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a b s t r a c t

Many cities are increasing vegetation in part due to the potential for microclimate cooling. However, the
magnitude of vegetation cooling and sensitivity to mesoclimate and meteorology are uncertain. To
improve understanding of the variation in vegetation's influence on urban microclimates we asked: how
do meso- and regional-scale drivers influence the magnitude and timing of vegetation-based moderation
on summertime air temperature (Ta), relative humidity (RH) and heat index (HI) across dryland cities? To
answer this question we deployed a network of 180 temperature sensors in summer 2015 over 30 high-
and 30 low-vegetated plots in three cities across a coastal to inland to desert climate gradient in southern
California, USA. In a followup study, we deployed a network of temperature and humidity sensors in the
inland city. We found negative Ta and HI and positive RH correlations with vegetation intensity.
Furthermore, vegetation effects were highest in evening hours, increasing across the climate gradient,
with reductions in Ta and increases in RH in low-vegetated plots. Vegetation increased temporal vari-
ability of Ta, which corresponds with increased nighttime cooling. Increasing mean Ta was associated
with higher spatial variation in Ta in coastal cities and lower variation in inland and desert cities, sug-
gesting a climate dependent switch in vegetation sensitivity. These results show that urban vegetation
increases spatiotemporal patterns of microclimate with greater cooling in warmer environments and
during nighttime hours. Understanding urban microclimate variation will help city planners identify
potential risk reductions associated with vegetation and develop effective strategies ameliorating urban
microclimate.

Published by Elsevier Ltd.
1. Introduction

Metropolitan areas contain a mosaic of land covers that include
contrasting patches of high- and low-vegetation intensity and
consequently have highly variable ecosystem structures and func-
tions (Grimm et al., 2000). Patterns in vegetation intensity are
directly linked to urbanization and mesoclimate distributions
(Brazel et al., 2007; Jenerette et al., 2007). Since the mid-20th
century, large cities in the United States are warming twice as
fast as surrounding rural and wildland areas (Stone et al., 2012),
especially in the dry southwestern United States (Brazel et al.,
2000). Regional urban warming, commonly described as the ur-
ban heat island (UHI), is created by increasing impervious surfaces
and decreasing vegetation cover, which warms temperatures in the
urban core compared to surrounding rural and wildland areas (Oke,
1973; Santamouris, 2015). However, at finer scales vegetation may
create heterogeneous cool refugia within cityscapes (Jenerette et
al., 2011; Imhoff et al., 2010; Davis et al., 2016). Vegetation in-
creases latent heat flux via transpiration and decreases sensible
heat flux via shading, which cools microclimates (Yang et al., 2011;
Jenerette et al., 2011; Chakraborty et al., 2015). Regionally, the
magnitude of vegetation cooling is influenced by climate patterns,
where, particularly in dryland regions, urbanization may increase
vegetation intensity compared to rural and wildland areas. In these
regions higher vegetation intensity creates an “oasis effect” and, as
a result, reduces summer temperatures within some neighbor-
hoods (Brazel et al., 2000; Jenerette et al., 2007; Buyantuyev and
Wu, 2010; Imhoff et al., 2010; Lazzarini et al., 2013; Jenerette et
al., 2013). Locally, the distribution of urban vegetation may
magnify temperature inequities within a city, resulting in unequal
benefits and health consequences for residents (Jenerette et al.,
2016). Within cities vegetation cooling is strongest in neighbor-
hoods that are near parks or have high-vegetation cover and water
consumption (Shashua-Bar and Hoffman, 2000; Harlan et al., 2009;
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Cao et al., 2010; Jenerette et al., 2011; Declet-Barreto et al., 2013).
However, increases in relative humidity (RH) associated with
highly-vegetated residential ecosystems of arid and semi-arid re-
gions may counter the cooling effect through increases in human-
perceived temperatures, as described by the heat index (HI,
Steadman, 1979; Hall et al., 2016). HIs are used to combine Ta and
RH into a single model that approximates human-perceived
equivalent temperature in shaded areas (Rothfusz, 1990). The
spatiotemporal distributions of temperature and humidity create
an “urban heat riskscape” where microclimates create varying
levels of human exposure to heat hazards (Jenerette et al., 2011).
Characterizing interactions between vegetation, Ta, and RH in ur-
ban ecosystems may be useful to predict urban responses to future
climate change scenarios.

