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Abstract

We compute EG(
∏

i tr(gλi )), where g ∈ G = Sp(2n) or SO(m) (m = 2n, 2n+1) with Haar measure. This
was first obtained by Diaconis and Shahshahani [Persi Diaconis, Mehrdad Shahshahani, On the eigenvalues
of random matrices, J. Appl. Probab. 31A (1994) 49–62. Studies in applied probability], but our proof is
more self-contained and gives a combinatorial description for the answer. We also consider how averages
of general symmetric functions EGΦn are affected when we introduce a character χG

λ into the integrand.

We show that the value of EGχG
λ Φn/EGΦn approaches a constant for large n. More surprisingly, the ratio

we obtain only changes with Φn and λ and is independent of the Cartan type of G. Even in the unitary case,
Bump and Diaconis [Daniel Bump, Persi Diaconis, Toeplitz minors, J. Combin. Theory Ser. A 97 (2) (2002)
252–271. Erratum for the proof of Theorem 4 available at http://sporadic.stanford.edu/bump/correction.ps
and in a third reference in the abstract] have obtained the same ratio. Finally, those ratios can be combined
with asymptotics for EGΦn due to Johansson [Kurt Johansson, On random matrices from the compact
classical groups, Ann. of Math. (2) 145 (3) (1997) 519–545] and provide asymptotics for EGχG

λ Φn.
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1. Introduction

Historically, the study of integrals of class functions over compact classical Lie groups with
respect to Haar measure has been important for many areas of mathematics and physics. We will
not even attempt to describe the relevance of this problem to physics, but refer the reader to the
introduction of Mehta’s book [16]. On the mathematics side, we would like to mention at least
the following works:

• The Heine–Szegö identity and its relations to the strong Szegö limit theorem. This identity
expresses averages over unitary groups as determinants of Toeplitz matrices (see Bump and
Diaconis [4] and the comments after the statement of Theorem 3), while the strong Szegö
limit theorem gives asymptotics for such determinants (see the book by Böttcher and Silber-
mann [1]).

• The study of averages of characteristic polynomials over compact classical Lie groups. Keat-
ing and Snaith conjectured that their calculations of those averages would serve as good
predictors for moments of the Riemann ζ function [13, unitary case] and other data extracted
from L-functions [12, other classical groups]. Our personal interest in Random Matrix the-
ory sparks from this connection with Number Theory.

• Diaconis and Shahshahani’s work [9] on averages of products of traces, and further refine-
ments by Johansson [11]. Those papers have a very probabilistic flavor, and rely on separate
work for their most important result. Indeed, the answer to their computations turns out to
be expressible as values of characters of the Brauer algebra. Those were evaluated by Ram
[20,21], and are given by a rather complicated-looking function g in [9, Theorem 4].

The first goal of this paper will be to offer with Theorem 1 a self-contained proof of the
results of Diaconis and Shahshahani, for which the underlying combinatorial interpretation for
the g function1 is more natural. If the reader only wants to understand the proof of this theorem,
it might be helpful to observe that Propositions 1 and 2 include a γ that will only be useful for
Theorem 3. The reader could thus safely assume that γ = (0,0, . . .) and still see a full proof of
the following statement.

Theorem 1. Let λ be a partition, λ � k and n � k. Let ε = 1 when G = Sp(2n) and ε = 0 when
G = SO(2n) or SO(2n + 1). If g ∈ G and

pλ(g) :=
∏
i∈N

tr
(
gλi

)
then

EGpλ = sgn(λ)εg(λ),

where g(λ) is defined to be the number of matchings of k points preserved under the action of a
given element of Sk of cycle type λ.

We remind the reader that a matching of a set S is a perfect partition of S into pairs.
If we are willing to restrict the integrand to have λi = 1 for all i, Rains [19, Theorem 3.4]

has proved this result in the full range for n. We present only the symplectic case of his result.

1 Diaconis and Shahshahani actually defined this function as g(·) in [9], but we try to avoid confusion with g ∈ G.
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In our notation, he proved that ESp(2n)pλ(g) with λ = (1,1, . . . ,1) � k is equal to the number of
fixed-point-free involutions of length k with no decreasing subsequence of length greater than 2n.

In the stable range,2 he is effectively counting the number of fixed-point-free involutions of
length k, i.e. the number of matchings on k points preserved by the identity permutation on those
k points.

The problem of Theorem 1 was also solved in full generality by Pastur and Vasilchuk [17],
although their method of proof is arguably more complicated. We will sketch it in the orthogonal
case. Let F : SO(m) → R be a continuously differentiable function and X be any n × n real an-
tisymmetric matrix. By left-invariance of Haar measure, Eg∈SO(m)F (etXg) is independent of the
real parameter t and so Eg∈SO(m)(F

′(g)Xg) = 0, where F ′ is the derivative of F . This expression
can then be expanded and used to reduce the main expression to simpler ones.

