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A B S T R A C T   

Land managers often need to predict watershed-scale erosion rates after disturbance or other land cover changes. 
This study compared commonly used hillslope erosion models to simulate post-fire sediment yields (SY) at both 
hillslope and watershed scales within the High Park Fire, Colorado, U.S.A. At hillslope scale, simulated SY from 
four models— RUSLE, AGWA/KINEROS2, WEPP, and a site-specific regression model—were compared to 
observed SY at 29 hillslopes. At the watershed scale, RUSLE, AGWA/KINEROS2, and WEPP were applied to 
simulate spatial patterns of SY for two 14–16 km2 watersheds using different scales (0.5–25 ha) of hillslope 
discretization. Simulated spatial patterns were compared between models and to densities of channel heads 
across the watersheds. Three additional erosion algorithms were implemented within a land surface model to 
evaluate effects of parameter uncertainty. At the hillslope scale, SY was only significantly correlated to observed 
SY for the empirical model, but at the watershed scale, sediment loads were significantly correlated to observed 
channel head densities for all models. Watershed sediment load increased with the size of the hillslope sub-units 
due to the nonlinear effects of hillslope length on simulated erosion. SY’s were closest in magnitude to expected 
watershed-scale SY when models were divided into the smallest hillslopes. These findings demonstrate that 
current erosion models are fairly consistent at identifying areas with low and high erosion potential, but the wide 
range of predicted SY and poor fit to observed SY highlight the need for better field observations and model 
calibration to obtain more accurate simulations.   

1. Introduction 

Soil erosion is a common problem in disturbed landscapes that has 
motivated the development of many models to help land and water 
managers predict erosion magnitudes and examine causes of variability 
in erosion rates (Merritt et al., 2003; Aksoy and Kavvas, 2005). Erosion 
models can be used to evaluate how management actions or distur
bances affect soil loss, sedimentation, and/or water quality degradation. 
Models can also be applied to estimate spatial patterns of erosion, 
identify areas where land use changes such as timber harvest or road 

construction should be restricted, and determine where erosion miti
gation would be most beneficial after large disturbances like wildfire 
(Miller et al., 2016). Most erosion models have been developed for 
agricultural areas using data collected from small plots or hillslopes 
(Wischmeier and Smith, 1965; Flanagan and Nearing, 1995), but they 
are often applied to predict erosion over large watersheds with diverse 
topography, soils, and land cover (e.g., Millward and Mersey, 1999; Fu 
et al., 2005; Baigorria and Romero, 2007; Shen et al., 2009). Evaluations 
of erosion model performance at the watershed scale are limited, making 
it difficult for land and water managers to identify which erosion model 
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is most appropriate for their local conditions and scales of analysis. 
Erosion models for land management have varying computational 

approaches. In the U.S., two common erosion models are the Watershed 
Erosion Prediction Project (WEPP) (Flanagan and Nearing, 1995) and 
the kinematic runoff and erosion model (KINEROS2) (Smith et al., 
1995), both of which have been adapted for post-fire applications. Both 
are physically-based erosion models with long histories of code devel
opment. The empirical Revised Universal Soil Loss Equation (RUSLE) 
(Renard et al., 1997) is perhaps the most frequently applied erosion 
model, and it is often integrated into decision support tools (Sharp et al., 
2018; Gannon et al., 2019). Hydrologic models are becoming increas
ingly modularized, which facilitates integration of different types of 
erosion simulation modules (Ahuja et al., 2005; Stewart et al., 2017). 
Yet, even as erosion model types have proliferated, measurements to 
evaluate their performance remain sparse. 

In this paper we evaluate the performance of erosion models at 
multiple scales of analysis and offer guidance about selecting models for 
erosion simulation. We conducted this model analysis for two 14–16 
km2 burned watersheds with specific objectives to: (1) evaluate the 
performance of the models for simulating hillslope erosion; (2) compare 
total magnitudes and spatial patterns of simulated erosion across wa
tersheds divided into varying sizes of hillslopes; (3) quantify potential 
effects of parameter uncertainty on simulated watershed-scale erosion, 
and (4) evaluate the relative accuracy of models at the watershed scale 
using a combination of quantitative and qualitative observations of 
surface erosion. 

2. Background 

2.1. Erosion models 

One of the oldest and most widely used erosion models is the Uni
versal Soil Loss Equation (USLE) (Wischmeir and Smith, 1965). This 
empirical model was developed from small plot data collected at 
research sites across the U.S. Most plots were 2 m (6 ft) wide by 22 m (72 
ft) long, and slopes matched the local terrain (Laflen and Flanagan, 
2013). USLE predicts annual total erosion as a function of rainfall 
erosivity, soil erodibility, length, slope, cover, and erosion control 
practices. Modifications to the length-slope and cover factors resulted in 
the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). 
Many models incorporate some version of USLE to simulate erosion 
(Laflen and Flanagan, 2013). One of these, the Modified Universal Soil 
Loss Equation (MUSLE), replaced rainfall erosivity with storm runoff 
volume and peak runoff rate to predict erosion from individual storms 
(Williams, 1975; Williams and Berndt, 1977). USLE and its variants are 
easily integrated with other models because the equations all have 
analytical solutions. While USLE was designed for individual hillslope 
use, gridded versions have also been developed to predict erosion across 
large areas (Theobald et al., 2010; Litschert et al., 2014; Yochum and 
Norman, 2014). 

