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This article aims to understand decision making under uncertainty and risk, with a case study on Cape Cod,
Massachusetts. Decision makers need to consider imperfect information on the cost and effectiveness of ad-
vanced nitrogen-removing on-site wastewater treatment systems as options to mitigate water quality degrada-

II:I’IPm"O“ng tion. Research included modeling nitrogen load reduction to impaired coastal waters from seven treatment
S :rgf‘:n stem system technologies and eliciting expert knowledge on their costs. Predictions of nitrogen load removal and cost
Urierta};my for each technology incorporated variation in effectiveness and uncertainty in household water use, costs, and

expert confidence in costs. The predictions were evaluated using the Pareto efficiency concept to reveal tradeoffs
between cost and effectiveness. The stochastic dominance index was used to identify preferred technologies for
risk-averse decision making, assuming no further learning is possible. Lastly, the predictions were combined into
a cost-effectiveness metric to estimate the expected payoff of implementing the best treatment system in the face
of uncertainty and the expected payoff of learning which treatment systems are most cost-effective over time.
The expected value of perfect information was calculated as the difference between the expected payoffs. Three
technologies revealed Pareto efficient tradeoffs between cost and effectiveness, whereas one technology was the
preferred risk-averse option in the absence of future learning. There was a high expected value of perfect in-
formation, which could motivate adaptive management on Cape Cod. This research demonstrated decision
analysis methods to guide future research and decision making toward meeting water quality objectives and
reducing uncertainty.

1. Introduction

The structure and function of coastal ecosystems are degraded in
part by point and nonpoint sources of nitrogen (Boesch, 2002). Ex-
cessive amounts of nitrogen are linked to eutrophication, hypoxia, food
web alteration, and harmful algal blooms in coastal waters (Howarth
et al.,, 2000). Anthropogenic sources of nitrogen, particularly waste-
water disposal, are a significant cause of these degrading effects
(USEPA, 1993; Bowen and Valiela, 2004; Williamson et al., 2017).
Excessive nitrogen, among other chemical pollutants, contributes to
water quality characteristics that exceed state mandates for designated
industrial, agricultural, wildlife, and recreational uses. In the United
States, impaired waters that do not meet these standards are listed in
the Environmental Protection Agency's Clean Water Act Section 303(d)
program, and a management plan must develop total maximum daily
loads (TMDL), or the allowable nitrogen load that meets state

mandates. For these reasons, industrial and household wastewater
treatment systems are areas of concern to reduce inputs of nitrogen to
impaired waters.

Household septic tanks are the most common form of on-site was-
tewater treatment systems (OWTS) in the world (Withers et al., 2014)
and a significant contributor of local and regional nitrogen pollution
(Bunnell et al., 1999). Standard septic tanks are not effective at re-
moving nitrogen to levels that mitigate water quality degradation, and
there is little to no regulatory control over these systems for removing
nitrogen in environmentally-sensitive areas (USEPA, 2002). Since the
1980s, however, advanced nitrogen-removing OWTS have been de-
signed to facilitate denitrification processes that reduce the amount of
nitrogen that enters coastal waters (Ritter and Eastburn, 1988).

The likelihood that advanced OWTS are affordable and effective at
removing nitrogen inputs to impaired waters are determining factors in
decisions to meet water quality mandates, such as a TMDL (Martin
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et al., 2019). The focus of this research is to formalize a basis from
which to implement advanced OWTS as environmental management
options that achieve cost and effectiveness objectives. The methodolo-
gical approaches of decision analysis aid in critical thinking, collecting
information, evaluating alternative courses of action, prioritizing ac-
tions, and enhancing decision making (Keeney and Raiffa, 1976). De-
cision analysis is a well-established analytical framework based on
concepts from decision theory, systems analysis, statistical theory, and
behavioral psychology (von Winterfeldt and Edwards, 1986; Edwards
et al., 2007). Acknowledging uncertainty and risk about the con-
sequences of management actions is a key feature of decision analysis
because it helps decision makers make better decisions (Williams et al.,
2009). Decision analysis also allows decision makers to understand how
to implement actions where learning is a desirable component of the
decision-making process. With these features, we can ask: What ad-
vanced OWTS are better options in the face of uncertainty? What do
decision makers sacrifice if they start implementing advanced OWTS
and fail to identify the most appropriate option(s)? Methods for deci-
sion analysis can inform these inquiries and aid decision makers in
implementing advanced OWTS and meeting water quality standards.

In the remainder of this article, we employ decision analysis
methods and evaluate advanced OWTS as options to mitigate water
quality degradation on Cape Cod, Barnstable County, Massachusetts
(MA). The research provides a general understanding of (i) which ad-
vanced OWTS options trade off achievements in cost and effectiveness
objectives, (ii) which advanced OWTS are better options under different
risk attitudes, and (iii) the value of learning that could improve the
cost-effectiveness of advanced OWTS. Expert elicitation and Monte
Carlo sampling incorporated uncertainty in several cost and nitrogen-
removing effectiveness parameters of seven advanced OWTS technol-
ogies. The concept of Pareto efficiency and the stochastic dominance
index (Levy, 2016) revealed tradeoffs between the options and ordered
them relative to decision maker risk preferences, respectively. Lastly,
value of information analysis (Raiffa and Schlaifer, 1961) estimated the
value of reducing uncertainty in cost and effectiveness through
learning. The planning implications of each method are described in the
context of adaptive management.

1.1. Case study

Over 70% of the nitrogen that enters coastal waters on Cape Cod is
from household septic systems (Cape Cod Commission, 2015). This
characteristic of wastewater disposal, combined with shallow ground-
water and sandy soils, represents a significant vulnerability to nitrogen
pollution. Possible sources of uncertainty include nitrogen effluent
measurement errors, operational inaccuracies, system location and
variation in performance, human cognitive and behavioral biases, and
irreducible randomness of system cost and effectiveness (Regan et al.,
2002).

There are currently over 2,900 advanced OWTS on Cape Cod.' The
relationship between advanced OWTS and water quality has been in-
vestigated, particularly in coastal areas of the northeastern United
States (Valiela et al.,, 2016; Lancellotti et al., 2017; Amador et al.,
2018). However, few studies incorporate uncertainty and risk into a
decision-making process. Wood et al. (2015) estimated costs and ni-
trogen-removing performance of four OWTS available for the town of
Falmouth, MA, on Cape Cod. That analysis incorporated variation in the
ranges of cost and nitrogen removal rate estimates to determine how
much nitrogen can be removed from the watershed. The assessment in
Wood et al. (2015) did not address risk, however, and was not per-
formed to determine how effectively the OWTS meet water quality
standards. The New Jersey Pinelands Commission (2018) reported
point estimates for cost and nitrogen-removing performance of several

! https://septic.barnstablecountyhealth.org/.
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OWTS to meet water quality standards in New Jersey, but variations in
performance or uncertainties in costs were not documented. Martin
et al. (2019) researched numerous possible combinations of manage-
ment strategies to meet a TMDL, minimize cost, and provide environ-
mental benefit for a watershed in Barnstable, MA, on Cape Cod. That
and a similar analysis by AECOM (2014) incorporated variation in the
ranges of nitrogen removal rates and costs for two OWTS options, but
no formal risk assessment for decision making was performed.