We would like to point out that our proof of Theorem 1 involves the hyperoctahedral
group Bk . Both Stolz [23] and Rains [18] have already used the same group for this compu-
tation. On page 1287, we highlight the crucial features that Bk satisfies and make the proofs
work.

We now turn to a more complicated problem.
Let G be U(n), SO(2n), SO(2n + 1) or Sp(2n) and let Φn,f be a class function on G, es-

sentially defined by Φn,f (g) = ∏
i e

f (ti ), where {ti} is a subset of eigenvalues of g. There are
extra technical conditions on Φn,f , but these will be introduced just before the statement of
Theorem 3, Section 3.

The strong Szegö limit theorem gives the asymptotics and the rate of convergence of
limn→∞(EU(n)Φn,f ). Johansson [11] was the first to generalize this theorem to the other classi-
cal groups.

The second goal of this paper will be to study how those averages and asymptotics are affected
when we introduce irreducible characters of G into the integrand.

Theorem 3 will show that the ratio

EGχG
λ Φn,f

EGΦn,f

approaches a limit when n � 0. This extends the corresponding results for the unitary groups
due to Bump and Diaconis [4] to other classical groups. Remarkably, our ratio is independent of
the Cartan type of the group G and equal to the ratio they obtained for the unitary groups. It only
varies with f and λ and can also be seen as the value achieved by the Schur polynomial sλ after
setting the values of power sums to some Fourier coefficients of f .

A different point of view is offered in Bump, Diaconis and Keller [5]: we can modify the Haar

measure dg into χG
λ χG

λ dg. We know that χG
λ χG

λ is always positive and of mass 1 by orthogo-

nality of irreducible characters hence χG
λ χG

λ dg is a measure. With this point of view, Theorem 3
would thus partially explain how the average of Φn,f with respect to Haar measure dg is mod-
ified when twisting the Haar measure by a character (see the last two remarks on page 1289).

2 See page 1282.
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Thirdly, we would like to mention the recent preprint of Bump and Gamburd [6]. They showed
how many of the integrals useful for Number Theory can be computed in a unified way. An
example of such an integral would be∫

U(n)

∏
i

Λg(e
αi )dg,

where Λg(·) is the characteristic polynomial of g, and the αis are points on the unit circle. The
importance of integrals of this type originates from the work of Keating and Snaith [12,13],
where the integrals have been shown to predict the moments of ζ(·) and of L-functions.

The method of Bump and Gamburd is based on symmetric function theory and classical results
(Weyl Character Formula, Littlewood Branching Rules of Theorem 2, page 1284, and Cauchy
Identity). The reader is referred to their introduction for a much more comprehensive survey of
all the results their method is known to produce, and how (if) they were proved before.

This type of work is useful because it consolidates a wide array of methods into one more
systematic technique.

In the same vein, we hope that this paper can complement theirs to get closer to a more
universal method. Indeed, we have shown how to introduce elements of the basis of symmet-
ric functions into the integrand, an interesting step for that goal. Further steps are taken in the
author’s PhD thesis and associated paper [7].

Section 2 will first go over notation, then introduce the reader to the representation theory of
the compact classical Lie groups (group characters and Branching Rules). Section 3 will contain
all of the proofs. It will also present the statement of Theorem 3, and then shortly discuss its
significance in relation to the rest of the literature.

2. Representation theory of the classical groups

We now introduce group characters and the Branching Rules between different classical com-
pact Lie groups. We follow the expositions of [6] and [14], but our notation is closer to [6] (which
adds to Macdonald’s [15]).

2.1. Notation

2.1.1. Partitions
A partition λ = (λ1, λ2, . . . , λn) is a finite decreasing sequence of non-negative integers. We

define the weight |λ| of λ to be the sum
∑

λi . If this weight is k, we also use the notation λ � k.
The length l(λ) of λ is the maximal i such that λi 	= 0. The conjugate of λ is denoted λt. We say
that a partition is even if all of its parts λi are even. We define the union λ ∪ μ to be the partition
of |λ| + |μ| whose parts are the union of the parts of λ and μ. There is a partial ordering on par-
titions: λ ⊆ μ iff λi � μi for all i. Finally, we define the λ(i)s so that (iλ(i)) = (λ1, λ2, . . . , λn),
i.e. λ(i) counts the number of λj s equal to i.

