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ABSTRACT

Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester
C. While accurate and efficient methods for predicting soil organic C content and composition have
recently been developed for soils under agricultural land uses, such methods under forested land uses
are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately
predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC
organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-
reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils
using physical fractionation by automated wet-sieving and >C nuclear magnetic resonance (NMR)
spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000—450 cm™!) were acquired from finely-
ground soils from environmental plantings and agricultural land. Satisfactory prediction models based
on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-
one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R> > 0.90, negligible
bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta
coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil
spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-
nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier
limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and
economically determine TOC and its fractions and thereby accurately describe the effects of land use
change such as reforestation on agricultural soils.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

_ 4 The soil organic carbon (SOC) pool is one of the largest terres-
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1986). Consequently, even small changes in the amounts of soil C in
response to land use, management or climate may have large ef-
fects on global C cycling and climate change. Reforestation is
implemented around the world to sequester C and improve envi-
ronmental conditions (e.g., water quality and habitat availability,
Cunningham et al., 2015b). The total area of world's planted forest
in 2010 was estimated to be 264 million ha, making up 6.6% of the
world's forest area (FAO, 2010). In Australia, mixed-species envi-
ronmental plantings are established on previous agricultural land
for C sequestration and other environmental outcomes accounting
up to 20% of the 1.14 million ha of reforestation between 1990 and
2012 (Paul et al., 2013). Studies have focused on improving mea-
surement and modelling of biomass C following reforestation with
environmental plantings (Paul et al., 2015; Perring et al., 2015), and
measured associated changes in SOC (Cunningham et al., 2015a).

Conventional measurement of SOC as total organic C (TOC) using
chemical oxidation (Walkley and Black, 1934) or dry combustion
(Merry and Spouncer, 1988) is inadequate to explain changes in SOC
in terms of soil physical, chemical and biological activity. Parti-
tioning TOC into fractions that are related to active, intermediate or
slow and passive or inert conceptual pools used in soil C turnover
models (e.g., RothC, Jenkinson et al., 1992; CENTURY, Parton et al.,
1987), can help elucidate their role in soil processes (Skjemstad
et al., 2004). Such fractions may represent labile, humified and
inert C with turnover times respectively of the order of annual (<3
year), decadal (20—50 year) and millennial (>1000 year, Jenkinson
and Coleman, 1994). Several functional pools are known which are
accessible by different fractionation methods. Physical fractions are
such as aggregates, particle sizes and density fractions, chemical
fractions are usually extracts (DOM, soil microbial biomass, organic
matter soluble in alkali and acid, etc.) and also combinations of
fractionation methods are used (von Liitzow et al., 2007).

Skjemstad et al. (2004) demonstrated that the RothC model
could be initialised and changes in soil C stock simulated by
replacing the conceptual stocks of resistant plant material (RPM),
humus (HUM) and inert organic matter (IOM), respectively, with
operationally measured particulate (POC), humus (HOC) and
resistant (ROC) organic C. Subsequently, Janik et al. (2007) showed
that the concentrations of POC, HOC and ROC in <2 mm sieved soil
could be predicted from mid-infrared (MIR) spectra acquired from
finely ground samples.

Diffuse reflectance mid-infrared spectroscopy (MIRS) is a rapid,
non-destructive and low-cost technique, demonstrated to be suit-
able for routine analysis of a variety of soil properties (Soriano-Disla
et al., 2014). The MIRS technique requires minimal sample prepa-
ration (i.e. air drying and fine grinding) and no use of hazardous
chemicals. MIR spectra and corresponding analytical data in
multivariate analyses such as partial least squares regression (PLSR)
can be combined to develop prediction models for soil attributes.
The predictive ability of MIRS-PLSR techniques for total, organic
and inorganic C of soils has been well investigated and reported
(Grinand et al., 2012; Madari et al., 2006; Madhavan et al., 2016).
However, the use of MIRS-PLSR to predict the concentrations of
fractions of TOC is limited (Bornemann et al., 2010; Janik et al.,
2007; Zimmermann et al., 2007). MIRS-PLSR prediction models
have been developed for total, organic and inorganic C, and TOC
fractions (Baldock et al., 2013a), and these models were applied to
predict the content of TOC fractions in subsequent agricultural soil
C studies (Karunaratne et al., 2014; Rabbi et al., 2014). However, the
applicability of such predictive models to soils under woody
vegetation has not been investigated. Further, there is increasing
interest in reforestation of agricultural lands to mitigate green-
house gas emissions through sequestering C in woody biomass
(Canadell and Raupach, 2008) and in soil (Lal, 2005). Thus, there is a
need to develop accurate and efficient measurement techniques

and prediction models applicable to reforested land to understand
and predict their potential to sequester C and mitigate greenhouse
gas emissions.

