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Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was
conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domi-
ngensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and
zeolite. Response surface methodology and central composite design have been utilized to analyze
experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as
independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent
variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal
Co-treatment efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and
Landfill leachate 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also
RSM monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-
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1. Introduction

Municipal solid waste (MSW) has been a major global problem.
With progressive industrialization of developing countries, solid
waste has gradually become a threat to the environment. MSW has
also been considered as one of the most serious environmental
challenges in many cities in the world (Oloruntade et al., 2013).
Sanitary landfills have been constructed to manage solid wastes in
most countries. Although solid waste management provides ben-
efits, this approach also produces leachates (Aziz et al., 2011).
Leachates are generated when moisture mixes with refuse in a
landfill. Pollutants become dissolved in a liquid phase, accumulate,
and percolate. Landfill leachates are considered as wastewater that
has caused adverse environmental impact. Leachates are mainly
characterized by high concentrations of particular contaminants.
Landfill leachate is treated with several primary methods, including
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physicochemical and biological processes, and remediation (Aziz,
2012).

Plants have been used in phytoremediation to remediate
contaminated soils and waters; phytoremediation is an affordable
and non-invasive system (Mojiri et al., 2013). Phytoremediation is
also a new approach that provides more ecological benefits than
existing methods. Although phytoremediation is cost effective, this
method requires technical expertise of project designers with field
experiences to choose appropriate species and cultivars for
particular metals and regions. Compared with further remediation
methods, phytoremediation can be performed with minimal
environmental disturbance (Mojiri, 2012, 2011). One of the most
vital factors in implementing phytoremediation is the selection of
an appropriate plant (Kutty et al., 2009). Constructed wetlands
(CW) can be considered as a phytoremediation system. This tech-
nique has been commonly applied in several regions, including
Asia, America, and Europe (Whitney et al., 2003; Chen et al., 2006;
Cortes-Esquivel et al., 2012; Ranieri et al., 2013). Ranieri (2012)
stated the potential of constructed wetlands (CWs) to remove nu-
trients from domestic and industrial wastewater has been well
documented. Physicochemical characteristics of wetlands confirm
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positive features to remediate pollutants. An expansive rhizosphere
of wetland herbaceous shrubs and tree species also offers an
enhanced culture zone for microbes that participate in degradation
(Williams, 2002). A CW system specifically engineered to improve
water quality is termed as a “constructed wetland treatment sys-
tem” (Sim, 2003). A wetland system includes permeable substrata,
such as gravel, which is normally planted with emergent wetland
plants, like Schoenoplectus, Typha, Phragmites, and Cyperus
(Shehzadi et al., 2014).

Typha is often found in areas near water bodies, such as lakes,
lagoons, and riverine areas, in many regions (Esteves et al., 2008).
Typha is a greatly flood-tolerant species that can allow internal
pressurized gas flow to rhizomes because this species is char-
acterized by a well-developed aerenchyma system; this system
provides oxygen for root growth in anaerobic substrates (Li et al.,
2010). Southern cattail (Typha domingensis) is extremely salt
resistant and considered as a potential source of pulp and fiber
(Khider et al., 2012). For other hand, certainly, T. domingensis is
the plant species which has been used in treating urban and
industrial effluents. Moreover, this plant has been reported
recently as a plant species with a high efficiency to accumulate
metals when is used in wetland constructed (Teles Gomes et al.,
2014). For other hand, T. domingensis has been suggested as a
biological mechanism to remove high phosphorous concentra-
tions from water (Di Luca et al., 2015). This plant species has been
suggested as a biomonitor in phytoextraction technology in areas
affected by some metals. Mojiri et al. (2013) and Mojiri (2012)
used T. domingensis to remove metals from wastewater and
leachates from landfill. Indeed, T. domingensis can effectively
remove pollutants.

This study mainly aimed to (1) co-treat municipal landfill
leachate and urban wastewater by using CW and (2) use a new
composite adsorbent, particularly ZELIAC, and zeolite in CWs.

2. Materials and methods
2.1. Landfill leachate and domestic wastewater sampling

Municipal landfill leachate samples were obtained from Isfahan
Landfill (geographical coordinates 32° 45’ 36” N and 51° 46’ 31” E).
The total landfill area is approximately 56 ha.

