metrics which admit a constant-weighted vector and a two-
parameter family of shear-free geodesic congruences with a vanishing divergence are either
spaces of constant curvature or are locally of the form

P 2
h:dﬁ—4mdp4%—ﬁl_%)m% v=§&h (3.32)
y y y

whereP is an arbitrary function of.

Proof. The hyper-CR condition for a metric is characterised [9] by the existence of a scalar
p of weight—1 which (together with the EW one-forn) satisfies the monopole equation

*p(dp + %v,o) =dv, (3.33)
and the algebraic constraint
p? = 8w. (3.34)
We shall impose these conditions on the dKP metric (2.11). The monopole equation yields

(Auxx — 2py) dx A dt 4 p dy Adx + (2oyu — pr + 2pux + duyy) dy Adt =0
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which (together with (3.34)) gives four scalar equations:

Py = 2uixx, px =0, 201y — pr + duxy = 0, 0% = —8uyy. (3.35)

If uyx = 0, then the last relation in (3.35) gives = 0. The monopole equation then
implies thatv is closed, and the EW metric is conformal to Einstein. Therefore, we assume
uxx # 0. Differentiating the third equation in (3.35) with respectt@and using the first

two equations) gives

u
p=-—22
Uxx

The integrability conditions to (the otherwise over-determined system) (3.35) are
uxxx = 0, M)Z(xy — Uxxyyxx = ”>3<)xv 4Mxxy = ﬂuix,
Usxylhxxt — Uxxythxx + 2l x Uxxthxxy — 2Mxy14>%x =0. (3.36)

The first condition impliesi(x, y, r) = ax’ + bx+ c. Here,a, b, ¢ are functions ofy and
t, which satisfy

ayy + 6a% =0, (3.37)
byy — 2a, + 6ab =0, (3.38)
¢y — by + 2ac+ b2 =0, (3.39)
a§ —aayy — 24° = 0, (3.40)
a?+4a® =0, (3.41)
aay — aya; — 2aay,b + 2bya® = 0. (3.42)

Egs. (3.37)—(3.39) follow from the dKP (2.9), and the other equations are the integrability
conditions (3.36). Solve (3.41) to find(y, 1) = —(y — L(t))~2 (or a = 0 which gives
uxx = 0).

We can now perform the coordinate transformation (2.20) with —%L andg =0to
setL(t) = 0. One verifies that (3.37), and (3.41) are also satisfied now. Eqg. (3.38) gives
b(y,1) = —M(1)y~%+ N(1)y®, but (3.42) impliesV (r) = 0. So far, we have

2
h =dy? —4dxdr + 4 <c(y, ) — M) _ x_2> dr?, V= 8 +4M(1) dr.

2 y?
The functionM (¢) can be eliminated by the coordinate transformation (2.20)gviih%M.
Imposing (3.39) yields(y, 1) = P(t)/y + R(t)y? leaving

2
h:dy2—4dxdt+4<—x—2+m—i—R(r)yz) dr?, v=8—§dt.
2oy y



M. Dunajski et al./ Journal of Geometry and Physics 37 (2001) 63-93 77

We eliminateR(¢) by performing the conformal rescaling and associated coordinate
redefinitions of (2.21) withr(¢) satisfying

" 1/ 2
R="53"2 (—2) -
This yields, dropping the tildes and with a redefinitionRf

x2  P(1)
u(x,y,t) = -+ —
y y
The EW structure is therefore (3.32). The arbitrary functif) cannot be eliminated.
This can be seen by finding the symmetries (1.4) of the EW structure (3.32). We summarise

our findings in the table below:

FunctionP (¢) Symmetries
0) P(t)=0 K1, K>, K3, K4
(i) P(t) =const #0 K1, Ko+ 3K3, Kg
(iii) P(t) = (bt+ ¢)Ba=b)/2b cKy + aKp + bKg
(iv) GeneralP () None

wherea, b, ¢ are constants, and

Ki=9, Ka=3ydy+xd,  K3=3yd +1d,
Ks = tydy + (% + 2x0); + 3r29;.

Note that in case (ii), we can redefine coordinates toPe} = 1. The vector fields
K1, K> + 3K3, K4 generate the Lie group of Bianchi type VIII, i.8U(1, 1), and the
cases (i) and (ii) give homogeneous EW spaces. Case (iii) can be reduBéd te: “,
K = K3 +[3(20 + D] K>, wherea = const # 0. O

4. The twistor correspondences and Lax formulations

In this section, we shall study the twistor theory of the EW spaces. We first discuss
the twistor correspondence in the flat case. We then give a Lax formulation of the EW
equations and derive from it the twistor correspondence. We study this correspondence in
relation to reductions of the ASD equations on four-dimensional conformal structures. We
then reformulate the EW equations in terms of a certain two-form on the tei#abundle
over a Weyl space.

4.1. The flat correspondence

Let us begin by recalling Ward’'s approach [31] to twistors ir-{2-dimensional flat
space-times. Rearranging the space—time coordinates, 1) as a symmetric two-
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spinor?

1

ag . [T 2
X =\, ,

2y X

such that the space—time metric and the volume form are
h=—2dvypde®?, ol =deB Aded A dx§.

The two-dimensional spinor indices are raised and lowered with the symplectie fosm
such thategr = 1 (see [24] for a full account of the two-spinor formalism). We shall
use the abstract index conventiof = V4’80 = v 78) pased on an isomorphism
T'W = SW g §8).