Decision makers on Cape Cod are tasked with evaluating options to
mitigate water quality degradation and implement TMDLs in impaired
watersheds. Upgrading standard septic systems to advanced OWTS at
the household level are an area of concern (Adler et al., 2014). With
guidance from decision makers at the Massachusetts Department of
Environmental Protection, Barnstable County Department of Health
and Environment, Cape Cod Commission, and Barnstable Clean Water
Coalition, this research investigated seven advanced OWTS technology
types that are currently permitted for use in MA, pursuant to Title 5 of
the State Environmental Code (310 CMR 15.000). This research was
performed so that decision makers could prioritize and finance the
technologies for installation at households in nitrogen-sensitive areas.
These technologies were coded Alpha, Beta, Gamma, Delta, Epsilon,
Zeta, and Eta to avoid the appearance of endorsing a technology. All
seven technologies are currently installed in numerous en-
vironmentally-sensitive areas across Cape Cod with varying effective-
ness. Technologies that are in piloting and testing phases of develop-
ment on Cape Cod were not included, although they will be included in
future iterations of these research methods.

The currently permitted advanced OWTS technologies include sec-
ondary treatment units with separate aerobic and anaerobic chambers
for nitrification and denitrification, respectively. They vary by method
to promote bacteria for nitrification (e.g., timers, trickling filters, air
blowers, surface area-to-volume ratio of media) and denitrification
(e.g., artificial organic carbon media, wood-based carbon media, mi-
crobial film media). Most of the systems recirculate wastewater through
the system for nitrification and denitrification and are retrofitted to a
Title 5 septic system, whereas few systems evenly apply wastewater
over media in a linear process and can be submerged inside a Title 5
septic system. All system types are controlled by an electronic panel and
require routine operation, maintenance, and monitoring.>

2. Materials and methods
2.1. Estimating nitrogen removal rates

With the assistance of the Barnstable County Department of Health
and Environment, we obtained total nitrogen (sum of total kjeldahl
nitrogen, nitrite, nitrate) effluent data for the seven advanced OWTS
installations for the years 2000-2018. This investigation was limited to
single-family household installations with less than 2,000 gallons per
day of water flow and effluent data from the years 2014-2018 to
control for design improvements in the technologies. To calculate how
much nitrogen has been removed per installation per technology, all
total nitrogen effluent samples taken in a year at an installation were
averaged to yield an average annual total nitrogen effluent sample per
installation (for an explanation of our use of average annual con-
centrations, see Supplementary material). If there were no total ni-
trogen effluent samples taken in a year, we treated the year as missing
data. This gave us a dataset based on 66 installations of Alpha (159
samples), 8 installations of Beta (18 samples), 52 installations of
Gamma (166 samples), 386 installations of Delta (914 samples), 2 in-
stallations of Epsilon (5 samples), 12 installations of Zeta (37 samples),
and 120 installations of Eta (259 samples). Our colleagues at the MA

2More information can be found at: https://www.mass.gov/guides/title-5-
innovativealternative-technology-approval-letters.
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Department of Environmental Protection accepted the low sample size
for Epsilon installations because it is a permitted technology in terms of
its nitrogen-removing effectiveness. Other sources of Epsilon data exist
(e.g., MA controlled testing facility; multi-family and non-residential
installations). However, those data revealed the same trend observed at
the single-family household level regarding the mean and standard
deviation and therefore were not used in this analysis.

Next, the average annual total nitrogen effluent concentration was
subtracted from a baseline target of 26.25mg/L (Supplementary ma-
terial) to obtain an annual nitrogen removal concentration n per tech-
nology i (n;) per sample. To obtain a mass load (kg/yr), total nitrogen
effluent concentrations are multiplied by household water use under
average water flow rate conditions (Adler et al., 2014). However, these
data are not typically collected in practice because many OWTS are not
equipped with a flow monitoring device (Adler et al., 2014). Rather,
household water use is assumed to be the product of household size p
and per capita water use w. In addition, Cape Cod is a tourist destina-
tion with year-round occupancy y, and seasonal occupancy (1 — y;)
that varies significantly by town T. To incorporate these uncertainties,
two different removal rates were modeled, N. 1; and N. 2;, for each
average annual nitrogen removal concentration based on different as-
sumptions for household water use.

N. 1; = nirpyuw 1

N. 2; = ni{(pyyr) + 2pr (1 = yp))tuw @)

where n; is average annual total nitrogen removal concentration per
technology (mg/L); is average household size per town; y; is percent of
seasonal households per town; u is per capita water use flows into the
treatment system (u = 0.9; the remaining 10% is discharged as grey-
water; MA Estuary Program); w is per capita water use (gal/day;
w = 55; MA Estuary Program). Data sources for average household size
and percent of seasonal households are given in the Supplementary
material. In Eq. (2), we assumed that the occupancy of seasonal homes
doubled in each town. All estimates were converted to kg/yr values.

Uncertainty in total nitrogen removal rate estimates (quantity and
variability of total nitrogen effluent concentrations and removal rates,
unknown household water use) can be characterized as probabilistic
predictions. To do this and control for the limited quantity of data
among the technologies, we used the means and standard deviations of
all nitrogen removal rate samples from Eq. (1) and Eq. (2) and sampled
10,000 removal rate predictions s (kg/yr) from a normal distribution.
We multiplied these removal rate predictions by 20 years, the assumed
life cycle, to achieve total nitrogen removed predictions E;. These
predictions represent competing hypotheses about the potential effec-
tiveness of each technology.

2.2. Estimating economic costs

Data availability for estimating economic costs of advanced OWTS
is poor. Many studies provide point estimates of economic costs, but
extrapolations from point estimates are not useful due to uncertainties
associated with predicting the ranges of costs of future household in-
stallations. Eliciting probabilities directly from experts runs the risk of
linguistic uncertainties and conflicts of interest, among other cognitive
and contextual biases (Hemming et al., 2018; O'Hagan et al., 2006).

To overcome these limitations, a four-step elicitation procedure was
implemented to obtain expert judgments of several types of fixed and
variable costs (Table 1; Speirs-Bridge et al., 2010). We met in-person
with 12 experts for the advanced OWTS, including private vendors and
distributors, as well as developers of the technologies and contractors
for site installation. We asked three questions to elicit upper bound,
lower bound, and most likely cost estimates for relevant fixed and
variable cost parameters. The four-step elicitation procedure also asks
one question to obtain expert confidence levels for each cost estimate.
To avoid possible confusion of experts providing probabilities,
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sensitivity analysis was performed with varying confidence levels for
the cost estimates. We specifically asked for interval judgements to
incorporate information that is not provided by point estimates. We
performed one follow-up communication with each expert to confirm
their initial set of judgments. The four-step elicitation procedure tends
to incorporate uncertainty and reduce overconfidence in expert judge-
ments (Speirs-Bridge et al., 2010).

