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1. Introduction

A number of integrable systems are known to simulate the wave propagation in water. One of them is the famous
Korteweg–de Vries equation which was derived to model wave in shallow water theory. Green and Naghdi in 1976 ob-
tained a system of water wave equations which describes the fluid flows in shallow water [1]. Afterwards, Camassa and
Holm [2], by means of the asymptotic approximation to the Hamiltonian for the Green–Naghdi equations, derived the cel-
ebrated Camassa–Holm (CH) equation

mt + umx + 2uxm = 0, m = u − uxx.

Since 1993 this equation has became a subject of steadily growing literature. The CH equation is a completely integrable
system, which possesses the scalar Lax representation

Ψxx =


1
4

− λm

Ψ ,

Ψt = −


1
2λ

+ u

Ψ +

1
2
uxΨ

(1)

and is a bi-Hamiltonian system and admits peakon solutions [2,3].
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The CH equation was extended in various directions [4–6]. In 1999, Degasperis and Procesi discovered a similar but
different equation [7–9]

mt + umx + 3uxm = 0, m = u − uxx

which admits peakon solutions as well. A two-component extension of CH equation

mt = −2mux − mxu + ρρx, ρt = −(uρ)x, m = u − uxx (2)

is studied in [10,11,6].
The systems of the CH type mentioned above are quadratically nonlinear and those with cubic nonlinearity also appear.

For example, first such system was proposed by Olver and Rosenau [6] (see also [4,5]) and reads as

mt + [m(u2
− u2

x)]x = 0, m = u − uxx, (3)

it is remarked that a Lax representation for (3) may be found in [12] or [13].
Based on symmetry classification study of nonlocal partial differential equations, Novikov found several different

generalizations of CH type equations with cubic nonlinearity [14]. One of them reads as

mt + u2mx + 3uuxm = 0, m = u − uxx. (4)

Subsequently, Hone and Wang [15] proposed the following Lax representation for (4)

Ψx = UΨ , Ψt = VΨ (5)

where

U =

0 λm 1
0 0 λm
1 0 0


, V =


1

3λ2
− uux

u
λ

− u2mλ u2
x

u
λ

−
2

3λ2
−

ux

λ
− u2mλ

−u2 u
λ

1
3λ2

+ uux

 . (6)

These authors further showed that Eq. (4) is associated to a negative flow in Sawada–Kotera hierarchy and possesses
infinitely many conserved quantities and is a bi-Hamiltonian system [15,16].

A two-component generalization of the Novikov equation (4) was constructed by Geng and Xue [17] and it ismt + 3uxvm + uvmx = 0,
nt + 3vxun + uvnx = 0,
m = u − uxx, n = v − vxx

(7)

which reduces to Novikov’s system as m = n. They also calculated the N-peakons and conserved quantities and found a
Hamiltonian structure. The associated bi-Hamiltonian structure was presented in [18].

Song, Qu and Qiao [19] proposed the following two-component generalization of (3)mt = [m(uxvx − uv + uvx − uxv)]x,
nt = [n(uxvx − uv + uvx − uxv)]x,
m = u − uxx, n = v − vxx.

(8)

Furthermore, Xia, Qiao and Zhou [20] considered the following Lax representation

ϕx =
1
2


−1 λm
−λn 1


ϕ.

ϕt = −
1
2


λ−2

+ E −λ−1(u − ux)− λF

λ−1(v + vx)+ λG −λ−2
− E


,

where m = u − uxx, n = v − vxx, E = (uv − uxvx + uvx − uxv)/2. F and G are arbitrary polynomials in u, v and their
derivatives satisfyingmG = nF . The integrability condition ϕx,t = ϕt,x leads to

mt = F + Fx − mE, nt = −G + Gx + nE.

This system of equations is integrable in the sense of Lax pair and as the authors show for the special choice of the F ,G it is
possible to find the bi-Hamiltonian structure.
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Also, a new three-component generalization of CH equation was constructed by Geng and Xue [21] and it reads as

ut = −vpx + uxq +
3
2
uqx −

3
2
u(pxrx − pr),

vt = 2vqx + vxq,

wt = vrx + wxq +
3
2
wqx +

3
2
w(pxrx − pr),

u = p − pxx, w = rxx − r,

v =
1
2
(qxx − 4q + pxxrx − rxxpx + 3pxr − 3prx).

