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The aim of the present paper is to generalize the notion of 
the group determinants for finite groups. For a finite group G
and its subgroup H, one may define a rectangular matrix of 
size #H × #G by X =

(
xhg−1

)
h∈H,g∈G

, where {xg | g ∈ G}
are indeterminates indexed by the elements in G. Then, we 
define an invariant Θ(G, H) for a given pair (G, H) by the 
k-wreath determinant of the matrix X, where k is the index 
of H in G. The k-wreath determinant of an n by kn matrix is 
a relative invariant of the left action by the general linear 
group of order n and of the right action by the wreath 
product of two symmetric groups of order k and n. Since the 
definition of Θ(G, H) is ordering-sensitive, the representation 
theory of symmetric groups is naturally involved. When G
is abelian, if we specialize the indeterminates to powers of 
another variable q suitably, then Θ(G, H) factors into the 
product of a power of q and polynomials of the form 1 − qr
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for various positive integers r. We also give examples for non-
abelian group–subgroup pairs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is Frobenius who initiated the character theory of finite groups [2]. At the very 
first stage of his study, the group determinant Θ(G) of a given finite group G, which is 
defined as the determinant

Θ(G) := det
(
xuv−1

)
u,v∈G

(1)

of the group matrix 
(
xuv−1

)
u,v∈G

, played an important role. Here {xg | g ∈ G} are inde-
terminates indexed by the elements in G. (One should note that the definition of Θ(G)
is independent of the choice of the ordering of elements in G.) Indeed, the group deter-
minant Θ(G) reflects the structure of the regular representation of G, which contains all 
the equivalence classes of the irreducible representations of G. The factorization of Θ(G)
corresponds to the irreducible decomposition of the regular representation, and the irre-
ducible character values appear as coefficients in the factors. In 1991, Formanek and Sib-
ley [3] showed that two groups are isomorphic if and only if their group determinants coin-
cide under a suitable correspondence between the sets of indeterminates for these groups:

Θ(G) = Θ(G′) ⇐⇒ G ∼= G′. (2)

Namely, the group determinant is a perfect invariant for finite groups.
Let H be a subgroup of a finite group G, set n := #H, and k := #G/H denotes 

the index of H in G. In this paper, we extend the notion of group determinants. Ac-
tually, we define an invariant Θ(G, H) for the pair (G, H), G being a finite group and 
H its subgroup, by employing the wreath determinant [5]. For a positive integer k, the 
k-wreath determinant wrdetk is a polynomial function on the set of n by kn matrices 
for each positive integer n characterized by (i) multilinearity in column vectors, (ii) rel-
ative GLn-invariance from the left, and (iii) Sn

k -invariance with respect to permutations 
in columns, Sk being the symmetric group of order k (see Section 2.1 for the precise 
definition). Roughly, Θ(G, H) is defined to be

Θ(G,H) := wrdetk
(
xhg−1

)
h∈H
g∈G

.

In fact, since wrdetk is not a relative invariant under general permutations in columns 
(i.e. the action of Skn from the right), we should take account of the ordering of G to 
define Θ(G, H). This is a crucial difference from Θ(G). We note that Θ(G, G) is nothing 
but the original group determinant Θ(G) since the 1-wreath determinant is the ordinary 
determinant.
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It would be fundamental and natural to explore an analog of the Frobenius character 
theory as well as e.g. Formanek–Sibley type theorems for Θ(G, H). There are, however, 
certain obstacles or difficulties in the study. One of the most essential ones is the fact 
that the definition of Θ(G, H) is ordering-sensitive; if we change the ordering of the 
columns in the matrix 

(
xhg−1

)
h∈H,g∈G

(sometimes called the group–subgroup matrix), 
then its wreath determinant becomes rather different from the one before manipulated. 
Actually, one needs to take account of representations of symmetric groups of order kn
and k. Therefore, as a small first step, we analyze Θ(G, H) when G is a finite abelian
group under a certain specialization of indeterminates, in which case the difficulties 
mentioned above are fairly reduced. More precisely, if we order the elements in G such 
as {g0, g1, g2, . . . , gm−1}, then we specialize the indeterminates xg by xgi = qi for i =
0, 1, . . . , m − 1. Notice that this specialization does depend on the ordering of G.

We give a factorization of Θ(G, H) when H is a direct product of several components 
in G = Z/m1Z ×· · ·×Z/mlZ and the indeterminates are specialized to powers of another 
indeterminate q according to a suitably chosen ordering of elements in G (Theorem 2). 
The wreath determinant Θ(G, H) factors into the product of factors of the form qr

and 1 − qs for various positive integers r, s. Such a factorization does not hold if we 
employ unsuitable ordering, which naturally affects the specialization linked to it, even 
in the case where H = G, that is, the group determinant case (see Example 7). Thus 
Theorem 2 may show that if we adopt an ordering and the specialization associated 
to it such that the group determinant Θ(G) = Θ(G, G) factors into such factors, then 
the wreath determinant Θ(G, H) also has a factorization of the same type when G is a 
finite abelian group and H is its subgroup of certain type. One notices, however, that 
this choice of ordering together with the specialization is not a unique one having such 
desirable factorization by the power of q and 1 − qr.

Imitating the result and proof for finite abelian groups, we give also certain computa-
tions for non-abelian group–subgroup pairs under some particular condition. In the last 
section, we will give several examples for non-abelian groups as well as another special-
izations of indeterminates. The examples include what we call a Cayley specialization, 
which is intimately related to the graph theory [8].