Urban wastewater samples were collected from Isfahan East
Wastewater Treatment Plant. Isfahan is a large city located at the
center of Iran. The characteristics of municipal landfill leachate and
domestic wastewater are shown in Table 1.

Table 1
Characteristics of landfill leachate, domestic wastewater and sludge.

2.2. Constructed wetland system

Three fresh, young, and healthy plants (T. domingensis)
were transplanted to the CW, which contained two substrate layers
of adsorbents (named ZELIAC and zeolite, respectively) whose
widths were both 2 mm (Fig. 1). The volume of the wetland
(height = 40 cm, width = 36 cm) was approximately 43 L. The
wetland was constructed by adjusting the lengths of plant roots.
Dark polyvinyl chloride was used to establish CW to prevent algal
growth. Leachate and wastewater mixture was poured into the
wetland, and the samples were collected at different times (contact
times). An air pump was used to supply air to the wetland.

2.3. ZELIAC and zeolite preparation

Zeolite, activated carbon, limestone, rice husk ash, and Portland
cement have been ground, passed through a 300 mm mesh sieve,
and mixed to prepare ZELIAC. Water was added, and the mixture
was evenly poured into a mold. After 24 h, the blend was removed
from the mold and soaked in water for three days to allow curing.
The mixture was allowed to dry for two days; afterward, the
mixture was crushed and passed through a sieve. Zeolite and
activated carbon were present in ZELIAC; therefore, ZELIAC could
function both as an adsorbent and ion-exchanger (Mojiri et al.,
2014a).

Typha domingensis

Leachate/Wastewater.

\

P
N

Granular ZELIAC

} 2mm

o/ Granular Zeolite

Discharge

43L

Water Pump

Fig. 1. Constructed wetland in current study.

No. Parameter Leachate average value Wastewater average value Standard discharge limit*
1 pH 7.95 6.74 6.5-8.5
2 EC (ms/cm) 3.87 1.53 —

3 TSS (mg/L) 607 - 60

4 Colour (Pt. Co) 1817 5.00 -

5 BODs (mg/L) 461.0 452 50

6 COD (mg/L) 2301 123 100

7 BODs/COD 0.20 - -

8 Nitrite (mg/L NO,—N-HR) 4117 10.1 1

9 NH5—N (mg/L) 627.0 149.0 2

10 Total organic carbon (mg/L TOC) 40.4 29.0 -

11 Total iron (mg/L) 8.13 1.11 3

12 Total manganese (mg/L) 2.08 0.50 1

13 Total nickel (mg/L) 4.62 0.40 2

14 Total cadmium (mg/L) 2.55 0.31 0.1

¢ Effluent Limitations for Non-Hazardous MSW Landfills in the Iran.
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Table 2
XREF results of ZELIAC and Zeolite.

ZELIAC

Compounds/elements Composition (%)

Zeolite

Compounds/elements Composition (%)

C 8.602
Ca0 26.308
SiOy 51.000
Al,03 9.200
Fe,03 1.504
K;0 1.201
MgO 1.004
Na,0 0.925
P05 0.028
SO3 0.020
Others 0.208

Si0; 67.39
Al,03 1041
Cao 5.17
K;0 4.16
F6203 3.92
MgO 1.18
Na,0 1.18
TiO, 0.45
MnO 0.10
Others 6.04

The diameters of ZELIAC and zeolite were both 1 mm (Fakin
et al., 2013). Table 2 shows the XRF results for ZELIAC and zeolite.

2.4. Analytical methods

The plant samples were removed, washed initially with tap
water and then with distilled water, and divided into small parts.
The plant samples, including roots as underground parts and leaves
and shoots as aboveground parts, were arranged for laboratory
analysis via wet digestion technique (Campbell and Plank, 1998).
Total organic carbon content, color, chemical oxygen demand
(COD), biochemical oxygen demand (BODs5), ammonia (NH3—N),
and metal contents in leachate and Ni and Cd contents in the roots
and shoots were monitored through spectrophotometry in accor-
dance with Standard DR/2500 HATCH (APHA, 2005).

2.5. Statistical analysis

The removal efficiencies of COD, NH3—N, colour, Ni, and Cd were
determined by evaluating the target parameters before and after
treatment were performed. Removal efficiency was estimated us-
ing Equation (1):

(G- ¢)*100

Removal (%) = C ,
1

(1)

where the initial and final concentrations of the parameters are C;
and Cg, respectively.