2.1.2. Symmetric group
The symmetric group on k points will be Sk . If λ � k, elements of type λ are the elements

whose cycle types correspond to the partition λ. We use Cλ for the conjugacy class of those
elements. We denote a centralizer in the group G by CG(·), and by zλ the order of the centralizer
of an element of Cλ. As usual, the irreducible characters χλ of Sk are indexed by partitions λ � k.
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We sometimes abuse notation and take χλ(μ) to mean the value of χλ on Cμ. If χλ and χμ are
characters of S|λ| and S|μ|, their product χλ � χμ in the character ring of symmetric groups will

be the character Ind
S|λ|+|μ|
S|λ|×S|μ|(χλ ⊗χμ) (see Sagan’s book [22] for all aspects of the representation

theory of symmetric groups and page 168 for the product of characters χλ � χμ).

2.1.3. Classical groups
Let J be the 2n × 2n matrix given by

J =
(

0 − Idn

Idn 0

)
.

We would like to introduce a few classical groups:

U(n) = {
g ∈ Mn(C)

∣∣ gg∗ = I
}
,

O(n) = {
g ∈ U(n)

∣∣ ggt = I
}
,

SO(n) = {
g ∈ O(n)

∣∣ det(g) = 1
}
,

Sp(2n) = {
g ∈ U(2n)

∣∣ gJgt = J
}
.

If G is one of those groups, it is compact for the topology induced by Mn(C) or M2n(C). We can
thus consider its Haar measure dg and normalize it so the total volume of G is 1. We write EGf

for
∫
G

f (g)dg.

2.1.4. Symmetric functions and power characters
Let C[x1, . . . , xm]Sm be the ring of symmetric polynomials in m variables. We define

the power sum symmetric functions pi(x1, . . . , xm) = xi
1 + · · · + xi

m and pλ(x1, . . . , xm) =∏
i pλi

(x1, . . . , xm). By abuse of notation, we also denote by pλ the generalized character of S|λ|
that is the indicator function with value zλ on the conjugacy class of type λ (see Sagan [22]).
The difference in the arguments of pλ should prevent any ambiguity. Note that the polyno-
mial pλ is the image of the character pλ under the characteristic map (see Bump’s book [2,
Theorem 39.1]). Finally, we define the characters pλ of G = U(m),O(m),SO(m) or Sp(m = 2n)

by pλ(g) := pλ(t1, t2, . . . , tm) where the tis are all the eigenvalues of g. There is an obvi-
ous interpretation of those generalized characters in terms of the trace. For instance, we have
p(3,1,1)(g) = tr(g3) · (trg)2.

2.2. Group characters

Highest Weight theory tells us that partitions λ = (λ1, . . . , λn) (possibly with trailing zeroes)
index irreducible polynomial representations of G = U(n) (respectively SO(2n + 1) or Sp(2n))
when l(λ) = d � n. This condition on n is called the stable range for λ.3 We denote the associ-
ated characters χ

U(n)
λ (respectively χ

SO(2n+1)
λ ,χ

Sp(2n)

λ ).

Due to the involution in the Dynkin diagram of type Dn, the case of χ
SO(2n)
λ is slightly trickier.

In this case, our irreducible characters are indexed by decreasing sequences of the form λ1 �
λ2 � · · · � |λn|, i.e. the last entry could be negative. If λn > 0, then λ is a partition and we define
λ+ := λ = (λ1, λ2, . . . , λn) and λ− := (λ1, λ2, . . . ,−λn). The characters χ

SO(2n)

λ+ and χ
SO(2n)

λ−

3 The book of Goodman and Wallach [10, Chapter 10] is the standard reference for this. See also the paper of Koike
and Terada [14].
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are exchanged by the involution on the Dynkin diagram, i.e by conjugation by an element of
O(2n) of negative determinant.4 In order to introduce Branching Rules later, we set χ

O(2n)
λ :=

χ
SO(2n)

λ+ + χ
SO(2n)

λ− when λn 	= 0 and χ
O(2n)
λ := χ

SO(2n)

λ+ otherwise. It should be pointed out that

χ
O(2n)
λ is merely the character of the representation of SO(2n) which is obtained by restricting

an irreducible representation of O(2n) to SO(2n), not the character of a representation of O(2n).
For the sake of uniformity in the orthogonal case, we will sometimes want to use χ

O(2n+1)
λ :=

χ
SO(2n+1)
λ .

We also use the notational shortcut χG
λ where G is one of the Lie groups defined above.

The irreducibility of the various characters considered guarantees certain orthogonality prop-
erties, which we will only introduce as needed in the proofs.

2.3. Weyl Character Formula

We expect the results presented in this paper to be applied for mostly Random Matrix Theory
calculations, where the integrands are usually given as symmetric functions of eigenvalues.