2. Wreath determinants for group–subgroup pairs

2.1. Alpha-determinants and wreath determinants

Let α be a complex parameter. The alpha-determinant of a square matrix X =
(xij) ∈ Mm is defined by

detα X =
∑

σ∈Sm

αν(σ)xσ(1)1 . . . xσ(m)m, (3)

where ν(σ) =
∑

j≥2(j− 1)cj(σ), cj(σ) being the number of j-cycles in σ. (The notion of 
alpha determinants was first introduced by Vere-Jones [10] as “the α-permanent”. In [9]
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it was renamed as the alpha determinant.) Note that det−1 = det and det1 = per, the 
permanent.

For an n by kn matrix X = (xij) ∈ Mn,kn, the k-wreath determinant of X is defined 
by

wrdetk X = det−1/k(X ⊗ 1k,1), (4)

where A ⊗ B denotes the Kronecker product of A and B, 1k,1 is the k by 1 all-one 
matrix [5]. We note here that if we look at the irreducible decomposition of the GLn-cyclic 
module generated by detα X, the distinguished phenomena happen when α = −1/k
(k = 1, 2, . . . , n −1) so that det−1/k shares some basic property of determinants [7]. This 
can be seen from the fact that each number ±1/k is a root of content polynomials [6].

Example 1. The 2-wreath determinant of

A =
(
a1 a2 a3 a4
b1 b2 b3 b4

)

is given by

wrdet2 A = det−1/2

⎛
⎜⎜⎝

a1 a2 a3 a4
a1 a2 a3 a4
b1 b2 b3 b4
b1 b2 b3 b4

⎞
⎟⎟⎠

= 1
4(a1a2b3b4 + b1b2a3a4) −

1
8(a1b2a3b4 + a1b2b3a4 + b1a2a3b4 + b1a2b3a4)

= 1
8

∣∣∣∣ a1 a3
b1 b3

∣∣∣∣
∣∣∣∣ a2 a4
b2 b4

∣∣∣∣ + 1
8

∣∣∣∣ a1 a4
b1 b4

∣∣∣∣
∣∣∣∣ a2 a3
b2 b3

∣∣∣∣ .
The following result is fundamental (see [5,4] for the proof).

Proposition 1. Let k, n be positive integers. Put f(X) = wrdetk X for X ∈ Mn,kn. Then 
f is a map from Mn,kn to C satisfying the following conditions:

(1) f is multilinear with respect to columns.
(2) f(gX) = (det g)kf(X) for any g ∈ GLn.
(3) f(XP (τ)) = f(X) for any τ ∈ Sn

k , where P (τ) = (δiτ(j)) is the permutation matrix 
for τ .

Conversely, if a map f : Mn,kn → C satisfies the three conditions above, then f equals 
the k-wreath determinant up to constant multiple.

Remark 1. The right Sn
k -invariance of the k-wreath determinant above extends to the 

relative right Sk �Sn-invariance
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wrdetk XP (g) = (sgn σ)k wrdetk X, g = (τ, σ) ∈ Sk �Sn,

where Sk �Sn = Sn
k �Sn is the wreath product of Sk and Sn, which we regard as a 

subgroup of Skn.

2.2. Wreath determinants associated with a pair (G, H)

Let G be a finite group of order m = kn, and H be a subgroup of G of order n. 
Suppose that a bijection φ: {0, 1, . . . , m − 1} → G called an ordering of G is given. We 
put gi := φ(i) for short.

Let R be a commutative ring, and f : G → R be a map called a specialization. We 
sometimes write f(g) = xg or f(φ(i)) = f(gi) = xi for short. Define

X(G,H, φ, f) :=
(
f(hig

−1
j )

)
0≤i<n
0≤j<m

and

Θ(G,H, φ, f) := wrdetk X(G,H, φ, f), (5)

where H = {h0, . . . , hn−1}. If the ordering φ and the specialization f are clear in the 
context, then we omit them and write simply Θ(G, H).

For a given ordering φ of G, we define a specialization fφ
pr: G → C[q] by fφ

pr(φ(i)) = qi. 
We call this the principal specialization associated to φ.

Example 2. Θ(G, f) := Θ(G, G, φ, f) = det(f(gig−1
j )) is the ordinary group determinant. 

In this case, the ordering φ is irrelevant.

Example 3. We have Θ(G, {e}, φ, f) = k!
kk

∏
g∈G f(g). If f(g) = xo(g) for g ∈ G, where 

o(g) is the order of g, then Θ(G, {e}, φ, f) = k!
kk

∏
i≥1 x

#{g∈G | o(g)=i}
i tells us the distri-

bution of orders of elements in G.

Example 4. Let G = {g0 = e, g1 = a, g2 = a2, g3 = a3} be the cyclic group of order 4
with the ‘standard’ ordering, and take H = {h0 = g0 = e, h1 = g2 = a2}. We have

X(G,H) =
(
f(h0g

−1
0 ) f(h0g

−1
1 ) f(h0g

−1
2 ) f(h0g

−1
3 )

f(h1g
−1
0 ) f(h1g

−1
1 ) f(h1g

−1
2 ) f(h1g

−1
3 )

)

=
(

f(e) f(a3) f(a2) f(a)
f(a2) f(a) f(e) f(a3)

)

and

Θ(G,H) = 1
8

∣∣∣∣ f(e) f(a2)
f(a2) f(e)

∣∣∣∣
∣∣∣∣ f(a3) f(a)
f(a) f(a3)

∣∣∣∣ + 1
8

∣∣∣∣ f(e) f(a)
f(a2) f(a3)

∣∣∣∣
∣∣∣∣ f(a3) f(a2)
f(a) f(e)

∣∣∣∣
= 1(f(e)2 − f(a2)2)(f(a3)2 − f(a)2) + 1(f(e)f(a3) − f(a)f(a2))2.
8 8
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If we assume that f is the principal specialization, i.e. f(gi) = qi ∈ C[q], then we have

Θ(G,H) = −1
8q

2(1 − q4)2.