Patterns and influences of vegetation and landscape factors on
fine-scale urban air temperature (Ta) within cities have been pri-
marily analyzed using limited weather station data (e.g. Davis et al.,
2016), with a small number of studies utilizing a distributed
network of sensors (e.g. Feyisa et al., 2014; Hall et al., 2016; Shiflett
et al., 2017). These studies have found the greatest Ta differences are
typically observed at night and morning hours (Landsberg, 1981;
Coseo and Larsen, 2014). Increased nighttime Ta variation likely
arises as a consequence of differences in heat flux from urban
covers. Impervious surfaces have high heat storage capacity, and
thus absorb heat during the day and release it at night, which can
create contrasting distributions of air and surface temperatures
(Roth et al., 1989; Gallo et al., 1993; Grimmond, 2007; Chakraborty
et al., 2015; Hall et al., 2016; Davis et al., 2016). Some studies
indicate that urban vegetation at the block or neighborhood scale
(<250 m) may influence Ta (Skelhorn et al., 2014; Feyisa et al.,
2014), greater than a comparable volume of built cover (Davis et
al., 2016). If local vegetation patterns modulate daily changes in
Ta through shading effects then the greatest difference between
high- and low-vegetated locations should occur at night, because
vegetation reduces heat storage and sensible heat flux from urban
land covers (Chow et al., 2011). This reduced heat flux is predicted
to result in a greater range and temporal variation in Ta for highly
vegetated locations. Alternatively, urban vegetation may increase
nighttime Ta by providing insulation from high wind velocities
(Gillner et al., 2015). Investigations into how urban landscapes
affect Ta is essential to uncovering sources of inequities in cooling
benefits and developing urban management policies for reducing
heat vulnerabilities.

Important drivers that influence the effect of vegetation on Ta
may include distributions of mesoclimate and meteorological
conditions (Zhao et al., 2014). Mesoclimates, or city-scale climates,
with high mean daily temperatures, or heat wave conditions in
moderate climates may enhance vegetation cooling and UHI effects
by increasing the effect of shading and increasing potential tran-
spiration rates (Jenerette et al., 2011, 2016; Tayyebi and Jenerette,
2016; Ramamurthy and Bou-Zeid, 2017). The negative feedback of
vegetation cooling leads to a mean temperature-temperature
variability hypothesis (the Ta�Ta variability hypothesis), that pre-
dicts warmer mesoclimates and warmer meteorology will lead to
greater Ta spatial variation. Countering mean temperature effects
within cities, there is some evidence that precipitation reduces
urban heating effects on variation due to increases in air convection
and reductions in surface heating (Imhoff et al., 2010; Zhao et al.,
2014; Chow et al., 2014). Wind is also predicted to minimize
vegetation microenvironment effects through increased air mixing
that reduces plant canopy insulating effects and temperature in-
equities (Grimmond, 2007).

To assess the role of hypothesized drivers of variation in urban
Ta, we asked: (1) what are the spatiotemporal patterns of sum-
mertime vegetation Ta cooling in dryland urban landscapes and (2)
if patterns in vegetation intensity are correlated to spatial and
temporal variation in Ta, how are these variables related to meso-
climate drivers of mean daily temperature, wind, and precipita-
tion? We then expanded this question of microclimate variation by
asking: how do vegetation distributions within a dryland city in-
fluence the spatiotemporal patterns of summertime RH and HI? To
address these questions of variation in vegetation induced micro-
climate effects, we analyzed the patterns of Ta and RH in response
to vegetation, climate, and meteorological sources of variation at
three cities along a coastal to inland to desert climate gradient in
urban landscapes of the greater Los Angeles metropolitan region of
southern California, USA. The combination of a prominent climate
gradient of increasing Ta and generally similar patterns of urbani-
zation provide a unique opportunity to study the effects of meso-
climate on urban microclimate. Understanding spatial and
temporal variations in Ta and RH across urban landscapes will
expand the urban heat “riskscape” concept to include micro-,
meso- and regional-scale dynamics of urban microclimates,
allowing city planners to better identify the effectiveness of vege-
tation for urban cooling and reduce heat vulnerabilities, especially
in areas of high heat risk.

2. Methods

2.1. Study sites and design

Our study region is situated in the Los Angeles megacity of 18
million residents within southern California, USA, an area charac-
terized by a Mediterranean climate with hot-dry summers and
cool-wet winters. We distributed an Ta sensor network in mature
street-side trees in three cities within this region along an
approximately 150 km transect from mild coastal Irvine to inland
Riverside to hot desert Palm Desert. These cities were selected to
test hypotheses of mesoclimate effects on microclimate. Elevation
of sensor plots ranged from 4e60 m in Irvine, 238e331 m in
Riverside, and 0e144 m in Palm Desert. The surrounding native
vegetation community for Irvine and Riverside is Coastal Sage
Scrub and Sonoran Desert Scrub for Palm Desert. Across sites, mean
annual precipitation (MAP) varies between 300 mm at the coast to
103 mm in the desert. Mean annual temperature (MAT) varies
between 17.0 �C at the coast and 23.9 �C in the desert. The climate
gradient is more pronounced in summer, when average maximum
temperatures in August are 28.4 �C and 41.2 �C in the coastal and
desert cities, respectively.