An extensive study was conducted to investigate the changes in
TOC and its fractions following reforestation with mixed-species
environmental plantings at 117 sites from temperate,
Mediterranean-type and tropical climatic regions of Australia, for
the purpose of calibrating a soil C accounting model (FullCAM,
Brack and Richards, 2002) developed from the RothC model (Paul
et al,, 2015), and to provide measurements and predictions of
TOC fractions. Prediction models for TOC fractions have been re-
ported in agricultural soils by Baldock et al.,, 2013a, but these
models are unlikely to be accurate for reforested soils because of
the difference in plant inputs, chemistry and decomposition rates
between land uses, and thereby changes in TOC fractions (Del Galdo
et al,, 2003; Berthrong et al., 2012; Cunningham et al., 2015a). This
warrants a need to develop infrared spectroscopic prediction
models for TOC fractions that are suitable for soils under refores-
tation. This work presents the first attempt to develop prediction
models for TOC fractions in a treed ecosystem whereas previous
work has focused on agricultural soils (Baldock et al., 2013a). Our
objectives were to measure soil TOC fractions (POC, HOC and ROC)
in a representative set of reforested soils; develop robust infrared
and PLSR prediction models for TOC and its fractions for reforested
soils; and predict TOC and its fractions for both environmental
planting and reference agricultural soils (i.e. pastures and
cropping).

2. Methods
2.1. Soils

Soils were collected from 117 sites, each comprising a mixed-
species environmental planting paired with an adjacent agricul-
tural land use (Fig. 1). Details of site characteristics and sampling
methods are detailed in England et al., 2016 and summarised here.
The sites were across southern and eastern Australia (latitude 30.9
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Fig. 1. Distribution of environmental planting sites and adjacent agricultural refer-
ences sites (n = 117, all circles). Soils from a subset of these plantings (n = 19, black
circles) were physically fractionated. The shaded area represent the geographical re-
gions of application of calibration for the environmental planting study area (after Paul
et al, 2015).
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to 38.7 °S, longitude 117.4 to 150.3 °E) and covered the range of
rainfall zones where environmental plantings occur
(380—1150 mm y ). Generally the sites represented a range of
planting age (mean age = 14y, 95% of plantings aged between 1 and
28y), surface soil texture (sandy loam, < 20% clay to loam or clay, >
20% clay), productivity (above-ground biomass increment,
0.2—31.7 Mg DM ha~! y~!) and mixed-species plantings (e.g.,
Acacia, Agathis, Araucaria, Castanospermum, Corymbia, Elaeocarpus,
Eucalyptus, Flindersia, Khaya, Melaleuca). Agricultural land use at
the sites included grazing, cropping, and rotational cropping and
grazing.

Soil samples were collected from each land-use at each site from
formal plots or along transects, and to 30 cm depth variously in
depth increments (cm): 0—5 & 5—30; 0—10 & 10—30; 0—5,5-10 &
10—30; or 0-5, 5-10, 10—-20 & 20—30. Individual samples for
analysis (site x land use x depth, n = 3109) were generated by
compositing (typically) 5 cores.

2.2. Soil processing and C analysis

Soil samples were air dried and manually sieved (<2 mm)
without crushing > 2 mm organic matter. The existing soils had
been similarly air-dried and processed, and stored in air-tight
containers at room temperature. Subsamples (approx. 20 g) of air
dried <2 mm soil were finely ground in a vibratory 10 cm bowl steel
puck mill (Rocklabs, Auckland, New Zealand) for 120 s (an addi-
tional 60 s for coarse textured soils, if required) to obtain a fine talc-
like consistency, so as to ensure sub-sample homogeneity for
chemical analysis and acquisition of consistent spectra across
subsamples. TOC concentrations were determined on the finely
ground <2 mm soil by Dumas high-temperature combustion
(Rayment and Lyon, 2011) using a LECO CNS-2000 dry combustion
analyser (LECO Corporation, St Joseph, MI, USA). Prior to TOC ana-
lyses, the finely ground <2 mm soil samples were tested for the
presence of carbonates using 1 M HCI acid fizz test (Rayment and
Lyon, 2011). Samples with carbonate were treated with 1 mL of
5—6% H,SO03 at 100 °C until effervescence ceased (Nelson and
Sommers, 1996) before drying and TOC analysis.

