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The positive semidefinite (psd) rank of a polytope is the 
size of the smallest psd cone that admits an affine slice 
that projects linearly onto the polytope. The psd rank of a 
d-polytope is at least d + 1, and when equality holds we say 
that the polytope is psd-minimal. In this paper we develop 
new tools for the study of psd-minimality and use them 
to give a complete classification of psd-minimal 4-polytopes. 
The main tools introduced are trinomial obstructions, a new 
algebraic obstruction for psd-minimality, and the slack ideal 
of a polytope, which encodes the space of realizations of a 
polytope up to projective equivalence.
Our central result is that there are 31 combinatorial classes
of psd-minimal 4-polytopes. We provide combinatorial
information and an explicit psd-minimal realization in each 
class. For 11 of these classes, every polytope in them is psd-
minimal, and these are precisely the combinatorial classes 
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of the known projectively unique 4-polytopes. We give a 
complete characterization of psd-minimality in the remaining 
classes, encountering in the process counterexamples to some 
open conjectures.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The positive semidefinite (psd) rank of a convex set was introduced in [12], and it 
can be seen as a measure of geometric complexity of that set. Let Sk denote the vector 
space of all real symmetric k × k matrices with the inner product 〈A, B〉 := trace(AB), 
and let Sk

+ be the cone of positive semidefinite matrices in Sk. A polytope P ⊂ R
d is 

said to have a psd lift of size k if there is an affine space L ⊂ Sk and a linear map 
π : Sk → R

d such that P = π(Sk
+ ∩L). The psd rank of P , rankpsd(P ), is the smallest k

such that P has a psd lift of size k. Linear optimization over a polytope can be achieved 
via semidefinite programming over its psd lift. Thus a lift of small size (alternatively, 
small psd rank of the polytope) implies, in principle, the possibility of efficiently solving 
a linear optimization problem over this polytope. These features have attracted much 
research on the psd rank of polytopes in recent years, with several exciting new results 
coming from optimization and computer science [1,7,8,18–20]. For a survey on psd rank 
of nonnegative matrices, see [6].

Since polytopes of small psd rank can admit efficient algorithms for linear opti-
mization, there is much incentive to understand them. If P is a d-polytope, then 
rankpsd(P ) ≥ d +1, and if equality holds, we say that P is psd-minimal. These polytopes 
are a natural place to start the study of small psd rank, a task that was initiated in [13]. 
A well-known example of a psd-minimal polytope is the stable set polytope of a perfect 
graph [17]. In this case, psd-minimality implies that the size of a largest stable set in 
a perfect graph can be found in polynomial time, while computing the size of a largest 
stable set in a graph is NP-hard in general. The existence of a small psd lift for the 
stable set polytopes of perfect graphs is the only known proof of the polynomial time 
solvability of the stable set problem in this class of graphs.

The stable set polytope of a perfect graph is also an example of a 2-level polytope [11]. 
These are polytopes with the property that for each facet of the polytope there is a unique 
parallel translate of its affine hull containing all vertices of the polytope that are not on 
the facet. All 2-level polytopes are psd-minimal and affinely equivalent to 0/1-polytopes 
with additional special properties, yet they are far from well-understood and offer many 
challenges. Several groups of researchers have been studying them recently [2,3,15]. The 
study of psd-minimal polytopes is an even more ambitious task than that of 2-level 
polytopes, yet it is an important step in understanding the phenomenon of small psd 
rank, and offer a rich set of examples for honing psd rank techniques.
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The only psd-minimal 2-polytopes are triangles and quadrilaterals. This already helps 
in the classification of higher dimensional psd-minimal polytopes, due to the following 
useful lemma.

Lemma 1.1. [13, Proposition 3.8] Any face of a psd-minimal polytope is psd-minimal.

Therefore psd-minimal 3-polytopes can only have triangular or quadrilateral facets but 
still turn out to be interesting. Call an octahedron in R3, biplanar, if there are two 
distinct planes each containing four vertices of the octahedron. A complete classification 
of psd-minimal 3-polytopes is known.

Theorem 1.2. [13, Theorem 4.11] The psd-minimal 3-polytopes are precisely simplices, 
quadrilateral pyramids, bisimplices, biplanar octahedra and their polars.