Although easy to implement, USLE and its variants are not well- 
suited to predict changing erosion conditions over time because they 
do not represent time varying soil moisture and infiltration. To simulate 
these time varying processes and their effects on erosion, researchers at 
the USDA Agricultural Research Service (ARS) developed the Water 
Erosion Prediction Project (WEPP) (Flanagan and Nearing, 1995). The 
project used the field data collected for USLE as well as additional field 
experiments conducted on 9–11 m (30–36 ft) long and 0.5–3 m (2–10 ft) 
plots (Laflen et al., 1991). The resulting WEPP model simulates erosion 
and deposition within hillslopes as functions of rainfall input during 
storms, overland flow generation, detachment of sediment by overland 
flow in rill and inter-rill areas, and flow competency to transport sedi
ment (Flanagan and Nearing, 1995). WEPP can use historical climate 
data to represent actual storms, but typically simulations are run for 
many stochastic weather scenarios (�50). Each hillslope can be 
decomposed into multiple overland flow elements (sections) with 

different slopes. WEPP can also account for plant growth and residue 
decomposition, evapotranspiration, deep percolation and subsurface 
lateral flows (Dun et al., 2009; Srivastava et al., 2013). WEPP consists of 
two versions: a hillslope version to estimate the distribution of erosion 
on a hillslope and a watershed version that links hillslopes with channels 
and in-stream structures to estimate sediment delivery from small wa
tersheds. Multiple standalone and online modeling interfaces are 
available for parameterizing and running WEPP (Miller et al., 2017; 
Frankenberger et al., 2011; Benda et al., 2007; Elliot, 2004; Renschler, 
2003). 

Separate from the development of WEPP, scientists at the USDA-ARS 
developed KINEROS2, the KINEmatic runoff and EROSion model 
(Woolhiser et al., 1990; Smith et al., 1995). KINEROS2 is a 
physically-based model that simulates both rain splash erosion as a 
function of rain rate and hydraulic erosion as a function of overland flow 
rate. KINEROS2 predicts erosion for rectangular planes, which are 
connected by channels for watershed-scale modeling (Goodrich et al., 
2012). Planes in KINEROS2 can be assigned a single slope or divided into 
multiple segments. Sediment outputs are represented by distributions of 
up to five particle size classes. The model is designed to simulate single 
rainfall-runoff events rather than long-term erosion. To facilitate 
application over larger areas, the Automated Geospatial Watershed 
Assessment tool (AGWA) can be used to discretize hillslopes and compile 
parameters for running KINEROS2 in the ArcGIS environment (Miller 
et al., 2007). Field studies to guide parameter estimation have not been 
conducted for the erosion submodels in KINEROS2, so this model has not 
been as widely applied as the WEPP model. 

Erosion modules have also been added to other hydrologic models 
originally designed for streamflow simulation. For example, Stewart 
et al. (2017) incorporated multiple erosion modules into the Variable 
Infiltration Capacity (VIC) model, which simulates land surface pro
cesses and streamflow generation for large river basins (Liang et al., 
1994). This single unified framework standardizes the sediment model 
inputs and VIC boundary conditions to facilitate consistent comparison 
across simulations that apply different erosion modules. The erosion 
modules incorporated into VIC include MUSLE, the Hydrologic Simu
lation Program Fortran (HSPF), and the Distributed Hydrology Soil 
Vegetation Model (DHSVM). HSPF (Johnson et al., 1980; Bicknell et al., 
1996) was initially developed by the U.S. Environmental Protection 
Agency to simulate contaminant transport, and it represents surface 
runoff generation using a conceptual approach. DHSVM (Wigmosta 
et al., 1994) uses the erosion simulation approach from the Systeme 
Hydrologique European – Sediment (SHE-SED) model (Wicks and 
Bathurst, 1996) to compute sediment detachment and transport for in
dividual elements (analogous to hillslopes) connected by stream rea
ches. DHSVM simulates overland flow for individual grid cells, 
connected to each other via topographic routing, and detached sediment 
is transported as suspended sediment based on the transport capacity of 
overland flow (Doten et al., 2006). 

2.2. Post-fire applications 

Many of the models described in the previous section have been 
applied to simulate post-fire erosion. These applications involve 
changing model parameters to represent post-fire conditions; for 
instance, decreasing ground cover, reducing soil infiltration capacity, 
increasing soil erodibility, decreasing surface roughness, and decreasing 
root cohesion (Miller et al., 2003, 2012, 2016; Elliot, 2004; Canfield and 
Goodrich, 2005; Doten et al., 2006; Robichaud et al., 2007, 2016; Larsen 
and MacDonald, 2007; Elliot et al., 2016; Jones et al., 2017; Srivastava 
et al., 2018; Gannon et al., 2019). Given the limited availability of 
post-fire erosion data, most erosion modeling studies do not compare 
simulated erosion to observations. Of the studies that do incorporate 
observations, simulated erosion rates are not well-correlated to indi
vidual hillslope observations, but models tend to perform better when 
hillslopes are grouped (Larsen and MacDonald, 2007; Miller et al., 2012) 
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or when relative ranks of erosion rates are compared between simula
tions and observations (Robichaud et al., 2016). Empirical regression 
models for predicting post-fire erosion have been developed for specific 
study areas (Benavides-Solorio and MacDonald, 2005; Schmeer et al., 
2018), and these tend to have stronger performance than the 
process-based erosion models. However, the models do not perform as 
well when applied to new areas not used in model development 
(Schmeer et al., 2018), and regression models do not represent physical 
processes directly. 