2.3. Acquisition of infrared spectra

Diffuse reflectance spectra (7800—450 cm~! at 4 cm™! resolu-
tion), which included the mid-infrared region and some of the
near-infrared region, were acquired using a PerkinElmer Frontier
FT-NIR/MIR Spectrometer (PerkinElmer Inc., Waltham, MA, USA)
equipped with a KBr beam-splitter, a DTGS detector and AutoDiff
automated diffuse reflectance accessory (Pike Technologies, Madi-
son, WI, USA). Finely-ground soil samples (approx. 150—250 mg)
were uniformly packed and levelled in 9 mm diameter stainless
steel cups. Sixty cups and a background disc (silicon carbide) were
loaded onto the Autodiff accessory and scanned. At the start of each
scanning cycle, a background signal was collected from the silicon
carbide disk (average of 240 scans) and subtracted from all sample
spectra. For each soil sample, 64 co-added scans were acquired and
averaged to obtain a representative reflectance spectrum (R). These
reflectance spectra were converted to absorbance spectra (A) by the
formula, A = log (1/R) using PerkinElmer instrument control
Spectrum 5.0.1 Software, which contained peaks corresponding to
molecular vibrations of organic matter and minerals (absorbance
units along Y axis) against specific wavenumbers (cm~! along X
axis, Fig. 2a). The PerkinElmer specific spectral file format (.sp) was
converted to the thermo galactic file format (.spc) using GRAMS/AI
9.1 (Thermo Fisher Scientific Inc.,, Waltham, MA USA). The absor-
bance spectra were later trimmed to 6000—450 cm™! for analyses.

2.4. Soil TOC fractionation

Soil samples from 19 environmental planting sites (0—5 and
5—10 cm depth, n = 38) across the geographical regions of the study
area were selected for C fractionation. The soils were selected such
that samples likely contained measureable quantities of the TOC
fractions as indirectly indicated by TOC concentrations (>25 g kg™
in 0—5 cm and >15 g kg~! in 5—10 cm samples) and also to cover
most of the observed range in TOC of all samples (0.7—93.1 g kg™ 1).
The TOC fractionation methodology of Baldock et al. (2013b) was
used to measure POC, HOC and ROC concentrations. Three 10 g
replicates of <2 mm soil were dispersed using 45 mL of 5 g L™!
sodium hexametaphosphate by shaking the tubes overnight. These
samples were wet-sieved for 3 min through a 50 pm mesh using an
automated vibratory sieve shaker (Analysette 3 PRO, FRITSCH
GmbH, Idar-Oberstein, Germany) with an amplitude of 2.5 mm at
20 s intervals and water flow rate of approx. 100 mL min~! to
separate coarse (2000—50 pm) and fine fractions (<50 um). The
fractions were lyophilized, coarse fractions were finely ground and
analysed for total C concentration by Dumas high temperature
combustion. Additional <2 mm soil was similarly fractionated
where necessary to accumulate sufficient coarse and fine fraction
material (equivalent of >20 mg of organic C) for measurement of
ROC using solid-state '>C NMR spectroscopy. Prior to NMR analysis,
the coarse fractions were finely ground using a small pestle and
mortar, and the fine fractions were treated with 2% HF (Skjemstad
et al, 1994) to remove paramagnetic matter and concentrate
organic C.

2.5. 3C NMR spectroscopy

Spectra of ¥C NMR were acquired for the physically-
fractionated coarse and fine fractions using a Bruker 200 Avance
200 MHz spectrometer (Bruker Corporation, Billerica, MA, USA),
equipped with 4.7 T superconducting magnet operating at
50.33 MHz resonance (Baldock et al.,, 2013b). Samples (approx.
100—300 mg) of the coarse and fine fractions were packed in small
zirconia rotors (7 mm diameter rotors fitted with Kel-F end caps)
and spun at 5 KHz. For a few coarse fractions insufficient material
was accumulated to completely fill the rotors, so 1 or 2 Kel-F inserts
were used. All samples were subjected to a cross-polarisation (CP)
13C NMR analysis in which 10,000 scans were acquired by applying
a pulse of 3.2 ps, 195 W and 90°, with 1 ms contact time and 1 s
recycle decay time. The length of the recycle delay time was
confirmed to be more than 5 times the T{H value of the samples
calculated using an inversion recovery pulse sequence. A variable
spin lock experiment using various spin-lock times, 1 ms contact
time and 1 s recycle delay determined sample specific T1pH values.
Glycine was used as an external intensity standard for comparing
the observability of C in samples. Background signal correction was
done by subtracting the signal intensity acquired for an empty rotor
from the sample spectra. The NMR spectra were processed using
the Bruker Topspin 3 software. Signal intensity found in the aryl
(110—145 ppm) and O-aryl regions (145—165 ppm) of the NMR
spectra (Fig. 2b) were used to calculate the proportions of lignin
and ROC present in the coarse and fine fraction using the formula
ROC = (aryl C—1.77 *0-aryl C)/0.45 (Baldock et al., 2013b).

