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1. Introduction

We present two matrix analogues for set partitions that are intimately related to both permuta-
tions and (2 + 2)-free posets.

Example 1. Here is an instance of what we shall call a partition matrix:

A =
⎡
⎢⎣

{1,2,3} ∅ {5,7,8} {9}
∅ {4} {6} {11}
∅ ∅ ∅ {13}
∅ ∅ ∅ {10,12}

⎤
⎥⎦ .

Definition 2. Let X be a finite subset of {1,2, . . .}. A partition matrix on X is an upper triangular
matrix over the powerset of X satisfying the following properties:

(i) each column and row contain at least one non-empty set;
(ii) the non-empty sets partition X ;

(iii) col(i) < col( j) �⇒ i < j,

where col(i) denotes the column in which i is a member. Let Parn be the collection of all partition
matrices on [1,n] = {1, . . . ,n}.

For instance,

Par1 = {[ {1} ]};
Par2 =

{[ {1,2} ]
,

[ {1} ∅
∅ {2}

]}
;

Par3 =
{[ {1,2,3} ]

,

[ {1,2} ∅
∅ {3}

]
,

[ {1} {2}
∅ {3}

]
,

[ {1} {3}
∅ {2}

]
,

[ {1} ∅
∅ {2,3}

]
,

[ {1} ∅ ∅
∅ {2} ∅
∅ ∅ {3}

]}
.

In Section 2 we present a bijection between Parn and the set of inversion tables

In = [0,0] × [0,1] × · · · × [0,n − 1], where [a,b] = {i ∈ Z: a � i � b}.
Non-decreasing inversion tables are shown to correspond to partition matrices with a row ordering

relation. Partition matrices which are s-diagonal are classified in terms of inversion tables. Bidiago-
nal partition matrices are enumerated using the transfer-matrix method and are equinumerous with
permutations which are sortable by two pop-stacks in parallel.

In Section 3 we show that composition matrices on X are in one-to-one correspondence with
(2 + 2)-free posets on X . We also show that composition matrices whose rows satisfy a column-
ordering relation are in one-to-one correspondence with parking functions.

Finally, in Section 4 we show that pairs of ascent sequences and permutations are in one-to-one
correspondence with (2+2)-free posets whose elements are the cycles of a permutation, and use this
relation to give an expression for the number of (2 + 2)-free posets on [1,n].

Taking the entry-wise cardinality of the matrices in Parn one gets the matrices of Dukes and
Parviainen [5]. In that sense, we generalize the paper of Dukes and Parviainen in a similar way as
Claesson and Linusson [4] generalized the paper of Bousquet-Mélou et al. [2]. We note, however,
that if we restrict our attention to those inversion tables that enjoy the property of being an ascent
sequence, then we do not recover the bijection of Dukes and Parviainen.
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2. Partition matrices and inversion tables

For w a sequence let Alph(w) denote the set of distinct entries in w . In other words, if we think
of w as a word, then Alph(w) is the (smallest) alphabet on which w is written. Also, let us write
{a1, . . . ,ak}< for a set whose elements are listed in increasing order, a1 < · · · < ak . Given an inversion
table w = (x1, . . . , xn) ∈ In with Alph(w) = {y1, . . . , yk}< define the k × k matrix A = Λ(w) ∈ Parn

by

Aij = {�: x� = yi and y j < � � y j+1},
where we let yk+1 = n. For example, with

w = (0,0,0,3,0,3,0,0,0,8,3,8) ∈ I12

we have Alph(w) = {0,3,8} and

Λ(w) =
[ {1,2,3} {5,7,8} {9}

∅ {4,6} {11}
∅ ∅ {10,12}

]
∈ Par12 .

We now define a map K : Parn → In . Given A ∈ Parn , for � ∈ [1,n] let x� = min(A∗i) − 1 where i is
the row containing � and min(A∗i) is the smallest entry in column i of A. Define

K (A) = (x1, . . . , xn).

Theorem 3. The map Λ : In → Parn is a bijection and K is its inverse.

Proof. It suffices to show the following four statements:

(1) Λ(In) ⊆ Parn;
(2) K (Parn) ⊆ In;
(3) K (Λ(w)) = w for all w in In;
(4) Λ(K (A)) = A for all A in Parn .

Proof of (1): Assume that w = (x1, . . . , xn) ∈ In with Alph(w) = {y1, . . . , yk}< , and let A = Λ(w).
We first need to see that A is upper triangular. Let i > j and consider the entry Aij . Assume that
x� = yi . Since w ∈ In we have � > x� and thus � > yi . Since y1 < · · · < yk and i � j + 1 we have
� > yi � y j+1. Thus Aij = ∅ if i > j; that is, A is upper triangular.