The projective mini-twistor space @2 is the two-dimensional complex manifold
Z = TCP! which is the total space of the line bundi&2) of Chern class 2 oveEPL.
Points ofZ correspond to null 2-planes k> via the incidence relation

xA/B’nA,nB, . (4.43)

Here(w, ny, 1) are homogeneous coordinates®(®): (w, w4/) ~ (p%w, p7a’), Where
p € C*.In the affine coordinates := ny /71, & = w/(1)?, EQ. (4.43) i = x + Ay +
A2t First fix (w, war). If (£, 1) are both real, then (4.43) defines a null plan®#t?. If
both& and are complex, then the solution to (4.43) is a time-like cun@3m. We shall
say that this curve is oriented to the future if im> 0 and to the past, otherwise. Afis
real andt is complex, then (4.43) has no solutions for finite 3.

An alternate interpretation of (4.43) is to fid 8'. This determines as a function ofr 4/,
i.e. a section 0®(2) — CP! when factored out by the relatidm, 74/) ~ (p2w, pma).
These are embedded rational curves with normal bufid®. Two rational curves,, and
I, (corresponding t@r1, y1, x1) and(r2, y2, x2), respectively) intersect at two points

_ 2R ¥ VR(R,R)

A
12 2R,

, where R; ;= (t1 — t2, y1 — y2, X1 — x2).

Therefore the incidence of curves#hencodes the causal structuré®sf1 in the following
sensel,, andl,, intersect at (a) one point, (b) two real points, (c) two complex points
conjugates of each other, iff1, po are (a) null separated, (b) space-like separated, (c)
time-like separated.

Examining the relevant cohomology groups shows that the moduli space of curves with
normal bundle?(2) in Z is C3. The real space-tim&?*+! arises as the moduli space of
curves that are invariant under the conjugatiensm /) — (o, Ta/).

The correspondence spage= C3x CP! = {(p, Z) € C3x Z|Z € 1,,}. By definition, it
inherits fibrations over botf® and Z and the fibration ofF = C3 x CP* over Z has fibres

2The use of primed (rather than unprimed) spinors in this section originates from the representation of EW spaces
as reductions of ASD (rather than SD) metrics in four dimensions. ASD structures (for which the covariantly
constant self-dual spinors are conventionally denoted as having primed indices) are taken as basic because they
arise from a natural choice of orientation and conformal structure on a Kahler manifold.
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D/).

spanned by the distributions = 7% 945/, wheredpxC'? = 172562 + 6,62

In the affine coordinates?” = (1, —1), this distribution is
Ly = 8 — Ady, Ly =3y — Ady

(we have ignored the constant factar). Note that thid. 4/ is the special case(x, y, r) = 0
of the Lax pair (2.10) for the dKP equation.

We also define the correspondence spage= R2+1 x CP? for RZ*1, Let ZR be the
sub-manifold ofZ preserved by the conjugation

(w, g, 1) = (@, o', )5

and letl, be the real line inZg that corresponds tp € W and letZ < I,. The totally
real correspondence space is a four-dimensional real manifold definé‘@ by Zr x

R%*1| 2, and can be represented as the\set 1 or 4 = 7. The distributionl 4 N L 4/
is one-dimensional, spanned Y’ #'3 5/, on the complement oFf. OnF2, Lo NL
is two-dimensional real, as hefey,s = L,/. The real correspondence spagg divides
Fw = R?1 x CPinto two halves.

4.2. The Lax formulation and twistor correspondence

Proposition 4.1. Let V1, V,, V3 be three independent holomorphic vector fields on a three-
dimensional complex manifold’ such that

Ly = V1—)~\V2+fo/35“ Ly = V2—)~»V3—|—f1/35\ (4.44)

is an integrable distribution for some functiorfig, f1/, which are third-order polynomials
in » € CPL. Then there exists a one-formsuch that the contravariant metri¢, ® Vo, —
1/2(V1 ® Va+ V3 ® V1) andv give an EW structure ohV. Each EW structure arises in
this way

Remarks.

e The Lax pair(2.10)for the dKP equation is of course a special cas¢dof4).

e The Lax formulations are widely applicable in the theory of integrable systems and so
the above proposition can be applied outside twistor theory. It is, however, much easier
to prove Propositionrt.1 using the twistor geometry, rather than an explicit calculation.
This justifies adopting the spinor notation

V V ! ~
Vas =" 2),  fa=o. ), 7V =@ -3,
Vo V3

in which the Lax pair has the compact foiin, = BV + fa05. We shall use this
notation in the proof of Propositiod.1.

e The third order polynomialgy' contain eight functions not depending briThese can
be reduced to four functions by choice of a suitable spin frame for whiclibecome
linear in . In this frame, there exists a vector formula foin terms ofFjk, and fyu.
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e Proposition4.1 holds for complex solutions and for any choice of signature for real
space-time

Proof of Proposition 4.1. Assume that = V> ® V> — 1/2(V1 ® V3 + V3 ® V1) andv gives

an EW structure. Le¥ (1) = Vi — 24 Vo4 A2Va. Theng(V (1), V(X)) = Oforall » € CP*

so V(i) determines a sphere of null vectors. Cholse= V1 — Vs, Iy = Vo — AVz as a
basis of the orthogonal complementfi). For each € CP?, the vectordy, Iy give a

null two-surface. It is well known [4,15,25] that the EW equationg/oyv) are equivalent

to the integrability conditions of null, totally geodesic surfaces. Therefore, the Frobenius
theorem implies that the horizontal lifts

Ly = Vi—AVa+ fod;, Ly = Vo —AV3+ frd;

of Iy, Iy to T(W x CP') span an integrable distribution. The functiofig and f are
third order ini, because the Mébius transformationgt#f* are generated by vector fields
quadratic ink, andly, Iy are linear inx.