POC concentration was calculated by multiplying the TOC con-
centration of the coarse fraction by (1 — the proportion of ROC in
the coarse fraction). Similarly HOC concentration was calculated by
multiplying the TOC concentration of fine fraction by (1 — the
proportion of ROC in the fine fraction). The recovery of TOC frac-
tions was calculated as the percentage recovery of TOC using the
formula, Recovery% = [(POC + HOC + ROC)/TOC]*100. The absolute
deviation of recovery was calculated as the difference in the
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Fig. 2. Representative a) infrared spectra (6000—450 cm™!) acquired from finely-ground soils and b) '*C NMR spectra acquired from coarse (2000—50 pm) and fine fractions

(<50 pm) of environmental planting soils.

measured concentrations between TOC and the sum of its fractions,
and expressed in g kgL

2.6. Infrared-PLSR calibrations and chemometrics

The PLSR models were developed as described by Haaland and
Thomas (1988) using the infrared spectra and measured data
from 38 environmental plantings soils and 130 agricultural soil
samples included from the Australian Soil Carbon Research Pro-
gram (SCaRP, Baldock et al., 2013b). These prediction models were
then used to predict TOC, POC, HOC and ROC in 3109 environmental
plantings and agricultural soils.

Prior to multivariate analyses, the absorbance spectra were pre-
processed using multiplicative scatter correction (Martens and
Naes, 1989) and mean centring in Matlab R2013a (The Math-
Works, Natick, MA, USA). Principal component analysis (PCA) and
PLSR analysis were performed using PLS_Toolbox 7.0 (Eigenvector
Research Inc., Wenatchee, WA, USA). The mid-and near-infrared
spectra (MNIRS) used for PCA and PLSR included the MIR spectral

region (4000—450 cm™') corresponding to absorbance from
fundamental bands of molecular vibrations, and a portion of the
near-infrared (NIR) region (6000—4000 cm~') containing over-
tones and combinations of fundamental bands but with less band
specificity (Bellon-Maurel and McBratney, 2011). Baseline offset
pre-processing of the MIR 4000—450 cm~! region produced
inconsistent results by offsetting either in the middle or at the
either end of spectral range. Pre-processing using the
6000—450 cm~! MNIRS spectral range produced more consistent
offsetting around 6000—5500 cm™~ . Therefore spectral information
from both mid and near-infrared regions was used to develop the
MNIRS-PLSR prediction models.

A square root transformation was used to normalise the distri-
butions of TOC and its fraction concentrations and minimise non-
linearity in the resultant PLSR prediction algorithm (Janik et al.,
2007). A user-defined Matlab pre-processing function (pre-
prouserm) was used for the data transformation and back-
transformation processes — calibrate and apply (applying square-
root), and undo (squaring the model predictions). A PCA was
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performed using the pre-processed soil spectra to be used to
construct the PLSR prediction models to quantify their spectral
variability. This PCA model was used to ascertain spectral homo-
geneity and detect potential outliers from the spectra acquired here
for all reforested and agricultural soil samples in the present study
(Viscarra Rossel et al., 2008).

The predictive abilities of the MNIRS-PLSR models were evalu-
ated using a range of statistical parameters; coefficient of deter-
mination (R?), root mean square error (RMSE), bias, ratio of
performance to deviation (RPD) and ratio of error range (RER) as
commonly reported for assessing the quality of predicted soil at-
tributes in spectroscopic studies (Bellon-Maurel and McBratney,
2011). These statistical analyses were made using PLS_Toolbox
and reported in back-transformed values. R? indicates the model's
fit, and root-mean-square error of calibration (RMSEC) and cross-
validation (RMSECV) are measures of standard deviation of the
residuals in calibration and in cross-validation respectively. Bias is
the mean value of the difference between predicted and measured
values. RPD is the ratio of standard deviation of measured values to
standard error of prediction (Bellon-Maurel and McBratney, 2011).
The RER is the ratio of the range of the predicted data (maximum —
minimum) to RMSE. Generally, strong prediction models are ex-
pected to contain high values for R%, minimum values for RMSE and
RPD >2 (Grinand et al., 2012), and RER > 10 (Williams and Sobering,
1996). The number of principal components (PCs) in a given PCA
model, and factors or latent variables (LV) contributing to each PLSR
model was restricted when the following PC or LV did not reduce
the RMSE of calibration by more than 1%. The robustness of the
MNIRS-PLSR models were also investigated by examining the var-
iations in beta coefficients and Variable Importance in Projection
(VIP) scores (Chong and Jun, 2005), which reveal the infrared bands
and specific functional groups that contributed the most to the
prediction models of TOC fractions, and helped to distinguish
fraction-specific organic C composition at the functional-group
level.