Denote by Ai∗ and A∗ j the union of the sets in the ith row and the jth column of A, respectively.
By definition, we have Ai∗ = {�: x� = yi} and A∗ j = [y j +1, y j+1] and clearly both sets are non-empty.
Thus A satisfies condition (i) of Definition 2. To show (ii), it suffices to note that the entries Ai∗ form
a partition of [1,n], and so do the entries A∗ j . To show (iii), let u, v ∈ [1,n] with col(u) < col(v). Also,
let p = col(u) and q = col(v). Then u � yp+1 and yq < v . Since p + 1 � q and the numbers yi are
increasing, it follows that u � yp+1 � yq < v .

Proof of (2): Given A ∈ Parn choose any � ∈ [1,n]. Suppose that � is in row i of A and let a =
min(A∗i) be the smallest entry in column i of A. If col(a) = col(�) then a � �, and so x� = a − 1 �
� − 1. Otherwise, col(a) < col(�) and so, from condition (iii) of Definition 2, we have a < �. Thus
x� < � − 1.

Proof of (3): Let w = (x1, . . . , xn)∈ In , Alph(w) = {y1, . . . , yk}< , A = Λ(w) and K (A) = (z1, . . . , zm).
From the definitions of Λ and K it is clear that n = m. Suppose that � ∈ [1,n] is in row i of A;
then x� = yi . Also, by the definition of Λ, the smallest entry in column i of A is yi + 1. From
the definition of K we have z� = (yi + 1) − 1 = yi = x� . So x� = z� for all � ∈ [1,n], and hence
w = z = K (A).
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Proof of (4): Let A ∈ Parn , K (A) = w = (x1, . . . , xn), Alph(w) = {y1, . . . , yk}< and P = Λ(w). Also,
define z j = min(A∗ j) − 1. Then, for � ∈ [1,n], we have

� ∈ Aij ⇐⇒ x� = zi and � ∈ [z j + 1, z j+1] (1)

by the definitions of K and z j . In particular, this means that each x� equals some zi and, simi-
larly, each zi equals some x� . Hence Alph(w) = {z1, . . . , zdim(A)}< and it follows that dim(A) = k and
y j = z j for all j ∈ [1,k]. So we can restate (1) as

� ∈ Aij ⇐⇒ x� = yi and � ∈ [y j + 1, y j+1].
By the definition of Λ, the right-hand side is equivalent to � ∈ Pij . Thus A = P . �
2.1. Statistics on partition matrices and inversion tables

Given A ∈ Parn , let Min(A) = {min(A∗ j): j ∈ [1,dim(A)]}. For instance, the matrix A in Example 1
has Min(A) = {1,4,5,9}. From the definition of Λ the following proposition is apparent.

Proposition 4. If w ∈ In, Alph(w) = {y1, . . . , yk}< and A = Λ(w), then

Min(A) = {y1 + 1, . . . , yk + 1} and dim(A) = ∣∣Alph(w)
∣∣.

Corollary 5. The statistic dim on Parn is Eulerian.

Proof. The statistic “number of distinct entries in the inversion table” is Eulerian; that is, it has the
same distribution on Sn (the symmetric group) as the number of descents. For a proof due to Deutsch
see [4, Cor. 19]. �

Let us say that i is a special descent of w = (x1, . . . , xn) ∈ In if xi > xi+1 and i does not occur in w .
Let sdes(w) denote the number of special descents of w , so

sdes(w) = ∣∣{i: xi > xi+1 and x� 
= i for all � ∈ [1,n]}∣∣.
Claesson and Linusson [4] conjectured that sdes has the same distribution on In as the so-called
bivincular pattern p = (231, {1}, {1}) has on Sn . An occurrence of p in a permutation π = a1 · · ·an

is a subword aiai+1a j such that ai+1 > ai = a j + 1. We shall define a statistic on partition matrices
that is equidistributed with sdes. Given A ∈ Parn let us say that i is a column descent if i + 1 is in
the same column as, and above, i in A. Let cdes(A) denote the number of column descents in A,
so

cdes(A) = ∣∣{i: row(i) > row(i + 1) and col(i) = col(i + 1)
}∣∣.

Proposition 6. The special descents of w ∈ In equal the column descents of Λ(w).