(9)

This system possesses the Lax representation and constitutes a bi-Hamiltonian system [22].
Very recently, Qu, Song and Yao [23] provided a geometric setting to certain multi-component generalizations of the CH

type equations and investigated their integrability.
The aimof the present paper is to studynewCH type equations. By careful examination of the existing Lax representations

of CH type equations, we would like to discuss the properties of the equations which follow from the following generalized
spectral problem

ϕx = Uϕ, U =

 0 λm1 1
λn1 0 λm2
1 λn2 0


, (10)

where ni = ni(x, t),mi = mi(x, t), i = 1, 2. As we will show this spectral problem generates new equations. In the spe-
cial reduced cases these equations contain: the three-component system proposed by Geng and Xue [21], one and two-
component Novikov’s equations, and one or two component Song–Qu–Qiao equation [19]. In this sense, almost all known
3×3 spectral problems for the CH type equations are contained in this case, so it is interesting to study this spectral problem.

The paper is organized as follows. In Section 2, we will show the Lax representation and derive the bi-Hamiltonian struc-
ture for the first negative flow with the proof offering in the Appendix. In the Section 3, we consider the special reduction
of our spectral problem. Section 4 presents the method of generation of the infinitely many conserved quantities. The last
section contains concluding remarks.

2. Construction of new systems

Let us consider the following Lax pair

Φx = UΦ, Φt = VΦ, (11)

where U is defined by (10) and V =

Vi,j

3×3. We parametrize the entries of the matrix V as

Vi,j =
Vi,j,−2

λ2
+

Vi,j,−1

λ
+ Vi,j,0,

where Vi,j,k are arbitrary polynomials in u1, u2, v1, v2 and their derivatives. The integrability conditionΦx,t = Φt,x yields

V =


−f1g1

g1
λ

−g1g2

f1
λ

−
1
λ2

+ f1g1 + f2g2
g2
λ

−f1f2
f2
λ

−f2g2

 ,
where

f1 = u2 − v1x, f2 = u1 + v2x,

g1 = v2 + u1x, g2 = v1 − u2x,

with the following equation of motion
m1t + n2g1g2 + m1(f2g2 + 2f1g1) = 0,
m2t − n1g1g2 − m2(f1g1 + 2f2g2) = 0,
n1t − m2f1f2 − n1(f2g2 + 2f1g1) = 0,
n2t + m1f1f2 + n2(f1g1 + 2f2g2) = 0,
mi = ui − uixx, ni = vi − vixx, i = 1, 2.

(12)

In order to find the bi-Hamiltonian structure, let us notice that the compatibility condition of (11) or the zero-curvature
representation

Ut − Vx + [U, V ] = 0,
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is equivalent to
λm1t = V12x − V32 + λ(m1V11 + n2V13 − m1V22),
λm2t = V23x + V21 + λ(m2V22 − m2V33 − n1V13),
λn1t = V21x + V23 + λ(n1V22 − m2V31 − n1V11),
λn2t = V32x − V12 + λ(n2V33 + m1V31 − n2V22),

(13)

with 
V11 = V31x + V33 − λn2V21 + λn1V32,
V13 = V33x + V31 + λm2V32 − λn2V23,
V22x = λ(n1V12 + m2V32 − m1V21 − n2V23),
2V31x + V33xx = λ((∂n2 + m1)V23 − (∂m2 + n1)V32 − m2V12 + n2V21),
2V33x + V31xx = λ((∂n2 + m1)V21 − (∂n1 + m2)V32 − n1V12 + n2V23).