Therefore, although this is absolutely not needed for the statements of the results following
or even their proofs, we wish to make the characters introduced above more explicit. This can be
done thanks to the Weyl Character Formula.

Take g ∈ U(n) (respectively SO(2n + 1), SO(2n) or Sp(2n)). Label the eigenvalues of g by
{t1, . . . , tn} (respectively {t1, t−1

1 , . . . , tn, t
−1
n ,1}, {t1, t−1

1 , . . . , tn, t
−1
n } or again {t1, t−1

1 , . . . , tn,

t−1
n }). Then, χ

G(n)
λ (g) = χ

G(n)
λ (t1, . . . , tn) for χ

G(n)
λ the following symmetric functions of the

variables {x1, . . . , xn} (actually polynomials in Z[x1, x
−1
1 , . . . , xn, x

−1
n ]):

χ
U(n)
λ (x1, . . . , xn) =

∣∣xλj +n−j

i

∣∣∣∣xn−j
i

∣∣ ,

χ
SO(2n+1)
λ (x1, . . . , xn) =

∣∣xλj +n−j+1/2
i − x

−(λj +n−j+1/2)

i

∣∣∣∣xn−j+1/2
i − x

−(n−j+1/2)
i

∣∣ ,

χ
Sp(2n)

λ (x1, . . . , xn) =
∣∣xλj +n−j+1

i − x
−(λj +n−j+1)

i

∣∣∣∣xn−j+1
i − x

−(n−j+1)
i

∣∣ ,

χ
SO(2n)
λ (x1, . . . , xn) =

∣∣xλj +n−j

i + x
−(λj +n−j)

i

∣∣ + ∣∣xλj +n−j

i − x
−(λj +n−j)

i

∣∣∣∣xn−j
i + x

−(n−j)
i

∣∣ ,

χ
O(2n)
λ (x1, . . . , xn) =

∣∣xλj +n−j

i + x
−(λj +n−j)

i

∣∣∣∣xn−j
i + x

−(n−j)
i

∣∣ .

Here |Mij | is the determinant of the n × n matrix (Mij )1�i,j�n.

One observes immediately that χ
U(n)
λ (x1, . . . , xn) = sλ(x1, . . . , xn), the well-known Schur

polynomials. Therefore we prefer to use sλ(g) for χ
U(n)
λ (g).

4 It might be helpful for the reader to observe that in the odd orthogonal case, O(2n + 1) ∼= SO(2n + 1) × Z/2 so the
involution acts trivially.
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2.4. Branching Rules

Let G = SO(m) or Sp(m). Since G ⊂ U(m), the restriction of sλ to G is a class function for
G and can be expressed as a sum of χG

μ s. The Branching Rules describe more precisely how to
do that (see the paper of Koike and Terada [14, p. 492] for a modern and complete proof).

We remind the reader that an even partition is a partition with only even parts.

Theorem 2 (Littlewood). Let λ be a partition of length less than or equal to n. Then

sλ

⏐�U(2n)

Sp(2n)
=

∑
μ⊆λ

( ∑
ν even

cλ
ν′μ

)
χ

Sp(2n)
μ ,

sλ

⏐�U(2n+1)

SO(2n+1)
=

∑
μ⊆λ

( ∑
ν even

cλ
νμ

)
χO(2n+1)

μ ,

sλ

⏐�U(2n)

SO(2n)
=

∑
μ⊆λ

( ∑
ν even

cλ
νμ

)
χO(2n)

μ ,

where sλ

⏐�U(n)

G
indicates the restriction to G of the character sλ of U(n) and cλ

νμ are the
Littlewood–Richardson coefficients.

Remark. This is where the eigenvalue 1 “disappears” in the SO(2n + 1) case. Let g ∈
SO(2n + 1) ⊂ U(2n + 1), with eigenvalues {1, t1, . . . , tn, t

−1
1 , . . . , t−1

n }. The left-hand side is

sλ(g) = sλ
(
1, t1, . . . , tn, t

−1
1 , . . . , t−1

n

)
,

while the right-hand side only involves terms of the form

χO(2n+1)
μ (g) = χO(2n+1)

μ (t1, . . . , tn).

3. Proofs

Let 〈φ,ψ〉Sk
be the usual inner product of characters over Sk , i.e. 1

|Sk |
∑

α∈Sk
φ(α)ψ(α).

We will now present the main derivation. This is vaguely similar to a few steps of the proof of
[8, Theorem 2.1] in the unitary case.

Proposition 1. Let λ � k and n � k . Then

ESp(2n)χ
Sp(2n)
γ pλ =

∑
β t even
γ∪β�k

〈χγ � χβ,pλ〉Sk
.