The above argument can be made more explicitin spinor notatidn;iéke the horizontal
lift of 1, = 78 V4 to the weighted spin bundle (i.e., 7 = 0). This yields

/ / / 8
LA/ :]TB VA/B/+FA/B/C/D/]TBT[D—
37‘[@/
1 gl o 9 1 3 o @
+-vppm b/ ;= AN T—— — & — ], 4.45
2 8P ( oA 27 Yoy AT an (4.49)
whererly gcpr is spinor Levi-Civita connection defined By g = —TywpeprP.

The integrability conditions implyfl o/, L 5] = 0(modL 4/). The distributionL 4/, when
projected taFyy is given by (4.44), where

’ ’ ’ ’ ’
fA/ = FA/B/C/D/T[B jTC 71,’D + %ﬂA/VB/C/jTB 7TC . |:|

The twistor spaceZ for a solution to the EW equations @h, h, v) associated to the
Lax system onL 4 as above is obtained by factoring the spin bunidiex CP! by the
twistor distribution (Lax pair)l 4. This clearly has a projection : W x CP! — Z and
we have a double fibration

W x CPt
rv N g
w Z

Each pointp € W determines a spher, made up of all the null totally geodesic
two-surfaces througlp. The normal bundle of, in Zis N = T Z|;,/Tl,. This is a rank
one vector bundle oveEP?, therefore it has to be one of the standard line bunées.

Lemma 4.2. The holomorphic curvels, := ¢(CP}), whereCP;, = r~1(p), p € W have
normal bundleN = O(2).
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Proof. To see this, note that can be identified with the quotiert(7,,)V) /{spanLy, L1/}

In their homogeneous form, the operatdérg have weight 1, so the distribution spanned
by them is isomorphic to the bund® ® O(—1). The definition of the normal bundle as
a quotient gives a sequence of sheaves 6.

0> C?’Q0(-1) > C>*—> N—>0

and we see thaV = O(2), because the last map, in the spinor notation, is given explicitly
by VA" s VA'B'z 5 clearly projecting ont@)(2). O

A generalisation of the flat mini-twistor correspondence to tié EW spaces is given
by the following proposition.

Proposition 4.3([15]). Any solution to the EW equatiof.5) is equivalent to a complex
surfaceZ with a family of rational curves with normal bund2(2).

Points of W correspond to curves i& with self-intersection number 2. The Kodaira
theorem [18] applied to deformations preserving the real structutg gtiarantees the
existence of a three-dimensional complex family of such curves. Poiscofrespond to
totally geodesic hyper-surfacesivi. Non-null geodesics inV consist of all the curves i
which intersect at two fixed points &#. Null geodesics correspond to curves passing through
one point with a given tangent direction. Thus the projective and conformal structures can
be reconstructed.

4.3. Mini-twistor spaces from twistor spaces

Proposition 4.4. All EW spaces arise as symmetry reductions of hyper-Hermitian metrics
(or indefinite hyper-Hermitian metrig$n four dimensions

Proof. Consider an EW structure with the corresponding Lax pair (4.44). Choose a spin
frame in whichfy is linearink; fua = Uy + AW, (this is always possible by making a
suitable M&bius transformation &P and choosing an appropriate conformal scale), and
introduce a new spectral parameter= . — z for somez. Nothing in theL 4, depends on

7 SO we can replace; by .. This yields (with a dropped prime)

La=Vay —AVar,
where

Voo = Voo +zVor + Uy +zZWy)9d;, Vig = Vg +zVry + Uy +2ZWy)o,,
Vor = Vov + Wy, Viy = Vyvy + Wy,

whereUy, Uy, Wy, Wy are four functions not depending anOne is left with a Lax pair
for a hyper-Hermitian four manifold becaugg can be made to commute exactly (as in
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Proposition 2.6) by choosing two solutions to the background coupled neutrino equation
(see [6] for details). This Lax pair has an obvious symmétry O

Remark. All EW spaces arise as symmetry reductions of a pair of coupled PRE3]
associated to hyper-Hermitian four manifolds [2], Proposition4.44was proven using
different methods for EW spaces of Riemannian signature

The twistor construction of Hitchin can be viewed as a reduction of Penrose’s nonlinear
graviton construction. It follows from [16] (compare Proposition 2.5) that the mini-twistor
spaceZ corresponding tdV is a factor spac®T /K, wherePT is the twistor space of
(M, g) andK is a holomorphic vector field oR7 corresponding to a conformal Killing
vectork.

We shall state below the Penrose result extended to the Einstein and hyper-Hermitian
cases.