Design and analysis of experiments (DOE) have been generally
applied in planning, analyzing, and running experiments in
different fields, like wastewater treatment, food analysis, material
production, and medication intake. This method helps researchers
achieve their objectives with less effort, cost, and time. The appli-
cation of DOE in wastewater industries has become prevalent
because this method enables efficient data collection and reduces
error by excluding non-significant factors from experiments. This
method also increases result accuracy within a target range.
Response surface methodology (RSM) consists of mathematical and
statistical techniques used to model and analyze problems. RSM
also aims to optimize responses by determining optimal operating
conditions of input variables (independent variables) that influence
responses. Optimization is a procedure by which optimum target
output for a specific process is determined; this procedure is con-
ducted with a series of experiments to test a range of values and
combinations of all factors (Mojiri, 2014).

In the current research, central composite design (CCD) and RSM
were employed to design the experiments and data analysis. CCD
was implemented by Design Expert Software Version 6.0.7. RSM
was employed to control optimum process parameters. RSM

involves mathematical and statistical methods suitable to model
and analyze problems (Aziz et al., 2011). In this methodology, re-
sponses of interest are influenced by several variables; therefore,
RSM is applied to optimize these responses (Aziz et al., 2011). The
total number of experiments for two factors was 13. Each factor is
composed of three levels; thus, a quadratic model is an appropriate
model, as shown in Eq. (2).

k k k  k
Y:ﬁo+ZﬁiXi+ZﬁiiXi2+z Zﬁini)(j+‘..+e (2)
i=1 iz ]

i<j

where the response is shown by Y; Xi and Xj are the factors; 0 is a
established coefficient; Bj, Bjj, and Pij display the interaction co-
efficients of linear-, quadratic-, and second-order terms, respec-
tively; the number of analyzed parameters is shown by k; and error
is shown by e. The results have been studied through ANOVA in
Design Expert Software Version 6.0.7.

Each of the three operating factors was considered at three
levels: low (—1), central (0), and high (+1). CCD and RSM were
employed to estimate the relationship between the most signifi-
cant operating variables, namely, react (contact) time (h) and
leachate-to-wastewater mixing ratio (%), and their corresponding
responses (dependent variables). This procedure aims to optimize
operating variables and their responses (Mojiri et al, 2013).
Different contact times (12, 42, and 72 h) and leachate-to-
wastewater mixing ratios (80, 50, and 20 v/v%) have been used in
the wetland system. The removal of five dependent parameters
(colour, COD, ammonia, Ni, and Cd) was evaluated as responses to
analyze aerobic process. 3D plots with respective contour plots
were found from experimental results. The effects of the interaction
of the two variables on responses were then analyzed (Table 3).

3. Results and discussions

Table 1 shows that the landfill leachate displayed a high-
intensity colour (1817 Pt. Co) and contained high concentrations
of COD (2301 mg/L), NH3—N (627 mg/L), Ni (4.6 mg/L), and Cd
(2.5 mg/L). BOD5 was 461 mg/L, and a low biodegradability ratio
(BODs5/COD) of 0.20 was observed (age > 15 years). In addition,
pollutant concentration exceeded the permissible limits issued by
the Effluent Limitations for Non-Hazardous MSW Landfills in Iran.

We also co-treated raw leachate with domestic wastewater by
using the newly designed wetland to decrease the environmental
risks caused by landfill leachate. The 3D surface plots to eliminate
contaminants (colour, COD, ammonia, Ni, and Cd) are shown in
Fig. 2. The ANOVA results for response parameters and response
value under optimum conditions are shown in Tables 4 and 5,
respectively.
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Table 3