(14)

Taking account of (14) and through a tedious calculation, system (13) may be reformulated asm1
m2
n1
n2


t

= (λ−1K + λL)

V21
V32
V12
V23

 ,
with

K =

0 −1 ∂ 0
1 0 0 ∂
∂ 0 0 1
0 ∂ −1 0

 , L = J + F , (15)

and

J =


2m1∂

−1m1 −m1∂
−1m2 J13 J14

−m2∂
−1m1 2m2∂

−1m2 J23 J24

−J∗

13 −J∗

23 2n1∂
−1n1 −n1∂

−1n2

−J∗

14 −J∗

24 −n2∂
−1n1 2n2∂

−1n2

 ,
F = (2P + S∂)(∂3 − 4∂)−1P T

− (2S + P ∂)(∂3 − 4∂)−1ST,

where

J13 = −2m1∂
−1n1 − n2∂

−1m2, J14 = m1∂
−1n2 + n2∂

−1m1,

J23 = m2∂
−1n1 + n1∂

−1m2, J24 = −2m2∂
−1n2 − n1∂

−1m1,

P = (m1,m2,−n1,−n2)
T, S = (−n2, n1,−m2,m1)

T.

It is obvious that the operator K given by (15) is a Hamiltonian operator. Moreover we have the following theorem.

Theorem 1. The operators K and L defined by (15) constitute a pair of compatible Hamiltonian operators. In particular, the
four-component system (12) is a bi-Hamiltonian system, namely it can be written as

m1
m2
n1
n2


t

= K



δH0

δm1
δH0

δm2
δH0

δn1
δH0

δn2


= L



δH1

δm1
δH1

δm2
δH1

δn1
δH1

δn2


,

where

H0 =


(f1g1 + f2g2)(m2f2 + n1g1)dx, H1 =


(m2f2 + n1g1)dx.

Proof. It is easy to check thatL is a skew-symmetric operator. Thus, what we need to do is to verify the Jacobi identity forL
and the compatibility of two operators K and L. To this end, we follow Olver and use his multivector approach [24]. Since
the proof is tedious, we give it in the Appendix.
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A remarkable property of the CH type equations is that it possess peakon solutions. Interestingly one may find that the
first negative flow (12) possesses stationary peakons only. In order to construct a flowwith generic peakon solutions, which
are not stationary, let us construct a positive flow by considering the following spectral problem

Φx = UΦ, Φt = ṼΦ,

where U is defined by (10) and Ṽ = V − λV1

V1 = Γ

 0 m1 0
n1 0 m2
0 n2 0


,

where Γ = Γ (x, t) is an arbitrary function.
The integrability conditionΦx,t = Φt,x leads us to the following system of equations

m1t + (Γm1)x + n2(g1g2 − Γ )+ m1(f2g2 + 2f1g1) = 0,
m2t + (Γm2)x − n1(g1g2 − Γ )− m2(f1g1 + 2f2g2) = 0,
n1t + (Γ n1)x − m2(f1f2 − Γ )− n1(f2g2 + 2f1g1) = 0,
n2t + (Γ n2)x + m1(f1f2 − Γ )+ n2(f1g1 + 2f2g2) = 0,
mi = ui − uixx, ni = vi − vixx, i = 1, 2.

(16)

The novelty here is the appearance of an arbitrary function Γ . As we show in the next section for different choices of the
Γ function we obtain new systems which possess peakon solutions.

To understand the appearance of the Γ function, we now calculate the Casimir functions of the Hamiltonian operator L.
Let

L(A, B, C,D)T = 0, (17)

and define

K1 = m1A − n1C, K2 = m2B − n2D, (18)
K3 = m2C − m1D, K4 = n2A − n1B. (19)

The system (17) consists of four equations of similar type. For example one of them is

m1

∂−1(2K1 − K2)+ (∂3 − 4∂)−1(2(K1 + K2)+ (K3 + K4)x)


= n2(∂

−1K3 + (∂3 − 4∂)−1(2(K3 + K4)+ (K1 + K2)x)).