Example 5. Let G = {g0 = e, g1 = a, g2 = b, g3 = ab} be the Klein four-group (i.e. 
a2 = b2 = e, ab = ba), and take subgroups H = {e, a}, H ′ = {e, b} and H ′′ = {e, ab} of 
order 2. We have

Θ(G,H) = wrdet2
(
f(e) f(a) f(b) f(ab)
f(a) f(e) f(ab) f(b)

)

= −1
8(f(e)f(ab) − f(a)f(b))2 − 1

8(f(e)f(b) − f(a)f(ab))2,

Θ(G,H ′) = wrdet2
(
f(e) f(a) f(b) f(ab)
f(b) f(ab) f(e) f(a)

)

= 1
8(f(e)2 − f(b)2)(f(a)2 − f(ab)2) + 1

8(f(e)f(a) − f(b)f(ab))2,

Θ(G,H ′′) = wrdet2
(

f(e) f(a) f(b) f(ab)
f(ab) f(b) f(a) f(e)

)

= 1
8(f(e)f(a) − f(b)f(ab))2 + 1

8(f(e)2 − f(ab)2)(f(a)2 − f(b)2).

If we assume that f is the principal specialization, i.e. f(gi) = qi ∈ C[q], then we have

Θ(G,H) = −1
8q

4(1 − q2)2, Θ(G,H ′) = 1
4q

2(1 − q4)2,

Θ(G,H ′′) = 1
8q

2(1 − q2)2(2 + 3q2 + 2q4),

which are different from each other. Thus H ∼= H ′ does not imply Θ(G, H) = Θ(G, H ′)
in general.

Remark 2. Denote by [H] the set of all isomorphism classes of H in G. Then, as the 
example above shows, the map [H] → Θ(G, H) is a multivalued function. The pre-
cise/deep understanding of this fact would be important. For instance, does the collection 
{Θ(G, H)}[H] determine an isomorphism class of the pair (G, H)?

3. Finite abelian group–subgroup pair case

3.1. Standard ordering

Let Zr = Z/rZ = {0, 1, 2, . . . , r − 1} be the cyclic group of order r, where we write j
to indicate j + rZ for simplicity.
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Assume that G = Zm1 × · · · × Zml
. Put

Mj =
j−1∏
i=1

mi (j = 1, 2, . . . , l), m = m1m2 . . .ml = #G, (6)

and fix the ordering φst by

gi = φst(i) =
(
	i/M1
 mod m1, . . . , 	i/Ml
 mod ml

)
(i = 0, 1, . . . ,m− 1), (7)

where 	x
 denotes the largest integer which is not greater than x and a mod b denotes 
the remainder of a divided by b. We call φst the standard ordering. For simplicity, we 
put f st

pr := fφst
pr .

Example 6. When G = Z3 × Z2 × Z2, we have

g0 = (0, 0, 0), g1 = (1, 0, 0), g2 = (2, 0, 0), g3 = (0, 1, 0), g4 = (1, 1, 0),

g5 = (2, 1, 0), g6 = (0, 0, 1), g7 = (1, 0, 1), g8 = (2, 0, 1),

g9 = (0, 1, 1), g10 = (1, 1, 1), g11 = (2, 1, 1).

3.2. Result

Let m1, m2, . . . , ml and n1, n2, . . . , nl be positive integers such that ns | ms for each s. 
We put ks = ms/ns and

Ms =
∏
i<s

mi (s = 1, 2, . . . , l), Ns =
∏
i<s

ni (s = 1, 2, . . . , l),

m =
l∏

s=1
ms, n =

l∏
s=1

ns, k =
l∏

s=1
ks.

Let G = Zm1 × Zm2 × · · · × Zml
. We take a subgroup

H = H1 ×H2 × · · · ×Hl
∼= Zn1 × Zn2 × · · · × Znl

,

Hs = {0, ks, 2ks, . . . , (ns − 1)ks} < Zms
(s = 1, 2, . . . , l).

Notice that #G = m, #H = n and [G : H] = k. In this case, we have

X(G,H, φst, f
st
pr) =

(
qεl(i,j)

)
0≤i<n
0≤j<m

,

εl(i, j) =
l∑

s=1
Ms((ks 	i/Ns
 − 	j/Ms
) mod ms). (8)

Then the following factorization of the wreath determinant for a finite abelian group–
subgroup pair holds.
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Theorem 2. Retain the assumption and notation above. Then one has

Θ(G,H, φst, f
st
pr) = ω(kn)(στ−1)

( k!
kk

)n l∏
s=1

qmMs(ks−1)/2
l∏

s=1
(qMsms − 1)m(1−1/ns),

(9)

where σ and τ are permutations of m letters determined by the conditions

(Inl
⊗ 11,kl

) ⊗ · · · ⊗ (In1 ⊗ 11,k1) = (In ⊗ 11,k)P (σ),

P ((1 2 . . . ml)) ⊗ · · · ⊗ P ((1 2 . . . m1)) = P (τ).