Proposition 4.5. LetP7T be athree-dimensional complex manifold with a four-dimensional
family of rational curveginvariant under a complex conjugation with fixed po)nisth
normal bundleO(1) & O(1). Then the moduli spaca1 of these sections is equipped
with an ASD conformal structurg] of signature(+ + ——). Conversely, given an ASD
four-manifold, there will always exist a corresponding twistor space. Moredx¢es
o hyper-Kéhler, iff there exists a projectign : P7 — CP!, and each fibre of this pro-
jection is equipped with ap*O(2) valued symplectic forni23] (equivalently, we can
require that the canonical bundleof PT isk = p*O(—4));
e hyper-Hermitian, iff there is a projection : PT — CP! [6];
e Einstein(Rap = Agap), iff there exists a contact structurec A%(T*PT)QO(2), where
now@(2) = k12, and« is the canonical bundl&?, such thatr A dr = Ag, where
£ e 2°®«1[30]

4.3.1. Construction of the two-form

Consider an ASD four-manifoldM, [g]). Define the non-projective twistor spacg,

to be the total space of the line bundf&* — PT, wherex = 23 is the canonical bundle.

In the conformally flat cas€] is the tautological line bundi®(—1), i.e.C* CP3, and

we will also use this notatiorl] = O(—1) in the curved case. The non-projective spin
bundleS, — M is defined to be the total space of the pull back of this line bundle to the
correspondence spafe= M x CP2. Clearly,S, = M x C2. The fibrationg : §4" > T

is spanned by a lift of the twistor distribution or Lax pair. The non-projective spin bundle
is the total space of a line bundle, which we will also denote’l{y-1), over F. (Note

that in the hyper-Hermitian case, the line bundi&g) just defined willnotbe the same as
w*O(n) unless(M, [g]) is in fact hyper-K&hler.)

The spacg admits an Euler vector fielth being the total space of a line bundle, and a
tautological three-formg the pull back of the tautological three-form enThese satisfy
Lr&é = 4¢. Letgp = d&, theng = 4¢(7, ... ,...). & can be thought of as a form g7
with values in the dual canonical bundié.
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We now impose a symmetry: l&, K, andX be a conformal Killing vector oM, its
lift to the correspondence spagdd x CP!, and the holomorphic vector field 6f which
is the push-forward oK , respectively.

Proposition 4.6. The two-formE = ¢*¢(K, 7, ... ,...) € AX(T*S%) satisfies
SAX =0, d¥ =BAZ, Lz =0 (4.46)
for some one-forng homogeneous of degréen 4.

Proof. It follows from the definition of% that the integrable twistor distribution belongs
to the kernel of>. Therefore, Egs. (4.46) follow from Frobenius’ theorem. The one-form
B is defined up to the addition of{(lth o), whereo is a twistor function homogeneous of
degree 0. O

FromLy X = 4% andT _| X = 0 it follows thatX descends t&F where it takes values
in O(4). Note, however, thatH does notdescend a5 |dX = £ X # 0. To differentiate
¥ onF, we need a non-zero section®f4) in order to dehomogenisg. When(M, g) is
ASD Einstein or vacuum, we can find a sectior®®) to dehomogenis& . This section
necessarily has zeroes, and so equivalently, this requires the existence of a divisor description
of the dual canonical bundle. This can be seen from the twistor construction.
e Vacuum caseThe twistor space fibres ovéP* and so we can pull back - dz to P7.
Let I be a holomorphic vector field gRT such thatlx X, = X, (K corresponds to
a homothetic Killing vector ooM). The functionD := K_|x - dz is a section ofD(2)
and the two-formD—2K_| ¢ descends to the mini-twistor spage
e Einstein caselLet PTE be the projective twistor space corresponding to a solution of
the ASD Einstein equations. It is equipped with a contact struatueA?(T*PTg) ®
O(2) such thatr A dt = A¢. dr defines a holomorphic symplectic structure on the
non-projective twistor spacg:. If K is a Killing vector on an ASD Einstein manifold,
then the corresponding holomorphic vector field on the non-projective twistor space is
Hamiltonian with respect tod To see this, define a section of® by D := K_|t. We
have d = Lt — K_|dtr = —K_]|dr asK is a symmetry.
On the projective spin bundl& define

m:=D7?%.
We have the following result.

Proposition 4.7. The two-form/T is well defined on the EW correspondence spage It
satisfies

diT =0, [T AI=0, (4.47)

whered = dx' ®9; +d5\®8;\ is the exterior derivative offy . Any two linearly independent
vectorsL 4 such thatlL 4/ _| IT = 0 form a Lax pair for the EW equations
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Proof. The simplicity follows fromX A £ = 0. In the vacuum case, the two-form

M= e (4.48)

is a pull back of a closed and simple form 87 . In the Einstein case

A
= D2¢*K_| (At Adr) = d (%) .
Therefore, EW metrics which come from ASD Einstein and hyper-Ké&hler four manifolds
give rise to the same structure on the reduced spin bundle. Thelfodascends t¢Fy
becaus& _|dI7 = 0and dK _| 1) = 0. O

Remark. In [28], certain dispersionless integrable systems were expressed in te@hs of
satisfying(4.47).

The two-form X can be equivalently constructed from the data\dras follows. Letk
be a Killing vector on a general ASD conformal manifgltit, [¢]), and letZ' be a volume
form on the non-projective primed spin bundlé". Define the two-form o5’

2::E(LO,L1,I€,TE,...,...). (4.49)

HereYz = 74 /ax4 is the Euler vector field 084, L 4 is the twistor distribution, an&
is a Lie lift of K to S4". Now assume thatM, g) is also vacuum. ConsequentWMKg, =
const and the spin bundle is equipped with a canonical divisor := nA/nB/VAA/KQ, €
O(2) which descends to the reduced spin bufid{Eig. 1). It is easy to prove that now

4p gt drB ) KJlX) X0
= AT = _dInD? T =dxA -
7TA/7TB/¢A/B/ D2 D

where T (1) = mamp S48 (4.50)

)

~ ' p’ ! / ! ' p!
> =apmpreapdt B XD fapmpme dr€ A (K]EZAE),
B

From the last formula, it follows that to construt, one should rewriteZ (1)/D in the
coordinates in whictk = 9;, and then replace all:t by the differentials of a suitably
defined invariant spectral parameter.