Solving these equations we found

K1 = (m2n2Λ)x + (n1n2 − m1m2)Λ,

K2 = −(m1n1Λ)x + (n1n2 − m1m2)Λ,

K3 = (m1m2Λ)x + (m1n1 − m2n2)Λ,

K4 = −(n1n2Λ)x + (m1n1 − m2n2)Λ,

where Λ =
k

m1n1+m2n2
and k is an arbitrary number. Substituting above expressions for Ki into (18)–(19) and solving the

resulted linear equations leads to

A = −n1Γ +
n1

m1m2
K3 +

1
m1

K1,

B = −n2Γ +
1
m2

K2, C = −m1Γ +
1
m2

K3, D = −m2Γ ,

where Γ is an arbitrary function. This also implies that L is a degenerate Hamiltonian operator.
The system of equations (16) is integrable in the sense of Lax pair but we could not expect that it is a (bi-) Hamiltonian

system for any Γ . Indeed, a constraint such as

(niΓ )
′(mi) = (niΓ )

′
∗(mi), (miΓ )

′(ni) = (miΓ )
′
∗(ni), (i = 1, 2),

allows the system to be represented as a Hamiltonian system, where (niΓ )
′(mi) denote the Fréchet derivative operator of

(niΓ ) for mi.

3. Reductions

We now consider the possible reductions of our four component spectral problem (11) and relate them to the spectral
problems known in the literature.
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3.1. A three component reduction

Assumingm1 = u1 = 0, we have following reduced equation from (16) if Γ = v1v2 − v2u2,x,
m2t = −(g1g2m2)x + m2(f1g1 + 2f2g2),
n1t = −(g1g2n1)x + m2(f1f2 − g1g2)+ n1(f2g2 + 2f1g1),
n2t = −(g1g2n2)x − n2(f1g1 + 2f2g2),
m2 = u2 − u2,xx, ni = vi − vi,xx, i = 1, 2,

(20)

and the spectral problem reduces to
φ1
φ2
φ3


x

=

 0 0 1
λn1 0 λm2
1 λn2 0


φ1
φ2
φ3


.

Eliminating φ2, φ3 we may rewrite above equation as

φ1,xx = (1 + λ2m2n2)φ1 + λ2n2∂
−1(n1 − m2,x)φ1, (21)

which is a spectral problem studied by Geng and Xue [21] after the identification

n2 = u, m2 =
v

u
, n1 = w +

v
u


x

where u, v, w satisfy Eq. (9).
As the bi-Hamiltonian structure for the flows of Geng–Xue’s three-component hierarchy is known [22], a direct calcula-

tion may produce the following Hamiltonian operators in terms of variables n1, n2,m2

L1 =


−

m2

n2
∂ − ∂

m2

n2
∂
m2

n2
∂ +

m2

n2
0

−∂
m2

n2
∂ −

m2

n2

m2

n2
∂ + ∂

m2

n2
1 − ∂2

0 ∂2 − 1 0

 ,

L2 = −
1
2

 m2∂ + 2m2x

m2∂
2
+ 3n1∂ + 2n1x

3n2∂ + 2n2x

 (∂3 − 4∂)−1

 m2∂ + 2m2x

m2∂
2
+ 3n1∂ + 2n1x

3n2∂ + 2n2x

∗

+
1
2

 3m2∂
−1m2 −m2

2 + 3m2∂
−1n1 −3m2∂

−1n2

m2
2 + 3n1∂

−1m2 m2∂m2 + 3n1∂
−1n1 −m2n2 − 3n1∂

−1n2

−3n2∂
−1m2 m2n2 − 3n2∂

−1n1 3n2∂
−1n2

 ,
then we find Eq. (20) can be rewritten as a bi-Hamiltonian system

m2
n1
n2


t

= L1


δH0

δm2
δH0

δn1
δH0

δn2

 = L2


δH1

δm2
δH1

δn1
δH1

δn2

 ,

with

H0 =


(f1g1 + f2g2)g2n2dx, H1 =


g2n2dx.

3.2. Two-component reductions

Case A. n1 = m2, n2 = m1
Eq. (16) yields

m1,t = −(Γm1)x + m1(Γ + 4(u2,x − u2)(u1,x + u1)),
m2,t = −(Γm2)x − m2(Γ + 4(u2,x − u2)(u1,x + u1)).