Proof. Given t ∈ [1,n − 1], let u = row(t + 1) and v = row(t). As before, let w = (x1, . . . , xn) and
Alph(w) = {y1, . . . , yk}< . By the definition of Λ we have xt+1 = yu and xt = yv . So, since the num-
bers yi are increasing, we have

row(t + 1) < row(t) ⇐⇒ u < v ⇐⇒ yu < yv ⇐⇒ xt+1 < xt .

Now, let u = col(t + 1) and v = col(t). Then
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col(t + 1) = col(t) ⇐⇒ t + 1 ∈ [yu + 1, yu+1] and t ∈ [yv + 1, yv+1]
⇐⇒ yu + 1 � t � yv+1 − 1

⇐⇒ x j 
= t for all j ∈ [1,n],
which concludes the proof. �
Corollary 7. The statistic sdes on In has the same distribution as cdes on Parn.

2.2. Non-decreasing inversion tables and partition matrices

Let us write Monon for the collection of matrices in Parn which satisfy

(iv) row(i) < row( j) �⇒ i < j,

where row(i) denotes the row in which i is a member. We say that an inversion table (x1, . . . , xn) is
non-decreasing if xi � xi+1 for all 1 � i < n.

Theorem 8. Under the map Λ : Parn → In, matrices in Monon correspond to non-decreasing inversion tables.

Proof. Let w = (x1, . . . , xn) ∈ In and Alph(w) = {y1, . . . , yk}< . Looking at the definition of Λ, we see
that � is in row i of Λ(w) if and only if x� = yi . Since the numbers yi are increasing it follows that
condition (iv) holds if and only if w is non-decreasing, as claimed. �
Proposition 9. |Monon | = (2n

n

)
/(n + 1), the nth Catalan number.

Proof. Consider the set of lattice paths in the plane from (0,0) to (n,n) which take steps in the set
{(1,0), (0,1)} and never go above the diagonal line y = x. Such paths are commonly known as Dyck
paths, and they can be encoded as a sequence (x1, . . . , xn) where xi is the y-coordinate of the ith
horizontal step (1,0). The restriction on such a sequence, for it to be Dyck path, is precisely that it is
a non-decreasing inversion table. The number of Dyck paths from (0,0) to (n,n) is given by the nth
Catalan number. �

We want to remark that a matrix A ∈ Monon is completely determined by the cardinalities of its
entries. Thus, we can identify A with an upper triangular matrix that contains non-negative entries
which sum to n and such that there is at least one non-zero entry in each row and column. Also, the
number of such matrices with k rows is equal to the Narayana number

1

k

(
n

k

)(
n

k − 1

)
.

2.3. s-diagonal partition matrices

A k × k matrix A is called s-diagonal if A is upper triangular and Aij = ∅ for j − i � s. For s = 1
we get the collection of diagonal matrices.

Theorem 10. Let w = (x1, . . . , xn) ∈ In, A = Λ(w) and Alph(w) = {y1, . . . , yk}< . Define yk+1 = n. The
matrix A is s-diagonal if and only if for every i ∈ [1,n] there exists an a(i) ∈ [1,k] such that

ya(i) < i � ya(i)+1 and xi ∈ {ya(i), ya(i)−1, . . . , ymax(1,a(i)−s+1)}.

Proof. From the definition of Λ we have that i is in row a − j of A precisely when xi = ya− j , and that
i is in column a of A precisely when ya < i � ya+1. The matrix A is s-diagonal if for every entry i,
there exists a(i) such that i is in column a(i) and row a(i) − j for some 0 � j < s. �
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Setting s = 1 in the above theorem gives us the class of diagonal matrices. These admit a more
explicit description which we will now present.

In computer science, run-length encoding is a simple form of data compression in which consecutive
data elements (runs) are stored as a single data element and its multiplicity. We shall apply this to
inversion tables, but for convenience rather than compression purposes. Let RLE(w) denote the run-
length encoding of the inversion table w . For example,

RLE(0,0,0,0,1,1,0,2,3,3) = (0,4)(1,2)(0,1)(2,1)(3,2).

A sequence of positive integers (u1, . . . , uk) which sum to n is called an integer composition of n
and we write this as (u1, . . . , uk) |� n.

Corollary 11. The set of diagonal matrices in Parn is the image under Λ of{
w ∈ In: (u1, . . . , uk) |� n and RLE(w) = (p0, u1) · · · (pk−1, uk)

}
,

where p0 = 0, p1 = u1 , p2 = u1 + u2 , p3 = u1 + u2 + u3 , etc.