Example. We shall now illustrate the construction éf with a simple example. Let
2 dw div — 2dz dZ be a flat metric orR%2 and letk = zd, — z9; be a Killing vector.
The flat twistor distribution and the lifted symmetry are

Lo = 35 — A0., L1 =3 — Ady, K =20, — 70; + 10;.
3 We assume thaf sy Kg, #0.1f Van Kg, = 0, thenK is tri-holomorphic and a section 6¥(2) which descends

to the reduced spin bundle {s- )% wheret 4 is any constant spinor.
4By the reduced spin bundle (correspondence space), we mean the space of dehinssdf (in F).
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’,/’Divisor
K
Fig. 1. Divisor on a mini-twistor space.
The volume form onF and the two-formX' (1) are given by
E =di Adz AdZ Adw A dw,
T (1) = —A2%d A dZ 4 A(dw A dib — dz A dZ) 4 dw A dz.
In the covariantly constant frame, we introduce 2= In(zZ), 2¢ = In(z/Z), so that
K = 34 + Ad;. In these coordinates
T(A) = —22€?dw A (dr — dp) + A(dw A dib
+2€& dr Adp) + €1 dw A (dr + dg)
and (from (4.50))
I =é&dbAdi+ i ?dw Adi
+3dw Adr — A dw A dr) + 2071 e dr A di — dw A di, (4.51)

wherex = A e ? is an invariant spectral parameter.
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The two-form/T can also be obtained as a pull back fr@ff. Local inhomogeneous
coordinates ofP7 pulled back taF are given by(x, ut = A + z, u°® = 12 + w). The
holomorphic vector field o7 is K = Moaﬂo + A0;. From (4.48), we have

0
¢ K @dr Adu® Adut)y = uPdr — adut) Adut =22dut Ad (%) _
Thus
u°
szulAd(T) =dP AdQ

which agrees with (4.51). Her® = o + A~1¢ andQ = A € + w are coordinates on
mini-twistor space pulled back to the reduced spin bundle.

5. Twistor theory of the dKP EW structures

Here, we give an account of the twistor theory of the dKP EW metrics, and the dKP
equation (some connections between a twistor theory and the dKP equations have been
discussed in [14]). We shall also characterise all four-dimensional hyper-Kahler and ASD
Einstein metrics that give rise to the dKP EW structures.

Define the non-projective twistor spad2 corresponding to a Weyl spad#, to be the
total space of the line bundie’/* — Z, wherex = £22 is the canonical bundle af.

The non-projective spin bundlgy — W is the rank two vector bundle defined to be the
total space of the pull back of this line bundle to the correspondence ¥pac€P!. The
fibrationg : S4" — Y is spanned by a lift of the mini-twistor distributidhy (4.44).

Any shear-free null geodesic congruence of the EW structure determines a one-dimen-
sional sub-manifold inZ (this is a reduction of the four-dimensional Kerr theorem). A
codimension-one sub-manifold determines a line bunBledy the divisor construction;

[ D] admits a sectiorD that vanishes precisely on the given sub-manifold.

When the EW geometry arises from a solution of the dKP equation, the dual canonical
bundlex 1 of the mini-twistor space admits a fourth root that is given by the divisor con-
struction, that admits a sectidn that vanishes on a codimension-one subset. In general,
as seen above, if the EW geometry is a reduction of an ASD Einstein, or hyper-Kéahler
four-manifold, thenc —1/2 admits a section whose zero set will generally have two compo-
nents in the neighbourhood of a line. For an EW dKP solution, the two ‘divisor curves'’ in
Fig. 1 degenerate to one curve. This observation gives rise to a twistor characterisation of
solutions to the dKP equation.

Proposition 5.1. There is a one-to-one correspondence between EW spaces obtained from
solutions to the dKP equation and two-dimensional complex manifolds with

e athree parameter family of rational curves with normal bun@e2);

e aglobal sectiori of k=14, wherex is the canonical bundle

In order to obtain a real EW structure, we require an antiholomorphic involution fixing a real
slice, leaving a rational curve invariant and leaving the sectior of/# above invariant
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Proof. The global sectio of x~1/4, when pulled back td 4, determines a homogeneity
degree one function on each fibre$y and so must, by globality, be given by= (A 74/
and since!l is pulled back from twistor space, it must satidty:/ = 0. This implies
DA/(B/LU) = 0, and (after some algebraic manipulations)

~ !
DA/B/LC = 0,

whereD is a covariant weighted derivative.

Therefore, the null vector field = 418" is covariantly constant. Lemma 2.3 im-
plies that the conformal weight af\’ is —‘—11 and hence that of is —%. This weight
can be deduced from the correspondence as follows: the two-fore 74w e?’ 8 A
e’ zerdp has conformal weight 0 084", 4’5 has weight 0, and?'2" weight —1
somy has Weight%. The global sectiomr 4" is weightless so the weight of is —;11.
Hence by Proposition 2.2, the corresponding EW space arises from a solution to the dKP
equation.