In each of the three cities we established a network of twenty
observational pairs, consisting of ten high and ten low vegetation
density plots (Fig.1). Each high- and low-vegetation paired plot was
positioned 1e1.5 km apart to quantify local-scale effects of vege-
tation while accounting for large-scale gradients in Ta related to
geography and topography. Sites were selected from high resolu-
tion imagery and later confirmed on the ground. We subsequently
quantified vegetation differences as differences in the Normalized
Difference Vegetation Index (NDVI; Tucker, 1979; Turner et al.,
1999), a proxy for vegetation patterns and readily obtained from
remotely sensed imagery (van Leeuwen et al., 2006) and commonly
used for characterizing urban vegetation (Gallo et al., 1993; Shiflett
et al., 2017).We chose NDVI over other indices because of the global
availability and high repeat frequency of these data and its asso-
ciation with LST and Ta in prior studies (Jenerette et al., 2016;
Shiflett et al., 2017). Average paired-plot level difference in NDVI
between all paired high- and low-vegetated plots was 0.22 ± 0.08,
0.31 ± 0.12, and 0.28 ± 0.12 at Coastal, Inland, and Desert cities,
respectively (Student's t-test P < 0.05; Fig. 1E).

Using this design, the average changes in microclimate across
paired-plots and correlations of NDVI with microclimate were



Fig. 1. Site locations for summer 2015 and 2016 study periods. (A) Coastal to desert transect in southern California including the three study cities Irvine, Riverside, and Palm Desert.
(B,C,D) NDVI of each city with iButton air temperature sensor locations. Relative humidity and air temperature iButton sensors were placed in the same locations in Riverside during
the 2016 study period. All sensors were mounted in street side trees. (E) Boxplot of NDVI in high- and low-vegetated locations at 90 m radius resolution along the climate gradient.
In all cases high-vegetated sites had greater NDVI than low-vegetated sites using Student's t-test (P < 0.05).
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quantified. All temperature measurements were collected in a 61-
day time period in 2015 from July 18th to September 16th (corre-
sponding to Julian day of year (DOY) 199 and 259), encompassing
the warmest months of the year. Subsequently, the following
summer, relative humidity measurements were collected in the
inland city in a 17-day time period from August 17th to September
13th, 2016 (DOY 230 to 257) using the same sampling locations as
the Ta measurements.
2.2. Micrometeorological sensors

Ten high- and ten low-vegetated plots consisted of three repli-
cate temperature sensors (iButton Thermocron DS1922L, Maxim
Integrated Products, Inc., San Jose, California, USA) with an accuracy
of ±0.5 �C and range from�10 to 65 �Cweremounted on the trunks
of three neighboring trees within 10 m of each other 2 m from the
ground (n ¼ 180). To explore RH effects, in a follow-up study in
2016 one temperature and humidity sensor (iButton Hydrocron
DS1923, Maxim Integrated Products, Inc., San Jose, California, USA)
with a temperature accuracy of ±0.5 �C from �10 to 65 �C and RH
accuracy of ±0.5% from 0 to 100% was mounted 2 m from the
ground on the same trees at each plot in the inland city (n ¼ 20).
The added cost of these temperature and humidity sensors limited
this design to one replicate per plot in the inland city. The iButton
sensors are small, self-contained units with onboard memory,
measuring 15 mm in diameter and 5 mm high. Readings were
collected hourly throughout the study period. To shield each sensor
from direct solar radiation, they were housed in custom poly-
styrene cylindrical white cups. Additionally, each sensor was
mounted on the north side of the trees to avoid any remaining
direct effects of solar radiation.

Since the sensors are mounted under tree canopies, Ta and RH
may be different than that of open spaces. Prior studies have found
that individual tree canopies may increase (Gillner et al., 2015),
decrease (Streiling and Matzarakis, 2003; Lin and Lin, 2010), or
have no effect on Ta (Armson et al., 2013). Furthermore, both in-
creases and decreases in canopy level RH have been observed
(Souch and Souch, 1993; Gillner et al., 2015). While these effects
may influence our results, trees were generally pruned, which may
minimize their effects at our sensor heights, and our design is a
practical solution for embedding sensors within a populated urban
environment. To test the accuracy of the custom made radiation
shield systems we hung three sensors less than a meter away from
a research-grade temperature sensor (HMP-60, Viasala, Helsinki,
Finland) housed in a non-aspirated gilled radiation shield under-
neath an orange tree at the University of California Riverside's
Agricultural Operations facility for seven days. Temperature dif-
ferences between the iButton and the HMP-60 sensors were not
observed (2-sample t-test, P ¼ 0.64). Furthermore, most iButton
measurements fell within two standard deviations of the mean
difference (SD¼ 0.42 �C), with only 2% of measurements below and
2% above this indicator, with no outliers (SD � 3, Osborne and
Overbay, 2004).