Since diagonal matrices are in bijection with integer compositions, the number of diagonal matri-
ces in Parn is 2n−1. Although the bidiagonal matrices do not admit as compact a description in terms
of the corresponding inversion tables, we can still count them using the so-called transfer-matrix
method [9, §4.7]. Consider the matrix

B =
⎡
⎢⎣

{1,2} {3} ∅ ∅
∅ ∅ {5} ∅
∅ ∅ {4,6} ∅
∅ ∅ ∅ {7}

⎤
⎥⎦ .

More specifically consider creating B by starting with the empty matrix, ε , and inserting the elements
1, . . . ,7 one at a time:

ε → [ {1} ]
→ [ {1,2} ] →

[ {1,2} {3}
∅ ∅

]
→

[ {1,2} {3} ∅
∅ ∅ ∅
∅ ∅ {4}

]

→
[ {1,2} {3} ∅

∅ ∅ {5}
∅ ∅ {4}

]

→
[ {1,2} {3} ∅

∅ ∅ {5}
∅ ∅ {4,6}

]
→

⎡
⎢⎣

{1,2} {3} ∅ ∅
∅ ∅ {5} ∅
∅ ∅ {4,6} ∅
∅ ∅ ∅ {7}

⎤
⎥⎦ .

We shall encode (some aspects of) this process like this:

ε → → → → → → → .

Here, denotes any 1 × 1 matrix whose only entry is a non-empty set; denotes any 2 × 2 matrix

whose black entries are non-empty; denotes any matrix of dimension 3 or more, whose entries in

the bottom right corner match the picture, that is, the black entries are non-empty; etc. The sequence
of pictures does not, in general, uniquely determine a bidiagonal matrix, but each picture contains
enough information to tell what pictures can possibly follow it. The matrix below gives all possible
transitions (a q records when a new column, and row, is created):
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ε

ε 0 q 0 0 0 0 0 0 0 0 0 0 0 0
0 1 q q 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 q q 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 q q 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 q q 0

0 0 0 0 0 q + 1 q 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 q q 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 q q 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 q q + 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 2 q q 0

0 0 0 0 0 q q 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 q q 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 q q 2

We would like to enumerate paths that start with ε and end in a configuration with no empty rows or
columns. Letting M denote the above transfer-matrix, this amounts to calculating the first coordinate
in

(1 − xM)−1[1 1 1 0 1 1 0 1 0 0 1 1 0 1]T .

Proposition 12. We have

∑
n�0

∑
A∈BiParn

qdim(A)xn = 2x3 − (q + 5)x2 + (q + 4)x − 1

2(q2 + q + 1)x3 − (q2 + 4q + 5)x2 + 2(q + 2)x − 1
,

where BiParn is the collection of bidiagonal matrices in Parn.

We find it interesting that the number of bidiagonal matrices in Parn is given by the se-
quence [7, A164870], which corresponds to permutations of [1,n] which are sortable by two pop-
stacks in parallel. In terms of pattern avoidance those are the permutations in the class

Sn(3214,2143,24 135,41 352,14 352,13 542,13 524).

See Atkinson and Sack [1]. Moreover, there are exactly 2n−1 permutations of [1,n] which are sortable
by one pop-stack; hence equinumerous with the diagonal partition matrices. One might then wonder
about permutations which are sortable by three pop-stacks in parallel. Are they equinumerous with
tridiagonal partition matrices? Computations show that this is not the case: For n = 6 there are 646
tridiagonal partition matrices, but only 644 permutations which are sortable by three pop-stacks in
parallel. For more on the enumeration of permutations sortable by pop-stacks in parallel see Smith
and Vatter [8].
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3. Composition matrices and (2 + 2)-free posets

Consider Definition 2. Define a composition matrix to be a matrix that satisfies conditions (i)
and (ii), but not necessarily (iii). Let Compn ⊇ Parn denote the set of all composition matrices on [1,n].
The smallest example of a composition matrix that is not a partition matrix is[ {2} ∅

∅ {1}
]

.

In this section we shall give a bijection from Compn to the set of (2 + 2)-free posets on [1,n]. This
bijection will factor through a certain union of Cartesian products that we now define. Given a set X ,
let us write

( X
x1,...,x�

)
for the collection of all sequences (X1, . . . , X�) that are ordered set partitions

of X and |Xi| = xi for all i ∈ [1, �]. For a sequence (a1, . . . ,ai) of numbers let

asc(a1, . . . ,ai) = ∣∣{ j ∈ [1, i − 1]: a j < a j+1
}∣∣.