If m2 = u2 = 1 orm1 = u1 = 1 and Γ = 4u1u2 then our equation reduces to the CH equation.
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On the other side when Γ = 4(u1u2 − u1,xu2,x)we obtain
m1,t =


m1(u1u2 − u1,xu2,x)


x − m1(u1u2,x − u1,xu2),

m2,t =

m2(u1u2 − u1,xu2,x)


x + m2(u1u2,x − u1,xu2),

a bi-Hamiltonian system studied recently in [20,25].
Let us notice that our spectral problem reduces to

φ1
φ2
φ3


x

=

 0 λm1 1
λm2 0 λm2
1 λm1 0


φ1
φ2
φ3


which yields

φ1 + φ3
φ2


x
=


1 2λm1
λm2 0


φ1 + φ3
φ2


. (22)

By the following change of variables

φ1 + φ3 = e
1
2 xψ1, φ2 = e

1
2 xψ2, 2m1 = m, m2 = n,

(22) gives
ψ1
ψ2


x
=

 1
2

λm

λn −
1
2

ψ1
ψ2


,

a spectral problem considered by Song, Qu and Qiao [19].
Case B.m1 = m2 = 0
Then the system of equation (16) requires Γ = v2v1 and we obtain the Geng–Xue equation [17]

mt = −v(mxu + 3mux), m = u − uxx,
nt = −u(nxv + 3nvx), n = v − vxx,

which either reduces to Novikov equation

mt = −u(mxu + 3mux), m = u − uxx,

if u = v or yields the Degasperis–Procesi equation in the case u = 1 or v = 1.

4. Conserved quantities

An integrable system normally possesses infinity number of conserved quantities and such property has been taken as
one of the defining properties for integrability. There exist different methods to construct such conserved quantities. For the
system which possesses the Lax representation nontrivial conserved quantities are the consequence of this representation.

In this section, we show that infinitely many conserved quantities can be constructed for the nonlinear evolution equa-
tions related with the spectral problem (10). Indeed, we may derive three sequences of conserved quantities utilizing the
projective coordinates in the spectral problem. We can introduce these coordinates in three manners as

(I) a =
ϕ1

ϕ2
, b =

ϕ3

ϕ2
, (II) σ =

ϕ2

ϕ1
, τ =

ϕ3

ϕ1
, (III) α =

ϕ1

ϕ3
, β =

ϕ2

ϕ3
.

Case 1: In these coordinates we obtain that

ρ = (lnϕ2)x = λn1a + λm2b,

is conserved quantity with a, b satisfy

ax = λm1 + b − aρ, bx = a + λn2 − bρ. (23)

Substituting the series expansions in λ of a and b into (23)

a =


i≥0

aiλi, b =


j≥0

bjλj,

then we find

a0 = 0, a1 = −v2 − u1x = −g1, a2 = 0,
b0 = 0, b1 = −u1 − v2x = −f2, b2 = 0,
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and

ak,x = bk −


i+j=k−1

(n1aiaj + m2aibj),

bk,x = ak −


i+j=k−1

(n1aibj + m2bibj), (k ≥ 3).

With the aid of a1, b1, we obtain a simple conserved quantity

ρ1 = −


(n1g1 + m2f2)dx.

Also, due to

a3 − a3xx = n1f2g1 + m2f 22 + (n1g2
1 + m2f2g1)x,

b3 − b3xx = n1g2
1 + m2f2g1 + (n1f2g1 + m2f 22 )x,

we obtain the next conserved quantity

ρ3 =


n1a3 + m2b3dx =


(v1(a3 − a3xx)+ u2(b3 − b3xx)) dx

=


(n1g1 + m2f2)(f1g1 + f2g2)dx.

In addition, we may consider alternative expansions of a, b in negative powers of λ, namely

a = Σ∞

i≥0ãiλ
−i, b = Σ∞

j≥0b̃jλ
−j.

As above, inserting these expansions into (23) we may find recursive relations for ãi, b̃j. The first two conserved quantities
are

ρ0 =


√
m1n1 + m2n2dx,

ρ−1 =


2m1m2 + 2n1n2 + m1n1x − m1xn1 + m2xn2 − m2n2x

4(m1n1 + m2n2)
dx.