Reference Ta, wind velocity, and precipitation data were ob-
tained from California Irrigation Management Information System
(CIMIS) using stations at University of California Irvine's South
Coast Research and Extension Center, University of California Riv-
erside's Agricultural Experiment Station, and the Shadow Hills Golf
Club in Indio, California (http://cimis.water.ca.gov/WSNReport-Cri
teria.aspx Accessed Feb/4/2016). These stations were 10.6e26.4,
0.6e11.3, and 4.9e27 km away from iButton plots in Irvine, River-
side, and Palm Desert, respectively. During the study period the
average diurnal range in Tawas 10.96 ± 3.52,13.32 ± 2.95, and 13.64
± 2.48 �C at Coastal, Inland, and Desert cities, respectively.
Furthermore, the average diurnal range during sustained wind
periods was 2.40 ± 0.32, 3.71 ± 0.58, and 2.83 ± 0.58 m s�1 at
Coastal, Inland, and Desert cities, respectively. Althoughwintertime
precipitationwas predominant, the summer 2015 study period was
unusually wet for coastal and inland regions, following three years
of drought. Precipitation from July to September was 65 and 57mm
at the coastal and inland cities, respectively. There were unsea-
sonable rain events at the beginning (DOY 199 to 201) and end
(DOY 259) of the study period. For comparison, the average pre-
cipitation from July to September is 13 and 10 mm at the coastal
and inland cities, respectively. The desert city did not experience
above average precipitation with 10 mm of rain, 6 mm below
average. Characteristic of summer in this region, no precipitation
occurred during the 2016 sampling period.
2.3. Remote sensing of vegetation

NDVI was derived from the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) data from the August 2014 Hyperspectral
Infrared Imager (HyspIRI) preparatory mission on a cloud free day.
These datawere obtained prior to our 2015 and 2016 study periods,
but consistency was confirmed visually. In a subsequent study in
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Riverside, California, reductions in NDVI between 2014 and 2015
were identified but these changes were proportional to 2014 values
(Liang et al., In Revisions). The AVIRIS data collection consists of
calibrated images with spectral radiance in 224 10 nm contiguous
spectral bands with wavelengths from 400 to 2500 nm (Roberts et
al., 2015). Using a scanning mirror, AVIRIS produces 677 pixels for
each of the 224 bands on each scan and at the altitude of data
collection resulted in a spatial resolution of 20 m pixels. Level 2B
post-processed data were used for analysis, which included at-
mospheric correction using Atmospheric CORection Now (ACORN)
software (Roberts et al., 2015). We processed AVIRIS data to obtain
NDVI using Eq. (1), where B29 and B51 correspond to AVIRIS
spectral channels 29 and 51 with wavelengths 0.64 mm and 0.83
mm.

NDVI ¼ B29 � B51/B29 þ B51 (1)

NDVI was analyzed at each sample plot in post processing using
a single pixel and 90 m radius circular buffer.

2.4. Analysis

Ta, RH, and HI spatial heterogeneity and vegetation effects were
quantified with four measures that compared variation in sensor
measurements to local land cover distributions. In a preliminary
comparison of the individual pixel and 90 m radius buffers, the
land cover signal was more pronounced at the 90 m scale, likely in
part due to noise at the individual pixel scale, and we chose the 90
m scale for subsequent analyses. Our choice of buffer size agrees
with prior research that has found urban microclimate vegetation
effects on Ta strongest at scales of 50e500 m (Shashua-Bar and
Hoffman, 2000; Feyisa et al., 2014; Davis et al., 2016; Shiflett et
al., 2017). First, as a direct measure of vegetation intensity on
microclimate, the slope of the linear regression between NDVI and
Ta was calculated hourly within each city. Additionally, the slope of
the linear regression between NDVI, and RH and HI was calculated
hourly within the inland city for 2016. HI was calculated using the
Rothfusz (1990) model (EQ 2), which has been adopted by the
United States National Weather Service (Steadman, 1979).

HI ¼ �42.379 þ 2.049(Ta) þ 10.143(RH) � 0.225(Ta)(RH) �
0.007(Ta)(Ta) � 0.055(RH)(RH) þ 0.001(Ta)(Ta)(RH) þ
0.0008(Ta)(RH)(RH) � 0.000002(Ta)(Ta)(RH)(RH) (2)

HI is a subjective index of human-perceived temperatures and
contains assumptions about human physiology, clothing, solar ra-
diation exposure, and wind velocity (Rothfusz, 1990). Second, the
difference between low- and high-vegetated paired plots,
expressed as DTa and DRH, was used to evaluate vegetation effects
on Ta and RH, respectively. Thesemeasures capture themean Ta and
RH difference between paired plots, while accounting for regional
sources of climate variation. To obtain plot-level Ta an average was
calculated using all three replicates from the 2015 study. Third, the
mean Ta and RH difference between high- and low-vegetated plots
was expressed as the mean percent change in Ta and RH, calculated
by dividing DTa and DRH by mean Ta and RH and expressed as a
whole number percent, to show a normalized average. Fourth, the
coefficient of variation (CV) was used to quantify spatial and tem-
poral variations. The CV is a dimensionless quantity of variation
normalized by the sample mean; commonly expressed as a whole
number percent frequently used to assess spatiotemporal land-
scape variation (Crum et al., 2016). Temporal heterogeneity in
vegetation effects on Ta was analyzed at both daily and seasonal
scales using correlation between NDVI and temporal CV of Ta. Daily-
scale spatial averages were analyzed using the slope of correlation
in NDVI and Ta, percent change in Ta, and the slope of correlation in
mean Ta and spatial CV of Ta. Daily scale temporal variation is the
average hourly data using all days of the study period. Seasonal
variation includes data from all days of the study period, from DOY
199 to 259.