Similarly (but with β instead of β t), we have

ESO(2n+1)χ
SO(2n+1)
γ pλ =

∑
β even
γ∪β�k

〈χγ � χβ,pλ〉Sk
= ESO(2n)χ

SO(2n)
γ pλ.

Note: when |γ | > |λ| = k or when k − |γ | is odd, those sums are indeed trivial and give a value
of 0.
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Proof. The general method of proof is to use the Branching Rules from Section 2.4 to eventually
transfer the problem to a symmetric group.

For definiteness, we will only prove this for Sp(2n) and discuss at the end the minor changes
needed in the orthogonal cases. Let g ∈ Sp(2n) have eigenvalues {t1, t−1

1 , . . . , tn, t
−1
n }. Then

pλ(g) =
∑
μ�k

χμ(λ)sμ(g) =
∑
μ�k

χμ(λ)
∑
ν⊆μ

( ∑
β t even

c
μ
νβ

)
χ

Sp(2n)
ν (g),

where the first line follows from the usual decomposition of power sums into Schur polynomials
given by the character table of a symmetric group. The second line follows by applying the
branching rule for each μ � k. The branching rule is only valid when l(μ) � n. This explains our
final restriction of n � k.

We know that ESp(2n)χ
Sp(2n)
γ χ

Sp(2n)
ν = 1 when γ = ν and 0 otherwise. Hence

ESp(2n)χ
Sp(2n)
γ pλ =

∑
μ�k

(
χμ(λ)

∑
β t even

c
μ
γβ

)
,

where the condition that ν = γ ⊆ μ is still present implicitly in the Littlewood–Richardson coef-
ficient (cμ

γβ = 0 if γ 	⊆μ). For the same reason, we see that this sum is trivial when |γ | > |μ| = k.

The final statement follows from observing that
∑

μ�k c
μ
γβχμ = χγ � χβ and χ(λ) =

〈χ,pλ〉Sk
.

For the orthogonal groups, the only difference is that two characters will pop up when λn 	= 0.
Let m = 2n or 2n+ 1. The Branching Rules will involve χ

O(m)
λ while the twist that we introduce

comes from a character of type χ
SO(m)
λ . Fortunately, all we need for the same proof to work is

ESO(m)χ
O(m)
λ χ

SO(m)
λ = 1:

ESO(2n)χ
O(2n)
λ χ

SO(2n)
λ = ESO(2n)χ

SO(2n)

λ+ χ
SO(2n)
λ + ESO(2n)χ

SO(2n)

λ− χ
SO(2n)
λ

= 1 + 0 by orthonormality for SO(2n).

ESO(2n+1)χ
O(2n+1)
λ χ

SO(2n+1)
λ = ESO(2n+1)χ

SO(2n+1)
λ χ

SO(2n+1)
λ

= 1 by orthonormality for SO(2n + 1). �
We would like to remind the reader at this point of a few facts from the representation theory

of the symmetric group.

Lemma 1. Let sgn be the sign character in Sk .

(1) If β � k, then χβ t = sgn ⊗ χβ ,
(2) If β � k, then

pβ ⊗ sgn = sgn(β)pβ

(3) Restrict k to be even. Then∑
β even
β�k

χβ = IndSk

Bk
1,

where Bk is the centralizer of the chosen permutation (1,2) (3,4) · · · (k − 1, k) in Sk .
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(4) Restrict k to be even. Then

sgn⊗ IndSk

Bk
1 = IndSk

Bk

(
ResSk

Bk
sgn

)
.

Proof. (1) This is in Bump’s book [2, Theorem 39.3].
(2) This is immediate.
(3) See [2, Theorem 45.4].
(4) This is a consequence of Frobenius Reciprocity. �
This lemma leads immediately to a second version of Proposition 1.

Proposition 2. Let λ � k and n � k. Let ε = 1 when G = Sp(2n) and ε = 0 when G = SO(2n)

or SO(2n + 1). Then

EGχG
γ pλ = 〈

IndSk

S|γ |×Bk−|γ |
(
χγ ⊗ sgnε

)
,pλ

〉
Sk

,

where by a slight abuse of notation, we confuse sgn and ResSk

Bk
sgn.

Proof. All the steps required are applications of Lemma 1 to the statement of Proposition 1.

EGχG
γ pλ =

∑
β even
γ∪β�k

〈
χγ � (

sgnε
) ⊗ χβ,pλ

〉
Sk

= 〈
χγ � (

sgnε ⊗ Ind
Sk−|γ |
Bk−|γ | 1

)
,pλ

〉
Sk

.