Prior model-observation comparisons have been conducted at the 
hillslope scale, where erosion is caused by overland flow. How well these 
models perform at watershed scale remains largely unknown. Sediment 
yields tend to decline with greater drainage area due to deposition along 
flow paths, but these scaling relationships have substantial variability 
(Wagenbrenner and Robichaud, 2014). The few studies that have eval
uated stream sediment yields after fire have used only suspended sedi
ment (e.g. Kunze and Stednick, 2006; Desilets et al., 2007), which may 
lead to inaccurate sediment yield predictions when there is substantial 
bedload transport and/or deposition. Post-fire streams can have rapid 
and frequent changes in channel geometry (e.g. Brogan et al., 2019a,b; 
Wilson, 2019), so accurate sediment yield measurement would require 
continuously monitoring suspended sediment, bed load, changes in 
channel geometry at the watershed outlet, and a method for deriving 
accurate streamflow. Given the cost and labor required for such mea
surements, observations of post-fire erosion at the watershed scale 
remain limited. 

3. Methods 

3.1. Study area 

We focused our analysis on two watersheds that burned in the 2012 
High Park Fire in northern Colorado to make use of previous field ob
servations for model evaluation (Kampf et al., 2016; Schmeer et al., 

2018; Brogan et al., 2019b). This fire burned over 350 km2 of primarily 
forested land. Researchers conducted post-fire erosion and channel 
monitoring within two ~14–16 km2 watersheds called Skin Gulch and 
Hill Gulch (Fig. 1). These watersheds were burned at moderate to high 
severity over 65–70% of their area (Brogan et al., 2019b; Schmeer et al., 
2018) and range in elevation from 1740 to 2580 m. Prior to the fire, land 
cover was primarily ponderosa pine (Pinus ponderosa) woodland and 
forest with some shrublands and grasslands at lower elevations and 
mixed conifer forest at higher elevations. The climate is semiarid, with 
mean annual precipitation between 440 and 600 mm (PRISM Climate 
Group). Soils are mostly shallow sandy loams, and bedrock outcrops are 
common on steep slopes. 

Erosion rates were measured from late 2012–2015 at 29 sediment 
fences that captured the sediment eroded from convergent hillslopes. 
The mass of sediment collected in each sediment fence was measured in 
the field, converted to dry mass, and normalized by hillslope drainage 
area to give sediment yields (SY). Drainage areas of these hillslopes 
ranged from 0.1 to 1.5 ha, with slopes from 11 to 65% and lengths from 
48 to 270 m. Eight of the hillslopes were mulched with straw or wood 
chips after the fire to reduce erosion. The hillslopes were installed in 
clusters of four to seven sites in the upper, middle, and lower elevations 
of the study watersheds, with each cluster containing at least one tipping 
bucket rain gauge (details in Schmeer et al., 2018). This paper focuses on 
modeling the total erosion during a sequence of rain storms in summer 
2013, which included 12 convective thunderstorms in July and August 
and one large long-duration storm in September that produced more 
than 250 mm of rainfall (Kampf et al., 2016). We selected the time 
period from June-October 2013 for our analysis because the majority of 
the post-fire erosion measured at these sites was produced in this time 
frame. 

3.2. Model applications 

We applied four models to simulate seasonal total SY at the hillslope 

Fig. 1. Study watersheds, Skin Gulch and Hill Gulch, overlying the Monitoring Trends in Burn Severity (MTBS) burn severity map for the 2012 High Park Fire in 
Colorado. Locations of field measurements for rainfall (rain gauges) and sediment yield (sediment fences) also shown. 
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scale: the regression model of Schmeer et al. (2018), RUSLE, WEPP, and 
AGWA/KINEROS2. Each model is described in detail in the following 
sections. Hillslope-scale models were each evaluated using correlation 
analyses and comparisons of summary statistics between simulated and 
observed hillslope SY. We then applied RUSLE, WEPP, and 
AGWA-KINEROS2 to simulate watershed-scale SY for each of the two 
study watersheds with varying sizes of hillslope sub-units to examine 
which models and sizes of hillslope sub-units best approximate the 
observed spatial patterns of erosion and expected watershed SY. Finally, 
to evaluate how parameter uncertainty affects watershed-scale simula
tions, we created ensembles of possible watershed-scale erosion rates 
using the erosion modules within VIC. Each of these steps is described in 
detail below. 

3.2.1. Empirical model 
The empirical model from Schmeer et al. (2018) was developed for 

the hillslope scale using the observed hillslope characteristics and SY. 
The model equation is: 

SY ¼K1 þ K2 � ðPα �Bβ � LγÞ þ ε (1)  

where SY is the sediment yield (Mg ha� 1); K1 is an additive shift that 
adjusts for overall bias in the empirical model (Equation (1) of Schmeer 
et al., 2018); P is the depth (mm) of rainfall from June–Sept.; B is the 
percent of bare soil (%B), and L is the maximum flow length (m) of each 
hillslope. The powers (α, β, and γ) and the empirical coefficient (K2) 
were identified by Schmeer et al. (2018) as those that minimized 
average prediction error (ε): K1 ¼ � 0.05, K2*1000 ¼ 5.6, α ¼ 1.1, β ¼
1.5, γ ¼ � 1.1, ε ¼ 3.7. 

We ran this model for the observed hillslopes using two different sets 
of input: (1) field observations, and (2) values derived from spatial 
datasets; these spatial dataset values are needed to apply models at the 
watershed scale. Both model runs used field values of P from the nearest 
rain gauge to each hillslope. The field values of %B are from field ground 
cover measurements, which were point counts along transects (Schmeer 
et al., 2018). Derived values of %B were assigned based on burn severity 
classes from the Monitoring Trends in Burn Severity (MTBS) map 
(Eidenshink et al., 2007) and the default cover values in Disturbed WEPP 
for forest, and low to high severity fire (Elliot, 2004). Unburned areas 
were assigned bare soil values of 0%; low severity fire 15%; moderate 
severity fire 35%, and high severity fire 55%. We assigned the average 
observed mulch cover for spring 2013 (38%) to all mulched hillslopes. 
Field observations of L came from Schmeer et al. (2018), and derived 
values of L were determined using the hillslope delineation tool in 
AGWA. 