3. Results

3.1. Daily patterns in cooling intensity

Vegetation cooling effects, measured as the slope of NDVI and Ta,
had a consistent daily pattern throughout the climate gradient (Fig.
2). Slopes were generally negative; increases in NDVI tended to
decrease Ta, although during mid-day hours slopes approached
zero or were not significant (P > 0.05). Furthermore, slopes
decreased along the climate gradient, with hourly average slopes
ranging from�0.25 to�3.83 and �1.82 to �6.79, at the coastal and
desert cities, respectively. Despite steeper relationships in the
desert at night, there were fewer significant correlations compared
to coastal and inland cities (P < 0.05). Daily changes in the strength
of the relationship, measured using the Pearson correlation coef-
ficient, mirrored that of the slope, with the exception of the desert
city where we observed weaker nighttime correlations than the
other cities (Supplemental Fig. 1). Correlations decreased in the
daytimemore at the coast than the desert, with r-values decreasing
0.67 at the coast and 0.33 at the desert.

In our follow-up study, vegetation effects on RH, measured as
the slope of NDVI and RH, had a strong daily pattern in the inland
city (Fig. 3). Slopes were all positive with mean values ranging from
7.41 to 23.93, indicating that increases in NDVI consistently
increased RH, with much lower slopes during the mid-day hours.
During the evening the effects were driven by large differences in
only some pairs. Two paired plots had unusually high nighttime
DRH, with two hourly values greater than two standard deviations
of the mean hourly difference (Supplemental Fig. 2). Unlike corre-
lations found between temperature and NDVI, there was a less
noticeable daily pattern in percentage of insignificant correlations
for RH (P > 0.05). Similar to 2015, slope of NDVI and Ta had a strong
daily pattern in the inland city (Fig. 3). This cooling effect was
slightly reduced during the day where there were no significant
correlations between 12:00 and 18:00 when factoring in heat index
values (Fig. 3).

The strength of vegetation effects varied throughout the study
period, but generally vegetation cooling effects were greater at
night for DTa, the average of the local scale temperature change
from low- to high-vegetated plots (Fig. 4). DTa was mostly positive
with values as high as 4.07 �C. There were some exceptions with a
reversal in temperature differences, mostly in the daytime hours,
with values as low as �0.14 �C. When comparing DTa during the
rainiest day (DOY 259) with the hottest (DOY 252 at the coast and
DOY 227 at the inland and desert cities) there were DTa reductions
(P < 0.001) of 43% in coastal, 71% in inland, and 32% in desert cities.
Along with reduced vegetation effects, the coastal city had 20%
reductions in spatial variation between local pairs, while there was
increased variation between inland (132%) and desert (32%) cities.
Daily averages of local scale vegetation cooling effects from the
entire study period were measured as the average DTa divided by
mean Ta or percent change in Ta (Fig. 5). A strong “U-shaped” daily
pattern emerged throughout the climate gradient ranging from
1.12% to 8.11%. Furthermore, daily range in vegetation Ta effects
increased along the climate gradient, with average percent change
in Ta ranging from 1.12 to 4.82% and 1.43e8.11%, at the coastal and
desert cities, respectively. Supporting findings from 2015, DTa for
the 2016 campaign for the inland city was the same (Supplemental
Fig. 3, P > 0.05, Student's t-test). There was no daily pattern in DRH



Fig. 2. Daily changes in slope of NDVI at 90 m radius resolution and air temperature (±SD), with frequency of P < 0.05 along the climate gradient in 2015.

Fig. 3. Daily changes in slope of NDVI at 90 m radius resolution and relative humidity, air temperature, and heat index (±SD) with frequency of P < 0.05 in the inland city in 2016.
Plots were in the same locations as the 2015 study (n ¼ 20).
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in the inland city, but RH of low vegetated plots decreased by 4.93%
± 4.36 (P < 0.01).
3.2. Vegetation and climate effects on air temperature variability