Conversely, given a solution of (2.9), one can obt&ims a factor space ol x CP!
by the distribution (2.10) and the covariant constant weighted null vétter.A’ (5" gives
rise to the sectioh = (A’ 74 of x ~1/4, O

Remark. Note that there is no one-to-one correspondence between such twistor spaces
and solutions to the dKP equation on account of the coordinate fre€d@@) and (2.21).
The coordinate choices implicit in a solution to the dKP equation can be encoded on the
twistor space in the choice of the coordinates near the divisor as follows.

Let 2, O be local coordinates on a neighbourhood of the divisogisuch that) = 0
on the divisor and, setting = 01, P = P/(Q? on the complement of the divisor, we
have

I=dP AdQ =—-0"*dP AdO.

Consider a graph of a rational curvB(Q). Parameterise the curve lty, v, x) as follows
Y - dp 1 d?P

= Q=0’ y .= —(« . X .= = _AZ .

dQ Q:O 2 dQ Q:O

Therefore, the local coordinate®, Q have the following expansion near= oo

(e.¢] o0
Q=i+ ui”, P =Y w0 +x+Qy+ Q%
i=1 i=1

(after performing an S{2, C) transformation and choosing a spin frame such that the
constant term in the Laurent expansion @fvanishes When we pull the mini-twistor
coordinates back t¢F, thenu;, w; become functions df, y, ¢). The functions? and Q

are solutions of Lax equationss P = L4 Q = 0. They form a local Darboux atlas as
IT =dP A dQ, wherelT is given by(2.8):

IT=dx Adr+dyA d(%iz +uq) +dr A d(%)~»3 + u1 + wi).
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The poles ofT occur on the divisaNow! T is a pull back of a two-form from a two-dimen-
sional manifold. Therefore, it satisfiég A IT = 0, which yieldsw;, = u1, and the dKP
equation(2.9)for u1. '

Thus, a solution to the dKP equation corresponds to a EW mini-twistor space as de-
scribed in Propositiors. 1together with a Darboux coordinate system as above on the third
formal neighbourhood of the divisofit seems likely that the Benney hierarchy will sim-
ilarly correspond to the EW dKP mini-twistor space as above together with the Darboux
coordinate system on a neighbourhood of the divisor defined now to all orders

Now we are in a position to give a characterisation of the hyper-Kéhler metrics (2.27).

Proposition 5.2. Letg be an indefinite hyper-Kahler metric with a symmekngatisfying
dK; AdKy = 0. Theng is locally of the form(2.27).

Proof. Let K be a vector field (corresponding #) on a twistor space ofM, g). The
divisor

U
Kl -dr =mompet?

descends to the mini-twistor space. K is null, theng g = 1VAA/K3/ = 1p1tp for

some constant spinef . Thereforesr -« on PT defines a divisor ir£. It takes values in

« ~Y/4 because the canonical bundleT is the square of the pull back of the canonical
bundle of CP!. The assumptions of Proposition 5.1 are satisfied and so the EW structure
corresponding t&Z is of the form (2.11). Therefore, it follows from Proposition 2.5 that
the metricg is given by

g = 2(V(dy? — 4dv df — 4ii di?) — V1(dz + &)%) = 238,

whereii(%, ¥, 7) a solution to dKP(V, &) a solution to the monopole equation (2.23), and
£2 is a conformal factor. Calculating the scalar curvature of the mgtyields

R = 8(‘75& — ‘7);{+ (ﬁ‘;)ii)‘;’

and soR = 0 becausé’ satisfies (2.26). However, the metgds hyper-Kahler, therefore
its scalar curvature also vanishes. As a consequence, we dedusz tha (7). Now we
can use the coordinate freedom (2.21) to absaih the solution to the dKP equation. This
yields

g =V(dy? — 4dxdr — dud®) — V(dz + )2, (5.52)

where(V, «) is another solution to the monopole equation. In Section 2.1, we showed that
this metric is a hyper-Kéhler metric ¥ is a multiple ofu,.

Consider the metric (5.52) with an arbitrary monopdlgan arbitrary solution to the
linearised dKP equation (2.26)). The self-dual derivative of the isontétey 9, is given
by g = (ux/V)tartg for some constant spinog:. The well-known identity, V, K. =
Rpcacdk ¢ and the vacuum condition yieR, ¢z ¢ = 0. Therefore, (5.52) is hyper-Kahler
iff u,/V = const. d
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Remarks.

e This proposition corrects an omission made in the classifica@nof complexified
hyper-Kahler spaces with symmetry. In Appendix A, we shall demonstrate explicitly that
the dKP equation is a reduction of the second heavenly equation considg&id in

e Metrics(5.52)with V # const u, are not vacuum, but they admit a covariantly constant
real spinor. The full characterisation of these metrics will be given in our subsequent
paper.

Proposition 5.3. All EW structures which arise from indefinite ASD Einstein metric with
a symmetnkK satisfyingdK A dK, = 0 are locally of the form(2.11).