3.2.2. RUSLE 
The RUSLE model is a hillslope-scale model, but it can be applied at 

watershed scale by dividing watersheds up into hillslopes and summing 
the total erosion. RUSLE applies the equation: 

A¼RKLSCP (2)  

where A is the soil erosion rate (Mg ha� 1 hr� 1); R is the rainfall erosivity 
(EI30); K is the soil erodibility; L is the length factor; S is the slope factor; 
C is the cover factor; P is the erosion control practice factor. 

For R we used the closest rain gauge to each hillslope to compute EI30 
from June-October 2013. For soil erodibility we used the whole soil K 
factor from the Soil Survey Geographic Database (SSURGO), which is a 
soil database with soil units mapped at scales of 1:12,000 to 1:63,360 
(Soil Survey Staff, 2014a, 2014b). We used the coarser 1:250,000 State 
Soils Geographic Database (STATSGO) for areas where SSURGO data did 
not include K factor values. Each hillslope was assigned the K value from 
the soil survey polygon covering the largest total area in the hillslope. 
We followed the methods of Yochum and Norman (2015) to calculate 
the K factor for all components within each soil map unit as the 
depth-weighted mean for the top 15 cm of soil for each component, and 

as the area-weighted mean for any non-water or non-rock components of 
the map unit. K was converted to metric units (Mg ha hr ha� 1 MJ� 1 

mm� 1) according to Renard et al. (1997). K was adjusted for post-fire 
conditions using multiplication factors to increase the K for different 
levels of burn severity: 1.5 for low severity; 1.75 for moderate severity, 
and 2.0 for high severity (Schmeer, 2014). 

L is the length factor, defined as: 

L¼
� λ

22:13

�m
(3)  

where λ is the slope length (m), and m is an exponent related to the ratio 
of rill to interrill erosion, expressed as: 

m¼
β

1þ β
(4)  

where β is expressed as: 

β¼ðsin θ=0:0896Þ��3:0 ðsin θÞ0:8 þ 0:56
� (5)  

and θ is the slope angle in radians. 
The slope factor, S, for soils with primarily surface flow and high 

susceptibility to erosion is defined as 

S¼ 10:8 sin θ þ 0:03 (6)  

for slopes < 9%, and as 

S¼ðsin θ=0:0896Þ0:6 (7)  

for slopes � 9%, where θ is the slope angle in radians. 
C is the cover factor, which we assigned based on mean field mea

surements by burn severity from Larsen and MacDonald (2007); low, 
moderate, and high burn severity were assigned C factors of 0.01, 0.05, 
and 0.20 respectively. Finally, P is the support practice factor, which is 
used to represent mulch. Areas with >50% straw or wood shred mulch 
were assigned a value of 0.22 (Schmeer, 2014). All other areas were 
assigned a P factor of 1. 

3.2.3. WEPP and AGWA-KINEROS2 
WEPP and AGWA-KINEROS2 were applied both for the observed 

hillslope simulations and for the watershed-scale simulations. Contrib
uting areas for each hillslope were delineated for WEPP Watershed using 
WEPP’s delineation tool, the Topographic Parameterization (TOPAZ) 
(Garbrecht and Martz, 1997), and for KINEROS2 using AGWA. Precip
itation input was assigned using the nearest tipping bucket rain gauge 
(Fig. 1). WEPP requires additional atmospheric variables: temperature, 
solar radiation, dew point, wind speed, and wind direction. Values were 
compiled from the Red Feather Lakes Remote Automated Weather Sta
tion (RAWS), which is about 20 km NW of the study watersheds; 
although these atmospheric variables are required by WEPP they have 
limited influence on erosion rates. KINEROS2 requires initial soil 
moisture values prior to each event; because we did not have soil 
moisture measurements we set these to the default value of 0.2. Soil 
parameters required by the models include saturated hydraulic con
ductivity, particle sizes as percent sand, silt, and clay, rock content, and 
porosity. These values were taken from SSURGO and STATSGO as 
described in section 3.2.2. Land cover parameters required by the 
models include percent cover, interception storage, and surface rough
ness. These were taken from the Existing Vegetation Type (EVT) 
developed by the LANDFIRE program using decision tree models, field 
data, Landsat imagery, elevation, and biophysical gradient data com
bined with the soil burn severity map to change land cover parameters 
for each burn severity class (Elliot, 2004; Canfield and Goodrich, 2005; 
Robichaud et al., 2007). Both WEPP and AGWA have built-in ap
proaches for assigning soil and vegetation parameters and for modifying 
parameters based on burn severity class. We did not calibrate the models 
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because we were interested in how these tools perform for management 
applications, where erosion observations are not available. 