The function ω(kn) on Sm is defined by

ω(kn)(x) = 1
(k!)n

∑
g∈Sn

k

χ(kn)(xg) (x ∈ Sm),

where χ(kn) is the irreducible character of Sm corresponding to the partition (kn) =
(k, . . . , k) � m.

Remark 3. For any ordering φ of G, there is a permutation π ∈ Sm such that φ = φst ◦π, 
where we regard π as a permutation on {0, 1, . . . , m − 1}. We have then

Θ(G,H, φ, f st
pr) = wrdetk

(
X(G,H, φst, f

st
pr)P (π)

)

= ω(kn)(στ−1π)
( k!
kk

)n l∏
s=1

qmMs(ks−1)/2
l∏

s=1
(qMsms − 1)m(1−1/ns)

(see (14) in the proof of Theorem 2). However, if we also replace the specialization to fφ
pr

in conjunction with the change of the ordering, then the theorem does not hold in general. 
For instance, let G = Z6 = {0, 1, 2, 3, 4, 5} and H = {0, 2, 4}. We take a non-standard 
ordering φ defined by

φ(0) = 5, φ(1) = 2, φ(2) = 4, φ(3) = 3, φ(4) = 0, φ(5) = 1.

Then we have

Θ(G,H, φ, fφ
pr) = wrdet2

⎛
⎝ q5 q2 q q3 q4 1

q3 q4 q2 1 q q5

1 q q4 q5 q2 q3

⎞
⎠

= − 1
16q

3(1 − q)4(1 + q + q3)(1 + q + 2q2 + 2q3 + q4)(1 + q3 + q5)

× (1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + 2q6 + 2q7 + q8).
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The proof of the theorem will be given in the subsequent subsection.

Example 7 (Group determinant case). If we take H = G, then (9) reads

Θ(G,G, φst, f
st
pr) =

l∏
s=1

(1 − qMsms)m(1−1/ms),

since σ = e and ω(1m)(τ−1) = sgn τ =
∏l

s=1(−1)m(1−1/ms). If we use other ordering 
and specialization, then such a simple factorization does not hold even in this case. For 
instance, let us look at the group determinant

Θ = Θ(Z4,Z4) =

∣∣∣∣∣∣∣∣
x0 x3 x2 x1
x1 x0 x3 x2
x2 x1 x0 x3
x3 x2 x1 x0

∣∣∣∣∣∣∣∣
=

∏
ζ4=1

(x0 + ζx1 + ζ2x2 + ζ3x3)

for Z4 = {0, 1, 2, 3}. If we specialize x0 = 1, x1 = q, x2 = q2, x3 = q3, which is the same 
specialization adopted in Theorem 2, then we have

Θ = (1 − q4)3.

On the other hand, if we take another specialization, for instance, given by x0 = 1, 
x1 = q, x2 = q3, x3 = q2, then we find that

Θ = (1 − q)2(1 − q2)(1 − q4)(1 + 2q + 4q2 + 2q3 + q4),

which is no longer a product of factors of the form qr or 1 − qs. Further, we observe 
that the first specialization is not a unique one which can provide a simple factorization. 
Actually, if we specialize x0 = 1, x1 = q3, x2 = q, x3 = q2, then we have

Θ = (1 − q2)2(1 − q8).

Example 8 (Cyclic group case). If l = 1, then (9) reads

Θ(Zm,Zn, φst, f
st
pr) = ω(kn)(τ−1)

( k!
kk

)n

qm(k−1)/2(qm − 1)k(n−1), τ = (1 2 . . . m).

By Remark 5.5 in [4], we have

ω(kn)(τ−1) = ω(kn)(τ) = the coefficient of (x11x22 . . . xnn)k−1x12x23 . . . xn1 in (detX)k

|Sn
k : Sn

k ∩ τ−1Sn
kτ |

.

It is elementary to see that

the coefficient of (x11x22 . . . xnn)k−1x12x23 . . . xn1 in (detX)k = (−1)n−1k
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and

∣∣Sn
k : Sn

k ∩ τ−1Sn
kτ

∣∣ = k!n

(k − 1)!n = kn.

Thus we have

ω(kn)(τ) =
(
−1
k

)n−1
.

Hence it follows that

Θ(Zm,Zn, φst, f
st
pr) =

(
−1
k

)n−1( k!
kk

)n

qm(k−1)/2(qm − 1)k(n−1). (10)

Example 9. If ns = ms for s = 1, 2, . . . , r and ns = 1 for s = r + 1, . . . , l, then (9)
reads

Θ(Zm1 × · · · × Zml
,Zm1 × · · · × Zmr

, φst, f
st
pr)

= ω(kn)(στ−1)
( k!
kk

)n l∏
s=r+1

qmMs(ms−1)/2
r∏

s=1
(qMsms − 1)m(1−1/ns)

= ω(kn)(στ−1)
( k!
kk

)n

qn
2k(k−1)/2

{
r∏

s=1
(qm1m2...ms − 1)n(1−1/ns)

}k

.