The upper bound, lower bound, and most likely cost estimates and
the confidence levels can be used as parameters of a probability dis-
tribution (McBride et al., 2012; O'Hagan et al., 2006). The fixed and
variable cost estimates were combined, and we fit a lognormal dis-
tribution to them via quantile matching. To match quantiles and ana-
lyze the sensitivity of the results, we developed credible intervals®
(Speirs-Bridge et al., 2010), sometimes referred to as subjective con-
fidence intervals (McBride et al., 2012), based on four different expert
confidence levels: 70% confidence level (15 and 85 percentile credible
interval), 80% confidence level (10 and 90 percentile credible interval),
90% confidence level (5 and 95 percentile credible interval), and 95%
confidence level (2.5 and 97.5 percentile credible interval). In a similar
manner to estimating nitrogen removal rate predictions, fixed and
variable costs of the corresponding lognormal distribution were ob-
tained, and we sampled 10,000 predictions s from the credible intervals
per technology i. These predictions incorporate uncertainty in the fixed
and variable cost estimates and expert confidence in cost estimates.

We investigated three financing scenarios based on whether Cape
Cod decision makers can obtain state or federal grants to distribute to
homeowners for upgrading existing Title 5 septic systems to advanced
OWTS. Scenario 1 assumed a $10,000 grant for combined fixed costs,
and we calculated an annual loan schedule with reduced fixed cost
predictions and a 0% interest rate over a 20-year life cycle. Scenario 2
assumed a $10,000 grant for combined fixed costs, and we calculated
an annual loan schedule with reduced fixed cost predictions and a 2%
interest rate over a 20-year life cycle. Scenario 3 assumed no grant, and
we calculated an annual loan schedule with fixed cost predictions and a
5% interest rate over a 20-year life cycle. These different annual fixed
costs, obtained under the three financing scenarios, were combined
with the annual variable costs and converted into 10,000 total life cycle
cost predictions (Table 1) per scenario per technology Cj. The total
nitrogen removed calculations were performed using Microsoft Excel
and the cost calculations were performed using the open-source com-
puting language R Version 3.5.0 (R Core Team, 2016).

2.3. Pareto efficiency

The concept of Pareto efficiency assumes that a known set of al-
ternative management options are Pareto efficient if they trade off
improvements in at least one objective for declines in others. To ex-
emplify, let two options A and B represent viable alternative invest-
ments. Let two objectives for the investments be minimize cost in dollar
values ($) and maximize performance or satisfaction in utility values
(0-1). A Pareto efficient pair of outcomes for the options could be
|$2,1| for option A and |$1,0.5| for option B, whereas an inefficient pair

3 Credible intervals are different than confidence intervals. Confidence in-
tervals represent a range of plausible values for the true cost value, whereas
credible intervals represent a range of plausible cost values that matches an
expert's subjective opinion that the true value is within that range. For example,
a 95% confidence interval for treatment system costs is the interval that is
expected to contain the true cost in 95 out of 100 household installations. In
contrast, if an expert is 95% confident in an upper and lower cost judgement,
then we can expect that the true cost will fall within that interval in 95 out of
100 household installations. In this conception, a credible interval derived from
a 70% confidence level is wider than a credible interval derived from a 95%
confidence level due to the greater probability that a cost will fall outside of the
interval (30% probability for a 70% confidence level vs. 5% probability for a
95% confidence level).
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Table 1
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Method for calculating total life cycle costs for advanced on-site wastewater treatment systems.

Total life cycle cost per technology C; = total annual cost ($/yr) x 20 year life cycle

Where:

Total annual cost ($/yr) = (monthly fixed costs x 12 months) + annual variable costs

Monthly fixed costs ($/month) = f (fixed costs, annual interest rate, 12 payments
/yr, 20year life cycle)

Annual variable costs ($/yr) = Y, variable costs

a,

Using the following values™

Fixed ($)
Capital/materials
Installation

Recording

Variable ($/yr)
Operation

Maintenance
Management

Monitoring (years 3-20)"

Brief description

Cost of treatment system unit + replacement equipment over 20-year life cycle
Design (perk test, soils test), permitting, and excavation costs to upgrade existing residential Title 5 septic system
One-time cost for notice of advanced OWTS on property deed

Average annual electrical usage (kilowatt-hour), multiplied by local provider ($/kilowatt-hour) cost estimates
Certified treatment system operator time and number of services per year

User fee for annual management of treatment system data

Sampling protocol; price per sampling event, assuming two events per year + operator time

@ See Table S1 in the Supplementary material for expert cost estimates for these parameters.
> Assumed monitoring would be performed for the first two years after installation at no expense to the homeowner.

of outcomes for the options could be |$2,0.5| for option A and |$1,1] for
option B. In the Pareto efficient context, option A maximizes satisfac-
tion but at a higher cost, whereas option B is less satisfying but provides
a better cost. This outcome is Pareto efficient because we cannot ob-
jectively distinguish between the two options to determine which one is
better unless decision maker preferences are placed on the objectives.
In the inefficient context, there is no need for an investor to choose
option A because option B dominates option A over both objectives.
This outcome is inefficient, meaning that there are no tradeoffs, which
provides decision makers with an objective ranking of the options to
make decisions.

The concept of Pareto efficiency was used to distinguish between
efficient and inefficient OWTS options, independent of decision maker
preferences. We took the mean of the cost and effectiveness values
obtained by the Monte Carlo sampling method and visualized the op-
tions in two-dimensional coordinate space. Visualizing options in co-
ordinate space can be an effective way at eliminating inefficient options
and identifying Pareto efficient ones.

2.4. Stochastic dominance

The stochastic dominance risk index (Levy, 2016) was used to un-
derstand which advanced OWTS option(s) are the most attractive to
decision makers, assuming no further learning is possible. The index is
seldom employed in the environmental sciences, although there have
been recent advances in wildlife management (Canessa et al., 2016;
Johnson et al., 2017).

First order stochastic dominance assumes that efficient options can
be distinguished from inefficient options under the monotonicity as-
sumption of expected utility, namely that decision makers are satisfied
with more of something rather than less (e.g., more income; Levy,
2016). In this study, we assumed that decision makers prefer options
that are lower in cost and provide the highest nitrogen removal. The
cost and effectiveness predictions were normalized onto a 0-1 scale
(highest cost = 0; lowest effectiveness = 0) and aggregated into utility
values using equal weights for the objectives. Objective weights should
only be used if there is explicit preference information from decision
makers. This preference-neutral analysis was based on stakeholder
input. However, sensitivity analysis on weights is an option for stake-
holders (e.g., Martin et al., 2015) and could reveal how changing pre-
ferences lead to different results. First order stochastic dominance exists
if the cumulative distribution function of one option is less than that of
another option. In other words, for every utility value the cumulative
probability of achieving a lower utility value is lower for one option

compared to other option(s). This can occur if the cumulative dis-
tribution function of the utilities of the OWTS do not overlap (but they
can tangent each other; Levy, 2016).