3.2.4. Watershed-scale simulations 
Watershed-scale sediment loads are often estimated by summing the 

sediment loads of all hillslopes within the watershed, so these values are 
sensitive to the size of the hillslope sub-units. To understand the influ
ence of hillslope size, we developed a range of watershed-scale simu
lations by dividing up the watersheds into hillslopes with different target 
sizes: 0.5, 1, 2.5, 5, 10, 15, and 25 ha using a 10 m digital elevation 
model. This range of sizes was based on the ability of TOPAZ to define 
hillslopes at different resolutions; TOPAZ failed when the target hill
slope size was smaller or larger than this range. We then used the hill
slope delineation algorithm within AGWA to create hillslopes with the 
same set of target areas for AGWA-KINEROS2. The hillslope delineations 
are similar but not exactly the same for WEPP and AGWA-KINEROS2, 

except at 25 ha target areas. Precipitation inputs and parameter values 
for each model came from the same sources described for the hillslope 
simulations. In addition to the simulations for hillslopes of different 
sizes, we applied a gridded version of RUSLE to 30 m raster cells across 
each watershed (Winchell et al., 2008; Gannon et al., 2019); this com
parison was added because gridded RUSLE has become a popular 
approach for erosion modeling. 

To evaluate effects of parameter uncertainty on watershed-scale 
sediment yields we used the erosion modules in VIC (i.e., MUSLE, 
HSPF, DHSVM). Each module was run for all ranges of hillslope sizes 
using variable plausible parameter values. Initial parameter settings 
were based on Livneh et al. (2013, 2015) and Stewart et al. (2017), who 
applied the VIC erosion modules to simulations for this region. VIC 
vegetation settings were adjusted to account for wildfire effects using 
the same percent cover estimates generated for each hillslope in 
AGWA-KINEROS2. Parameters that most affected erosion rates were 

Fig. 2. Visual evidence of surface erosion in 2012 Pictometry air photos. Top image shows locations of digitized channel heads (yellow) in Skin Gulch (left) and Hill 
Gulch (right), and bottom image zooms into the boxed area in Hill Gulch. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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identified for each erosion module using a Sobol sensitivity analysis. 
This led to selection of eight VIC soil parameters, which were varied 
using bounds from published studies (Demaria et al., 2007; Troy et al., 
2008; Yanto et al., 2017), as well as nine suspended sediment loading 
(SSL) parameters, which were varied using bounds from Doten et al. 
(2006), Maidment (1993), and Donigian and Love (2003). 

To evaluate the spatial patterns of simulated erosion within water
sheds we compared simulated erosion rates to the density of channel 
heads. The channel density in the study area increased dramatically 
after the fire due to post-fire erosion (Henkle et al., 2011; Wohl, 2013). 
We visually identified locations of channel heads at the tops of rills or 
gullies (Fig. 2) from National Ecological Observatory Network (NEON) 
aerial camera images with 25 cm resolution for June 28-July 16, 2013 
and Larimer County 0.2 m resolution imagery obtained from Pictometry 
for September 1, 2012. Rills and gullies were distinguishable from the 
main stream channels because the larger streams typically still retained 
some riparian vegetation. We computed the fraction of watershed total 
channel heads within each of the 25 ha hillslopes and evaluated the 
correlations of these values with fractions of total simulated sediment 
load predicted in the models. The channel head density is a reasonable 
surrogate for relative erosion rates across the watersheds, as it was 
infeasible to measure absolute erosion rates for sub-watersheds larger 
than 1.5 ha. 

We then compared total watershed-scale sediment load (SL, Mg) and 
SY (Mg ha� 1) for both study watersheds, each model (RUSLE, WEPP, 
AGWA-KINEROS2, and the VIC modules), and each size of hillslope sub- 
units. For the models designed for spatial application (RUSLE, WEPP, 
AGWA-KINEROS2), we also evaluated how the fraction of watershed 
total SL for each hillslope varied between each of the models using 
Pearson and Spearman correlation analysis. We used fractions of total 
sediment load rather than actual SL values because magnitudes of SL 
varied substantially between models. 

4. Results 

4.1. Hillslope scale 

When compared to sediment yields measured at sediment fences, 
most of the models did not perform well. Only the empirical regression 
model was significantly correlated to observed seasonal total sediment 
yields (SY) when the original field measurements were used as inputs 
(Table 1, Fig. 3a). When the regression model was applied using inputs 
from geospatial datasets, predictions of SY were not significantly 
correlated with observed SY (Fig. 3b), primarily because the estimated 
percent bare soil using burn severity and mulch locations had no cor
relation to the observed percent bare soil (R2 ¼ 0.03). This indicates that 
one major source of error in models applied to unmonitored areas is the 
accuracy of the geospatial datasets used to parameterize the models. 

RUSLE mostly under-predicted SY, but five sites in Skin Gulch had 
predicted SY values that were much higher than observed (Fig. 3c); these 

over-predicted sites all had long slopes (>150 m). AGWA-KINEROS2 
over-predicted SY for many of the Skin Gulch hillslopes and under- 
predicted SY for the un-mulched Hill Gulch hillslopes (Fig. 3d). The 
range of SY predicted by WEPP was consistent with the observed range 
of SY, but the predicted values had no correlation with the observed 
values (Table 1; Fig. 3e and f). Hillslope SY observations are often biased 
low because sediment fences can fill to capacity with sediment, and 
suspended sediment can bypass the collection fence (Wilson, 2019). 
However, we did not identify any connection between under- or 
over-prediction of simulated SY and the locations where the sediment 
fences had over-topped with sediment. 

Because of the lack of correlations between simulated and observed 
SY, we also compared the means and standard deviations of SY between 
observations and models. The empirical model with field-derived inputs 
and the WEPP model both produced mean SY values that were within 
15% of the observed values (Table 1). RUSLE and AGWA-KINEROS2 
over-predicted the mean and standard deviations of SY by factors of 
three or more, whereas the empirical model with derived inputs pre
dicted only about half of the measured SY. 