Temporal variation in Ta increased with NDVI at the 90 m radius
scale in the coastal, inland, and desert cities, with consistent re-
lationships along the climate gradient (Fig. 6). These relationships
have similar slopes across the climate gradient for both seasonal
Fig. 4. Heat map of the local vegetation temperature effects throughout the study period, l
the climate gradient. Black boxes indicate days with measurable precipitation.
(Slope ¼ 5.3, 3.0, and 4.9, respectively) and daily (Slope ¼ 5.8, 4.2,
and 6.0, respectively) scales, with differences in overall variation.
For both temporal scales, there was higher overall variation in the
inland city, with lower variation in the desert and coastal cities.
Seasonal variation was higher than daily variation. The strength of
these relationships was fairly consistent across the climate gradient
at both seasonal (R2 ¼ 0.26, 0.25, and 0.21, respectively) and daily
(R2¼ 0.29, 0.37, and 0.24, respectively) scales (P < 0.05). Therewere
no significant correlations at the individual pixel scale (P > 0.05).
ow-vegetated minus high-vegetated cover (DTa), with spatial standard deviation along



Fig. 5. Normalized daily temperature effects (DTa), or the percent change in air temperature between high- and low-vegetated plots (±SD), along the climate gradient. Low- and
high-vegetated locations had little temperature difference in the day and greater difference at night. The effect increased from coastal to desert cities.

Fig. 6. Temporal coefficient of variation of Ta was positively correlated to NDVI at 90 m radius scale in the coastal, inland, and desert cities at both seasonal (R2 ¼ 0.26,0.25, and 0.21,
respectively) and daily (R2 ¼ 0.29,0.37, and 0.24, respectively) scales (P < 0.05). The relationships had similar slopes for both seasonal (Slope ¼ 5.3, 3.0, and 4.9, respectively) and
daily (Slope ¼ 5.8, 4.2, and 6.0, respectively) scales across the climate gradient, with differences in overall variation. There were no significant correlations at 30 m radius scale.
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Spatial variation of air temperature (CV of Ta) was positively
correlated to mean Ta for the coastal city, while negatively corre-
lated in the inland and desert cities (Fig. 7A, Slope ¼ 0.10, �0.07,
and �0.26, respectively). Additionally, the strength of these
Fig. 7. (A) Spatial variation of air temperature (CV of Ta) was positively correlated to mean
desert cities. (B) In the day CV of Ta was positively correlated to Ta for the coastal city, while n
data point corresponds to the slope of the linear regression between citywide mean Ta and
relationships increased across the climate gradient (R2 ¼ 0.07, 0.09,
and 0.40, respectively, P < 0.05). These relationships were not
consistent throughout the day, with large daily changes (Fig. 7B).
The coastal city had 12 significant positive relationships between Ta
air temperature (Ta) for the coastal city, while negatively correlated in the inland and
egatively correlated in the inland and desert cities, with reversed patterns at night. Each
CV of Ta calculated hourly (n ¼ 60 per hour).
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and CV of Ta from 9:00 to 21:00, with three negative relationships
between 5:00 and 7:00. The inland city had both positive and
negative relationships. There were five significant negative re-
lationships between 12:00 to 18:00, and 12 positive relationships
between 16:00 to 10:00. The desert city had mostly negative re-
lationships with six between 13:00 to 19:00, with one positive
relationship at 23:00. There was a strong daily pattern in slopes
ranging from �0.35 to 1.99, �5.16 to 3.50, and �3.14 to 0.74 from
coastal to inland to desert cities, respectively. Daily changes in the
strength of the relationship mirrored that of the slope, with r-
values ranging from�0.32 to 0.60, �0.52 to 0.66, and �0.59 to 0.34
from coastal to inland to desert cities, respectively.

4. Discussion

We found that vegetation reduces summer Ta primarily at night,
or around the period when daily minimum temperatures occur.
This finding supports the hypothesis that urban vegetation reduces
Ta through reductions in heat fluxes from impervious surfaces that
had been shaded during the daytime period. Importantly, this
finding is in contrast with remotely sensed LST measurements, that
show vegetation cooling of urban surfaces is largest during the
daytime period (Buyantuyev and Wu, 2010; Myint et al., 2013;
Jenerette et al., 2016). During the daytime, urban vegetated sur-
faces may be directly cooled through increased evapotranspiration
with large LST effects and relatively less Ta cooling. Consistent with
the evapotranspiration hypothesis, we observed consistent in-
creases in RH in more vegetated areas. Evapotranspiration is not a
likely mechanism explaining the effects on nighttime microclimate
variation, also consistent with limited nighttime LST cooling by
vegetation, because it primarily occurs during active photosyn-
thesis. However, relationships between vegetation and RH at night
were stronger than the daytime, which could be attributed to
nighttime irrigation associated with urban vegetation. Neverthe-
less, this finding has important implications for urban microcli-
mates in that an increasing RH may counteract the human health
benefits of vegetated Ta cooling at the local scale.