Example 10. The following example has a relation with certain enumeration of Latin 
squares (Remark 4). Let G = Zn × Zn and consider the subgroups H = Zn × Z1, 
H ′ = Z1 × Zn of G. We have

Θ(G,H, φst, f
st
pr) = ω(nn)(στ−1)

( n!
nn

)n

qn
3(n−1)/2(qn − 1)n(n−1),

Θ(G,H ′, φst, f
st
pr) = ω(nn)(τ−1)

( n!
nn

)n

qn
2(n−1)/2(qn

2 − 1)n(n−1),

where the permutations σ, τ ∈ Sn2 are given by the conditions

P (τ) = P ((1 2 . . . n)) ⊗ P ((1 2 . . . n)), 11,n ⊗ In = (In ⊗ 11,n)P (σ).

By a similar calculation given in Example 8, we see that ω(nn)(τ−1) = 1 and

ω(nn)(στ−1) = AT(n)
n!n , AT(n) = the coefficient of

n∏
i,j=1

xij in (detX)n.

Hence we have
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Θ(G,H, φst, f
st
pr) = AT(n)

nn2 qn
3(n−1)/2(qn − 1)n(n−1),

Θ(G,H ′, φst, f
st
pr) =

( n!
nn

)n

qn
2(n−1)/2(qn

2 − 1)n(n−1).

When n = 2, for instance, we have σ = (2 3), τ = (1 4)(2 3), and

ω(22)(στ−1) = −1
2 , ω(22)(τ−1) = 1.

This partially recovers Example 5. In the case where H ′′ = ΔZn := {(x, x) |x ∈ Zn}, the 
wreath determinant Θ(G, H ′′, φst, fpr) would not have simple expression.

Remark 4. The number |AT(n)| is equal to the difference of the numbers of even and 
odd Latin squares of size n. It is conjectured that AT(n) �= 0 if n is even (Alon–Tarsi 
Conjecture [1]). It is easy to see that AT(n) = 0 if n is odd and n ≥ 3. One notices in 
particular that Θ(Zn × Zn, Zn × Z1, φst, f st

pr) = 0 for odd n ≥ 3.

3.3. Proof of the theorem

Put

T (m,n;x) :=
(
x(ki−j) mod m

)
0≤i<n
0≤j<m

(m = kn) (11)

and T (m; x) := T (m, m; x). Notice that Θ(Zm, Zn, φst, f st
pr) = wrdetk T (m, n; q). It is 

elementary to see

Lemma 3. It holds that detT (m; x) = (1 − xm)m−1.

We notice the following elementary fact on the Kronecker product of two matrices:
If

A =
(
a(i, j)

)
0≤i<m
0≤j<n

, B =
(
b(i, j)

)
0≤i<p
0≤j<s

,

then we have

A⊗B =
(
a(	i/p
 , 	j/s
)b(i mod p, j mod s)

)
0≤i<mp
0≤j<ns

. (12)

Lemma 4. It holds that

T (m,n;x) = P (σ) · T (n;xk) ⊗ 11,k · In ⊗ diag(xk−1, . . . , x, 1) · P (τ)−1, (13)

where m = kn, σ = (1 2 . . . n) ∈ Sn and τ = (1 2 . . . m) ∈ Sm.
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Proof. The (i, j)-entry of P (σ)−1T (m, n; x)P (τ) is

x(kσ(i)−τ(j)) mod m = x(k(i+1)−(j+1)) mod m.

On the other hand, the (i, j)-entry of T (n; xk) ⊗ 11,k · In ⊗ diag(xk−1, . . . , x, 1) is given 
by

xe(i,j), e(i, j) = k
{
(i− 	j/k
) mod n

}
+ k − 1 − (j mod k).

Since

0 ≤ e(i, j) < m, k
{
(i− 	j/k
) mod n

}
= (ki− k 	j/k
) mod m,

j = k 	j/k
 + (j mod k),

we have

e(i, j) = e(i, j) mod m =
(
ki− k 	j/k
 + k − 1 − (j mod k)

)
mod m

=
(
k(i + 1) − (j + 1)

)
mod m

as desired. �
Lemma 5. It holds that

X(G,H, φst, f
st
pr) = T (ml, nl; qMl) ⊗ · · · ⊗ T (m2, n2; qM2) ⊗ T (m1, n1; qM1).

Proof. The assertion is trivial when l = 1. In view of (8) and (12), it suffices to prove 
that

εr+1(i, j) = Mr+1((kr+1 	i/Nr+1
 − 	j/Mr+1
) mod mr+1)

+ εr(i mod Nr+1, j mod Mr+1)

for r ≥ 1. For this purpose, we have only to see

Ms((ks 	i/Ns
) − 	j/Ms
) ≡ Ms((ks 	(i mod Nr+1)/Ns
)
− 	(j mod Mr+1)/Ms
) (mod ms)

when s ≤ r. This is easily verified since ns | (Nr+1/Ns) and ms | (Mr+1/Ms). �
By Lemmas 4 and 5, we have

X(G,H, φst, f
st
pr) = TJDP (τ)−1, (14)

where
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T = P (σl)T (nl; qklMl) ⊗ · · · ⊗ P (σ1)T (n1; qk1M1) (σs = (1 2 . . . ns)),

J = (Inl
⊗ 11,kl

) ⊗ · · · ⊗ (In1 ⊗ 11,k1),

D = (Inl
⊗ diag(q(kl−1)Ml , . . . , qMl , 1)) ⊗ · · · ⊗ (In1 ⊗ diag(q(k1−1)M1 , . . . , qM1 , 1)),

and τ ∈ Sm is determined by

P (τ) = P (τl) ⊗ · · · ⊗ P (τ1) (τs = (1 2 . . . ms) ∈ Sms
).