Case 2: The quantity ρ̄ defined as

ρ̄ = (lnϕ1)x = λm1σ + τ ,

with σ , τ satisfying

σx = λn1 + λm2τ − σ ρ̄, τx = 1 + λn2σ − τ ρ̄

is conserved quantity. Expanding σ and τ in Laurent series of λ then once again we may find the corresponding conserved
quantities. For instance, in the case k ≥ 0, we get

ρ̄2 =
1
2


(m1 + n2)(f1 + g2)dx,

while in the case k ≤ 0, we obtain

ρ̄−1 =


2m2m2

1 + 2m1n1n2 − m2xm1n2 + 4m1xm2n2 − 3n2xm1m2 + m1xm1n1 − n1xm2
1

4m1(m1n1 + m2n2)
dx.

Case 3: For this case the conserved quantity is defined as

ρ̂ = (lnϕ3)x = α + λn2β,

with α, β satisfy

αx = λm1β + 1 − αρ̂, βx = λn1α + λm2 − βρ̂. (24)

Expanding α and β in Laurent series of λ and substituting them into (24), we may obtain the conserved quantities and
apart from those found in last two cases, we have

ρ̂−1 =


2n1n2

2 + 2m1m2n2 − m2xn2
2 + 4n2xm1n1 − 3m1xn1n2 + n2xm2n2 − n1xm1n2

4n2(m1n1 + m2n2)
dx.

Let us remark that these conserved quantities have been obtained from the x-part of the Lax pair representation only
hence they are valid for the whole hierarchy. As we checked they are conserved for the system (12) as well as for (16).
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5. Concluding remarks

In this paper, started from a general 3 × 3 problem, we considered the related four-component CH type systems. We
obtained the bi-Hamiltonian structure and suggested the way to construction of infinitely many conserved quantities for
the integrable equations. Different reductions were also considered.

As noticed above, the positive flows allow for an arbitrary function Γ involved and such systems are interesting since
different specifications of Γ lead to different CH type equations. Although the flow equations with arbitrary Γ do possess
infinitelymany conserved quantities,wedonot expect they are (bi-) Hamiltonian systems in general case. Also,we explained
the appearance of this arbitrary function by studying the kernel of one of theHamiltonian operators and it seems that further
study of such systems is needed.

A remarkable property of CH type equations is that it possess peakon solutions. Onemay find that the first negative flow,
which does not depend onΓ , only possess stationary peakons. However, the systems such as (16)may admit non-stationary
peakon solutions. This and other related issues may be considered in further publication.
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Appendix

We first prove that L is also a Hamiltonian operator. For this purpose, we first define

ΘJ =
1
2


θ ∧ Jθdx, ΘF =

1
2


θ ∧ F θdx, A = (∂3 − 4∂)−1.

By direct calculation, we have

ΘJ =

 
(n2θ1 − n1θ2) ∧ ∂−1(m1θ4 − m2θ3)+ (m1θ1 − n1θ3) ∧ ∂−1(n2θ4 − m2θ2)

+ (n2θ4 − m2θ2) ∧ ∂−1(n2θ4 − m2θ2)+ (m1θ1 − n1θ3) ∧ ∂−1(m1θ1 − n1θ3)

dx,

and

ΘF =
1
2


((2Q − R∂) ∧ AQ + (Q∂ − 2R) ∧ AR) dx

=


(Q ∧ AQ − R ∧ AR + Q ∧ ∂AR) dx,

where

Q = m1θ1 + m2θ2 − n1θ3 − n2θ4, R = n2θ1 − n1θ2 + m2θ3 − m1θ4.