We now apply Lemma 1.1 to get the result stated. �
3.1. Discussion of Theorem 1

As a special case to Proposition 2, we are now ready to compute integrals of traces directly,
without involving the Brauer algebra as in Ram [21].

Proof of Theorem 1. We want here to compute EGpλ, so we are now in the simplest case of
Proposition 2, when |γ | = 0. When k is odd, there is simply no matching on k points. On the
other hand, it was a consequence of Proposition 1 that EGpλ = 0 as k − |γ | = k is odd. We can
thus restrict our attention to the k even case. We have thanks to Lemma 1 that

EGpλ = 〈
IndSk

Bk
1,pλ ⊗ sgnε

〉
Sk

= sgn(λ)ε
〈
1,ResSk

Bk
pλ

〉
Bk

= zλ sgn(λ)ε

|Bk| #
{
σ ∈ CSk

(
(1,2) · · · (k − 1, k)

) ∣∣ type(σ ) = λ
}
,

since pλ is an indicator function for the conjugacy class of permutations of type λ in Sk .
If σ ∈ CSk

((1,2) · · · (k − 1, k)) then σ preserves the matching {{1,2}, · · · , {k − 1, k}}, i.e. it
sends a pair to a pair. We use this to switch to the language of matchings.

EGpλ = sgn(λ)ε

|Cλ|
|Sk|
|Bk|#

{
σ ∈ CSk

(
(1,2)(3,4) · · · (k − 1, k)

) ∩ Cλ

}
= sgn(λ)ε

|Cλ|
∑

#
{
σ ∈ Cλ

∣∣ σ(M) = M
}

matching M of k points
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= sgn(λ)ε

|Cλ| #
{
(M,σ)

∣∣ M a matching of k points, σ ∈ Cλ, σ (M) = M
}

= sgn(λ)ε

|Cλ|
∑
σ∈Cλ

#{matchings preserved by σ }.

The last steps make use of a double-counting argument. All the summands in the last line are
equal, and there are |Cλ| of them so we have

EGpλ = sgn(λ)εg(λ),

where g(λ) is the number of matchings preserved by a permutation of cycle type λ. �
Remarks.

• As mentioned earlier, this offers a combinatorial interpretation (at the level of the proof) for
a result first proved by Diaconis and Shahshahani [9]. The function g(λ) can be computed
quite easily from this interpretation, and shown to be equal to the formula given in [9].

• We insist that the proof of Theorem 1 works here because the supports for the Branching
Rules in Theorem 2 and thus Proposition 1 are essentially all even partitions of appropri-
ate weight. Furthermore, one can sum all characters associated to those partitions thanks to
the Klyachko–Inglis–Richardson–Saxl theory of the involution model for symmetric groups
(which makes an appearance here through Lemma 1(3), see [2, Chapter 45]). This obser-
vation lets us substitute (Proposition 2) for this sum of even characters the trivial character
induced from a hyperoctahedral group Bk , which lends itself to combinatorial interpretation
as the stabilizer of a matching.

• We do not see this as an exceptional situation and actually hope for dramatic generalization.
In light of [2, Chapters 45 and 46], as well as [10, Section 9.3 and Chapter 10], we think
that most of the results presented here could be generalized to compact subgroups of U(n)

preserving tensors of arbitrary mixed Young type. We would merely have explored special
cases so far: O(n) preserves a symmetric bilinear form while Sp(n) preserves an antisym-
metric one. This is left for future work.

3.2. Discussion of Theorem 3

Let T = {t ∈ C | |t | = 1}, and let σ(t) = ∑
i∈Z

dit
i = exp(

∑
i∈Z

ci|i| t
i ) = ef (t) be a function

on T.
We will always assume f (t−1) = f (t) (i.e. ci = c−i ).
We define two conditions:

Condition (A)
∑
i>0

|ci |
i

< ∞.

Condition (B)
∑ |ci |2

i
< ∞.
i>0
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Those conditions were already relevant to the work of Bump and Diaconis [4], and the whole
field of Toeplitz matrices.5

One can define a class function Φn,f (g) for g ∈ G as

Φn,f (g) = enc0 exp

( ∑
i>0

ci

i
p(i)(g)

)
.

A possibly more intuitive definition (but only valid when G = Sp(2n) or G = SO(2n)) is
Φn,f (g) = ∏n

k=1 σ(tk), where the product is taken over half of the eigenvalues of g, one in each
conjugate pair. The symmetry condition f (t−1) = f (t) guarantees that Φn,f is independent
of the chosen subset of eigenvalues. When G = SO(2n + 1), the product expression becomes
slightly more complicated because of the eigenvalue 1.