Following Bousquet-Mélou et al. [2] we define a sequence of non-negative integers α = (a1, . . . ,an) to
be an ascent sequence if a1 = 0 and ai+1 ∈ [0,1 + asc(a1, . . . ,ai)] for 0 < i < n. Let An be the collection
of ascent sequences of length n. Define the run-length record of α to be the sequence that records the
multiplicities of adjacent values in α. We denote it by RLR(α). In other words, RLR(α) is the sequence
of second coordinates in RLE(α), the run-length encoding of α. For instance,

RLR(0,0,0,0,1,1,0,2,3,3) = (4,2,1,1,2).

Finally we are in a position to define the set through which our bijection from Compn to (2 + 2)-
free posets on [1,n] will factor. Let

An =
⋃

α∈An

{α} ×
( [1,n]

RLR(α)

)
.

Let Mn be the collection of upper triangular matrices that contain non-negative integers whose
entries sum to n and such that there is no column or row of all zeros. Dukes and Parviainen [5]
presented a bijection

Γ : Mn → An.

Given A ∈ Mn , let nz(A) be the number of non-zero entries in A. Since it follows from [5, Thm. 4]
that A may be uniquely constructed, in a step-wise fashion, from the ascent sequence Γ (A), we may
associate to each non-zero entry Aij its time of creation T A(i, j) ∈ [1,nz(A)]. By defining T A(i, j) = 0
if Aij = 0 we may view T A as a dim(A) × dim(A) matrix. Define Seq(A) = (y1, . . . , ynz(A)) where
yt = Aij and T A(i, j) = t .

Example 13. With

A =
⎡
⎢⎣

3 0 3 1
0 1 1 1
0 0 0 1
0 0 0 2

⎤
⎥⎦

we have

T A =
⎡
⎢⎣

1 0 5 8
0 2 4 7
0 0 0 6
0 0 0 3

⎤
⎥⎦

and

Seq(A) = (3,1,2,1,3,1,1,1).



1632 A. Claesson et al. / Journal of Combinatorial Theory, Series A 118 (2011) 1624–1637
Lemma 14. Given A ∈ Mn, we have that Seq(A) = RLR(Γ (A)).

Proof. This is a straightforward consequence of the construction rules given by Dukes and Parvi-
ainen [5]. �

For a matrix A ∈ Compn define Card(A) as the matrix obtained from A by taking the cardinal-
ity of each of its entries. Note that A �→ Card(A) is a surjection from Parn onto Mn . Define E(A)

as the ordered set partition (X1, . . . , Xnz(A)), where Xt = Aij for t = TCard(A)(i, j). Finally, define
f : Compn → An by

f (A) = (
Γ

(
Card(A)

)
, E(A)

)
.

Example 15. Let us calculate f (A) for

A =
[ {3,8} {6} ∅

∅ {2,5,7} ∅
∅ ∅ {1,4}

]
.

We have

Card(A) =
[2 1 0

0 3 0
0 0 2

]
; TCard(A) =

[1 3 0
0 2 0
0 0 4

]

and

f (A) = (
Γ

(
Card(A)

)
, E(A)

)
= (

(0,0,1,1,1,0,2,2), {3,8}{2,5,7}{6}{1,4}).
We now define a map g :An → Compn . For (w,χ) ∈ An with χ = (X1, . . . , Xk) let g(w,χ) = A,

where Aij = Xt , t = T B(i, j) and B = Γ −1(w). It is easy to verify that f (Compn) ⊆ An , g(An) ⊆ Compn ,
g( f (w,χ)) = (w,χ) for (w,χ) ∈ An , and f (g(A)) = A for A ∈ Compn . Thus we have the following
theorem.

Theorem 16. The map f : Compn → An is a bijection and g is its inverse.

Next we will give a bijection φ from An to Pn , the set of (2 + 2)-free posets on [1,n]. Recall that
a poset P is (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2, the
union of two disjoint 2-element chains. Let (α,χ) ∈ An with χ = (X1, . . . , X�). Assuming that Xi =
{x1, . . . , xk}< define the word X̂i = x1 · · · xk and let χ̂ = X̂1 · · · X̂� . From this, χ̂ will be a permutation
of the elements [1,n]. Let χ̂ (i) be the ith letter of this permutation.

For (α,χ) ∈ An define φ(α,χ) as follows: Construct the poset element by element according to
the construction rules of [2] on the ascent sequence α. Label with χ̂ (i) the element inserted at step i.