Proof. The canonical divisoD := K_| r, (wherer is the contact structure) descends to a
mini-twistor space. Sincekd, is null, +/D exists and takes its values#m /4. O

6. Symmetry reductions of hyper-Kahler metrics in2 + 2 signature

Symmetry reductions of the hyper-Kahler condition on a real four-dimensional Rieman-
nian metric have been completely classified:

o Ifthe symmetryistri-holomorphic, then the corresponding metric belongs to the Gibbons—
Hawking class [10], and is given by a solution to the Laplace equation in three dimensions.
The resulting EW structures are trivial, and their mini-twistor spadeG®?.

e Hyper-Kéhler metrics with non-tri-holomorphic Killing vectors are given by solutions
to the SU(co) Toda equation [8]. The corresponding EW structures [32] are charac-
terised by the existence of a shear-free, twist-free geodesic congruence [29]. Mini-twistor
spaces are in this case equipped with a canonical divisor (two one-dimensional complex
sub-manifolds) taking its values i1(2) [19].

e Hyper-Kahler metrics with tri-holomorphic conformal symmetries yield a class of EW
structures (called hyper-CR EW structures) characterised by the existence of a sphere
of shear-free, divergence-free geodesic congruences [9]. The corresponding mini-twistor
spaces are fibred ovelP’.

o Hyper-Kéahler metrics with non-tri-holomorphic, conformal symmetry (and the resulting
EW structures) are given by solutions to a certain second order integrable equation in three
dimensions|[7]. This equation giveé)oo)-Toda and hyper-CR EW structures as limiting
cases. The EW structures arising from conformal, non-tri-holomorphic reductions are
characterised by the existence of a shear-free geodesic congruence for which the twist is
a constant multiple of the divergence [2].

The above listis not complete if one considers hyper-Kéhler metriesih——) signature.

The existence of null structures of various kinds allows two additional types of symmetries:

e Hyper-Ké&hler metrics for which the self-dual part of a derivative of a Killing vector is
null correspond to solutions of the dKP equation (2.9). The corresponding EW structures
are characterised by the existence of a constant-weighted vector. The mini-twistor spaces
are such that the line bundte /4 admits a section, wheseis the canonical line bundle.

The above statements have been proved in this paper.
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o Hyper-Kéahler metrics with conformal Killing vectors for which the self-dual part of a
derivative of a conformal Killing vector is null.

The last possibility has not yet been investigated. The EW spaces will be given by a gener-

alisation of the dKP equation. We intend to study this generalisation, and the corresponding

EW geometries in a subsequent paper.

7. Outlook: a twistor theory for the full KP equation?

A combination of the dispersive limit of dKP with the twistor picture suggests a candidate
for a twistor space for the full KP equation (2.6) (cf. the similar proposal in [27]).

Let x be a coordinate on a configuration spa@e and leti be the corresponding
momentum. The extended six-dimensional phase-spac@ x R?) is coordinatised by
x' = (x,y,1), pi = (A, Ho, H3). Restrict the symplectic forni/ on 7*(Q x R?) to the
four-dimensional correspondence sp&eobtained by putting?, := H, (x’, 1), r = 2, 3.
The (complexified) spacg* is foliated by sub-manifolds whose tangent vectors annihilate
the symplectic form, which gives rise to a projectipn 7 — Z such that’T descends to a
symplectic form orZ. The two-dimensional complex manifallis the mini-twistor space
for the extended configuration spagex R? with its dKP EW structure. It is believed that
the Moyal quantisation of *(Q x R?) gives rise to the full KP equation. This suggests the
conjecture that there exists a correspondence between solutions to the full KP equation and
the Moyal deformations of.

It will be instructive to compare this approach to the twistor constructions for the full KP
equations described in [20], and Section 12.6 of [22].
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Appendix A

Here, we shall demonstrate (by an explicit calculation) that the dKP equation (2.9)
is a reduction of the second heavenly equation by a Killing vector with a null self-dual
derivative.
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Let®©(z, 1, q, y) satisfy [26]:

Then
g = 2(dzdy + dg df — Ogqdz® — Oyydr? + 260yqdz dr) (A.2)

is a hyper-Kéhler metric. All hyper-Kéhler metrics can locally be put in the form (A.2).
Let K be a Killing vector such thatkl, A dK = 0. There is no loss of generality [8]
in choosingk = 9, — 2z9,, in which case & | = 2dr A dz.
The Killing equations yieldLx ©)yy = (Lx @)qq = 0, (L O)yq = 1. They integrate to

O = zqy+ YAz, 1) + qB(z. 1) + C(z. 1) + G(y, 1, q + 2°). (A.3)

The functionC is pure gauge and can be set to zero without loss of generality. Imposing
(A.1) gives two equations: the first is. + B, = 2z, and we can deduce, without loss of
generality, thad = z3, B = —z%, and the second is

—tt — G+ GyyGuu— Gy, =0, whereu = —(q + 7%). (A.4)

The previous equation is equivalent to the dKP equation. To see this we write (A.4) as a
closed system

dG = G, du + G;dt + G, dy,
O=—udyAndtAdu+dG, A dyA du —dG, A dG, A dr. (A.5)

Now rewrite the first equation ag@ — uG,) = G, dr + G, dy — udG,, and perform a
Legendre transform

X = Gu7 MZu(tayax)5 H(t7y7x) = _G(t5y5u(tay5'x))+xu(t5y5'x)'

The relation i = H; dt + H, dx + H, dy impliesH; = —G;, H, = —Gy, H, = u. EqQ.
(A.5) yields

—H,dy Adt AdHy +dx Ady A dH, +dHy, Adx Adr =0
which is equivalent to

H, Hyx — Hyt + Hyy = 0. (A.6)
Taking thex derivative of the above equation and usitig = u yields

tixt — Ule — U5 = Uy

which is the dKP equation. To calculate the metric, differentiate the relatienG,, with
respect toc andH, = —G, with respect toy,
2
1= Guuux, 0= Guy+ Guuuy, 0= Gut + Guuuy, Gyy = u—y+UUx—Mt

X
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(we also used (A.6)). Therefore (from (A.3)), we have
® “ +uu Oyq= 2 4 Ouq =

o/ = — —Uu . o/ = — . o/ = —,
W= 3 t yq - z 99 = 7,

X X

The metric (A.2) in terms of (x, y, t) is

2
u? 1
¢ =2 —ucdvdr +dzdy + 222 dzdr — uy dydr — [uue + =2 | dr2 — = dz?
Uy : Uy Uy

2
= %(dyz —4dxdr — dudr®) — 2 (dz — ”xzdy — uy dt)

Ux

which is (2.27).