Second order stochastic dominance assumes that if the cumulative
distribution functions of the options cross, the general risk attitude of
the decision maker must be known to identify a preferred option. Risk-
seeking behavior can be accommodated (Wong and Li, 1999), but we
assume a risk-averse decision-making attitude for this research. Second
order stochastic dominance exists if the difference between the net
integral under the cumulative distribution function of any two options
is positive (Levy, 2016). Graphically, the area enclosed between the
probability functions of two options should be non-negative up to any
increasing utility value for one option to be considered better than
another (Levy, 2016). In other words, the utilities of one option are
higher than another across all levels of uncertainty and there is less of a
probability of getting worse utility values of the preferred option. This
can occur if the area under the cumulative distribution function of the
utilities of the OWTS do not overlap (but they can tangent each other;
Levy, 2016).

2.5. Expected value of perfect information

Value of information analysis (Raiffa and Schlaifer, 1961) is a
method to evaluate the differences in value that would result if decision
makers monitored and learned about the OWTS as a result of their
implementation. The 10,000 cost C;; and effectiveness E;; predictions
were combined into a single cost-effectiveness metric V (i, s) in kg/$ per
scenario. Each cost-effectiveness prediction represents a decision point
or payoff for implementing technology i under prediction s (Canessa
et al., 2015).

V(i, S) = Eis/cix (la)

for all technologies i = 1, ...7, predictions s = 1, ...10,000.

The concept of expected value is a common strategy in decision
making under risk (von Winterfeldt and Edwards, 1986). Expected
value was used to aggregate the cost-effectiveness predictions into a
single metric. The scaling factor for this metric is a credibility measure
D, regarded as the relative degree of belief in a prediction, warranted
by evidence. Because we specified probability distributions for cost and
effectiveness and randomly sampled from them, the samples are in-
herently weighted by their probability of occurrence, which are equal
and sum to unity (1) in this study. The expected value of a single OWTS
E; is found by multiplying the payoff of each cost-effectiveness pre-
diction by its credibility measure and summing across all possible
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predictions (Canessa et al., 2015).

E =Y pV(-s) (2a)
for all technologies i =1,..7, predictions s=1,..10,000, where
Xp =1

Value of information is the net payoff of making a decision with
near-complete information versus making a decision with incomplete
information. The expected value under uncertainty EViucerqiny Was
calculated as the expected payoff of choosing the best OWTS over all
predictions. In this calculation, decision makers don't know which
OWTS is the best but choose a single option anyway. Knowing what we
know with the given predictions and uncertainty surrounding them, the
decision maker retains the best expected payoff (i.e., maximize cost-
effectiveness) over all predictions.

EVuncertainty = max;E; = max; Z ng(is S) 3)

where max; indicates that the OWTS with the best cost-effectiveness
calculation is chosen over all predictions (Canessa et al., 2015).

By weighting each cost-effectiveness prediction equally, the ex-
pected value under certainty EVienqny is estimated as the expected
payoff of getting the best cost-effectiveness outcome considering all
predictions. In this calculation, decision makers seek to spread the al-
location of OWTS and allow each the opportunity to yield the best cost-
effectiveness outcome possible. The payoff is expected to be equivalent
to choosing the best OWTS per prediction, conditional on the prediction
being credible and true (Canessa et al., 2015).

EVersaingy = Es[max;V (i, )] = Y, p,[max;V (i, )] )

The expected value of perfect information (EVPI) is the difference
between the expected payoff of choosing the best OWTS before and
after new information has been collected via monitoring.

EVPI = EVcertainty - EVuncertainty (5)

The EVPI allows decision makers the ability to draw conclusions on
the differences in payoffs attributed to acquiring more information on
multiple parameter sets of uncertainties through monitoring and ad-
justing decisions over time (Runge et al., 2011). EVPI calculations were
performed per scenario per confidence level in costs using Microsoft
Excel spreadsheets.

3. Results

In this section, we present a subset of results. Results were based on
the 70% confidence level in costs because it is more conservative than
results based on the other confidence levels (see footnote 3). The in-
verse of the EVPI results were calculated to present a metric in dollars
per kilogram nitrogen removed ($/kg), which is the common currency
of communicating water quality management actions on Cape Cod
(Cape Cod Commission, 2015). A summary of all iterations of the
methods is in the Supplementary material.

3.1. Cost and effectiveness predictions

The nitrogen load removal rate predictions ranged from 0.25 kg/yr
(Delta) to 2.99kg/yr (Epsilon) on average. The mean and quartile
ranges of OWTS effectiveness were graphed in Fig. 1 as total nitrogen
removed over 20-year life cycle. It is important to note that many
predictions were calculated below zero. Negative removal rates do not
necessarily mean that nitrogen is being added to Cape Cod waters.
Advanced OWTS should do no worse than conventional septic systems.
Although a baseline total nitrogen concentration must be set to earn
credit towards a nitrogen TMDL in watersheds, the assumptions on
setting baseline concentrations are subject to discretion (Supplementary
material).

Financing Scenario 1 was the most generous in terms of support for
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Fig. 1. Summary box and whisker plot of sample of nitrogen removal rates,
converted to total nitrogen removed over 20 years. Each box contains the 50%
interquartile range, separated by the median line. The whiskers contain the
90% interquartile range with outlier points extending from the range.

70000
|

i
b

60000
1

50000
|

Life-cycle cost ($)
30000 40000
| I
m o o
B
- o’»-————-—.-—————hm o
° ¢

20000
1

Alpha Beta ~Gamma Delta  Epsilon Zeta Eta

On-site wastewater treatment system (type)

Fig. 2. Summary box and whisker plot of total life cycle cost predictions under
financing Scenario 2, derived from sample of fixed and annual variable costs at
70% confidence level. Each box contains the 50% interquartile range, separated
by the median line. The whiskers contain the 90% interquartile range with
outlier points extending from the range.

homeowners, which returned life cycle cost predictions that ranged
$24,714 (Gamma) to $54,194 (Zeta) on average (Fig. S1), rounded to
nearest dollar. Subsequent scenario predictions estimated life cycle
costs that ranged much higher (e.g., Scenario 2 predictions in Fig. 2).

