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A B S T R A C T   

Rapid climate change is threatening the stability and functioning of Arctic ecosystems. As the Arctic warms, 
shrubs have been widely observed to expand, which has potentially serious consequences for global climate 
regulation and for the ecological processes characterising these ecosystems. However, it is currently unclear why 
this shrubification has been spatially uneven across the Arctic, with herbivory being suggested as a key regu
lating factor. By taking advantage of freely available satellite imagery spanning three decades, we mapped 
changes in shrub cover in the Yamal Peninsula and related these to changes in summer temperature and reindeer 
population size. We found no evidence that shrubs had expanded in the study site, despite increasing summer 
temperatures. At the same time, herbivore pressure increased significantly, with the local reindeer population 
size growing by about 75%. Altogether, our results thus point towards increases in large herbivore pressure 
having compensated for the warming of the Peninsula, halting the shrubification of the area. This suggests that 
strategic semi-domesticated reindeer husbandry, which is a common practice across the Eurasian Arctic, could 
represent an efficient environmental management strategy for maintaining open tundra landscapes in the face of 
rapid climate change.   

1. Introduction 

Climate change is expected to accelerate in the 21st century, creating 
unprecedented environmental challenges for human communities 
around the world while altering species ranges (Chen et al., 2011; Pinsky 
et al., 2013), rearranging species communities (Bertrand et al., 2011; 
Nooten et al., 2014; Dieleman et al., 2015; Liu et al., 2018) and changing 
ecosystem processes and functioning (Schuur et al., 2008; Dur�an et al., 
2013; Roxy et al., 2016). This is especially true in the Arctic, where 
temperatures have increased at about twice the global average rate 
during recent decades (Bekryaev et al., 2010). These rapid and drastic 
changes in climatic conditions have led to many places in the Arctic 
showing increases in the distribution and vigour of woody vegetation. 
This so-called “shrubification” (Myers-Smith et al., 2011) occurs as 
woody vegetation expands to new areas, fills gaps between existing 

patches, and/or grows taller. Shrubification is thought to be directly and 
indirectly controlled by climate change. Specifically, longer and warmer 
growing seasons (Blok et al., 2011), interactions between the timing of 
snow melt and nutrient cycling, and positive feedback loops of shrub 
cover on microclimate (Sturm et al., 2005; Wookey et al., 2009; Rixen 
et al., 2010) are all expected to promote increases in the distribution and 
vigour of woody vegetation. The shrubification of the Arctic can alter a 
large range of ecosystem processes and functions in tundras, including 
climate control and nutrient cycling (Myers-Smith et al., 2011). For 
instance, it can lead to decreased surface albedo (Sturm et al., 2005) and 
faster snow melt in spring (Marsh et al., 2010), thereby potentially 
promoting the acceleration of global climate change. Shrub expansion 
can moreover be associated with an increase in passerine bird diversity 
(Ims and Henden, 2012), but also with a loss in plant species diversity, 
especially lichen, which may have direct consequences for consumers 
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such as reindeer/caribous (Rangifer tarandus; Joly et al., 2009; Myers-
Smith et al., 2011). 

Shrubification of the Arctic is however not spatially uniform (Tape 
et al., 2012; Reichle et al., 2018), with some areas experiencing more 
rapid changes in the distribution and vigour of woody vegetation than 
others. These spatial differences have been attributed to various factors, 
including variation in soil disturbances from natural and anthropogenic 
causes (Myers-Smith et al., 2011). Herbivory by large ungulates is ex
pected to be particularly important in shaping the response of shrubby 

vegetation to a changing climate, since herbivory directly reduces shrub 
cover, biomass and height (Christie et al., 2015). In experiments, grazing 
by semi-domesticated reindeers has been shown to counteract the effect 
of warming on shrub expansion (Post and Pedersen, 2008; Olofsson 
et al., 2009; Myers-Smith et al., 2011), suggesting that herbivory could 
be used as a management tool to mitigate the impacts of climate change 
on terrestrial Arctic ecosystems. Reindeer husbandry occurs over large 
parts of the Eurasian Arctic and is predominantly managed by indige
nous peoples (Forbes et al., 2009). Large herbivore management is thus 