References

[1] C. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Am. Math. Soc. 102 (1988) 157-164.
[2] D.M. Calderbank, H. Pedersen, Selfdual spaces with complex structures, Einstein—-Weyl geometry and
geodesics, Ann. Inst. Fourier 50 (2000), in press.
[3] D.M. Calderbank, K.P. Tod, Einstein metrics, hypercomplex structures and the Toda field equation, Diff.
Geom. Appl. (2000), in press.
[4] E. Cartan, Sur une classe d’espaces de Weyl, Ann. Sci. Ecole Norm. Supp. 60 (1943) 1-16.
[5] M. Dunajski, The nonlinear graviton as an integrable system, D.Phil. Thesis, Oxford, 1998.
[6] M. Dunajski, The twisted photon associated to hyper-Hermitian four manifolds, J. Geom. Phys. 30 (1999)
266-281.
[7] M. Dunajski, K.P. Tod, Einstein—Weyl structures from hyper-Kahler metrics with conformal Killing vectors,
Diff. Geom. Appl. (1999), submitted for publication.
[8] J.D. Finley, J.F. Pletisski, The classification of alll spaces admitting a Killing vector, J. Math. Phys. 20
(1979) 1938.
[9] P. Gauduchon, K.P. Tod, Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998) 291-304.
[10] G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430-432.
[11] J. Gibbons, The Zabolotskaya—Khokhlov equation and the inverse scattering problem of classical mechanics,
in: S. Takeno (Ed.), Dynamical Problems in Soliton Theory, 1985.
[12] J. Gibbons, Y. Kodama, A method for solving the dispersionless KP hierarchy and its exact solutions, I,
Phys. Lett. A 135 (1989) 167-170.
[13] J.D.E. Grant, |.A.B. Strachan, Hypercomplex integrable systems, Nonlinearity 12 (1999) 1247-1261.
[14] P. Guha, K. Takasaki, Dispersionless hierarchies, Hamilton—-Jacobi theory and twistor correspondences, 1997,
solv-int/9705013.
[15] N. Hitchin, Complex manifolds and Einstein’s equations, in: H.D. Doebner, T.D. Palev (Eds.), Twistor
Geometry and Non-linear Systems, Lecture Notes in Mathematics, Vol. 970, Springer, Berlin, 1982.
[16] P. Jones, K.P. Tod, Minitwistor spaces and Einstein—-Weyl spaces, Classical Quantum Gravity 2 (1985) 565—
577.
[17] Y. Kodama, A method for solving the dispersionless KP equation and its exact solutions, Phys. Lett. A 129
(1988) 223-226.
[18] K. Kodaira, On stability of compact submanifolds of complex manifolds, Am. J. Math. 85 (1963) 79-94.
[19] C.R. LeBrun, Explicit self-dual metrics dilP?#- - - #CP?, J. Diff. Geom. 34 (1991) 233-253.
[20] L.J. Mason, Generalized twistor correspondengdsar problems, and the KP equations, in: S. Huggett (Ed.),
Twistor Theory, Lecture Notes in Pure and Applied Mathematics, Vol. 169, Marcel Dekker, New York.
[21] L.J. Mason, E.T. Newman, A connection between Einstein and Yang—Mills equations, Commun. Math. Phys.
121 (1989) 659-668.
[22] L.J. Mason, N.M.J. Woodhouse, Integrability, self-duality, and twistor theory, LMS Monographs New Series,
Vol. 15, Oxford Univ. Press, Oxford, 1996.



M. Dunajski et al./ Journal of Geometry and Physics 37 (2001) 63-93 93

[23] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976) 31-52.

[24] R. Penrose, Rindler, Spinors and Space-Time, Vols. 1 and 2, Cambridge Univ. Press, Cambridge, 1986.

[25] H. Pedersen, K.P. Tod, Three-dimensional Einstein—Weyl geometry, Adv. Math. 97 (1993) 74-109.

[26] J.F. Plebaski, Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975) 2395-2402.

[27] I.LA.B. Strachan, The Moyal bracket and the dispersionless limit of the KP hierarchy, J. Phys. A 28 (1995)
1967-1976.

[28] K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (1995) 743-808.

[29] K.P. Tod, Scalar-flat K&hler metrics from Painlevé-lll, Classical Quantum Gravity 12 (1995) 1535-1547.

[30] R.S. Ward, Self-dual space—times with cosmological constant, Commun. Math. Phys. 78 (1980) 1-17.

[31] R.S. Ward, Twistors in-21 dimensions, J. Math. Phys. 30 (1989) 2246-2251.

[32] R.S. Ward, Einstein—Weyl spaces &@id(co) Toda fields, Classical Quantum Gravity 7 (1990) L95-L98.