We see that

J = (In ⊗ 11,k)P (σ)

for some σ ∈ Sm. Thus we have

X(G,H, φst, f
st
pr) = T · (In ⊗ 11,k)P (στ−1) · P (τ)DP (τ)−1.

It follows then

wrdetk X(G,H, φst, f
st
pr) = ω(kn)(στ−1)

( k!
kk

)n

(detT )k detD.

Since detP (σs) = (−1)ns−1, we have

(detT )k =
l∏

s=1

(
(qMsms − 1)ns−1

)kn/ns

=
l∏

s=1
(qMsms − 1)m(1−1/ns),

detD =
l∏

s=1
(qnsMsks(ks−1)/2)m/ms =

l∏
s=1

qmMs(ks−1)/2.

This completes the proof of Theorem 2.

4. Direct product case

4.1. Products of orderings and specializations

Assume that G = G1×· · ·×Gl, and each Gs is a group of order ms equipped with an 
ordering φs and a specialization fs: Gs → Rs, where Rs is a commutative ring. Take a 
subgroup H = H1×· · ·×Hl of G, where Hs is a subgroup of Gs of order ns for each s. We 
put ks = ms/ns. Let us fix a complete system of representatives Zs = {zs0, zs1, . . . , zsks−1}
for each coset Gs/Hs. We suppose that each ordering φs is a homogeneous ordering in 
the sense that

φs(ksi + j) = zsj φs(ksi) (0 ≤ j < ks, 0 ≤ i < ns), Hs = {φs(ksi) | 0 ≤ i < ns} .
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Put

Mj =
j−1∏
i=1

mi (j = 1, 2, . . . , l), m = m1m2 . . .ml = #G,

and take an ordering φ given by

gi = φ(i) =
(
φ1(	i/M1
 mod m1), . . . , φl(	i/Ml
 mod ml)

)
(i = 0, 1, . . . ,m− 1).

(15)

We also take a specialization f : G → R = R1 × · · · ×Rl given by

f((x1, . . . , xl)) = f1(x1)M1 · · · fl(xl)Ml (xs ∈ Gs). (16)

We have then

X(G,H, φ, f) =
(

l∏
s=1

fs
(
φs((ks 	i/Ns
 − 	j/Ms
) mod ms)

)Ms

)
0≤i<n
0≤j<m

.

By the same machinery in the discussion of the previous section, we have

X(G,H, φ, f) = X(Gl, Hl, φl, f
Ml

l ) ⊗ · · · ⊗X(G2, H2, φ2, f
M2
2 ) ⊗X(G1, H1, φ1, f

M1
1 ),

where fMs
s denotes the map which sends g ∈ Gs to fs(g)Ms ∈ Rs.

4.2. Special homogeneous case

We look at the case where l = 1. We put

H = {h0, h1, . . . , hn−1}, Z = {z0, . . . , zk−1},

so that we have G = {zh | z ∈ Z, h ∈ H}. We choose h0 = z0 to be the identity of G. 
The homogeneous ordering of G is

φ(ik + j) = zjhi (0 ≤ i < n, 0 ≤ j < k). (17)

If we can factor the matrix X(G, H, φ, f) as

X(G,H, φ, f) = P (σ) ·X(H, f) ⊗ 11,k · In ⊗ Ψ(Z;ψ) · P (τ)−1,

Ψ(Z;ψ) = diag(ψ(zk−1), . . . , ψ(z1), ψ(z0))
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for some σ ∈ Sn, τ ∈ Sm and some function ψ: Z → R, then we call the specialization f

to be separable along with ψ. If f is separable, then we have

Θ(G,H, φ, f) = (sgn σ)kω(kn)(τ−1)
( k!
kk

)n k−1∏
s=0

ψ(zs)nΘ(H, f)k.

Example 11. If H = G, then we have

X(G,G, φ, f) = P (e) ·X(G, f) ⊗ 11,1 · In ⊗ Ψ · P (e)−1, Ψ = (1).

Hence f is separable.

Example 12. If H = {e}, then we have

X(G, {e}, φ, f) = P (e) ·X({e}, f) ⊗ 11,m · I1 ⊗ Ψ · P (e)−1,

Ψ = diag(ψ(gm−1), . . . , ψ(g1), ψ(g0)),

where ψ(g) = f(g−1)/f(e). Hence f is separable.

By the same discussion in the finite abelian case, we have

Theorem 6. Let G1, . . . , Gl be finite groups, and Hs be a subgroup of Gs for each 
s = 1, . . . , l. Fix a complete system of representatives Zs for each coset Gs/Hs. De-
note by φs, fs homogeneous orderings and specializations for (Gs, Hs) respectively. If 
each specialization fs is separable along with a function ψs, then the wreath determinant 
for the pair G = G1 × · · · ×Gl and H = H1 × · · · ×Hl is

Θ(G,H, φ, f) = (sgn σ)kω(kn)(στ−1)
( k!
kk

)n l∏
s=1

|Ψ(Zs;ψMs
s )|m/ks

l∏
s=1

Θ(Hs; fMs
s )m/ns ,

where ms = #Gs, ns = #Hs, ks = #Zs, m = #G, n = #H, k = #G/H and σ, τ are 
certain permutations of m letters. The ordering φ and specialization f are defined from 
φs and fs (s = 1, 2, . . . , l) by (15) and (16).