Fig. 1. (A) Overview of the study site located in Southern Yamal Peninsula, Russia. The two small insets show the position of our study site within Russia (larger 
yellow square) and then the Yamal Peninsula (smaller yellow square). The larger inset shows the boundary of our study site in yellow outlined over the base scene 
from Google Earth Engine, which has a spatial resolution of 3 m. (B) Average monthly summer temperature for the months June–September from 1986 to 2018. The 
data was acquired from CRU TS3.10 (Harris, 2019). (C) Semi-domesticated reindeer abundance (1000 individuals) per year for the period 1986–2016 for the entire 
Yamal Peninsula region collated from three different studies (and averaged in the case of disagreement): Klokov and Khrushchev (2004); Golovatin et al. (2012); and 
Bogdanov and Golovatin (2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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already part of socio-ecological systems in the Arctic and could therefore 
constitute a socially and culturally acceptable climate change mitigation 
strategy in the region (Bråthen et al., 2017). Literature assessing the 
extent to which large herbivores could reduce shrubification over large 
spatial and temporal scales (i.e. several 100 square kilometres and 
several decades) is yet currently sparse and limited to North America 
and Fennoscandia (Bernes et al., 2015; Bråthen et al., 2017). Few studies 
have focused on assessing these changes within specific regions in 
Russia. There is evidence that long-term (i.e. decades) grazing by her
bivores reduces shrub cover and height more than short-term grazing 
(Kitti et al., 2009), but it is not clear whether and how these conclusions 
hold under rapid changes in climatic conditions. 

To address this gap in knowledge, we used satellite remote sensing 
data to map changes in shrub cover spanning three decades across a 
relatively remote study site of about 400 km2 in southern Yamal, Russia. 
The Yamal Peninsula, which extends from the Arctic circle to the high 
Arctic, is recognised as a “hotspot of change”, being exposed to rapid 
changes in environmental conditions (Walker et al., 2009, 2010). Other 
than rising temperatures, extensive grazing and trampling by reindeer 
herds heavily influence the landscape (Forbes, 1999; Walker et al., 
2009), with the region being home to the world’s largest population of 
semi-domesticated reindeer managed by the nomadic indigenous Nentsy 
(Forbes et al., 2009). Our objective was to assess the potential of 
intensive grazing by semi-domesticated reindeer to mitigate shrub cover 
expansion under increasing surface temperatures, to which end we 
compared trends of shrubification, long-term temperature change and 
herbivore population size. 

2. Material and methods 

2.1. Study area 

Our study area is in southern Yamal, Russia (68.2�N, 69.1�E) and 
covers approximately 400 km2 (Fig. 1). The mean daily temperature 
ranges from � 24.9 �C in January to 14.45 �C in July (World Metero
logical Organisation, 2019). The area has a constant snow cover from 
October until June and a yearly average precipitation of about 350 mm 
(Sokolov et al., 2012). The landscape has many rivers, streams and lakes; 
the lowlands are flooded in spring (Ehrich et al., 2012; Sokolov et al., 
2012). The study area’s topography is predominantly flat but contains 
scattered hills (up to 40 m in height) and steep ridges along the water
bodies (Ehrich et al., 2012). The study site is situated at the border of 
two main vegetation zones in the Yamal Peninsula: low-shrub tundra 
and erect dwarf shrub tundra (Walker et al., 2005). Low shrub com
munities are common on this site and are characteristically composed of 
a mixture of dwarf birch (Betula nana) and willow (Salix spp.) that are up 
to 50 cm high (Ehrich et al., 2012). Dense thickets of tall willows up to 2 
m high are also found along water bodies (Pajunen et al., 2010) and on 
fertile slopes. Plant cover is continuous across the study area (80–100%) 
except for ridge crests (Sokolov et al., 2012). 

2.2. Temperature data 

Arctic warming is known to occur at a rate of 1.36 �C per century 
(1875–2008), which is twice as fast as the Northern Hemisphere average 
(0.79 �C per century; Bekryaev et al., 2010). To estimate the rate of 
warming in our study site, data on monthly air surface temperatures for 
the summer months between June–September (which corresponds to 
the growing season) at a resolution of 0.5� (circa 55 km) lat
itude/longitude grid cells from 1901 to 2018 were acquired from CRU 
TS4.03 (Harris, 2019). Since our study site overlapped two grid cells of 
this dataset, we first calculated the mean temperature of these two cells. 
For each year, we calculated the average summer season temperature as 
the mean of monthly temperatures from June to September. To test 
whether average summer temperatures changed over time, a linear 
model was fitted. Diagnostic plots indicated that a linear model was 

appropriate for the data. 

2.3. Reindeer population data 

No data on reindeer populations specifically for our study area was 
available. However, local reindeer densities are known to be relatively 
high compared to other parts of the Arctic, with grazing pressure having 
been found to be universally high throughout the Yamal Peninsula 
(Walker et al., 2009, 2010; Golovatin et al., 2012). We here assumed 
that overall trends in reindeer abundance were the same in our study 
area as in the rest of Yamal, and therefore estimated this trend in rein
deer population size by collating abundance data for the whole Yamal 
Peninsula from three different studies: Klokov and Khrushchev (2004), 
Golovatin et al. (2012) and Bogdanov and Golovatin (2017). Temporal 
trends in abundance were assessed using a Mann-Kendall test. 