Experimental variables and results.
Run LW (%) Contact time (h) Colour rem. (%) COD rem. (%) Ammonia rem. (%) Ni rem. (%) Cd rem. (%)
1 50.00 42.0 70.30 85.59 94.99 79.16 79.69
2 50.00 12.0 70.44 83.25 93.28 73.31 74.35
3 50.00 42.0 71.23 84.64 94.95 78.50 77.56
4 20.00 72.0 89.07 85.19 98.12 83.11 84.30
5 50.00 42.0 71.45 84.89 95.78 77.54 77.16
6 50.00 42.0 71.76 85.15 97.03 79.35 80.44
7 50.00 72.0 69.07 83.13 93.87 75.93 77.57
8 20.00 12.0 86.27 82.58 94.53 79.29 79.93
9 50.00 42.0 71.93 85.14 96.94 78.25 76.93
10 80.00 42.0 68.92 70.60 93.97 71.74 72.00
11 80.00 12.0 65.31 69.29 91.51 68.30 68.36
12 20.00 42.0 90.66 87.44 99.28 86.92 88.90
13 80.00 72.0 65.04 68.17 92.27 69.25 69.81
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Table 4

ANOVA results for response parameters.
Response Final equation in terms of actual factor® Prob. R? Adj. R? Adec. P. SD cv PRESS Prob. LOF
Colour 104.35—1.178A + 0.277B + 0.008A% — 0.002B? — 0.0004AB 0.0001 0.9930 0.9881 39.06 0.95 1.29 4291 0.1127
COD 73.37 + 0.499A + 0.272B—0.007A% — 0.002B — 0.001AB 0.0001 0.9962 0.9934 49.59 0.56 0.68 16.07 0.0919
NH3—N 94.01—0.113A + 0.294B + 0.006A% — 0.002B? — 0.0007AB 0.0002 0.9154 0.8550 12.42 0.86 0.91 17.22 0.7856
Ni 79.83—0.252A + 0.466B 0.0006A> — 0.006B> — 0.0007AB 0.0001 0.9857 0.9754 32.03 0.83 1.10 29.81 0.3093
Ccd 82.32—0.305A + 0.424B + 0.001A% — 0.003B? — 0.0008AB 0.0001 0.9488 0.9122 16.51 1.66 2.15 94.39 04174

2 In final equations, where A is leachate to wastewater mixing ratio (%, v/v), B is contact time (h).Prob.: Probability of error; R?: Coefficient of determination; Adj. R*:
Adjusted R?; Adec. P.: Adequate precision; SD: Standard deviation; CV: Coefficient of variance; PRESS: Predicted residual error sum of square; Prob. LOF: Probability of lack of

fit.

3.1. Colour removal

The dark brown color of the leachate is mostly caused by the
oxidation of Fe from ferrous form to ferric form and the formation
of ferric hydroxide colloids and complexes with fulvic/humic sub-
stances. This finding may also be attributed to the disposal of steel
scraps into landfill sites (Nagarajan et al., 2012).

The removal efficiencies of the studied parameters (Table 3)
varied from 65.0% (react time = 72 h and leachate-to-wastewater
mixing ratio = 80%) to 90.7% (react time = 42 h and leachate-to-
wastewater mixing ratio = 20%). Optimum colour elimination
(90.4%) was achieved at a react time of 47.9 h and leachate-to-
wastewater mixing ratio of 20.0%.

Conventional biological treatments, and chemical and physical
treatment processes are commonly used to remove colour from
wastewater (Olejnik and Wojciechowski, 2012). ACW is considered
as a complex bioreactor. CW treatment systems involve several
removal mechanisms, including plant adsorption, microbial
degradation, chemical oxidation, and filtration (Lee et al., 2009).
Bulc and Ojstrsek (2008) showed that 90% of colour can be removed
from textile wastewater by using CW. Mbuligwe (2005) also re-
ported that 77% of colour can be removed from textile wastewater
by using CW.

3.2. COD removal

The organic content of leachate is generally measured in terms
of COD and BODs (Kamaruddin et al., 2013). COD is defined as the
amount of oxygen required to completely oxidize organic constit-
uents to carbon dioxide and water (Tchobanoglous et al., 1993). A
decrease in BOD5/COD ratio also results in a decrease in treatment
efficacy (Kliminuk and Kulikowska, 2006).

The removal efficiency of the studied parameters (Table 3)
increased from 68.2% (contact time = 72 h and leachate-to-
wastewater mixing ratio = 80%) to 87.4% (react time = 42 h and
leachate-to-wastewater mixing ratio = 20%). Optimum COD elim-
ination (87.5%) was achieved at a react time of 52.9 h and leachate-
to-wastewater mixing ratio of 27.3%.