Recall that if P is a d-polytope containing the origin in its interior, then its polar 
is P ◦ := {y ∈ R

d : 〈x, y〉 ≤ 1 ∀ x ∈ P}. A polytope P has a psd lift of size k if and 
only if P ◦ has a psd lift of size k, and in particular, rankpsd(P ) = rankpsd(P ◦). The 
polar of a combinatorial octahedron is a combinatorial cube. The above theorem shows 
that psd rank is not a combinatorial property; not all polytopes that are combinatori-
ally equivalent to octahedra and cubes are psd-minimal, the embedding matters. Since 
psd-minimality is closed under polarity and the combinatorial type of the polar depends 
only on the combinatorial type of the original polytope, we frequently refer to dual pairs
of combinatorial types, namely, a pair of combinatorial classes such that the polytopes 
in one are the polars of those in the other.

If P ⊂ R
d is a polytope with vertices v1, . . . , vn, and facet inequalities a�j x ≤ βj for 

j = 1, . . . , m, then the slack matrix of P is the nonnegative matrix SP ∈ R
n×m such 

that (SP )ij := βj − a�j vi, the slack of the vertex vi in the facet inequality a�j x ≤ βj . If 
P is a d-polytope with d ≥ 1, then rank (SP ) = d + 1, and note that the zero pattern in 
SP records the vertex-facet incidence structure of P , or equivalently, the combinatorics 
of P .

An Sk
+-factorization of SP is an assignment of psd matrices A1, . . . , An ∈ Sk

+ and 
B1, . . . , Bm ∈ Sk

+ to the rows and columns, respectively, of SP such that (SP )ij =
βj −a�j vi = 〈Ai, Bj〉. The psd rank of SP , denoted as rankpsd(SP ), is the minimum k for 
which SP admits a factorization through Sk

+. The connection to psd lifts of the polytope 
P comes via the result from [12] that P has a psd lift of size k if and only if SP has an 
Sk

+-factorization, and hence rankpsd(P ) = rankpsd(SP ).
There is another notion of rank that plays a key role in the study of psd-minimality. 

A Hadamard square root of SP is a matrix obtained by replacing every positive entry 
in SP with one of its two square roots. The positive Hadamard square root +

√
SP is the 

Hadamard square root obtained by replacing every positive entry by its positive square 
root. The square root rank of SP , denoted as rank√ (SP ), is the minimum rank of a 
Hadamard square root of SP .
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Theorem 1.3. [13] A d-polytope P ⊂ R
d with d ≥ 1 is psd-minimal if and only if

rank√ (SP ) = d + 1 .

1.1. Contribution

In this paper, we classify psd-minimal 4-polytopes. The techniques used in the classi-
fication of psd-minimal 3-polytopes do not have a natural generalization to 4-polytopes, 
so new tools and approaches had to be developed. These are of interest beyond the scope 
of this classification, and offer insight on psd-minimality in general. As a by-product, we 
obtain simpler proofs of the classification results for 2- and 3-dimensional polytopes.

In terms of techniques, this paper has two main contributions. The first is the notion 
of trinomial obstruction, that provides a simple certificate that a polytope is not psd-
minimal. This obstruction is powerful enough to completely classify the combinatorial 
types of psd-minimal 4-polytopes. The second main technical contribution is the notion 
of the slack ideal of a polytope. We show that the positive real zeros of this ideal are 
essentially in bijection with the different projective equivalence classes in the combinato-
rial class of the polytope. Using slack ideals we develop a general computational algebra 
procedure for characterizing the psd-minimal polytopes in a combinatorial class. This is 
used to complete the classification.

At a high level, our results are as follows. We prove that there are 31 combinatorial 
classes of psd-minimal 4-polytopes, and they are described in Table 1. Combinatorial 
information about each class such as its f -vector and types of facets is listed. We also 
exhibit an explicit psd-minimal polytope in each of the 31 combinatorial classes. We 
then proceed to characterize the psd-minimal polytopes in each of these classes. In 11 of 
them, every polytope is psd-minimal. Coincidentally these classes are also precisely the 
classes of the 11 known projectively unique 4-polytopes. For the remaining 20 classes, we 
derive precise conditions for psd-minimality. In most cases, the conditions can be seen 
as affine constraints on the entries of the slack matrices. However we get two interesting 
new behaviors. For two pairs of primal-dual classes, including the 4-cube and its dual, 
there are two essentially different types of psd-minimal realizations. For two other pairs 
of primal-dual classes, psd-minimality is characterized by non-linear algebraic conditions, 
and they settle negatively some open conjectures ([4, Problem 2] and generalizations). 
In particular they give us the first examples of psd-minimal polytopes whose minimality 
cannot be certified by the positive Hadamard square root of the slack matrix.