2.4. Shrub cover 

To capture long-term changes in shrub distribution, we mapped land 
cover using Landsat images for the years 1986, 1991, 1996, 2001, 2006 
(all Landsat 4–5), 2011 (Landsat 7), 2016 and 2018 (Landsat 8; all 
available for download at http://earthexplorer.usgs.gov). We used 
Landsat “Collection 1 Level 2” Surface Reflectance products (georefer
enced, terrain-corrected and atmospherically corrected) processed on 
demand by the United States Geological Survey (USGS) as these are 
recognised as the most accurate pre-processed products (Young et al., 
2017). The native cloud mask (CFMask) was used to identify and elim
inate pixels that were covered by clouds in all scenes. To ensure that the 
land cover classification was based on scenes from the peak-growing 
period, we acquired Landsat scenes close to the time of maximum 
greenness (Pettorelli, 2013). To fill any gaps created by clouds, we 
created cloud free composite scenes for each year by selecting several 
overlapping satellite scenes that had been acquired close together in 
time. We histogram-matched these scenes to standardize the radiometric 
values before merging all overlapping scenes, resulting in cloud-free 
composite scenes. 

Six land cover classes were discerned in the landscape, namely water 
bodies; sand; exposed ridges; shrub thickets (including willow thickets 
and closed canopy dwarf birch heath of 25 cm height or more, as well as 
mixed forms); wet lowlands; and mesic tundra (see Table S1 in Sup
plementary materials for a detailed description of these classes). Our 
supervised classifications were informed by a training dataset composed 
of the following elements: 1) very high resolution (3 m) imagery for the 
year 2011 (RapidEye imagery, August 6, 2011), 2016 (4-Band Planet 
Scope, September 2, 2016) and 2018 (4-Band Planet Scope, July 13, 
2016) of the entire study site; 2) ground-truthing points consisting of 
homogenous patches of more than 30 � 30 m of the defined land cover 
types that were opportunistically sampled in July 2017 and georefer
enced with hand-held GPS (these fell into 219 Landsat pixels); and 3) 
drone pictures (multispectral sensor (RGB), DJI Phantom 4, taken from a 
height of 80 m) covering an area of ca 73 ha and containing willow 
thickets both on slopes and on flat areas. 

There was no available reference data to support a direct supervised 
classification of the scenes collected by Landsat in 1986, 1991, 1996, 
2001, and 2006. To overcome this limitation, we opportunistically 
sampled pixels from the 2011 training dataset from areas identified as 
having stable land cover; these areas were identified using a spectral 
Change Vector Analysis (CVA, Schulte to Bühne et al., 2017). To maxi
mise the amount of spectral information used in the CVA, we used 
Principal Components instead of bands or single indices as input for the 
CVA (Schulte to Bühne et al., 2017). We compared the change magni
tude for each pixel to the median observed change magnitude across all 
pixels with the same land cover. We assumed that a pixel had undergone 
land cover change if its change magnitude was above the median change 
magnitude of its land cover. This threshold is conservative because an 
exceptional amount of change in surface reflectance needs to have 
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occurred in the absence of land cover change to achieve this (Schulte to 
Bühne et al., 2017). This allowed us to build a training dataset to inform 
our supervised classification for the year 1986, 1991, 1996, 2001 and 
2006 (Xian and Homer, 2010). We tested the validity of this approach by 
applying it to the years 2016 and 2018 and comparing the accuracy of 
the resulting map with those produced using independent validation 
data. The maps for the years 1986, 1991, 1996, 2001 and 2006 were all 
internally validated using the validation points created from the un
changed pixels. 

Supervised land cover classifications were performed using the 
Random Forest classifier in R (Liaw and Wiener, 2002), which generated 
500 trees using three tuning levels; Random Forest has been demon
strated to perform robustly in different ecological settings (Belgiu and 
Dr�aguţ, 2016). Producer’s and user’s accuracies were calculated for all 
land cover maps. Producer’s accuracy quantifies the probability that a 
given pixel will be assigned to the correct land cover class by the clas
sification algorithm. By contrast, user’s accuracy estimates the proba
bility that the assigned class of a given pixel is correct. The area of each 
of the vegetation classes was calculated per year following the recom
mendations of Olofsson et al. (2013) and the trend over time was 
examined using a Mann-Kendall test. 