3.2. Pareto efficiency

The concept of Pareto efficiency was used to distinguish between
efficient and inefficient OWTS and understand tradeoffs. The mean and
quartile ranges of life cycle cost and effectiveness were graphed in two-
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Scenario 1 (70% Cl)

Scenario 2 (70% Cl)

Journal of Environmental Management 249 (2019) 109380

Scenario 3 (70% Cl)

o | @ Apha @ Alpha 8 | m Apha
S @ Beta @ Beta =] @ Beta
= B Gamma B Gamma @ Gamma
@ Delta S B Delta B Delta
O Epsilon S O Epsilon o O Epsilon
O Zeta © @ Zeta S 1 @ Zeta
° O Eta O Eta = O Eta
o S
8 4
o
2 8
_ ~ 87 -
& & © e o
g g g
o o o o T
o 8 4 K @ } |
o o
5 ¥ | 1 | s 8| ’ s 8| G
2 2. o oS o 8 s
= 5 ¥ J = g5 ©
§ J‘ o 8 L k- |
_ I 1
3 ‘ ] g4 | ‘ | S 1t
f =i — S 5% I
I dui | f { AgRrama
r 1 Bamma
Garhma
8
o
1= ale o =k S 4
S - 8 by =
S 1 S 7 e N 1
N
T T T T T T T T T T T T T T T T T T
-100 -50 0 50 100 150 -100 -50 0 50 100 150 -100 -50 0 50 100 150

Nitrogen removed over 20 years (kg)

Nitrogen removed over 20 years (kg)

Nitrogen removed over 20 years (kg)

Fig. 3. Visualization of means (points) and 0.25-0.975 quartile range (lines) of cost and effectiveness under all scenarios at the 70% confidence level. Scenario 1
assumes a $10,000 homeowner grant for combined fixed costs and a loan schedule with 0% interest rate, Scenario 2 assumes a $10,000 homeowner grant for
combined fixed costs and a loan schedule with 2% interest rate, and Scenario 3 assumes no grant and a loan schedule with 5% interest rate.

dimensional coordinate space (Fig. 3). The ideal but non-feasible point
is in the lower right corner, which specifies the lowest cost and highest
nitrogen removed values on the graph. According to Scenario 1 and 2
predictions (Fig. 3, left and middle panels), Alpha, Beta, Delta, Zeta,
and Eta are inefficient and Gamma and Epsilon are Pareto efficient. This
can be visualized by picking one OWTS and seeking another that does
better in both objectives. Gamma has better mean cost and effectiveness
values than Alpha, Beta, and Delta, whereas Epsilon has better cost and
effectiveness values than Zeta and Eta. There is little reason for decision
makers to choose the inefficient OWTS because both objectives can be
improved, on average, by choosing either Gamma or Epsilon. However,
Gamma and Epsilon are Pareto efficient because neither one is better
than the other over both objectives. According to these results, decision
makers could consider Gamma and Epsilon as viable options for im-
plementation. Implementing Epsilon instead of Gamma could remove
around 40 kg of nitrogen loading per installation but at higher costs of
around $4,000 per installation.

This result was consistent for each iteration of confidence level for
Scenarios 1 and 2 (Supplementary material). However, if homeowners
do not receive financial support under Scenario 3, Alpha also becomes a
viable technology alongside Gamma and Epsilon (Fig. 3, right panel;
Supplementary material). This occurs in part because the variable costs
of Gamma are more expensive than Alpha (Supplementary material).

3.3. Stochastic dominance

The stochastic dominance index explicitly deals with uncertainty
and decision maker preferences to identify preferred options. First order
stochastic dominance revealed one inefficient OWTS, visualized as the
cumulative distribution function (Fig. 4, left panel). Eta and Gamma
dominate Delta because their distributions do not intercept as utility
increases. In other words, for each utility value, the cumulative prob-
ability of achieving an even higher utility value is higher for Eta and
Gamma than for Delta. All other cumulative distribution functions cross
each other as utility increases, meaning that additional preference in-
formation is needed to distinguish between Alpha, Beta, Gamma, Ep-
silon, Zeta, and Eta.

Applying the second order stochastic dominance rule resulted in

Epsilon as the preferred OWTS (Fig. 4, right panel). A risk averse de-
cision maker could choose Epsilon over all other OWTS because there is
less of a probability of achieving unsatisfactory utility values. For each
utility value, the area under the cumulative distribution function is
smaller for Epsilon versus all other options.

3.4. Expected value of perfect information

Each of the value of information calculations showed high EVPI
(Table 2; Supplementary material). Epsilon is the best option under
uncertainty, with EVicerainyy values ranging between $351/kg and
$655/kg, rounded to nearest dollar (Supplementary material). How-
ever, monitoring and reducing uncertainty in the cost and nitrogen
removal parameters is expected to improve overall cost-effectiveness by
between 22% and 25% (Table 2). These are among the highest EVPI
values we've encountered.

The EVPI calculations did not change significantly among con-
fidence level iterations within each scenario, meaning that expert
confidence in cost estimates did not contribute to a significant variation
in result. The EVPI tended to increase significantly among the finance
scenarios, meaning that the value of reducing uncertainty is greater
when homeowners are not provided financial support for implementing
advanced OWTS, but the percent change in the EVPI remained con-
sistent among all iterations. Therefore, significant increases in amor-
tized loan costs among the scenarios is a determining factor to EVPIL

4. Discussion

The results have various implications for decision making. If deci-
sion makers want to consider tradeoffs between cost and effectiveness,
some but not all of the advanced OWTS technologies can be eliminated
from additional investigation. Gamma and Epsilon, and in some in-
stances Alpha, are Pareto efficient (Fig. 3). If decision makers accept the
monotonicity assumption of expected utility, some but not all of the
technologies can be eliminated from additional investigation (Fig. 4,
left panel). Further, if decision makers are risk averse and no future
learning is possible, then Epsilon could be a preferred option (Fig. 4,
right panel).
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wastewater treatment system at the 70% confidence level.

The Pareto efficiency and stochastic dominance results clarify de-
cision making under specific planning contexts. The Pareto efficiency
results inform that more preference information is needed to distin-
guish between some of the OWTS. This type of analysis is worthwhile
because decision makers can think about and discuss tradeoffs without
explicitly making tradeoffs. The stochastic dominance results inform
that Epsilon can be a risk-averse option in the absence of future
learning. This type of analysis is worthwhile because it provides deci-
sion makers with a single option that is least likely to yield un-
satisfactory objective values.

The value of information results inform that experimentation with
multiple technologies is a smart decision in a future learning context,
and therefore moving forward with a single option is risky. Although
implementing a single advanced OWTS technology has been proposed
for mitigating water quality degradation elsewhere (Lancellotti et al.,
2017), implementing a single technology over time is analogous to
putting 100% of a portfolio into one investment. The findings point to
Epsilon as a risk-averse option if no further learning is possible, but it is
also a risk-seeking option if learning is desirable. For these reasons,
analysts and their stakeholder constituents should be aware that Pareto
efficiency, stochastic dominance, and value of information methods
assume different planning contexts and associated risk attitudes. These
assumptions should be reported in future publications using these
methods.

For decision makers who are comfortable with relying on existing
information and its attendant uncertainty, the choice of a single option
could be considered risk-seeking behavior when the EVPI is high. This is
due in part to the possibility that learning over time may result in better
OWTS cost and effectiveness. However, in cases where the EVPI is low,
decision making and expected payoffs may not improve because of
learning; in such cases, it is unlikely that learning will change the de-
cision or outcome over time (Yokota and Thompson, 2004) and the
Pareto efficiency and stochastic dominance methods could prove va-
luable. The high EVPI results from this analysis (Table 2), however,
show that there are advantages to learning.