The inverse of this map is also straightforward to state and relies on the following crucial ob-
servation [6, Prop. 3] concerning indistinguishable elements in an unlabeled (2 + 2)-free poset. Two
elements in a poset are called indistinguishable if they obey the same relations relative to all other
elements.

Let P be an unlabeled poset that is constructed from the ascent sequence α = (a1, . . . ,an). Let
pi and p j be the elements that were created during the ith and jth steps of the construction given
in [2, Sect. 3]. The elements pi and p j are indistinguishable in P if and only if ai = ai+1 = · · · = a j .

Define ψ :Pn → An as follows: Given P ∈ Pn let ψ(P ) = (α,χ) where α is the ascent sequence
that corresponds to the poset P with its labels removed, and χ is the sequence of sets (X1, . . . , Xm)

where Xi is the set of labels that corresponds to all the indistinguishable elements of P that were
added during the ith run of identical elements in the ascent sequence.
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Example 17. Consider the (2 + 2)-free poset

P =

1

2 5

6

7

38

4

∈ P8.

The unlabeled poset corresponding to P has ascent sequence (0,0,1,1,1,0,2,2). There are four runs
in this ascent sequence. The first run of two 0s inserts the elements 3 and 8, so we have X1 = {3,8}.
Next the run of three 1s inserts elements 2, 5 and 7, so X2 = {2,5,7}. The next run is a run containing
a single 0, and the element inserted is 6, so X3 = {6}. The final run of two 2s inserts elements 1 and 4,
so X4 = {1,4}. Thus we have

ψ(P ) = (
(0,0,1,1,1,0,2,2), {3,8}{2,5,7}{6}{1,4}).

It is straightforward to check that φ and ψ are each others inverses. Consequently, we have the
following theorem.

Theorem 18. The map φ :An → Pn is a bijection and ψ is its inverse.

Let Cn be the collection of composition matrices M on [1,n] with the following property: in every
row of M , the entries are increasing from left to right. An example of a matrix in C8 is

M ′ =
[ {4,6} {8} ∅

∅ {1} {7}
∅ ∅ {2,3,5}

]
.

Every matrix M ∈ Cn may be written as a unique pair (w(M), χ̂ (M)) where:

• w(M) is the non-decreasing inversion table that via Theorem 8 corresponds to mono(M), the
matrix in Monon that is formed from M the following way: replace the entries in M from left to
right, beginning with the first row, with the values 1, . . . ,n, in that order. For the example above
we have

mono
(
M ′) =

[ {1,2} {3} ∅
∅ {4} {5}
∅ ∅ {6,7,8}

]
∈ Mono8

and w(M ′) = (0,0,0,2,2,4,4,4).
• χ(M) = (X1, . . . , Xk) where Xi is the union of the entries in row i of M , and χ̂ (M) is the permu-

tation of [n] achieved by removing the parentheses from χ(M); see paragraph after Theorem 16.
For the above example, χ(M ′) = ({4,6,8}, {1,7}, {2,3,5}) and χ̂ (M ′) = (4,6,8,1,7,2,3,5).

Given M ∈ Cn with w(M) = (w1, . . . , wn) and χ̂ (M) = (χ̂1, . . . , χ̂n), let us define the sequence
η(M) = (a1, . . . ,an) by ai = 1 + w j where i = χ̂ j . (For the small example above, we have η(M ′) =
(3,5,5,1,5,1,3,1).) Recall [10, p. 94] that a sequence η = (a1, . . . ,an) ∈ [n]n is a parking function if
and only if the increasing rearrangement b1 � b2 � · · · � bn of a1, . . . ,an satisfies bi � i.

Theorem 19. Matrices in Cn are in one-to-one correspondence with parking functions of order n. The parking
function that corresponds to the matrix M ∈ Cn is (a1, . . . ,an) where aχ̂ j

= 1 + w j and M ↔ (w(M), χ̂ (M)).
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3.1. Diagonal and bidiagonal composition matrices

Consider the set of diagonal matrices DiCompn in Compn . Under the bijection f these matrices
map to pairs (α,χ) ∈ An where α is a non-decreasing ascent sequence. Applying φ to f (DiCompn)

we get the collection of (2 + 2)-free posets P which have the property that every element at level j
covers every element at level j − 1, for all levels j but the first. Reading the levels from bottom to
top we get an ordered set partition of [1,n]. It is not hard to see that this ordered set partition is, in
fact, χ . For instance,

[ {4} ∅ ∅
∅ {1,3} ∅
∅ ∅ {2,5}

]
↔ (

(0,1,1,2,2), {4}{1,3}{2,5}) ↔

2

1

5

3

4

.