Example 13. Let G = Zm1 ×· · ·×Zml
and H = Zn1 ×· · ·×Znl

as in the previous section. 
By taking Zs = {0, 1, . . . , ks − 1} for s = 1, 2, . . . , l, we see that Theorem 6 coincides 
with Theorem 2.

5. Further examples

5.1. Order specialization and Cayley specialization

In the main part of the paper, we exclusively discussed the wreath determinant 
Θ(G, H, φ, f) with the principal specialization f = fφ

pr defined by fpr(φ(i)) = qi ∈ C[q]. 
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In what follows, we introduce two more kinds of specializations and give several examples 
concerning such specializations. Note that each of these two kinds of specializations does 
not depend on the ordering of the group.

5.1.1. Order specialization
We consider the specialization ford: G → C[q] defined by ford(g) = qo(g)−1, where o(g)

is the order of g.

Example 14. For G = Z6 = {0, 1, 2, 3, 4, 5}, we have

ford(0) = 1, ford(1) = q5, ford(2) = q2, ford(3) = q, ford(4) = q2, ford(5) = q5.

5.1.2. Cayley specialization
Let S be a symmetric generating set of G, i.e. S is a subset of G such that 〈S〉 = G, 

S−1 = S and e /∈ S. Then (G, S) defines an undirected graph so called Cayley graph. For 
x, y ∈ G, denote by d(x, y) the Cayley distance between x and y (i.e. the length of the 
shortest path connecting x and y in the Cayley graph (G, S)). We call the specializa-
tion fCay: G → C[q] defined by fCay(g) = qd(g,e) the Cayley specialization with respect 
to S.

Example 15. If G = Sn and S = {transpositions}, then

d(g, e) = ν(g) = n− (number of cycles in g).

5.2. Dihedral groups

Let G = Dp =
〈
σ, τ

∣∣σp = τ2 = e, στ = τσ−1〉 be the dihedral group of degree p. We 
set

φst(ip + j) = gip+j = τ iσj−1 (i = 0, 1, j = 0, 1, 2, . . . , p− 1), (18)

which we call the standard ordering of Dp.

Example 16. When G = D3, we have

g0 = e, g1 = σ, g2 = σ2, g3 = τ, g4 = τσ, g5 = τσ2.

We give several examples of the wreath determinants Θ(Dp, H, φst, f st
pr).

Example 17. Since

X(Dp, 〈τ〉 , φst, f
st
pr) =

(( 1 qp

p

)
⊗ 11,p

)
· (I2 ⊗ diag(1, q, . . . , qp−1)) · P (τ)
q 1
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for a certain τ ∈ S2
p, we have

Θ(Dp, 〈τ〉 , φst, f
st
pr) = ω(p,p)(τ)

( p!
pp

)2
qp(p−1) det

(
1 qp

qp 1

)p

=
( p!
pp

)2
qp(p−1)(1 − q2p)p.

Example 18. Suppose that p is even, and write p = 2k. Since

X(Dp,
〈
σk

〉
, φst, f

st
pr)

=
(( 1 qk

qk 1

)
⊗ 11,p

)
· (I2 ⊗ diag(1, q, . . . , qk−1, q2k, q2k+1, . . . , q3k−1)) · P (τ)

for a certain τ ∈ S2
p, we have

Θ(Dp,
〈
σk

〉
, φst, fpr)

= ω(p,p)(τ)
( p!
pp

)2
qk(k−1)+k(5k−1) det

(
1 qk

qk 1

)p

=
( p!
pp

)2
q2k(3k−1)(1 − qp)p.

Remark 5. Though the example above seems to suggest that X(Dp, 
〈
σk

〉
, φst, fpr) is 

calculated explicitly when p = kr for some positive integer r, it may not be so simple. 
For instance, we have

X(D6,
〈
σ2〉 , φst, f

st
pr) = − 3

218 q
42(1 − q2)4(1 − q6)4 A,

where A = 3 + 12q2 + 6q4 − 44q6 − 84q8 − 44q10 + 6q12 + 12q14 + 3q16.

Example 19. We have

Θ(D2, 〈σ〉 , φst, f
st
pr) = − 1

23 q
4(1 − q2)2,

Θ(D3, 〈σ〉 , φst, f
st
pr) = 1

25 q
9(1 − q2)2(1 − q3)2(1 + 2q − 4q3 − 2q4),

Θ(D4, 〈σ〉 , φst, f
st
pr) = − 1

26 q
16(1 − q2)2(1 − q4)4(1 − 3q2 + q4),

Θ(D5, 〈σ〉 , φst, f
st
pr) = 1

29 q
25(1 − q2)2(1 − q5)6

× (1 + 2q − 4q2 − 10q3 + 3q4 + 20q5 + 8q6 − 4q7 − 2q8),

Θ(D6, 〈σ〉 , φst, f
st
pr) = − 1

211 q
36(1 − q2)2(1 − q6)8(4 − 22q2 + 39q4 − 22q6 + 4q8).

Example 20. Let H = 〈σ〉 and Z = {e, τ}.

φhom(2i + j) = τ jσi (i = 0, 1, . . . , n− 1, j = 0, 1).
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Then

φhom(0) = e, φhom(1) = τ, φhom(2) = σ, φhom(3) = τσ,

φhom(4) = σ2, φhom(5) = τσ2, . . .