Since

pr vLθ (ΘL) = pr vLθ (ΘJ)+ pr vLθ (ΘF ), (A.1)

we calculate pr vLθ (ΘJ) and pr vLθ (ΘF ). Indeed, we have

pr vLθ (ΘJ) = −

 
(∂−1(n2θ1 − n1θ2) ∧ ∂−1(m1θ4 − m2θ3) ∧ ∂−1Q )x

+ (2m1θ1 + 2n1θ3 − n2θ4 − m2θ2) ∧ (ARx + 2AQ ) ∧ ∂−1(m1θ1 − n1θ3)

+ (2m2θ3 − 2n2θ1 + m1θ4 − n1θ2) ∧ (AQx + 2AR) ∧ ∂−1(m1θ1 − n1θ3)

+ (2m1θ4 − 2n1θ2 + m2θ3 − n2θ1) ∧ (AQx + 2AR) ∧ ∂−1(n2θ4 − m2θ2)

+ (m1θ1 + n1θ3 − 2m2θ2 − 2n2θ4) ∧ (ARx + 2AQ ) ∧ ∂−1(n2θ4 − m2θ2)

+ (m1θ4 − m2θ3) ∧ (ARx + 2AQ ) ∧ ∂−1(n2θ1 − n1θ2)

− (n1θ3 + n2θ4) ∧ (AQx + 2AR) ∧ ∂−1(n2θ1 − n1θ2)

+ (m1θ1 + m2θ2) ∧ (AQx + 2AR) ∧ ∂−1(m1θ4 − m2θ3)

− (n2θ1 − n1θ2) ∧ (ARx + 2AQ ) ∧ ∂−1(m1θ4 − m2θ3)

dx.
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Next we consider pr vLθ (ΘF ). For simplicity, we denote

Υ = 2m1θ1 − m2θ2 − 2n1θ3 + n2θ4, Ω = m1θ1 − 2m2θ2 − n1θ3 + 2n2θ4,

then a direct calculation shows that pr vLθ (ΘF ) can be expressed as

pr vLθ (ΘF ) = −

 
(m1θ1 + n1θ3) ∧ ∂−1Υ ∧ (2AQ + ARx)

+ 2(n2θ1 − n1θ2 − m2θ3 + m1θ4) ∧ (ARx + 2AQ ) ∧ (AQx + 2AR)
− (m2θ2 + n2θ4) ∧ ∂−1Ω ∧ (2AQ + ARx)

+ (n2θ1 − n1θ2) ∧ ∂−1(m1θ4 − m2θ3) ∧ (2AQ + ARx)

− (m1θ4 − m2θ3) ∧ ∂−1(n2θ1 − n1θ2) ∧ (2AQ + ARx)

+ (m1θ4 − n1θ2) ∧ ∂−1Υ ∧ (2AR + AQx)

− (n2θ1 − m2θ3) ∧ ∂−1Ω ∧ (2AR + AQx)

+ (n2θ4 + n1θ3) ∧ ∂−1(m1θ4 − m2θ3) ∧ (2AR + AQx)

− (m2θ2 + m1θ1) ∧ ∂−1(n2θ1 − n1θ2) ∧ (2AR + AQx)

dx.

Letting f = n2θ1 − n1θ2, g = m1θ4 − m2θ3 and substituting above expansions into (A.1) lead to

pr vLθ (ΘL) = −


2(n2θ1 − n1θ2 − m2θ3 + m1θ4) ∧ (ARx + 2AQ ) ∧ (AQx + 2AR)

+ 2((n2θ1 − n1θ2) ∧ ∂−1(m1θ4 − m2θ3)

+ (m2θ3 − m1θ4) ∧ ∂−1(n2θ1 − n1θ2)) ∧ (2AQ + ARx)

+ ((n2θ1 − n1θ2 − m2θ3 + m1θ4) ∧ ∂−1Q
+ ∂−1(n2θ1 − n1θ2 − m2θ3 + m1θ4) ∧ Q ) ∧ (2AR + AQx)dx

= −


(f ∧ ∂−12g + ∂−1f ∧ 2g) ∧ (2AQ + ARx)

+ 2(f + g) ∧ (ARx + 2AQ ) ∧ (AQx + 2AR)
+ ((f + g) ∧ ∂−1Q + ∂−1(f + g) ∧ Q ) ∧ (2AR + AQx)dx

= −


∂−1(2g + R) ∧ (Q ∧ (AQx + 2AR)− R ∧ (ARx + 2AQ ))