Across the coastal to desert climate gradient we found
increasing local scale cooling effects (DTa) positively correlated
with NDVI, confirming studies that have found increased vegeta-
tion cooling intensity in hot arid regions, contributing to a negative
climate feedback effect (Imhoff et al., 2010; Tayyebi and Jenerette,
2016). As a result of greater nighttime cooling effects, higher
NDVI is associatedwith increased Ta temporal variability. This effect
is reflected in seasonal scale variability, where changes in weather
patterns, like heat waves, wind, and precipitation contribute to
variation in addition to land cover drivers. Furthermore, supporting
the Ta�Ta variability hypothesis we observed increased spatial
variation with increasing mean temperature at the coast, however,
wind may have played a larger role in inland and desert cities
where there was a gradient toward decreased variation with
increased mean temperature.

4.1. Mesoclimate and meteorological influences on microclimate
variation: mean temperature, wind, and precipitation

We found large differences in the Ta�Ta variability relationships
among cities suggesting that mesoclimate may drive vegetation
microclimate cooling effects. Mean Ta was positively correlated to
variation of Ta at the coastal city, supporting the Ta�Ta variability
hypothesis. Counter to this hypothesis, however, inland and desert
cities exhibited reduced Ta variation with increased mean Ta at the
city scale. These seemingly contradictory findings can be better
understood by examining changes in the Ta�Ta variability rela-
tionship throughout the day. Negative relationships in inland and
desert cities are consistent with daily patterns that show stronger
negative correlations during the day, with an opposite pattern in
the coastal city. Spatial variation in Ta was higher during warm
summer nights and weakest during warm summer days for inland
and desert cities, while the opposite daily trend occurred in the
coastal city. Warm nights are more variable in inland and desert
cities resulting in increased nighttime Ta inequity between high-
and low-vegetated neighborhood plots. This increased Ta variation
on hot nights supports the Ta�Ta variability hypothesis, as urban
surfaces re-emit absorbed heat in the evening (Roth et al., 1989).

There are two findings that do not support the Ta�Ta variability
hypothesis. First, Ta�Ta variability relationships during the day for
inland and desert cities were negative. Second, although both
inland and desert cities exhibited positive nighttime slopes, re-
lationships were stronger in the inland city than in the desert city,
even though the desert city is hotter. These results were partially
explained by examining patterns of wind and precipitation.

While wind may have little effect on patterns of surface heat
storage and fluxes, Ta is influenced by air convection and mixing
(Landsberg, 1981; Imhoff et al., 2010; Zhao et al., 2014). At whole
city scales, temperature differences between rural and urban areas
are driven by daily weather conditions and are reduced during
windy days (Landsberg, 1981; Gallo et al., 1993). Using a repre-
sentative meteorological station for each city, we found the inver-
ted daily relationships of mean Ta and spatial variation in inland
and desert cities are partially explained by wind velocity. Wind
velocity at each plot location would clarify relationships on the
local dynamics of Ta and wind. Here, the lack of safe mounting lo-
cations and the cost associated with installing anemometers on
street-side trees at each plot (n ¼ 60) precluded their deployment
in our study e microclimate wind distributions remain an impor-
tant research need (Vahmani and Ban-Weiss, 2016). Among cities,
wind velocity is highest during the day for coastal and inland cities,
and warmer days are often windier (R2 ¼ 0.51, P < 0.001,
Supplemental Fig. 4). Air mixing with increased wind velocity on
warm days can result in lower Ta spatial variation. Furthermore,
wind velocity is often reduced at night and there are weaker re-
lationships between mean Ta and wind velocity (R2 ¼ 0.39, P <
0.001, Supplemental Fig. 4). Thus at night, when wind velocity is
lower, surface heat fluxmaymore strongly drive spatial variation in
Ta. Coastal regions, on the other hand, have different wind patterns,
likely resulting in distinct diel Ta�Ta variability relationships.
Coastal regions receive onshore wind in the daytime hours, as the
land heats up faster than the neighboring ocean, which can interact
with urban land cover influences on local climate (Ramamurthy
and Bou-Zeid, 2017). These onshore winds reduce Ta, thus the
warmest days are often the least windy days. This unique coastal
wind pattern would generate the least air mixing during warm
days, which in combination with existing surface heat flux, would
generate greater daytime Ta spatial variation.

For an initial evaluation of these predictions we compared the
slope of wind velocity and variation of Ta (CV of Ta). Correlations
were found for 8 h of the day at the coastal city and 5 h of the day
for the inland and desert cities (Supplemental Fig. 5). The inland
city has faster winds in the day (2.37 m s�1 from 6:00 to 20:00)
than at night (0.95 m s�1 from 20:00 to 6:00), while the desert city
has similar average wind velocities both day (2.20 m s�1) and night
(2.26 m s�1) over the entire study period. Greater daytime wind
velocity in the inland city could help explain the larger daily range
of correlations between wind velocity and CV of Ta, where higher
daytime wind velocities were correlated with decreased spatial
variation between 7:00 and 15:00 (Supplemental Fig. 5). Further-
more, similar average day and night wind velocities in the desert
may help explain the relatively consistent statistically significant
correlations between NDVI and Ta in the daytime. Other weather
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events, particularly precipitation, may further drive daily patterns.
Like wind, rain also reduced vegetation effects along the climate

gradient likely through reduced tree shading effects, direct cooling
of impervious land surfaces, and homogenization of evapotrans-
piration (Landsberg, 1981; Imhoff et al., 2010; Zhao et al., 2014).
Some rainy days had greater reductions in vegetation effects, which
are a likely result of precipitation magnitude, timing, and duration.
The largest reductions in DTa were on the wettest day (DOY 259).
Contrary to reduced vegetation effects, there were increases in
spatial variation of Ta during rainy days for inland and desert cities.
These increases in variation were less predictable since they were
not correlated with increased vegetation effects. Examination of
individual weather events on urban microclimate remains an
important future research area.