It follows that there are exactly k!S(n,k) diagonal composition matrices of size n and dimension k,
where S(n,k) is the number of partitions of an n element set into k parts (a Stirling number of the
second kind). For bidiagonal composition matrices the situation is a bit more complicated:

Proposition 20. We have

∑
n�0

∑
A∈BiCompn

qdim(A) xn

n! = qe2x − qex − 1

(1 − q)qe2x + 2q2ex − q2 − q − 1
,

where BiCompn is the collection of bidiagonal matrices in Compn.

Proof. Let Bn be the collection of binary bidiagonal matrices in Mn . A matrix A ∈ BiCompn can in a
natural and simple way be identified with a pair (B,χ) where B ∈ Bk , k = nz(Card(A)), and χ is an
ordered set partition of [1,n]:[ {3,8} {6} ∅

∅ {2,5,7} ∅
∅ ∅ {1,4}

]
↔

([1 1 0
0 1 0
0 0 1

]
, {3,8}{6}{2,5,7}{1,4}

)
.

Thus, if F (q, x) is the ordinary generating function for matrices in Bn counted by dimension and size,
then F (q, ex − 1) is the exponential generating function we require. This is because F (q, x) is also
the generating function for pairs (B,π) where B ∈ Bn and π ∈ Sn , and ex − 1 is the exponential
generating function for non-empty sets.

We now derive F (q, x) using the transfer-matrix method. We grow the matrices in Bn from left to
right by adding new columns, and within a column we add ones from top to bottom:

ε [ 1 ]

0
1

1
1

1
0

q

q

q

q

q

q
1

q

q

M =

⎡
⎢⎢⎢⎣

0 q 0 0 0
0 0 q q 0
0 0 q q 0
0 0 0 q 1
0 0 q q 0

⎤
⎥⎥⎥⎦ .

Here ε is the empty matrix; [ 1 ] is the 1 × 1 identity matrix;
0
1 denotes any matrix in Bn of dimen-

sion 2 or more whose bottom most entries in the last column are 0 and 1; etc. Calculating the first
entry in (1 − xM)−1[1 1 1 0 1]T we find that
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F (q, x) =
∑
n�0

∑
A∈Bn

qdim(A)xn = qx2 + qx − 1

(1 − q)qx2 + 2qx − 1
,

and on simplifying F (q, ex − 1) we arrive at the claimed generating function. �
4. The number of (2 + 2)-free posets on [1,n]

Let us consider plane (2 + 2)-free posets on [1,n]. That is, (2 + 2)-free posets on [1,n] with a
canonical embedding in the plane. For instance, these are six different plane (2 + 2)-free posets on
[1,3] = {1,2,3}:

1

3

2 1

2

3 2

3

1 2

1

3 3

2

1 3

1

2

By definition, if un is the number of unlabeled (2+2)-free posets on n nodes, then unn! is the number
of plane (2 + 2)-free posets on [1,n]. In other words, we may identify the set of plane (2 + 2)-free
posets on [1,n] with the Cartesian product Pn × Sn , where Pn denotes the set of unlabeled (2 + 2)-
free posets on n nodes and Sn denotes the set of permutations on [1,n]. We shall demonstrate the
isomorphism⋃

π∈Sn

P
(
Cyc(π)

) � Pn × Sn, (2)

where Cyc(π) is the set of (disjoint) cycles of π and P(Cyc(π)) is the set of (2 + 2)-free posets
on those cycles. As an illustration we consider the case n = 3. On the right-hand side we have
|P3 × S3| = |P3||S3| = 5 · 6 = 30 plane (2 + 2)-free posets. Taking the cardinality of the left-hand
side we get∣∣P{

(1),(2),(3)
}∣∣ + ∣∣P{

(1),(23)
}∣∣ + ∣∣P{

(12),(3)
}∣∣ + ∣∣P{

(2),(13)
}∣∣ + ∣∣P{

(123)
}∣∣ + ∣∣P{

(132)
}∣∣

= |P3| + 3|P2| + 2|P1| = 19 + 3 · 3 + 2 · 1 = 30.

Bousquet-Mélou et al. [2] gave a bijection Ψ from Pn to An , the set of ascent sequences of
length n. Recall also that in Theorem 18 we gave a bijection φ from Pn to An . Of course, there is
nothing special about the ground set being [1,n] in Theorem 18; so, for any finite set X , the map φ

can be seen as a bijection from (2 + 2)-free posets on X to the set

A(X) =
⋃

α∈A|X|
{α} ×

(
X

RLR(α)

)
.