2.7. Prediction assessments

The reliability of predictions from MNIRS-PLSR models were
evaluated by using k-nearest neighbour (KNN) score distances
(Sharaf et al., 1986), calculated in PLS_Toolbox software. The KNN
score distance is the distance to the nearest neighbour (shortest
distance) in the three-dimensional score space of the samples
(Ripley, 1996), and scalar value ‘k’ indicates the number of neigh-
bours to which distance should be calculated and averaged over.
The scalar was set to k = 1 as described in ASTM D6122-06 Standard
Practice for Validation of the Performance of Multivariate Process
Infrared Spectrophotometers, (ASTM International, West Con-
shohocken, PA, USA). The scalar setting was performed in Matlab
using the command: setplspref (‘plotscores’,’knnscoredistance’,1).
The maximum KNN score distance observed for samples in the
calibration is called the inlier limit. Prediction samples outside the
inlier limit suggest that they fall within a sparsely populated region
of the calibration space (ASTM International, 2006). Classification
and neighbour selection studies generally use a Mahalanobis

distance of 3 or more to determine non-members or spectral out-
liers (Gogé et al., 2012). As KNN score distance and Mahalanobis
distance are highly correlated (Wise et al., 2006), predicted samples
with higher KNN score distance, i.e. more than 3 times of inlier limit
were considered as having unreliable predictions. Hotelling's T?
represents the measure of the variation in each sample within the
model and indicates how far each sample is from the center of the
model. Hotelling T? contribution was used to reveal how individual
variables (spectral wavenumbers) contributed to unusual variation
in predicted outlier samples as determined by inlier test (Kourti,
2005).

3. Results and discussion
3.1. Soil TOC fractions from environmental plantings

The concentration ranges of TOC and its fractions in the envi-
ronmental plantings soils used for fractionation are provided in
Table 1. The recovery of TOC after fractionation was similar to that
obtained by Baldock et al. (2013b) and ranged between 87 and
112%, with a mean recovery of 94%, and a standard deviation of
5.6%. The absolute deviation of recovery of TOC fractions indicated
that for >90% of the samples, TOC recovery was within +2 g kg~ ! °C
with the variation in absolute recovery increasing with increasing
TOC concentration. When expressed as percentage of TOC, POC
ranged between 8.1% and 54.0% (mean + SD = 25.8 + 12.5%), with
35.5% and 16.9% in the 0—5 cm and 5—10 cm layers, respectively.
HOC ranged between 30.3 and 72.5% (mean + SD = 52.1 + 10.8%),
and ROC ranged between 15.5 and 31.7%
(mean + SD = 20.4 + 3.44%). By comparison, in agricultural soils
representing the range of soil types and climate across the pro-
ductive land in Australia (organic C ranging from 10.0 to 91.0 g kg
soil), the mean proportions were 19.2 + 12.3% for POC, 56.1 + 14.5%
for HOC and 26.2 + 9.6% for ROC in TOC (Baldock et al., 2013b).

The concentrations of TOC fractions were correlated with soil
TOC concentration (R? = 0.83 for POC; R? = 0.73 for HOC; R?> = 0.84
for ROC, P < 0.05). Relationship slopes of 0.55, 0.30 and 0.16 for POC,
HOC and ROC, respectively, were higher for POC, lower for HOC and
similar for ROC in 0—10 cm environmental plantings soils when
compared to those obtained by Baldock et al. (2013b) for agricul-
tural soils having similar TOC concentrations (1.20—-95.0 g kg™ 1).
These results suggest that on average soils under environmental
plantings contain more POC and less HOC compared to agricultural
soils.