In this case, we have

Θ(D2, 〈σ〉 , φhom, fhom
pr ) = 1

22 q
2(1 − q4)2,

Θ(D3, 〈σ〉 , φhom, fhom
pr ) = 1

25 q
3(1 − q2)2(1 − q6)2(4 + 8q2 + 6q4 + 2q6 + q8),

Θ(D4, 〈σ〉 , φhom, fhom
pr ) = 1

26 q
4(1 − q4)2(1 − q8)4(4 + q8),

Θ(D5, 〈σ〉 , φhom, fhom
pr ) = 1

29 q
5(1 − q2)2(1 − q10)6

× (16 + 32q2 + 8q4 − 16q6 + 14q10 + 8q12 + 2q14 + q16),

Θ(D6, 〈σ〉 , φhom, fhom
pr ) = 1

210 q
6(1 − q4)2(1 − q12)8(16 − 16q4 + 12q8 − q12 + q16),

where we put fhom
pr := fφhom

pr .

Example 21 (Order specializations). We have

Θ(D2, 〈τ〉 , φst, ford) = 1
23 q

2(1 − q)2,

Θ(D3, 〈τ〉 , φst, ford) = 22

35 q
4(1 − q2)3,

Θ(D4, 〈τ〉 , φst, ford) = − 3
212 q

6(1 − q)2(1 − q2)2
(
1 + 8q + 8q3 + q4) ,

Θ(D5, 〈τ〉 , φst, ford) = 2632

59 q8(1 − q2)2(1 − q6)3(1 − 3q2 + q4),

Θ(D6, 〈τ〉 , φst, ford) = − 5
2639 q

10(1 − q)6 A,

where

A = 6 + 40q + 120q2 + 252q3 + 425q4 + 612q5 + 774q6 + 884q7 + 923q8

+ 884q9 + 774q10 + 612q11 + 425q12 + 252q13 + 120q14 + 40q15 + 6q16.

5.3. Symmetric groups

Let G = Sn be the symmetric group of degree n and take H = G.
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Example 22 (Group determinants for Sn). Continuing Example 15, we have

Θ(S2, fCay) = 1 − q2,

Θ(S3, fCay) = (1 − q2)5(1 − 4q2),

Θ(S4, fCay) = (1 − q2)23(1 − 4q2)10(1 − 9q2),

Θ(S5, fCay) = (1 − q2)119(1 − 4q2)78(1 − 9q2)17(1 − 16q2).

Example 23 (Group determinants for An). Take S = {3-cycles} ⊂ An. We have

Θ(A3, fCay) = (1 − q2)2(1 + 2q2),

Θ(A4, fCay) = (1 − q2)11(1 + 11q2),

Θ(A5, fCay) = (1 − q2)59(1 − 4q2)18(1 + 6q2)16(1 + 35q2 + 24q4).

5.4. Cayley-type graph for group–subgroup pair

Let G be a finite group and H be a subgroup of G. We now consider a different kind 
of reasonably defined examples of wreath determinants for matrices whose rows and 
columns are indexed by the elements of H and G respectively.

Suppose that S is a subset of G such that SH = S ∩ H is symmetric in the sense 
that S−1

H = SH . The group–subgroup pair graph G(G, H, S) for the triplet (G, H, S) is 
an undirected graph whose vertex set is G and the edge set is {{h, hs} |h ∈ H, s ∈ S}
(see [8] for basic properties and examples). Notice that G(G, H, S) is a supergraph of the 
Cayley graph for (H, SH) if SH generates H. In particular, when G = H, G(G, G, S) is 
nothing but the Cayley graph for (G, S) if S generates G.

For a group–subgroup pair graph G = G(G, H, S), we associate a matrix

X(G) :=
(
qd(h,g)

)
h∈H,g∈G

,

where d(h, g) is the distance between h and g on G (we set qd(h,g) = 0 if h and g are not 
connected by a path).

Example 24. Let G = Z12. Take H1 = {0, 3, 6, 9} < G, S1 = {2, 4, 5, 7, 8} ⊂ G and 
H2 = {0, 2, 4, 6, 8, 10} < G, S2 = {1, 4, 5, 8} ⊂ G. The group–subgroup pair graphs 
G1 = G(G, H1, S1) and G2 = G(G, H2, S2) are given as in Fig. 1. We have

wrdet3 X(G1) = 27

311 q
8(1 − q2)6(1 − q4)3,

wrdet2 X(G2) = 1
210 q

6(1 − q)8(5 + 11q + 5q2)2.

Let us now consider the Cayley graphs for (G, S1 ∪ (−S1)) and (G, S2 ∪ (−S2)). Then 
one observes
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Fig. 1. G1 (Fig. 1 in [8]) and G2.

Fig. 2. The Cayley graphs for (G,S1 ∪ (−S1)) and (G,S2 ∪ (−S2)).

Θ(G,H1, fCay) = − 24

311 q
8(1 − q)8(1 − q2)(5 + 12q + 25q2 + 52q3 + 43q4 + 12q5 − q6),

Θ(G,H2, fCay) = 1
211 q

6(1 − q)10

× (100 + 628q + 1606q2 + 2232q3 + 1743q4 + 720q5 + 135q6)

for the Cayley specialization fCay with respect to S1∪(−S1) and S2∪(−S2), respectively. 
(See Fig. 2.)

Remark 6. If one considers a specialization given by

xg =
{

1 g ∈ S
0 otherwise,
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then one may see that the matrix X(G, H) = (xhg−1)h∈H,g∈G is a submatrix of the 
adjacency matrix of the group–subgroup pair graph G = G(G, H).
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