4.1. Adaptive management

A high EVPI is a sufficient condition for motivating adaptive man-
agement, an iterative decision-making process to set goals and

objectives for achieving environmental management policies while at
the same time monitoring options and re-adjusting decisions in the face
of uncertainty (Williams et al., 2009). Under adaptive management,
data availability and the uncertainties surrounding data are less of an
impediment to decision making. A significant advantage of adaptive
management is the flexibility to change decisions in response to mon-
itoring and obtaining new information, assuming that there are trade-
offs in the consequences of management options. This flexibility ad-
dresses some of the limitations of Pareto efficiency and stochastic
dominance in a learning context and separates adaptive management
from ad hoc scientific investigation and trial and error (Gregory et al.,
2006; Williams and Brown, 2012).

Adaptive management requires a monitoring protocol and sig-
nificant institutional and stakeholder engagement and support (Gregory
et al., 2006). One approach to passive adaptive management (Walters
and Hilborn, 1978; Williams, 2011) assumes that decision makers put
all of their resources into the best option at every decision point in time
(e.g., review period), whichever option decision makers thought was
the best one at that time. For example, decision makers could choose to
implement multiple installations of a single OWTS technology in one
time period. If monitoring data on total nitrogen effluent, household
water use, and economic costs yields satisfactory information, then
decision makers could implement more of the same technology in the
next time period. If performance is unsatisfactory, then decision makers
could choose to implement a different OWTS technology in the next
time period. Learning can be extremely slow in this context, particu-
larly if only one type of OWTS was monitored at a time.

Under an active adaptive management approach (Johnson and
Williams, 2015), parallel implementation of multiple OWTS in the short
term could balance exploitation with learning. Decision makers aren't
sure in the end which technology is going to be the most cost-effective,
but the idea is that monitoring, maintaining, and adjusting im-
plementations of multiple technologies over time can assure the best
possible conditions for cost and nitrogen removal. This process can
include substantial maintenance and consistent monitoring visits per
year, voluntary household water use documentation, assuring properly-
timed effluent dosing and recirculation within the OWTS, installing
nitrogen sensors to assure proper operation, and adjusting system
components to assure compliance to design specifications (Lancellotti
et al., 2017). Likewise, learning and technical adjustments can assure
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Table 2

Results of value of information analysis, presented as $/kg (inverse of expected value calculations).

Change between EV.certainty and EV.uncertainty

Eta EVPI

Zeta

Beta Gamma Delta Epsilon

Alpha

22%

$78.63/kg

$675.11/kg
$734.44/kg

$1,421.40/kg
$1,504.70/kg

$353.73/kg
$391.69/kg
$654.87/kg

$5,407.33/kg

$700.34/kg
$759.80/kg

$1,928.14/kg
$2,116.65/kg
$3,594.40/kg

$1,400.79/kg
$1,520.91/kg

Scenario 1 cost-effectiveness
Scenario 2 cost-effectiveness
Scenario 3 cost-effectiveness

24%

$92.42/kg
$157.31/kg

$5,856.53/kg
$8,976.12/kg

24%

$1,151.79/kg

$2,067.45/kg

$1,334.10/kg

$2,371.57/kg

Notes: estimates are based on the 70% confidence level; see Supplementary material for all results.
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that fixed and variable costs are minimized, such as installing energy-
efficient pumping and assuring efficient system run times, developing
multi-system maintenance schedules or programs, developing man-
agement programs similar to centralized wastewater treatment, and
improving internet connectivity to electrical equipment to reduce op-
erational costs. Learning under active adaptive management could
change decisions toward the most cost-effective option(s) over time at a
faster rate. The expected payoffs of these decisions could trend toward
EViertainyy, in which case risk aversion may become irrelevant (von
Winterfeldt and Edwards, 1986).

We have determined that adaptive management could give decision
makers the opportunity to reduce uncertainty in the case study context.
Moving forward, we ask: How much better or worse is an active ap-
proach versus a passive approach? Which approach provides greater
payoffs toward meeting a TMDL or other possible objectives on Cape
Cod? Decision makers may prefer passive adaptive management be-
cause they favor short-term gains over potential short-term “losses”
when allocating multiple technologies (Tversky and Kahneman, 1991).
These biases are perfectly understandable but may lead to errors in
judgement and decision making that may be sub-optimal in terms of
meeting environmental management objectives over time. To the best
of our knowledge, these approaches have never been tested and com-
pared for water quality management.

5. Conclusions

Decision makers are often tasked with complicated problems that
have multiple objectives and uncertainties. Decision analysis is an
analytical framework with methods to overcome these challenges and
allow decision making to be informative and effective. The Pareto ef-
ficiency, stochastic dominance, and value of information methods
provided valuable insights into choices among OWTS options but also
assume different planning contexts that should be communicated with
decision makers.

It is important to note that environmental benefit can be in-
corporated into future iterations of these methods. However, limited
information is currently available on quantitative non-market (e.g.,
Bellver-Domingo and Hernandez-Sancho, 2018a) or qualitative non-
monetary (Martin et al., 2018) valuation methods across Cape Cod.
Likewise, less information is available to trace environmental outcomes
to OWTS performance (Bowen and Valiela, 2004).

Our approach and results depend on decision maker preferences,
planning context, the availability of data, and methodological as-
sumptions. Results may vary with new information that changes the
predictability of OWTS cost and effectiveness. Although sensitivity
analysis on model inputs might be useful to forecast changes in results,
the Monte Carlo sampling design incorporates variability in model in-
puts. Likewise, adaptive management could control for variability and
uncertainty in model inputs as OWTS are implemented in real time.
Nevertheless, the methods presented herein are necessary first steps to
experimental design and provide a trial context for decision analysis
that could extend beyond Cape Cod to water quality management
contexts and other impaired waters worldwide. Although the approach
and findings may add more steps and research to the decision-making
process, decision analysis is a sensible and tractable framework for
analyzing uncertainty and risk while considering multiple planning
contexts and maintaining transparency.

It is often at the decision maker's discretion whether there is suffi-
cient value in learning to reduce uncertainty. There are no hard rules
about which results warrant adaptive management. However, there are
several approaches and contexts for analyzing uncertainty and risk at-
titudes depending on planning context. More research and engagement
are needed to decide how to manage advanced OWTS to mitigate water
quality degradation and reduce uncertainty. This article provides con-
text for these next steps and implementing adaptive management.



D.M. Martin and F.A. Johnson

6. Disclaimer

The authors declare no conflicts of interest. The views expressed in
this article are those of the senior author and do not necessarily re-
present the views or policies of the U.S. Environmental Protection
Agency. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use. This contribution is
identified by tracking number ORD-029255 of the Atlantic Ecology
Division, Office of Research and Development, National Health and
Environmental Effects Research Laboratory, U.S. Environmental
Protection Agency.