Villalobos et al. (2013) stated that plants do not play a major role
in COD removal because a decrease in the quantity of plants is not
directly proportional to the reduction in COD levels. Villalobos et al.
(2013) also observed Typha/non-media wetland and suggested that
medium components are crucial for COD removal, and bacterial
activity may be the cause of COD removal in wetlands. Thus, media

Table 5
The value of response at optimum conditions.

may provide an appropriate surface where biofilm can form;
attached bacteria likely facilitate COD removal (Stottmeister et al.,
2003). Lin et al. (2012) investigated the use of landfill leachate
treatment by using a subsurface-flow CW. Lin et al. (2012) selected
five substrates, particularly coal refuse, fly ash, cinder, soil, and
gravel and found that this type of CW results in a highly efficient
COD removal. Dhas (2008) reported that activated carbon and
limestone mixture is an alternative treatment to remove COD.

In the current study, the two substrates were ZELIAC and zeolite.
ZELIAC contains activated carbon, rice husk ash, limestone, Port-
land cement, and zeolite. These materials can effectively remove
COD (Kulikowska and Kliminuk, 2006; Aziz, 2012; Mojiri et al.,
2014b). Thus, COD removal in the current study was higher than
that in previous studies involving other types of wetlands (Mulidzi,
2010; Collison and Grismer, 2013).

3.3. Ammonia removal

One of the utmost significant problems encountered by landfill
operators is the presence of high levels of NH3—N in landfill
leachate over a long period. High amounts of unprocessed NH3—N
can decrease removal efficiency of biological treatment techniques,
accelerate eutrophication, and increase dissolved oxygen reduction.
Thus, NH3—N is poisonous to aquatic organisms (Bashir, 2007).

The removal efficiency of NH3—N (Table 3) ranged from 91.5%
(react time = 12 h and leachate-to-wastewater mixing ratio = 80%)
to 99.3% (react time = 42 h and leachate-to-wastewater mixing
ratio = 20%). Optimum ammonia removal (99.2%) was reached at a
react time of 51.4 h and leachate-to-wastewater mixing ratio of
20.0%.

In wetland vegetation systems, nitrogen and ammonia can be
removed in leachate through phytoremediation; the effect of root
zone should also be considered because plant roots produce oxygen
for nitrifying bacteria and other unique microorganisms growing in
the rhizosphere of wetland plants (Yang and Tsai, 2014). Lee et al.
(2009) stated that denitrification may remove 60%—70% of total
nitrogen removal and 20%—30% of nitrogen is derived from plant
uptake in CW wetlands. Aziz (2012) reported that majority of
NHs—N is removed biologically. Mulamoottil et al. (1999) reported
that treatment efficiencies for ammonia in wetland systems are
approximately 90%. Redmond (2012) investigated nitrogen removal
from wastewater by using CW and found good removal efficiency.

Independent factors Responses

A (%) B (h) Colour rem. (%)

COD rem. (%)

NH3—N rem. (%) Ni rem. (%) Cd rem. (%)

20.00 50.28 90.30 86.74

99.17 86.08 87.10

A: Leachate to Wastewater Mixing Ratio; B: Contact Time.
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Table 6

Accumulation of metals in roots and shoots of Thypa.
Run  Root Shoot TF

Ni(mg/L) Cd(mg/L) Ni(mg/L) Cd(mg/L) ForNi ForCd

1 0.237 0.133 0.246 0.136 1.03 1.02
2 0.009 0.009 0.007 0.006 0.77 0.66
3 0.231 0.135 0.234 0.135 1.01 1.00
4 0.023 0.021 0.021 0.020 0.91 0.95
5 0.214 0.129 0.212 0.129 0.99 1.00
6 0.227 0.130 0.230 0.135 1.01 1.03
7 0.243 0.164 0.267 0.175 1.09 1.06
8 0.008 0.007 0.006 0.005 0.75 0.71
9 0.216 0.124 0.210 0.120 0.97 0.96
10 0.224 0.159 0.228 0.161 1.01 1.01
11 0.164 0.096 0.135 0.075 0.82 0.78
12 0.019 0.013 0.015 0.010 0.78 0.76
13 0.291 0.178 0.328 0.195 1.12 1.09

3.4. Nickel and cadmium removal

Heavy metal pollution has been considered as one of the most
serious problems related to landfill leachates. Heavy metal treat-
ment is of utmost concern because heavy metals are recalcitrant
and persistent in the environment. Heavy metals are not biode-
gradable; these substances may also be present in landfill leachate
in different chemical/physical forms (El-Salam and Abu-Zuid,
2014).