1.2. Organization

The results in this paper naturally split into two parts, which guides the organization 
of the sections. In the first part, we consider combinatorial properties of, and obstructions 
to, psd-minimality. In Section 2 we develop a lower bounding method for the square 
root rank of a matrix and illustrate it by deriving a short proof of the psd-minimality 
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results for 2- and 3-polytopes up to combinatorial equivalence. In Section 3 we specify 
the obstructions to psd-minimality on the slack matrices of 4-polytopes and derive four 
combinatorial results that constrain the types of facet intersections that are possible 
for psd-minimal 4-polytopes. These results allow us in Section 4 to precisely identify 
the 31 combinatorial classes of psd-minimal 4-polytopes concluding the first part of the 
paper. An explicit psd-minimal polytope in every combinatorial class, as well as various 
combinatorial properties of each class can be found in Table 1. We refer to each class by 
its number in Table 1.

In the second half of the paper, we identify the conditions for psd-minimality in each of 
the 31 combinatorial classes. This requires new algebraic and geometric tools. In Section 5
we introduce the slack ideal of a polytope, and prove that if this ideal is binomial, then 
all polytopes that are combinatorially equivalent to this polytope are psd-minimal. Next 
we prove that if a d-polytope has d + 2 vertices, its slack ideal is binomial, and finally 
we show that the slack ideals of classes 1–11 are binomial. In Section 6 we consider the 
combinatorial classes 12–15 from Table 1 which come in two dual pairs. The slack ideal 
is used to derive a parametrization of the slack matrices of the psd-minimal polytopes 
in each of these classes. As mentioned above, these examples are particularly interesting 
since they provide counterexamples to several conjectures about psd-minimality that 
one might entertain based on the results in [13]. We discuss these features in detail. 
We conclude in Section 7 with the precise conditions under which the remaining classes 
in Table 1 are psd-minimal. As an illustration of our new methods, we use them to 
reprove that biplanarity is a necessary and sufficient condition for the psd-minimality of 
octahedra, finishing a new proof of Theorem 1.2. The codes for the main calculations in 
this paper can be found at: http :/ /kanstantsinpashkovich .bitbucket .org /computations /
psd _minimal _four _polytopes .html in the form of Sage [22] worksheets that rely on 
Macaulay2 [16].

1.3. Slack matrices of projectively equivalent polytopes

We conclude the introduction with a simple result that relates the slack matrices 
of projectively equivalent polytopes which is used extensively in the later parts of this 
paper.

Recall that two polytopes P and Q in Rd are projectively equivalent if and only if 
there exists a projective transformation sending P to Q, i.e. Q = φ(P ) where

φ : R
d → R

d, φ(x) := Bx + b

c�x + γ
(1)

for some B ∈ R
d×d, b ∈ R

d, c ∈ R
d and γ ∈ R such that

det
[
B b
c� γ

]
�= 0. (2)

http://kanstantsinpashkovich.bitbucket.org/computations/psd_minimal_four_polytopes.html
http://kanstantsinpashkovich.bitbucket.org/computations/psd_minimal_four_polytopes.html
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A convenient way to think of projective equivalence is in terms of homogenizations. 
Recall that given a polytope P ⊆ R

d with vertices v1, . . . , vn, its homogenization is the 
convex cone homog(P ) ⊆ R

d+1 spanned by (v1, 1), . . . , (vn, 1) ∈ R
d+1.

Lemma 1.4. Two polytopes P, Q ⊂ R
d are projectively equivalent if and only if the cones 

homog(P ) and homog(Q) in Rd+1 are linearly isomorphic.

Proof. The cones homog(P ) and homog(Q) are linearly isomorphic if and only if there 
exists a linear map from Rd+1 → R

d+1 with invertible representing matrix
[
B b
c� γ

]

that sends homog(P ) to homog(Q). By equating Q to the dehomogenization of the 
image of homog(P ), one sees that this happens if and only if for ϕ(x) := Bx+b

c�x+γ
we have 

Q = ϕ(P ), i.e., if and only if P and Q are projectively equivalent. �
Corollary 1.5. Two polytopes are projectively equivalent if and only if they have the same 
slack matrix up to permutations and positive scalings of rows and columns.