3.2. PCA of samples

The first three PCs of the PCA of spectra acquired for the envi-
ronmental plantings and the agricultural soils explained 94% of the
model's variation. The distribution of PC scores indicated that the
spectra from environmental planting soils differed from those of
the agriculture soils, largely due to differences in the PC2 and PC3
scores (Fig. 3a). The PC1 loading spectra which accounted for 69.7%
of spectral variance showed absorbance intensity mostly from soil
mineral components (Fig. 3b). In contrast, PC2 (19% of spectral

-gzl;lceel:tration range, mean and standard error (SE) of soil (0—5, 5—10 cm) TOC and TOC fractions in 19 environmental plantings sites.
Depth (cm) (g kg~ ! soil)
TOC POC HOC ROC
Range Mean SE Range Mean SE Range Mean SE Range Mean SE
0-5 26.2—-59.9 40.9 25 5.6—29.5 14.8 1.8 11.8-25.1 17.2 0.9 4.8—-10.7 7.8 0.4
5-10 15.1-29.8 204 1.0 1.4-6.6 3.0 0.3 8.0-19.2 11.1 0.8 2.9-6.9 44 0.3
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Fig. 3. Principal components analyses of near- and mid-infrared spectra (6000—450 cm™") for soils: (a) 3D scores plot for fractionated soils used to develop PLSR prediction models
(38 environmental planting soils, present study; 130 agricultural soils, Baldock et al., 2013a); (b) Principal component (PC) loadings against wavenumbers (cm~') for the frac-
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n = 3109). For the 3D scores plots, values in parentheses are percentage of spectral variance explained by each component.
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Table 2
Major peaks in the soil infrared spectra and loadings and their functional group assignments.
Wavenumber Functional group Vibration References
(em™)
3696, 3630 Kaolinite, montmorillonite and illite O—H stretching Viscarra Rossel et al., 2008
2930, 2878 Alkyl C—H stretching Janik et al., 2007

2000, 1870, 1784 Quartz
1740 to 1710 Carboxylic acid
1666 Carbonyls of amide-I

Si—O0 stretching
—COOH stretching
C=0 stretching

1610 to 1590 Aromatic; carboxylates
1568 Amide II C=N stretching
1520 to 1510 Aromatic
1484 to 1440 Alkyl

C=C stretching
C—H deformation

1380 to 1360 Phenol

C=C stretching; COO— symmetric stretching

C—0 stretching, O—H deformation

Nguyen et al., 1991

Janik et al., 2007

Janik et al., 2007; Bornemann et al.,
2010

Haberhauer et al., 1998

Janik et al., 2007; Ludwig et al.,
2008

Haberhauer et al., 1998

Janik et al., 2007; Viscarra Rossel
et al,, 2008

Bornemann et al., 2010

1280—-1200 Carboxylic acid and phenol; ester —COOH and C—O stretching; O—H deformation Bornemann et al., 2010
1200 to 950 Carbohydrates; alumina-silicate of clay C—0, —COH and C—0—C stretching; Al—0—Si, Si—0—Si and Al-O—Al Ludwig et al., 2008; Bornemann
minerals lattice vibrations et al.,, 2010;
915, 816, 712, Aromatics; clay minerals and quartz C—H deformation; O—H deformation, Si—O stretching Nguyen et al., 1991; Haberhauer
et al.,, 1998

variance) and PC3 (4.1% of spectral variance) showed distinct fea-
tures associated with lignin and polysaccharide molecules with
signals from aliphatic C—H stretch at 2930, 2858 and 1484 cm ™/,
carboxylic acid —COOH stretch at 1710 cm~! and C—O stretch at
1224 cm', amide 1 C=0 stretch at 1666 cm ™, and amide Il C—N
stretch and potentially aromatic C—=C stretch at 1556 cm™~' that
differentiated the environmental planting soils from the agricul-
tural soils (Table 2). Projection of PC1, PC2 and PC3 scores for all
other soil samples collected in this project (n = 3109) onto the 3D
scores plot of the calibration samples (Fig. 3c) showed a large
cluster of samples within a three dimensional space defined by the
calibration samples, indicating the similarity of spectra in both sets.
A few samples were distributed away from the main cluster along
the negative axis of PC1 and PC2 scores. These 16 samples (upper
5%) originated from a site having relatively high TOC concentration
(>150 g kg~ ! soil) and had regular spectra with spectral features
similar to other spectra collected here, and were therefore retained
and included in subsequent analyses.

3.3. MNIRS-PLSR models and cross-validations

The predictive ability of MNIRS-PLSR models was tested using

Table 3

Statistics for MNIRS-PLSR calibrations (Cal) and leave-one-out cross-validations (CV)
for TOC, POC, HOC and ROC. Samples (n) included 38 environmental planting soils
and 53—130 agricultural soils. Spectra (6000—450 cm ') were multiplicative scatter
corrected and mean centered prior to PLSR analysis. RMSE = Root mean square error,
RPD = Ratio of performance to deviation and RER = Ratio of error range.