4.2. Watershed scale 

Each of the models produced different magnitudes and spatial pat
terns of seasonal total SY across the study watersheds. The ranges of 
watershed total SL (and SY) varied from 9 � 103 Mg (6 Mg ha� 1) in 
WEPP to 2 � 106 Mg (2000 Mg ha� 1) in VIC-MUSLE, with values varying 
between models and with the size of hillslopes within each simulation 
(Table 2). In comparison, observed hillslopes had a mean SY of 11 Mg 
ha� 1 and maximum of 38 Mg ha� 1, which converts to 2 � 104 - 4 � 104 

Mg per watershed if the mean value is applied uniformly. Uncertainties 
in these watershed-scale estimates stem from variability in hillslope 
characteristics and burn severity, and uncertainties in hillslope-scale 
measurements; however, these values are a reasonable first-order esti
mate for evaluating models. Models with watershed-scale sediment 
loads in the range estimated from field measurements were WEPP, 
AGWA-KINEROS2, and the VIC modules with the smallest hillslope 
sizes. RUSLE values were all higher than the SY estimated from the field 
observations. 

Each model predicted increasing SL with larger hillslope sizes 
(Figs. 4 and S1), except for WEPP in Skin Gulch, which predicted 
declining SL for the watershed simulations using the largest hillslope 
sub-units. Even though the total watershed area was the same for all 
simulations, the simulated SY increased non-linearly with greater length 
of internal hillslopes within the watersheds. This effect is greatest in the 
hillslope version of RUSLE because it does not simulate sediment 
deposition within hillslopes. This scale dependence in simulated SL is 
not present for the gridded version of RUSLE because the L and S factors 
are calculated for each 30 m pixel (Winchell et al., 2008) instead of for 
hillslopes of varying sizes. Gridded RUSLE total SL were 112,000–155, 
000 Mg for Skin and Hill Gulch, respectively, at the lower range of those 
predicted by the hillslope version of RUSLE. 

Simulated watershed-scale SL values were also sensitive to param
eter selection, as shown in the VIC ensemble simulations (Figs. 4 and 
S1). Sediment loads were overall highest for VIC-HSPF and VIC-MUSLE, 
but VIC-DHSVM had the greatest sensitivity to parameter values, with 
simulated SL varying over two orders of magnitude across the ensembles 
of simulations for each scale of hillslope sub-units. 

Spatial patterns of SY within watersheds are shown in Fig. 5. For both 
Skin Gulch and Hill Gulch, gridded RUSLE produced the highest SY in 
the center portions of the watersheds, where burn severity was high and 
slopes are steep. Simulated SY rates in these areas exceeded 1000 Mg 
ha� 1 for some individual grid cells (Fig. 5a). These extreme rates were 
less common for RUSLE applied at 2.5 ha hillslope resolution, but they 
were present for some hillslopes at the 25 ha resolution due to the long 
hillslope lengths (Fig. 5b and c). WEPP simulated less spatial variability 
overall, but generally SY was highest in areas with high burn severity 

Table 1 
Summary of model performance for simulating sediment yields compared to the 
observed hillslope values. Asterisks indicate significant at p < 0.05. Table also 
indicates the mean and standard deviation of sediment yield (Mg ha� 1) for both 
the observed and simulated values; RMSE also in (Mg ha� 1).  

Model R2 RMSE Intercept Slope Mean Std 
Dev 

Observed     11.2 10.1 
Empirical, field 

inputs 
0.60* 5.2 3.4* 0.61* 10.2 8.0 

Empirical, derived 
inputs 

0.13 2.7 4.7* 0.10 5.8 2.9 

RUSLE 0.04 23.2 13.6* � 0.44 61.5 102.8 
AGWA-KINEROS2 0.07 43.0 42.9* � 1.13 30.3 43.7 
WEPP 0.00 10.3 10.4* 0.05 12.7 10.9  
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(Fig. 5d and e). AGWA-KINEROS2 had isolated areas of very high 
erosion in both watersheds (>400 Mg ha� 1) with low erosion in most 
other locations (<1 Mg ha� 1). Boundaries of the high erosion areas are 
similar to soil survey polygons, suggesting that this pattern relates to soil 
parameters. 

Correlation analysis (Fig. S2) indicates more similarities between 
models than are evident visually (Fig. 5). Correlations are strongest 
between gridded and hillslope versions of RUSLE (r ¼ 0.69–0.81), which 
differed only in the original resolution of computations (Fig. S2). Both 
versions of RUSLE were better correlated with WEPP (r ¼ 0.45–0.63; ρ 
¼ 0.56–0.63) than with AGWA-KINEROS2 (r ¼ 0.01–0.26; ρ ¼
0.22–0.50). WEPP was also significantly correlated with AGWA- 
KINEROS2 (r ¼ 0.58; ρ ¼ 0.63). Interestingly, the models were not 
consistent in simulating which of the two watersheds produced more 
erosion. RUSLE and WEPP simulated higher total sediment load and 
average sediment yield in Hill Gulch, whereas AGWA-KINEROS2, 
MUSLE, and DHSVM simulated higher total sediment load for Skin 

Gulch (Table 2). Hill Gulch has higher average hillslope lengths, slopes, 
and soil erodibilities, which led to higher SL in RUSLE and WEPP. In 
AGWA-KINEROS2, the boundaries of areas with particularly high 
erosion in Skin Gulch (Fig. 5f and g) corresponded with boundaries of 
soil polygons, so these patterns were likely heavily influenced by the of 
soil parameter values. VIC-MUSLE, VIC-HSPF, and VIC-DHSVM had 
parameter values based on those in AGWA-KINEROS2, so they also 
produced higher SL in Skin Gulch. 