4.2. Building on the “urban heat riskscape”

Understanding the spatiotemporal variation and drivers of
vegetative cooling is important for reducing heat vulnerability
(Demuzere et al., 2014; Vargo et al., 2016). We found at the local
paired plot-scale (1e1.5 km) low vegetated areas have higher
mean Ta and lower temporal variation in Ta primarily as a result of
reduced nighttime vegetation cooling effects. Increases in tem-
peratures that result from regional and global climate changes
may reduce citywide Ta variation in arid and semi-arid cities.
Although, urban environments typically have more intricate ar-
rangements of land covers, so factors such as changes in height-to-
width ratio of the street, anthropogenic heat sources, surface al-
bedo, tree canopy density, tree species, below tree ground cover,
and tree age and vitality will likely add complexity to our findings
(Taha, 1997; Shashua-Bar and Hoffman, 2000; Middle et al., 2014;
Gillner et al., 2015). Furthermore, future work on the effects of
buffer size when computing NDVI could refine vegetation effects
on microclimate variation. Our findings in inland and desert cities
are in contrast with LST studies that show warming conditions
may lead to greater temperature variation between urban surfaces
(Jenerette et al., 2011, 2016; Tayyebi and Jenerette, 2016). Night-
time vegetation cooling effects, important for mitigating urban
warming, are driven by divergent processes across the region.
While hotter nights are associated with increased spatial variation
only in the inland city, exacerbating city-wide temperature in-
equities, there are reduced spatial effects of hotter nights in
coastal and desert cities. Such regional climate considerations are
important for designing geographically specific mitigation
strategies.

Increasing urban vegetation is one strategy for mitigating ur-
ban warming (Larsen, 2015), but there are confounding impedi-
ments. These include economic and resources costs associated
with purchasing, planting and maintaining vegetation over its
entire life cycle (Jenerette et al., 2011; Pataki et al., 2011;
McPherson and Kendall, 2014; Demuzere et al., 2014). Increasing
vegetation offers greater nighttime cooling effects in inland and
desert cities but may do little to reduce daytime Ta, especially on
hotter days associated with higher wind velocity. Regardless, trees
may decrease daytime human perceived temperatures through
shading (Klemm et al., 2015; Taleghani et al., 2016). Furthermore,
with increased irrigation and decreased wind velocity high-
vegetated areas increase RH, subsequently increasing the HI, and
potentially countering Ta cooling benefits (Potchter et al., 2006).
Nevertheless, we found increases in HI are minimal compared to
direct cooling effects. More humid environments may be affected
differently as high Ta was often associated with low RH in our
study system. There are a wide range strategies to reduce the ef-
fects of urban warming besides increasing urban vegetation; some
of these include increasing albedo of building surfaces and spacing
between buildings, and constructing a variety of different green
infrastructures to increase evaporative cooling (Grimmond, 2007;
Demuzere et al., 2014; Wong and Jim, 2015; Taleghani et al., 2016).
Any strategy should consider trade-offs between geographic and
temporally specific urban cooling benefits, and economic and
resource costs.

5. Conclusions

We found the greatest vegetation cooling effects and Ta re-
ductions in the evening hours, with minimal effects observed
during midday. This effect increased in strength from coastal to
desert cities. This “U-shaped” daily Ta vegetation cooling effect
resulted in more daily and seasonal variation in high-vegetated
areas which had a broader range of temperatures. Vegetation also
increased RH and HI in the inland city, although these effects were
limited. Furthermore, in the coastal city hotter dayswere correlated
with increases in spatial variation in Ta while in inland and desert
cities hotter days were correlated with reductions in spatial varia-
tion, and consequently areas of temperature refuge. Nighttime
spatial variation in microclimate also differed among cities. In the
inland city, hotter nights were associated with increases in spatial
variation in Ta, which likely increase inequities in urban tempera-
tures. These patterns were partially explained by differences in
wind velocity. Higher wind velocity was associated with reductions
in spatial variation most in the inland areas, but this effect was not
consistent across the climate gradient. Together these findings
show that urban vegetation had consistent microclimate atmo-
spheric cooling effects that primarily occur during the evening and
are influenced by mesoclimate distributions and meteorological
conditions.
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