TOC POC HOC ROC
n 153 91 154 168
Minimum (g kg~' soil) 2.1 13 1.4 04
Maximum (g kg~! soil) 90.2 30.5 345 17.8
Mean (g kg~ soil) 235 10.0 114 5.63
Standard deviation 149 5.7 6.9 33
Latent variables 6 7 6 7

Cal Cv Cal cCv Cal cv Cal cv

Slope 095 093 088 086 091 0.89 091 0.89
Intercept 117 155 096 138 095 110 046 058
R? 097 096 092 088 093 092 092 0.90
RMSE 268 3.04 167 197 175 197 093 1.05
Bias —0.08 -0.07 —-0.07 -0.05 —-0.07 —0.06 —0.04 —0.04
RPD 559 484 342 289 390 347 357 3.15
RER 328 284 174 148 189 173 187 166

leave-one-out cross-validation (Table 3). Previous studies have
used 10 to 13 latent variables for TOC fraction models (e.g., Janik
et al., 2007) but the PLSR models developed here required only 6
or 7 latent variables to explain the maximum variation in spectra
and the measured analytical data (TOC and its fractions). Scatter
plots of measured and predicted data showed strong linear re-
lationships for all prediction models (R? > 0.92). The PLSR predic-
tion model for TOC in the range of 0.20—100 g kg~ ! resulted in an
RMSE of 2.68, negligible bias and an RPD of 5.59. Similarly, the PLSR
models developed for TOC fractions showed RMSE values of
approximately 5% of the data range used in their derivation,
negligible bias and RPD values > 3.42.

The results obtained from cross-validation for TOC and its
fractions were similar to calibration. Cross-validation of TOC
resulted in excellent prediction (R*> = 0.95, bias = —0.07,
RMSE = 3.04 and RPD = 4.84), consistent with other reports for
soils (Janik et al., 2007; Viscarra Rossel et al., 2008). Similar pre-
dictions (R? = 0.95) have been found for TOC in Mediterranean soils
with a comparable TOC range (5—150 g kg™, D'Acqui et al., 2010).
Janik et al. (2007) reported POC calibrations under native vegeta-
tion of Australia with R> = 0.71 (range 0.20—16.8 g kg~') and sug-
gested that the variations in the chemistry of plant inputs may
influence the development of accurate generalised prediction
models. Here, POC predictions within the range of 0.20—16.8 g kg ™!
were relatively stronger for both calibration (R* = 0.88) and cross-
validation (R? = 0.86). This is consistent with the results reported
by (Baldock et al., 2013a). The RPD values for TOC and its fractions
derived in this study were all >3. Although RPD in cross-validation
results were slightly lower than the prediction model, all values
were >2.89, which indicated excellent predictive ability of models,
as suggested by Grinand et al. (2012).

3.4. Functional group analysis of models

Beta coefficients of the derived PLSR prediction models plotted
against the wavenumbers illustrate the major functional groups
and relative magnitude of their contributions to each prediction
model (Fig. 4). For TOC, the dominant organic peaks were aliphatic
C—H stretch (2930 and 2878 cm™!), carboxylic —COOH stretch
(1708 cm™1), carbonyls and amide I and Il C=0 or C=N stretch
(1666 and 1568 cm™!), aliphatic C—H deformations (1440 cm™1),
carboxylic acid (1204 cm™') and carbohydrates C—O or —COH
stretch (1080 cm™'). Janik et al. (2007) reported similar spectral
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Fig. 4. Beta coefficients from MNIRS-PLSR prediction models for TOC, POC, HOC and ROC showing functional group-specific peaks (dotted lines).

features for their TOC model in average beta coefficients. For POC, in
addition to some features noted for TOC, strong peaks of amides
(C=0 stretch, 1666 cm™!), polysaccharides and silicate absorbance
(C—0 and Si—O stretch, 1200—1080 cm~!), and distinct peaks of
aromatic skeletal C=C stretching vibrations (1520 cm~') and aro-
matic C=C stretch (1598 cm™!) were evident, indicating functional
groups from proteins and carbohydrates. The correlation of beta
coefficients derived for TOC with those derived for POC and ROC
(R* ~ 0.50) showed significant scatter indicating differences in
spectral features and magnitudes used to predict these components
and suggested a degree of independence between the derived
prediction models (Fig. S1). The beta coefficients of TOC and HOC
were highly correlated (R?> = 0.75) as reported by Baldock et al.
(2013a). However, the beta coefficient for HOC had subtle differ-
ences in magnitudes and shifts in peaks, with higher contributions
from carboxylic acids (1740 and 1240 cm™!). For ROC, most of the
regions differed from that of other fractions, such as absence of
aliphatic C—H (3000—2800 cm™!) and phenols (~1380 cm™!)
ascribed to lignin, and increased intensities from aromatic C=C
(1570 cm™!), —COOH (1708 cm~!) and C-O (1228 cm™!) from
carboxylic acid, aromatic C—H stretch (840 cm™!) and kaolinite
(3626 cm™1).