The simulated patterns of relative erosion amounts (fractions of 
watershed total SL) for 25 ha hillslopes were significantly correlated 
with the fraction of total channel heads (r ¼ 0.26–0.64; ρ ¼ 0.41–0.72) 
(Fig. 6), indicating the models all produced erosion patterns that have 
some consistencies with those of post-fire rilling and gullying. AGWA- 
KINEROS2 simulations diverged most from the channel head pattern 
for intermediate-length hillslopes in Hill Gulch, whereas RUSLE had 
more outliers for the longest hillslopes in Skin Gulch because of the 
strong influence of length on RUSLE sediment yields. 

Fig. 3. Simulated total sediment yield (SY) for June-October 2013 compared to observed SY at hillslopes from (a) Schmeer et al. (2018) empirical model with inputs 
from field measurements; (b) same as (a) except with inputs derived from geospatial data; (c) RUSLE; (d) AGWA-KINEROS2; (e) WEPP. Line is 1:1. Data in Kampf 
et al. (2020). 
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5. Discussion 

Our results confirm prior studies showing that uncalibrated hillslope- 
scale erosion models are not well correlated with hillslope erosion ob
servations (Larsen and MacDonald, 2007; Miller et al., 2012). One major 
source of error in applying un-calibrated models to new locations is the 
accuracy of input parameters derived from geospatial datasets. In 
particular, improvements are needed in surface cover data, as bare soil is 
the primary variable responsible for increased post-fire erosion in Col
orado (Larsen et al., 2009). Accurate representation of bare soil from 
satellite or airborne remote sensing data is inherently challenging 
because of the fine-scale heterogeneity of regrowth, but estimates could 
be improved with more extensive field cover measurements for training 
remote sensing image classifications. We recommend collecting field 
ground cover data where possible to support applications of erosion 
models for management purposes. Soil property data can also introduce 
error because the spatial resolution of soil survey polygons is often 
coarser than the size of modeled hillslopes. Many soil survey polygons 
contain multiple soil components, and boundaries between different 
surveys can cause abrupt changes in parameters. Conducting full soil 
surveys in new management areas is likely infeasible in most circum
stances, but modelers could consider conducting sensitivity analyses, 
varying soil parameter values to evaluate their effects on simulated 
sediment yields. Finally, in the case study presented here, uncertainties 
in observed SY, particularly under-catch of sediment, also affected 
model-observation comparisons. 

Although higher quality input data should improve model results, it 

may not be realistic to expect uncalibrated hillslope erosion models to 
simulate SY accurately for individual hillslopes. Each hillslope has 
unique and heterogeneous topography, soil, vegetation, and rainfall 
patterns, leading to complex internal erosion and deposition patterns 
that are challenging both to measure and to model. However, the reli
ability of these models over larger watershed areas is generally more 
important for management considerations, as models can guide de
cisions on which watersheds to target for erosion control. We found that 
RUSLE over-predicted erosion at the watershed scale compared to our 
empirical estimate, whereas WEPP and AGWA-KINEROS2 produced 
values that were more consistent with estimated values from field ob
servations. In part, RUSLE may over-predict because it represents gross 
erosion, while both erosion and deposition are modeled in WEPP and 
AGWA-KINEROS2. Managers should use the spatial erosion patterns 
simulated by these models to map areas of low and high erosion rather 
than rely on the magnitudes of simulated sediment load. The relative 
patterns of erosion are more consistent between models than the 
watershed-scale sediment loads. In the watersheds evaluated here, the 
relative erosion patterns were significantly correlated with mapped 
patterns of rilling and gullying, albeit with substantial scatter in the 
relationships (Fig. 6). Although the channel head mapping was quali
tative and only a relative index of erosion, the significant correlations 
indicate that the models do identify areas that experienced high post-fire 
erosion, although the spatial patterns may not be entirely consistent 
between models. 

For all models, watershed-scale sediment loads were closest to our 
empirical estimate when hillslopes were divided into the smallest areas 
(i.e., 0.5 ha). In USLE and WEPP smaller hillslopes were more realistic 
because the models were originally developed using plot-scale data. 
Relationships between simulated SY and input variables are scale- 
dependent in hillslope models because they use length to predict 
erosion rates (Wu et al., 2008; Ghaffari, 2011; Fu et al., 2015). When 
such models are applied to larger slopes than those for which they were 
developed, they may not adequately represent the erosion and deposi
tion processes. Longer flow paths can enable greater rill and gully 
development, leading to concentrated flow with greater transport ca
pacity and higher SY (Pietraszek, 2006); however, longer flow paths can 
also provide more opportunities for sediment to be deposited within 
hillslopes (Afshar et al., 2010), leading to complex and highly variable 
scaling relationships (Wagenbrenner and Robichaud, 2014). WEPP and 
AGWA-KINEROS2 allow for both erosion and deposition within hill
slopes, whereas RUSLE, VIC-MUSLE, and VIC-HSPF do not. This leads to 
greater sensitivity to hillslope scale in the latter models. RUSLE sedi
ment yields progressively increase with longer slopes unless a slope 
length threshold is applied (Nearing et al., 1990). In RUSLE, SY also 
increases with slope based in part on the ratio of rill to interrill erosion 
which increases with slope (McCool et al., 1989). Many of the study area 

Table 2 
Summary of watershed total sediment loads (Mg) [and sediment yields (Mg 
ha� 1)] for each model and watershed divided into 0.5 ha and 25 ha target 
hillslope areas. RUSLE gridded values were calculated from a 30 m DEM. Values 
for MUSLE, HSPF, and DHSVM represent mean values calculated from ensemble 
simulations in VIC.  