Theorem 3. Assume that f satisfies Condition (A). For simplicity of notation, take χG
γ =

χ
SO(2n+1)
γ (respectively χ

Sp(2n)
γ , χ

SO(2n)
γ ) if G = SO(2n + 1) (respectively Sp(2n), SO(2n)).

Then

lim
n→∞

EGχG
γ Φn,f

EGΦn,f

= R
(
γ, (ci)

)
,

with

R
(
γ, (ci)

) =
∑
λ�|γ |

χγ (λ)

( ∞∏
i=1

c
λ(i)
i

iλ(i)λ(i)!

)
= sγ

∣∣∣∣
pi :=ci

,

where the last expression is a specialization for the Schur polynomial sγ when the value of the
power sums is set using the Fourier coefficients ci .

We delay comments on this theorem to page 1289 and focus on its proof.

Proof. As a first approximation to EGχG
γ Φn,f , we will actually study EGχG

γ pλ for λ � k � n.
It will be useful to split up λ into subpartitions. To avoid confusion with notation previously used
for partition parts (λ1, λ2, . . . , λn), we will use λa ∪ λb = λ in this proof only.

We start from the final equation in Proposition 2 and apply Frobenius Reciprocity to get

EGχG
γ pλ = 〈

χγ ⊗ Res
Sk−|γ |
Bk−|γ | sgnε,ResSk

S|γ |×Bk−|γ | pλ

〉
S|γ |×Bk−|γ |

= zλ

|S|γ |||Bk−|γ ||
∑

(ρa,ρb)∈S|γ |×Bk−|γ |
type(ρa)=λa�|γ |

type(ρb)=λb�k−|γ |
λa∪λb=λ

χγ (ρa) sgnε(ρb),

where ε = 1 when G = Sp(2n) and 0 otherwise. We now sum over conjugacy classes (i.e. cycle
types) instead. The correction factor for the ρas of type λa will be

|S|γ ||
zλa

= |Cλa |, so

EGχG
γ pλ = zλ

|Bk−|γ ||
∑

λa�|γ |
λa∪λb=λ

χγ (λa) sgn(λb)
ε

zλa

|Bk−|γ | ∩ Cλb
|.

5 The book by Böttcher and Silbermann [1] gives a very clear introduction to the analytic theory of Toeplitz matrices.
Theorem 5.2 in [1] uses those conditions. Sets of functions satisfying Conditions (A) and (B) are denoted W(T) and

B
1/2
2 (T) respectively.



P.-O. Dehaye / Journal of Combinatorial Theory, Series A 114 (2007) 1278–1292 1289
Observe from the proof of Theorem 1, with λ replaced by λb , that

EGpλb
= zλb

sgn(λb)
ε

|Bk−|γ || |Bk−|γ | ∩ Cλb
|.

The hypothesis n � |λb| of Theorem 1 is automatically satisfied since we already assume n � |λ|
and λ = λa ∪ λb.

We now have the much simpler

EGχG
γ pλ =

∑
λa�|γ |

λa∪λb=λ

zλ

zλa zλb

χγ (λa)EGpλb

or even

EGχG
γ pλ =

∑
λa�|γ |

λa∪λb=λ

λ!
λa !λb!χγ (λa)EGpλb

(1)

where λ! = ∏
i�1(λ(i)!).

We can now deal with EGχG
γ Φn,f . As in Toeplitz minors [4], absolute convergence is guaran-

teed by Condition (A), the bound | tr(gi)| � m when g ∈ U(m),SO(m) or Sp(m) and compact-
ness of those groups:

EGχG
γ Φn,f �

∫
G

max
g∈G

(∣∣χG
γ

∣∣) exp

( ∑
i�0

|ci |
i

∣∣tr(gi
)∣∣).

We are thus allowed to permute sums and products in the full expansion of Φn,f :

EGχG
γ Φn,f = enc0EGχG

γ exp

( ∑
i>0

ci

i
p(i)

)
= enc0EGχG

γ

∑
(αi )

∞∏
i=1

(cip(i))
αi

iαi αi !

= enc0EGχG
γ

∑
(αi )

∞∏
i=1

c
αi

i

iαi αi !p(iαi ) = enc0
∑
(αi )

λ:=(iαi )

( ∞∏
i=1

c
αi

i

iαi αi !

)
EGχG

γ pλ.

From this definition of λ, we observe that λ(j) = αj , which explains the notation: αj 	= λj in
general.

Once n � |λ|, we are allowed to substitute for every term EGχG
γ pλ the right-hand side of

Eq. (1). For a given n, this only applies for the terms at the head of the series, but any term in the
series will eventually be substituted, when n � |λ|. Combined with absolute convergence, this
guarantees the asymptotics

EGχG
γ Φn,f

n→∞∼ enc0
∑
(αi )

(( ∞∏
i=1

c
αi

i

iαi αi !