The removal efficiency of Ni (Table 3) varied from 68.3% (react
time = 12 h and leachate-to-wastewater mixing ratio = 80%) to
86.9% (react time = 42 h and leachate-to-wastewater mixing
ratio = 20%). Optimum Ni removal (86.0%) was observed at a con-
tact time of 49.0 h and leachate-to-wastewater mixing ratio of
20.0%. Moreover, the removal efficiency of Cd (Table 3) ranged from
68.4% (react time = 12 h and leachate-to-wastewater mixing
ratio = 80%) to 88.9% (react time = 42 h and leachate-to-
wastewater mixing ratio = 20%). Optimum Cd elimination (87.1%)
was achieved at a contact time of 51.3 h and leachate-to-
wastewater mixing ratio of 20.0%.

In wetlands, plants can uptake metals. Moreover, media and
substrates can help facilitate metal removal. Wojciechowska and
Waara (2011) reported metal removal rates of 90.9%—99.9% by us-
ing CW. Kamrudzamana et al. (2012) showed that 91.51%—99.20% of
Fe can be removed by using CW.

Lesage et al. (2007) also observed that the Cd removal efficiency
of a CW is approximately 91%, which is close to the value obtained
in the current study. Khan et al. (2009) found the lowest removal
efficiency (40.9%) of Ni. The removal efficiency of Ni in the present
study is higher than that reported by Hadad et al. (2006) and Maine
et al. (2007).

In the current study, T. domingensis and two substrates, namely,
ZELIAC and zeolite, were used. These materials could be effective as
adsorbents and ion exchangers. Mojiri (2014) removed 70% of
metals from landfill leachate by using ZELIAC. Mojiri et al. (2013)
reported that metals are eliminated by T. domingensis with a
removal efficiency of 73%.

3.5. Accumulation of nickel and cadmium in roots and shoots of
Thypa domingensis

Heavy metals, such as Cd, Ni, Zn, Co, Mn, and Pb, can be accu-
mulated in plants by up to 100 or 1000 times more than those taken
up by non-accumulator (excluder) plants. The uptake efficiency of a
plant can be significantly improved (Tangahu et al., 2011). Table 6
shows the concentrations of Ni and Cd in the roots and shoots of
Typha in each run. The accumulation of metals in the roots and

shoots increased as Ni and Cd concentrations in leachate and
wastewater mixture increased. The same trend was observed when
contact time was increased. These results are consistent with those
of Karimi (2013).

Phytoremediation efficiency can be characterized by calculating
a translocation factor (TF). TF indicates the capacity of a plant to
store MTE in upper parts. TF is also defined as the ratio of metal
concentration in upper plant parts to metal concentration in roots
(Chakroun et al., 2010). Furthermore, TF corresponds to the per-
formance of a plant in translocating accumulated metals from roots
to shoots. TF is estimated as follows (Padmavathiamma and Li,
2007).

TF(Translocation Factor) = Cshoot

root

Table 6 shows that TF was >1 in several runs. ATF of >1 indicates
that a metal is translocated from roots to aboveground parts (Jamil
et al., 2009). Yoon et al. (2006) proposed that only plant species
with TF of >1 can be used for phytoextraction.

4. Conclusion

The levels of particular contaminants in municipal landfill
leachate exceeded the allowable discharge restrictions for colour,
COD, ammonia, Ni, and Cd. Pollutants from landfill leachate and
urban wastewater were removed by using a newly designed CW. T.
domingensis was transplanted in the CW, which contained two
layers of adsorbents (ZELIAC and zeolite). An air pump was used to
supply air to the wetland. CCD and RSM were employed to optimize
parameters. The main conclusions of current research are offered
below.

(1) The designed CW could eliminate 90.3%, 86.7%, 99.1%, 86.0%,
and 87.1% of colour, COD, ammonia, Ni, and Cd, respectively.

(2) Removal efficiencies decreased as leachate ratio in the
leachate and wastewater mixture increased.

(3) The accumulation of Ni and Cd in the roots and shoots of T.
domingensis was monitored. Current results showed that TF
was >1 in several runs. Thus, Typha is considered as a hyper-
accumulator plant.
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