3. Results 

Average summer season temperatures (June–September) increased 
significantly between 1901 and 2018 (F1, 116 ¼ 5.72, p ¼ 0.02), with 
annual temperature increases of circa. 0.007 �C. This means that average 
summer season temperatures in 2018 were about 0.84 �C warmer than 
in 1901, and circa 0.229 �C warmer than in 1986 (Fig. 1). The semi- 
domesticated reindeer population on the Yamal Peninsula overall 
increased by about 75% between 1986 and 2016 (τ ¼ 0.761, p < 0.0001; 
Fig. 1). Semi-domesticated reindeer abundance shows a drastic increase 
from 1986 to 2009, peaking at 327,073 individuals. An important in
crease in reindeer numbers over the period considered in our study area 
was thus very likely. 

Land cover was classified with suitable accuracy across all years, 
with overall accuracies ranging from approximately 82% to 91% 
(Table 1). Producer’s and user’s accuracies were relatively high in every 
vegetation class. Our approach to generating training data for the years 
1986–2006 was unlikely to have inflated accuracy estimates (Table S2 in 
Supplementary materials). Shrub thickets showed high overall accu
racies (83%–91%). Using information derived from the above land cover 
classifications, we were unable to detect any significant change in the 
percentage cover of shrub thickets (τ ¼ � 0.50, p ¼ 0.11) or mesic tundra 
(τ ¼ � 0.143, p ¼ 0.71; Fig. 2). 

4. Discussion 

Natural vegetation distribution is both a consequence and a driver of 
global environmental change (Foley et al., 2005; Franklin et al., 2016; 
Song et al., 2018). Understanding changes in vegetation cover can help 
provide insight into ecosystem response to environmental change, and 
consequently support effective ecosystem management strategies 
(Walther et al., 2002; Foley et al., 2005). With limited long-term data on 
vegetation distribution available for the Arctic, it is however difficult to 
make inferences about the past and understand the combined effects of 
climate change and herbivory on tundra landscapes. Using Landsat 
satellite imagery over the 1986–2018 period, this study demonstrates 
how significant increases in temperature and grazing pressures did not 
result in the expected change in shrub cover in the Yamal Peninsula, 
suggesting that growing semi-domesticated reindeer numbers may have 
counteracted the effects of rising temperatures (Fig. 1) on shrub growth 
in the region (Fig. 2). These results are important as they point toward 
large herbivore management as being a potentially efficient manage
ment strategy for maintaining open arctic landscapes in times of rapid 
climatic changes. 

In contrast to the widely accepted phenomenon of “shrubification” 
associated with warming and documented in previous remote sensing 
studies (Beck and Goetz, 2011; Myers-Smith et al., 2011; Naito and 
Cairns, 2011), our results highlight a lack of change in shrub cover in our 
study system over the past 30 years (Fig. 2). These results echo previous 
findings, including those by two long-term plot-based studies in south 
Greenland (Damgaard et al., 2016) and north-eastern Alaska (Jorgenson 
et al., 2015), which similarly reported no trend in shrub cover despite 
warming in these areas. Several reasons may explain such an outcome. 
First, this could be a result of the relatively modest increase in summer 
temperatures for the region (see Fig. 1). Second, the lack of reported 
trend could be due to differences in responses of shrub species to climate 
change coupled with our inability to differentiate tall shrubs from dwarf 
shrubs from space. Long-term warming experiments have indeed re
ported that tall shrubs (e.g. Salix spp) increase their distribution with 
rising temperature, while dwarf shrubs (e.g. Betula nana) tend to 
respond in the opposite way (Elmendorf et al., 2012). It is possible that 
taller shrub species have increased over the study period, while dwarf 
shrub species have decreased, something we would have been unable to 
detect given our methodological approach. Third, it could be speculated 
that although overall shrub cover showed no significant change, shrub 
height and even below-ground biomass could have been responding 
positively to warming conditions (Myers-Smith et al., 2011), something 
we would have not been able to detect using Landsat imagery. 