) ∑
λa�|γ |

λa∪λb=(iαi )=:λ

λ!
λa !λb!χγ (λa)EGpλb

)
.

We now switch the sums, and change the index of one sum from (αi) with (iαi ) = λ to (βi) with
(iβi ) = λb . This implies λa(j) + βj = λ(j) = αj . We get

EGχG
γ Φn,f

n→∞∼ enc0
∑

λa�|γ |

((
χγ (λa)

λa !
∞∏
i=1

c
λa(i)
i

iλa(i)

)∑
(βi )

( ∞∏
i=1

c
βi

i

iβi βi !

)
EGp(iβi )

)

= R
(
γ, (ci)

)
EGΦn,f ,
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and finally

lim
n→∞

EGχG
γ Φn,f

EGΦn,f

= R
(
γ, (ci)

) =
∑
λ�|γ |

χγ (λ)

( ∞∏
i=1

c
λ(i)
i

iλ(i)λ(i)!

)
.

The specialization expression now follows from the usual decomposition of power sums into
Schur polynomials given by the character table of a symmetric group. �
Remarks.

• As mentioned earlier, this ratio R(γ, (ci)) already appears in Theorem 6 of Bump and Di-
aconis [4], when G = U(n). It is striking that this ratio is independent of the Cartan type
of G.

• The situation is slightly richer however in the case G = U(n), as we have the Heine–Szegö
identity: take

Tn−1(f ) =

⎛
⎜⎜⎜⎜⎝

d0 d1 . . . dn−1

d−1 d0 . . . dn−2

...
...

. . .
...

d−(n−1) d−(n−2) . . . d0

⎞
⎟⎟⎟⎟⎠ ,

with still the dis defined through σ(t) = ∑
i∈Z

dit
i . The identity states that

detTn−1(f ) = EU(n)Φn,f .

It is proved in [4] that it is merely a special case of a more general identity relating determi-
nants to averages over unitary groups. The authors show that EU(n)χ

U(n)
γ Φn,f corresponds

to the determinant of a matrix, this time approximately obtained from Tn−1(f ) by translating
lines and columns following a process encoded in γ . On Toeplitz matrices such as Tn−1(f ),
this process amounts to taking minors.
Hence in the unitary case, the statement of Theorem 3 is also a statement on asymptotics of
minors of Toeplitz matrices. Tracy and Widom [24] used this fact to obtain a very different
RHS in their version of Theorem 3. The two seemingly different RHS obtained lead to further
results by the present author [7].

• Bump and Diaconis went a bit further than Theorem 3 in [4] and modified the integrand using
two characters (one of them appeared conjugated). There is no real need to do this here, as
the characters χG

λ are real in the non-unitary cases, and we would just end up with a product
of two characters. Koike and Terada [14, Corollary 2.5.3] have shown that the multiplication
rules are also essentially6 independent of the Cartan type of G, i.e. that

χG
μ · χG

ν =
∑
λ

cλ
μνχ

G
λ .

This can be combined with Theorem 3 to show that there will also be an asymptotic ratio for
EGχG

μ χG
ν Φn,f

EGΦn,f
, independent of the Cartan type of G.

6 This is only valid for n � l(μ) + l(ν), and the case G = SO(2n) is slightly different.
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• Johansson [11, Theorem 3.8.i with η = i] was the first to generalize the strong Szegö limit
theorem to all the classical groups. He found asymptotics for EGΦn,f as n → ∞. Bump
and Diaconis [3] later found a new proof of Johansson’s result that actually inspired our own
work and an extension of this result. We state here a weaker version of Johansson’s result in
a style closer to our own. Note that this is the first time we need Condition (B).

Theorem 4. (See Johansson [11], Bump and Diaconis [3].) Let f (t) = ∑
i>0

ci

i
t i satisfy Condi-

tions (A) and (B) in addition to the usual symmetry condition f (t) = f (t−1). Then

ESO(2n+1)Φn,f = exp

( ∞∑
i=1

c2
i

2i
−

∞∑
i=1

c2i−1

2i − 1
+ o(1)

)
,

ESp(2n)Φn,f = exp

( ∞∑
i=1

c2
i

2i
−

∞∑
i=1

c2i

2i
+ o(1)

)
,

ESO(2n)Φn,f = exp

( ∞∑
i=1

c2
i

2i
+

∞∑
i=1

c2i

2i
+ o(1)

)
.

We can thus combine Theorems 3 and 4 to get the asymptotics for EGχG
γ Φn,f , i.e. for the

Haar measure twisted by a character of type χG
λ .
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