Proof. Slack matrices of cones are defined analogously to slack matrices of polytopes: 
each entry of the slack matrix is indexed by an extreme ray and a facet of the cone, and 
contains the corresponding slack value. By definition, scaling the rows and columns of 
a slack matrix of a cone by positive real numbers produces another slack matrix of the 
same cone.

Moreover, a slack matrix of a polytope P is a slack matrix of the cone homog(P )
and therefore, by Lemma 1.4, it suffices to prove that two pointed cones are linearly 
isomorphic if and only if they have a common slack matrix. It is easy to see that two 
linearly isomorphic cones have the same slack matrices. On the other hand, the reasoning 
in [9, Theorem 14] shows that every pointed cone is linearly isomorphic to the cone 
spanned by the rows of its slack matrix. Thus if two pointed cones have the same slack 
matrix, they are linearly isomorphic to the same cone, and hence to each other. �
2. Trinomial obstructions to psd-minimality

Recall that two polytopes P and Q are combinatorially equivalent if they have the 
same vertex-facet incidence structure. In this section we describe a simple algebraic 
obstruction to psd-minimality based on the combinatorics of a given polytope, therefore 
providing an obstruction for all polytopes in the given combinatorial class. Our main 
tool is a symbolic version of the slack matrix of a polytope defined as follows.

Definition 2.1. The symbolic slack matrix of a d-polytope P is the matrix, SP (x), obtained 
by replacing all positive entries in the slack matrix SP of P with distinct variables 
x1, . . . , xt.
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Note that two d-polytopes P and Q are in the same combinatorial class if and only 
if SP (x) = SQ(x) up to permutations of rows and columns, and names of variables. 
In this paper we say that a polynomial f ∈ R[x1, . . . , xt] is a monomial if it is of the 
form f = ±xa where xa = xa1

1 · · ·xat
t and a = (a1, . . . , at) ∈ N

t. We refer to a sum 
of two distinct monomials as a binomial and to the sum of three distinct monomials 
as a trinomial. This differs from the usual terminology where nontrivial coefficients are 
allowed.

Lemma 2.2 (Trinomial obstruction lemma). Suppose the symbolic slack matrix SP (x)
of a d-polytope P has a (d + 2)-minor that is a trinomial. Then no polytope in the 
combinatorial class of P can be psd-minimal.

Proof. Suppose Q is psd-minimal and combinatorially equivalent to P . Hence, we can 
assume that SP (x) equals SQ(x). By Theorem 1.3 there is some u = (u1, . . . , ut) ∈ R

t, 
with no coordinate equal to zero, such that SQ = SP (u2

1, . . . , u
2
t ) and rankSP (u) = d +1. 

Since SQ is the slack matrix of a d-polytope, we have

rankSP (u2
1, . . . , u

2
t ) = d + 1 = rankSP (u1, . . . , ut).

Now suppose D(x) is a trinomial (d + 2)-minor of SP (x). Up to sign, D(x) has the 
form xa + xb + xc or xa − xb + xc for some a, b, c ∈ N

t. In either case, it is not possible 
for D(u2

1, . . . , u
2
t ) = D(u1, . . . , ut) = 0. �

An interesting property of this obstruction is that it reflects the fact that faces of 
psd-minimal polytopes are psd-minimal (see Lemma 1.1): if a face of a polytope is not 
psd-minimal due to a trinomial obstruction, then the non-psd-minimality of the polytope 
can also be verified by a trinomial obstruction.

Proposition 2.3. Let P be a d-polytope with a facet F such that some (d + 1)-minor of 
SF (x) is a trinomial. Then SP (x) has a trinomial (d + 2)-minor.