However, a likely hypothesis for explaining our results is that 
changes in herbivory pressure compensated for the impacts of climate 
change on shrub cover (Olofsson et al., 2009). Given the significant 
increase in reindeer population observed in the Yamal Peninsula over 
the period considered (Fig. 1), one would indeed predict shrub cover to 
decrease with increased herbivore abundance as a result of increased 
grazing and trampling (Hilker et al., 2014); however, our results do not 
suggest such a response. Again, different mechanisms could explain the 
observed patterns, the simplest one being that reindeer grazing 
controlled shrub expansion through indiscriminate grazing. Bråthen 
et al. (2017) and Ravolainen et al. (2011) both found evidence that, at 
high densities, reindeers can prevent shrubification by keeping the small 
stages of shrubs such as saplings in a “browse trap” independent of in
creases in surface temperatures. However, another possibility is that 
reindeer grazing led to a change in shrub species composition without 
any impact on distribution. Previous studies on reindeer grazing be
haviours indeed found that these large herbivores prefer willows (Salix 
spp.) over birch (Betula spp.), due to the difference in anti-browsing 
defensive compounds found in the species (Christie et al., 2015). As 
the shrub thicket land cover classification pooled both shrub species 
together, the dissimilar influence of herbivory on the vegetation could 
have been overlooked. At present, it is however difficult to isolate the 

Table 1 
Area-adjusted user and producer accuracies for shrub thickets, as well as overall 
area-adjusted accuracy of the land cover maps generated for the years 
1986–2018. Confidence intervals at 95% confidence levels given in brackets 
were calculated based on the methodology proposed by Olofsson et al. (2013). 
Producer’s accuracy quantifies the probability that a given pixel will be assigned 
to the correct land cover class by the classification algorithm. By contrast, user’s 
accuracy estimates the probability that the assigned class of a given pixel is 
correct. Overall accuracy corresponds to the percentage of correctly identified 
pixels across the entire study site.  

Year Shrub Thickets Overall Accuracy (%) 

User’s Accuracy (%) Producer’s Accuracy (%) 

1986* 86.7 (�4.6) 65.4 (�7.8) 83.9 (�2.5) 
1991* 94.4 (�2.9) 55.3 (�7.8) 87.2 (�2.5) 
1996* 94.5 (�2.9) 77.7 (�7.1) 86.9 (�2.2) 
2001* 94.4 (�3.4) 86.1 (�8.1) 85.7 (�2.6) 
2006* 97.0 (�2.3) 78.0 (�8.0) 91.4 (�1.9) 
2011 94.6 (�2.3) 97.3 (�3.0) 89.9 (�1.8) 
2016* 94.1 (�5.0) 70.9 (�15.7) 84.1 (�4.3) 
2018* 91.9 (�4.1) 84.9 (�7.4) 88.1 (�2.1)  
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impact of herbivory from the impacts of climate change on vegetation 
distribution as reindeer husbandries in Yamal largely follow a nomadic 
lifestyle where migration is determined by both ecological and cultural 
considerations (Degteva and Nellemann, 2013). Because of this, there 
are no distinct areas in Yamal where reindeers have been clearly 
excluded (Walker et al., 2009). 

Admittedly, there are several limitations associated with our study. 
While this research focused on the combined impacts of summer tem
peratures and reindeer herbivory on shrub cover on the Yamal Penin
sula, other variables might be important for understanding the observed 
lack of vegetation changes in the area. For instance, a study in Alaska 
found that precipitation, especially snow, boosted shrub expansion by 
providing a microclimate that insulated vegetation from extreme winter 
temperatures (Wahren et al., 2005). In addition, the inclusion of her
bivory pressures from small herbivores such as voles and lemmings 
(Olofsson et al., 2014) could help elucidate plant-herbivore interaction 
in the region. However, literature suggests that, compared to other re
gions in the Arctic such as Fennoscandia, small rodent abundance has 
been relatively low at our study site for the last 20 years (Fufachev et al., 
2019). The use of multispectral optical satellite imagery to map the 
dynamics of tundra vegetation moreover limited the scope of our 
investigation. For example, the consideration of the Landsat archives 
enabled us to provide a satisfactory temporal perspective on changes in 
vegetation classes but limited our ability to explore fine scale changes in 
shrub distribution. As previously acknowledged, changes in shrub spe
cies distribution and vertical growth could not be detected using Landsat 
imagery. 

5. Conclusions 

Climate models predict that 2–10 �C increases in Arctic temperature 
could transform more than half of the tundra surface into shrublands 
before the next century (Pearson et al., 2013); such changes in shrub 
cover could have dramatic implications for ecosystem functioning and 
people while leading to positive feedbacks with warming (Wookey et al., 
2009; Myers-Smith et al., 2011). Here, it is likely that the expected 
change was prevented by reindeer grazing and trampling. Thus, our 
study provides observational evidence that semi-domesticated reindeer 
management within a sustainable range (which will likely vary between 
sites based on vegetation and regional climate characteristics) could be a 
plausible strategy for maintaining and protecting tundra landscapes 
from transformation in the face of rapid climate changes. This study also 
provides further evidence that shrubification is not ubiquitous across the 
Arctic and emphasises the importance of long-term ecological moni
toring for informing site-specific environmental management policies. 
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