Model Skin Hill 

0.5ha 25ha 0.5ha 25ha 

RUSLE 88,000 
[58] 

445,000 [292] 102,000 
[72] 

470,000 [333] 

WEPP 9100 [6] 27,000 [16] 10,200 [7] 27,100 [19] 
AGWA- 

KINEROS2 
41,000 
[27] 

55,300 [36] 20,300 
[14] 

23,700 [17] 

VIC-MUSLE 36,200 
[24] 

248,000 [162] 30,600 
[22] 

99,300 [70] 

VIC-HSPF 38,700 
[25] 

2,470,000 
[1620] 

42,700 
[30] 

2,410,000 
[1700] 

VIC-DHSVM 43,400 
[28] 

279,000 [183] 38,100 
[27] 

257,000 [182] 

RUSLE gridded 112,000 [73] 155,000 [110]  

Fig. 4. Changes in simulated watershed total sediment loads with target hillslope area for Skin Gulch and Hill Gulch. Points are for WEPP, AGWA-KINEROS2, and 
RUSLE hillslope watershed totals, and shaded ranges are for the VIC modules with varying parameter values. Boxplots of VIC sediment loads in Fig. S1. Data in Kampf 
et al. (2020). 
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hillslopes also had steeper slopes than were used for RUSLE develop
ment (Nearing, 1997; Renard et al., 1997). When applying these models 
to new watersheds that do not have erosion observations, we recom
mend using a fine hillslope resolution, ideally with lengths between 10 
and 100 m, which is most comparable to the plots used to develop USLE, 
RUSLE, and WEPP. 

An additional consideration in selecting a model is the time scale of 
information needed. RUSLE is intended for long time scales (seasonal, 
annual). WEPP simulates individual storms, but results are usually 
evaluated as the sums of sediment yields over seasons or years. AGWA- 
KINEROS2 is an event-based model that is typically applied for indi
vidual rain storms. Here we compared these models in terms of their 
seasonal total erosion simulations to maintain consistency between the 

three models, but further evaluation of WEPP and AGWA-KINEROS2 
could consider simulations of individual storms. Although RUSLE does 
not simulate the runoff response to time-varying rainfall and snowmelt; 
adding a runoff factor to RUSLE can improve its performance (Kinnell, 
2010). Overall, our results demonstrate that simulations are likely to be 
most accurate when run with fine spatial discretization (small hillslopes) 
and short time steps that allow simulating erosion from individual 
storms. These finer resolution simulations aggregate to more realistic 
sediment loads for large spatial scales (watersheds) and long time scales 
(seasons, years). 

Fig. 5. Spatial patterns of simulated sediment yields (SY) for Skin Gulch (left) and Hill Gulch (right) using (a) RUSLE with values computed by 30 m grid cell; (b,c) 
RUSLE hillslope; (d,e) WEPP for hillslope polygons, and (f,g) AGWA-KINEROS2 for hillslope polygons. Target hillslope areas in (b,d,f) are 2.5 ha, and those for (c,e,g) 
are 25 ha. 
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6. Conclusions 

This study compared the performance of erosion models commonly 
used in watershed management. Although most of the models were 
developed at hillslope scale, managers often employ them for watershed 
scale prediction. With the exception of a site-specific regression model, 

we found that none of the model simulations of sediment yield corre
lated well with SY measured at hillslope sediment fences, probably due 
to a combination of measurement and model uncertainties. RUSLE and 
AGWA-KINEROS2 predicted wider ranges of SY than those observed in 
the field and substantially over-predicted some hillslope SY values, 
whereas WEPP predicted a range of SY more consistent with field 

Fig. 6. Fraction of watershed total sediment load vs. fraction of watershed total channel heads by 25 ha hillslope divisions (Fig. 5c,e,g). Pearson (r) and Spearman (ρ) 
correlation coefficients given for each combination of values; * indicates significant at p < 0.05 Significance of ρ could not be computed due to ties. Colors of points 
indicate hillslope length in meters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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measurements. One large source of potential error stems from geospatial 
datasets used to parameterize hillslope models; accurate maps of ground 
cover are particularly important for erosion simulations. Given the 
heterogeneity of land surface properties within hillslopes, it is unreal
istic to expect an erosion model parameterized with geospatial data to 
perform well for individual hillslopes. The models were somewhat more 
consistent with one another in their simulated spatial patterns of erosion 
across watersheds, and they all simulated erosion patterns that signifi
cantly correlated with visual observations of rill and gully channel 
heads. This means that although the models did not capture the site- 
specific factors that affect individual hillslopes, they were able to 
identify areas with high post-fire erosion within watersheds, though 
with some variability in patterns between models. 

The models differed more in their predictions of watershed-scale 
sediment loads, which varied by orders of magnitude. At watershed 
scale, WEPP and AGWA-KINEROS2 had sediment loads in the range 
estimated from scaling up our hillslope observations, whereas RUSLE 
exceeded the estimated range. Departure from the estimated range 
became greater for larger size hillslopes, so erosion models should be 
applied on small (<1 ha) hillslopes to avoid unrealistic increases in 
simulated SY caused by long slope lengths. VIC erosion model applica
tions also highlighted substantial variability in watershed sediment 
loads due to parameter selection, particularly for soil parameters. 
Because of the high uncertainty in watershed sediment loads, users 
should consider making management decisions based on relative 
erosion patterns rather than sediment load quantities. Collecting field 
erosion data across multiple scales from hillslopes to watersheds is 
critical to future improvements in simulating watershed-scale erosion. 
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