+ (2g + R) ∧ (−∂−1R ∧ (ARx + 2AQ )+ ∂−1Q ∧ (AQx + 2AR)
+ 2(ARx + 2AQ ) ∧ (AQx + 2AR))dx

= −


∂−1(2g + R) ∧ (∂−1R ∧ (ARxx + 2AQx)− ∂−1Q ∧ (AQxx + 2ARx)

− 2(ARxx + 2AQx) ∧ (AQx + 2AR)− 2(ARx + 2AQ ) ∧ (AQxx + 2ARx))dx

= −


∂−1(2g + R) ∧ (∂−1R ∧ (2AQx + 4AR)− ∂−1Q ∧ (2ARx + 4AQ )

− 2∂−1R ∧ (AQx + 2AR)− 2(ARx + 2AQ ) ∧ ∂−1Q )dx
= 0,

where we use f − g = R for short. Thus, L given by (15) is a Hamiltonian operator.
Finally we prove the compatibility of K and L, which is equivalent to

pr vLθ (ΘK)+ pr vKθ (ΘL) = pr vKθ (ΘL) = pr vKθ (ΘJ)+ pr vKθ (ΘF ) = 0. (A.2)

To this end, we notice

pr vKθ (ΘJ) =


(2(θ2 ∧ θ4)x + (θ3 ∧ θ1)x − θ1 ∧ θ2 − θ3 ∧ θ4) ∧ ∂−1(n2θ4 − m2θ2)

+ ((θ2 ∧ θ4)x + 2(θ3 ∧ θ1)x + θ1 ∧ θ2 + θ3 ∧ θ4) ∧ ∂−1(m1θ1 − n1θ3)

+ ((θ2 ∧ θ1)x − θ3 ∧ θ1 − θ4 ∧ θ2) ∧ ∂−1(m1θ4 − m2θ3)

+ ((θ3 ∧ θ4)x + θ3 ∧ θ1 + θ4 ∧ θ2) ∧ ∂−1(n2θ1 − n1θ2)dx

=


(θ1 ∧ θ2 + θ3 ∧ θ4) ∧ ∂−1Q − (θ1 ∧ θ3 + θ2 ∧ θ4) ∧ ∂−1R

− (2θ2 ∧ θ4 + θ3 ∧ θ1) ∧ (n2θ4 − m2θ2)+ (θ1 ∧ θ2) ∧ (m1θ4 − m2θ3)



N. Li et al. / Journal of Geometry and Physics ( ) – 11

+ (θ4 ∧ θ2 + 2θ1 ∧ θ3) ∧ (m1θ1 − n1θ3)− (θ3 ∧ θ4) ∧ (n2θ1 − n1θ2)dx

=


(θ1 ∧ θ2 + θ3 ∧ θ4) ∧ ∂−1Q − (θ1 ∧ θ3 + θ2 ∧ θ4) ∧ ∂−1Rdx,

and

pr vKθ (ΘF ) =


((θ3x − θ2) ∧ θ1 + (θ1 + θ4x) ∧ θ2 − (θ1x + θ4) ∧ θ3 − (θ2x − θ3) ∧ θ4)

∧ (2AQ + ARx)− ((θ2x − θ3) ∧ θ1 − (θ1x + θ4) ∧ θ2 + (θ1 + θ4x) ∧ θ3

− (θ3x − θ2) ∧ θ4) ∧ (AQx + 2AR)dx

=


((∂2 − 4)(θ1 ∧ θ3 + θ2 ∧ θ4)) ∧ AR − ((∂2 − 4)(θ1 ∧ θ2 + θ3 ∧ θ4)) ∧ AQdx

=


(θ1 ∧ θ3 + θ2 ∧ θ4) ∧ ∂−1R − (θ1 ∧ θ2 + θ3 ∧ θ4) ∧ ∂−1Qdx.

Therefore we arrive at

pr vKθ (ΘL) = pr vKθ (ΘJ +ΘF ) = 0,

so K and L are two compatible Hamiltonian operators.
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