Peaks with VIP scores >1 significantly contributed to the model,
while wavenumber <1 was less important (Chong and Jun, 2005).
Here, VIP scores in the MNIRS-PLSR models included C—H (2930
and 2878 cm~!) and C=0 (1666 cm™!) for TOC and all fractions
(VIP score > 2.8); carboxylic acid C—O stretch, O—H deformation,
ester and phenol C—0 (1280—1200 cm™!), carbohydrate (1160-
1080 cm™!), and aromatic and mineral absorbances (<1000 cm™ 1)
for POC (VIP score > 4); and aromatic C=C absorbance (1568 cm™!)
for ROC (VIP score = 3.85) (Fig. S2). These functional groups were
similar to the inferences from beta coefficients specific to TOC and
its fractions in their models.

3.5. Predictions of TOC, POC, HOC and ROC contents

Using the leave-one-out cross-validated MNIRS-PLSR prediction
models, TOC and its fractions were predicted in 3109 soils from
environmental plantings and reference agricultural lands. The KNN
score distance for the predicted samples indicated that >75% of the
predictions fell within the inlier limit (TOC-88.2%, POC-84.8%, HOC-
75.8% and ROC-84.5%), while the remaining samples were within

the satisfactory limits of 3 x inlier limit, except for a few samples
(TOC =4, POC = 3, HOC = 6, ROC = 5, Fig. S3). KNN score distance is
higher for samples that fall in lower-populated regions of score
space (Wise et al., 2006). Predicted samples with high C content
that were scattered in the PCA were within the inlier limits, so their
inclusion was reasonable.

Hotelling T? described >96% of sample distribution within all
models, hence it was useful in identifying the spectral regions
contributing to unusual variations in the samples containing
highest KNN scores (Wise et al., 2006). Hotelling T? contributions
for outlier samples showed increased intensities from mineral
bands at 4000—3500 and 1080—450 cm~! and inorganic C and
quartz bands at 2200—1800 cm~! (Fig. S4). These results were
consistent with dominant site characteristics, i.e. a site with sandy
texture from Western Australia and another site containing inor-
ganic C from Victoria.

3.6. Application of the models

Anexample of the application of the MNIRS-PLSR models indicates
that concentrations of POC and ROC in 0—5 c¢m soil (n = 79) were on-
average greater under environmental plantings (12.2 and 7.9 g kg ™!
respectively) than under agricultural land-use (10.9 and 7.0 g kg™!
respectively), but that there is much variability from site to site
(Fig. S5). A more detailed analysis of differences in TOC and in MNIRS-
PLSR predicted values of TOC fractions between environmental
planting and agriculture soils was reported in England et al. (2016).

The site to site variability demands that at least for landscape
level studies and C accounting rapid analytical methodologies such
as developed here are essential. While the models developed here
were satisfactorily cross-validated, they remain specific calibrations
for the environments (climatic, edaphic) and vegetation from
which the soils were sampled, notwithstanding that the samples
were from a range of environments across southern and eastern
Australia. We might expect that marked differences in climate (e.g.,
arid zones), in soil parent material and soil mineralogy, in proper-
ties of plant organic matter added to the soil, and in management
practices (e.g., tillage, prescribed burning) might challenge the
model calibrations. While models for TOC seem relatively robust,
those for the POC and HOC at least are less so and likely will always
require very specific local based calibrations.
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4. Conclusions

We developed accurate MNIRS-PLSR predictive models for TOC
and TOC fractions under reforested environments for application
on a national/continental scale. The study demonstrated the po-
tential of MNIRS-PLSR technique to rapidly and cost-effectively
predict soil TOC and its fractions and thereby assess the magni-
tude of changes following reforestation. The technique has the
potential for use in regional to global carbon accounting in refor-
ested ecosystems. There is a need to build a broad database of soil
TOC and TOC fractions for a wider range of climate, soils, vegetation
and management to enable local to general calibration and vali-
dation of models.
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