In addition, the fundamental transformation [3] is a bijection between permutations with exactly k
cycles and permutations with exactly k left-to-right minima. Putting these observations together it is
clear that to show (2) it suffices to show⋃

π∈Sn

A
(
LMin(π)

) � An × Sn, (3)

where LMin(π) is the set of segments obtained by breaking π apart at each left-to-right minima. For
instance, the left-to-right minima of π = 5 731 462 are 5, 3 and 1; so LMin(π) = {57,3,1462}.

Let us now prove (3) by giving a bijection h from the left-hand side to the right-hand side. To this
end, fix a permutation π ∈ Sn and let k = |LMin(π)| be the number of left-to-right minima in π .
Assume that α = (a1, . . . ,ak) is an ascent sequence in Ak and that χ = (X1, . . . , Xr) is an ordered set
partition in

(LMin(π)
RLR(α)

)
. To specify the bijection h let

h(α,χ) = (β, τ )

where β ∈ An and τ ∈ Sn are defined in the next paragraph.
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For each i ∈ [1, r], first order the blocks of Xi decreasingly with respect to first (and thus minimal)
element, then concatenate the blocks to form a word X̂i . Define the permutation τ as the concatena-
tion of the words X̂i :

τ = X̂1 · · · X̂k.

Let i1 = 1, i2 = i1 + |X1|, i3 = i2 + |X2|, etc. By definition, these are the indices where the ascent
sequence α changes in value. Define β by

RLE(β) = (ai1 , x1) · · · (aik , xk), where xi = | X̂i |.
Consider the permutation π = A9B68D4F32C175E ∈ S15 (in hexadecimal notation). Then

LMin(π) = {A,9B,68D,4F,3,2C,175E}. Assume that

α = (0,0,1,2,2,2,0);
χ = {2C,68D}{9B}{3,175E,4F}{A}.

Then we have X̂1 = 68D2C, X̂2 = 9B, X̂3 = 4F3175E and X̂4 = A. Also, i1 = 1, i2 = 1 + 2 = 3, i3 =
3 + 1 = 4 and i4 = 4 + 3 = 7. Consequently,

β = ( 0 , 0 , 0 , 0 , 0 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 0);
τ = 6 8 D 2 C 9 B 4 F 3 1 7 5 E A .

It is clear how to reverse this procedure: Split τ into segments according to where β changes in
value when reading from left to right. With τ as above we get

(68D2C,9B,4F3175E,A) = ( X̂1, X̂2, X̂3, X̂4).

We have thus recovered X̂1, X̂2, etc. Now Xi = LMin( X̂i), and we thus know χ . It only remains to
recover α. Assume that RLE(β) = (b1, x1) · · · (bk, xk), then RLE(α) = (b1, |X1|) · · · (bk, |Xk|). This con-
cludes the proof of (3). Let us record this result.

Theorem 21. The map h :
⋃

π∈Sn
A(LMin(π)) → An × Sn is a bijection.

As previously explained, (2) also follows from this proposition. Let us now use (2) to derive an
exponential generating function L(t) for the number of (2 + 2)-free posets on [1,n]. Bousquet-Mélou
et al. [2] gave the following ordinary generating function for unlabeled (2 + 2)-free posets on n nodes:

P (t) =
∑
n�0

n∏
i=1

(
1 − (1 − t)i)

= 1 + t + 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 + O
(
t9).

This is, of course, also the exponential generating function for plane (2 + 2)-free posets on [1,n].
Moreover, the exponential generating function for cyclic permutations is log(1/(1 − t)). On taking the
union over n � 0 of both sides of (2) it follows that L(log(1/(1 − t))) = P (t); so L(t) = P (1 − e−t).

Corollary 22. The exponential generating function for (2 + 2)-free posets is

L(t) =
∑
n�0

n∏
i=1

(
1 − e−ti)

= 1 + t + 3
t2

2! + 19
t3

3! + 207
t4

4! + 3451
t5

5! + 81 663
t6

6! + 2 602 699
t7

7! + O
(
t8).
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This last result also follows from a result of Zagier [11, Eq. 24] and a bijection, due to Bousquet-
Mélou et al. [2], between unlabeled (2 + 2)-free posets and certain matchings. See also Exercises 14
and 15 in Chapter 3 of the second edition of Enumerative Combinatorics volume 1 (available on
R. Stanley’s homepage).
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