Acknowledgements

We are grateful to M. Runge, Barnstable Clean Water Coalition,
Barnstable County Department of Health and Environment, Cape Cod
Commission, and Massachusetts Department of Environmental
Protection for helpful input on method development. Special thanks to
M. Mazzotta, G. Thursby, A. Piscopo, J. Martin, T. Gleason, and W.
Munns for helpful comments on early versions of the manuscript, the
anonymous referees and the editor(s) who reviewed the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jenvman.2019.109380.

References

Adler, R., Aschenbach, E., Baumgartner, J., Conta, J., Degen, M., Goo, R., Hudson, J.,
Moeller, J., Montali, D., Piluk, R., Prager, J., 2014. Recommendations of the on-site
wastewater treatment systems nitrogen reduction technology expert review panel.
Final report to Chesapeake Bay Partnership. July 14, 2014. https://www.
chesapeakebay.net/channel files/19152/owts_expert_panel report_8-28-13.pdf,
Accessed date: 11 March 2019.

AECOM, 2014. Comparison of Costs for Wastewater Management Systems Applicable to
Cape Cod. Final Report to Association to Preserve Cape Cod. Updated April 2014 v2.
136 pp.

Amador, J.A., Gorres, J.H., Loomis, G.W., Lancellotti, B.V., 2018. Nitrogen loading from
onsite wastewater treatment systems in the Greater Narragansett Bay (Rhode Island,
USA) Watershed; Magnitude and reduction strategies. Water Air Soil Pollut. 229, 65.

Bellver-Domingo, A., Herndndez-Sancho, F., 2018. Environmental benefit of improving
wastewater quality: a shadow prices approach for sensitive areas. Water Econ. Policy
4 Article 1750008.

Boesch, D.F., 2002. Challenges and opportunities for science in reducing nutrient over-
enrichment of coastal ecosystems. Estuaries 25, 886-900.

Bowen, J.L., Valiela, I., 2004. Nitrogen loads to estuaries: using loading models to assess
the effectiveness of management options to restore estuarine water quality. Estuaries
27, 482-500.

Bunnell, J.F., Zampella, R.A., Morgan, M.D., Gray, D.M., 1999. A comparison of nitrogen
removal by subsurface pressure dosing and standard septic systems in sandy soils. J.
Environ. Manag. 56, 209-219.

Canessa, S., Buillera-Arroita, G., Lahoz-Monfort, J.J., Southwell, D.M., Armstrong, D.P.,
Chadés, I., Lacy, R.C., Converse, S.J., 2015. When do we need more data? A primer on
calculating the value of information for applied ecologists. Methods Ecol. Evol. 6,
1219-1228.

Canessa, S., Ewen, J.G., West, M., McCarthy, M.A., Walshe, T.V., 2016. Stochastic dom-
inance to account for uncertainty and risk in conservation decisions. Conservation
Letters 9, 260-266.

Cape Cod Commission, 2015. Cape Cod area wide water quality management plan up-
date. https://sp.barnstablecounty.org/ccc/public/Documents/208%20Final/Cape_
Cod_Area_Wide_Water_Quality_Management_Plan_Update_June_15_2015-Printable.
pdf, Accessed date: 18 November 2018.

Edwards, W., Miles, R.F., von Winterfeldt, D., 2007. Advances in Decision Analysis: from
Foundations to Applications. Cambridge University Press, New York.

Gregory, R., Ohlson, D., Arvai, J., 2006. Deconstructing adaptive management: criteria
for applications to environmental management. Ecol. Appl. 16, 2411-2425.

Hemming, V., Burgman, M.A., Hanea, A.M., McBride, M.F., Wintle, B.C., 2018. A practical
guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9,
169-180.

Howarth, R., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T.,
Marcus, N., McGlathery, K., Sharpley, A., Walker, D., 2000. Nutrient pollution of
coastal rivers, bays, and seas. Issues in Ecology 7, 14.

Johnson, F.A., Williams, B.K., 2015. A decision-analytic approach to adaptive resource

1 M 249 (2019) 109380

15

Journal of Enviro

management. In: Allen, C.R., Garmestani, A.S. (Eds.), Adaptive Management of
Social-Ecological Systems. Springer Science + Business Media, Dordrecht, pp. 61-84.

Johnson, F.A., Smith, B.J., Bonneau, M., Martin, J., Romagosa, C., Mazzotti, F., Waddle,
H., Reed, R.N., Eckles, J.K., Vitt, L.J., 2017. Expert elicitation, uncertainty, and the
value of information in controlling invasive species. Ecol. Econ. 137, 83-90.

Keeney, R.L., Raiffa, H., 1976. Decisions with Multiple Objectives. John Wiley & Sons,
Inc., Canada.

Lancellotti, B.V., Loomis, G.W., Hoyt, K.P., Avizinis, E., Amador, J.A., 2017. Evaluation of
nitrogen concentration in final effluent of advanced nitrogen-removal onsite waste-
water treatment systems (OWTS). Water Air Soil Pollut. 228, 383.

Levy, H., 2016. Stochastic Dominance: Investment Decision Making under Uncertainty.
Springer, Switzerland.

Martin, D.M., Labadie, J.W., Poff, N.L., 2015. Incorporating social preferences into the
ecological limits of hydrologic alternation (ELOHA): a case study in the Yampa-White
River basin, Colorado. Freshw. Biol. 60, 189-1900.

Martin, D.M., Piscopo, A., Chintala, M., Gleason, T., Berry, W., 2018. Developing quali-
tative ecosystem service relationships with the Driver-Pressure-State-Impact-
Response framework: a case study on Cape Cod, Massachusetts. Ecol. Indicat. 84,
404-415.

Martin, D.M., Piscopo, A., Chintala, M., Gleason, T., Berry, W., 2019. Structured decision
making to meet a national water quality mandate. J. Am. Water Resour. Assoc.
https://doi.org/10.1111/1752-1688.12754.

McBride, M.F., Fidler, F., Burgman, M.A., 2012. Evaluating the accuracy and calibration
of expert predictions under uncertainty: predicting the outcomes of ecological re-
search. Divers. Distrib. 18, 782-794.

O'Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garthwaite, P.H., Jenkinson, D.J.,
Oakley, J.E., Rakow, T., 2006. Uncertain Judgements: Eliciting Experts' Probabilities.
John Wiley & Sons, West Sussex.

Raiffa, H., Schlaifer, R., 1961. Applied Statistical Decision Theory. Harvard University,
Boston.

Regan, H.M., Colyvan, M., Burgman, M.A., 2002. A taxonomy and treatment of un-
certainty for ecology and conservation biology. Ecol. Appl. 12, 618-628.

R Core Team, 2016. A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna.

Ritter, W.F., Eastburn, R.P., 1988. A review of denitrification in on-site wastewater
treatment systems. Environ. Pollut. 51, 49-61.

Runge, M.C., Converse, S.J., Lyons, J.E., 2011. Which uncertainty? Using expert elicita-
tion and expected value of information to design an adaptive program. Biol. Conserv.
144, 1214-1223.

Speirs-Bridge, A., Fidler, F., McBride, M., Flander, M., Cumming, G., Burgman, M., 2010.
Reducing overconfidence in the interval judgements of experts. Risk Anal. 30,
512-523.

The New Jersey Pinelands Commission, 2018. Implementation of the alternative design
treatment systems pilot program. https://www.nj.gov/pinelands/landuse/current/
altseptic/, Accessed date: 18 November 2018.

Tversky, A., Kahneman, D., 1991. Loss aversion in riskless choice: a reference-dependent
model. Q. J. Econ. 106, 1039-1061.

[USEPA] US Environmental Protection Agency, 1993. Guidance specifying management
measures for sources of nonpoint pollution in coastal waters. U.S. EPA, Office of
Water, Washington (DC) EPA 840-B-92-002. https://www.epa.gov/nps/guidance-
specifying-management-measures-sources-nonpoint-pollution-coastal-waters,
Accessed date: 16 November 2018.

[USEPA] US Environmental Protection Agency, 2002. Onsite Wastewater Treatment
Systems Manual. U.S. EPA, Office of Water, Washington (DC) EPA 832-B-05-001.
https://www.epa.gov/septic/onsite-wastewater-treatment-and-disposal-systems,
Accessed date: 16 November 2018.

Valiela, 1., Owens, C., Elmstrom, E., Lloret, J., 2016. Europhication of Cape Cod estuaries:
effect of decadal changes in global-driven atmospheric and local-scale wastewater
nutrient loads. Mar. Pollut. Bull. 110, 309-315.

von Winterfeldt, D., Edwards, W., 1986. Decision Analysis and Behavioral Research.
Cambridge University Press, New York.

Walters, C.J., Hilborn, R., 1978. Ecological optimization and adaptive management.
Annu. Rev. Ecol. Systemat. 9, 157-188.

Williams, B.K., 2011. Passive and active adaptive management: approaches and an ex-
ample. J. Environ. Manag. 92, 1371-1378.

Williams, B.K., Brown, E.D., 2012. Adaptive Management: the U.S. Department of the
Interior Applications Guide. Adaptive Management Working Group, U.S. Department
of the Interior, Washington (DC).

Williams, B.K., Szaro, R.C., Shapiro, C.D., 2009. Adaptive Management: the U.S.
Department of the Interior Technical Guide. Adaptive Management Working Group,
U.S. Department of the Interior, Washington (DC).

Williamson, S.C., Rheuban, J.E., Costa, J.E., Glover, D.M., Doney, S.C., 2017. Assessing
the impact of local and regional influences on nitrogen loads to Buzzards Bay, MA.
Front. Mar. Sci. 3, 279.

Withers, P.J.A., Jordan, P., May, L., Jarvic, H.P., Deal, N.E., 2014. Do septic tank systems
pose a hidden threat to water quality? Front. Ecol. Environ. 12, 123-130.

Wong, W.K,, Li, C.K., 1999. A note on convex stochastic dominance. Econ. Lett. 62,
293-300.

Wood, A., Blackhurst, M., Hawkins, T., Xue, X., Ashbolt, N., Garland, J., 2015. Cost-
effectiveness of nitrogen mitigation by alternative household wastewater manage-
ment technologies. J. Environ. Manag. 150, 344-354.

Yokota, F., Thompson, K.M., 2004. Value of information literature analysis: a review of
applications in health risk assessment. Med. Decis. Mak. 24, 287-298.


https://doi.org/10.1016/j.jenvman.2019.109380
https://doi.org/10.1016/j.jenvman.2019.109380
https://www.chesapeakebay.net/channel_files/19152/owts_expert_panel_report_8-28-13.pdf
https://www.chesapeakebay.net/channel_files/19152/owts_expert_panel_report_8-28-13.pdf
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref2
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref2
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref2
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref3
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref3
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref3
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref4
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref4
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref4
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref5
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref5
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref6
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref6
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref6
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref7
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref7
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref7
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref8
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref8
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref8
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref8
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref9
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref9
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref9
https://sp.barnstablecounty.org/ccc/public/Documents/208%20Final/Cape_Cod_Area_Wide_Water_Quality_Management_Plan_Update_June_15_2015-Printable.pdf
https://sp.barnstablecounty.org/ccc/public/Documents/208%20Final/Cape_Cod_Area_Wide_Water_Quality_Management_Plan_Update_June_15_2015-Printable.pdf
https://sp.barnstablecounty.org/ccc/public/Documents/208%20Final/Cape_Cod_Area_Wide_Water_Quality_Management_Plan_Update_June_15_2015-Printable.pdf
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref11
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref11
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref12
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref12
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref13
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref13
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref13
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref14
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref14
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref14
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref15
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref15
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref15
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref16
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref16
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref16
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref17
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref17
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref18
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref18
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref18
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref19
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref19
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref20
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref20
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref20
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref21
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref21
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref21
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref21
https://doi.org/10.1111/1752-1688.12754
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref23
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref23
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref23
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref24
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref24
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref24
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref25
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref25
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref26
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref26
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref27
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref27
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref28
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref28
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref29
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref29
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref29
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref30
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref30
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref30
https://www.nj.gov/pinelands/landuse/current/altseptic/
https://www.nj.gov/pinelands/landuse/current/altseptic/
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref32
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref32
https://www.epa.gov/nps/guidance-specifying-management-measures-sources-nonpoint-pollution-coastal-waters
https://www.epa.gov/nps/guidance-specifying-management-measures-sources-nonpoint-pollution-coastal-waters
https://www.epa.gov/septic/onsite-wastewater-treatment-and-disposal-systems
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref35
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref35
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref35
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref36
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref36
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref37
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref37
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref38
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref38
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref39
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref39
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref39
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref40
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref40
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref40
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref41
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref41
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref41
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref42
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref42
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref43
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref43
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref44
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref44
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref44
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref45
http://refhub.elsevier.com/S0301-4797(19)31098-9/sref45

	Incorporating uncertainty and risk into decision making to reduce nitrogen inputs to impaired waters
	Introduction
	Case study

	Materials and methods
	Estimating nitrogen removal rates
	Estimating economic costs
	Pareto efficiency
	Stochastic dominance
	Expected value of perfect information

	Results
	Cost and effectiveness predictions
	Pareto efficiency
	Stochastic dominance
	Expected value of perfect information

	Discussion
	Adaptive management

	Conclusions
	Disclaimer
	Acknowledgements
	Supplementary data
	References