Proof. Let vertices v1, . . . , vd+1 of F and facets F ′
1, . . . , F

′
d+1 of F index a (d +1) ×(d +1)

submatrix of SF (x) with a trinomial determinant. Let Fi be the unique facet of P that 
shares F ′

i with the facet F of P . Pick a vertex vd+2 of P not lying on F . Then the 
determinant of the submatrix of SP (x) indexed by v1, . . . , vd+2 and F1, . . . , Fd+1, F is a 
trinomial. �
2.1. Psd-minimal 2-polytopes

Lemma 2.2 yields simple proofs of the combinatorial part of the classification results 
for psd-minimal 2- and 3-polytopes that were obtained in [13].
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Proposition 2.4. [13, Theorem 4.7] The psd-minimal 2-polytopes are precisely all triangles 
and quadrilaterals.

Proof. Let P be an n-gon where n > 4. Then SP (x) has a submatrix of the form
⎡
⎢⎣

0 x1 x2 x3
0 0 x4 x5
x6 0 0 x7
x8 x9 0 0

⎤
⎥⎦ ,

whose determinant is x1x4x7x8 − x2x5x6x9 + x3x4x6x9 up to sign. By Lemma 2.2, no 
n-gon with n > 4 can be psd-minimal.

Since all triangles are projectively equivalent, by verifying the psd-minimality of one, 
they are all seen to be psd-minimal. Similarly, for quadrilaterals. �
2.2. Combinatorial classes of psd-minimal 3-polytopes

Lemma 2.2 can also be used to derive [13, Proposition 4.10], which gives the psd-
minimal classification of 3-polytopes up to combinatorial equivalence.

Using Proposition 2.4, together with Lemma 1.1 and the invariance of psd rank under 
polarity, we get that any 3-polytope P with a vertex of degree larger than four, or a 
facet that is an n-gon where n > 4, cannot be psd-minimal. This is enough to prove a 
stronger version of [13, Lemma 4.9].

Lemma 2.5. If P is a 3-polytope with a vertex of degree four and a quadrilateral facet 
incident to this vertex, then SP (x) contains a trinomial 5-minor.

Proof. Let v be the vertex of degree four incident to facets F1, F2, F3, F4 such that 
[v1, v] = F1 ∩ F2, [v2, v] = F2 ∩ F3, [v3, v] = F3 ∩ F4 and F4 ∩ F1 are edges of P , where 
v1, v2 and v3 are vertices of P .

Suppose F4 is quadrilateral. Then F4 has a vertex v4 that is different from, and 
non-adjacent to, v. Therefore, v4 does not lie on F1, F2 or F3. Consider the 5 ×5 submatrix 
of SP (x) with rows indexed by v, v1, v2, v3, v4 and columns by F1, F2, F3, F4, F where F
is a facet not containing v. This matrix has the form

⎡
⎢⎢⎢⎣

0 0 0 0 x1
0 0 x2 x3 ∗
x4 0 0 x5 ∗
x6 x7 0 0 ∗
x8 x9 x10 0 ∗

⎤
⎥⎥⎥⎦ ,

and its determinant is a trinomial. �
Proposition 2.6. The psd-minimal 3-polytopes are combinatorially equivalent to simplices, 
quadrilateral pyramids, bisimplices, octahedra or their duals.
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Proof. Suppose P is a psd-minimal 3-polytope. If P contains only vertices of degree 
three and triangular facets, then P is a simplex.

For all remaining cases, P must have a vertex of degree four or a quadrilateral facet. 
Since psd rank is preserved under polarity, we may assume that P has a vertex u of 
degree four. By Lemma 2.5, the neighborhood of u looks as follows.

Suppose P has five vertices. If all edges of P are in the picture, i.e. the picture is a 
Schlegel diagram of P , then P is a quadrilateral pyramid. Otherwise P has one more 
edge, and this edge is [v1, v3] or [v2, v4], yielding a bisimplex in either case.

If P has more than five vertices, then we may assume that P has a vertex v that is 
a neighbor of v1 different from u, v2, v4. Then v1 is a degree four vertex and thus, by 
Lemma 2.5, all facets of P containing v1 are triangles. This implies that v is a neighbor 
of v2 and v4. Applying the same logic to either v2 or v4, we get that v is also a neighbor 
of v3. Since all these vertices now have degree four, there could be no further vertices in 
P , and so P is an octahedron. Hence P is combinatorially equal to, or dual to, one of 
the polytopes seen so far. �

Proposition 2.6 proves the combinatorial part of Theorem 1.2. The rest of the proof 
can be seen in Section 7.

3. Facet intersection obstructions for psd-minimal 4-polytopes

We now use the trinomial obstruction lemma to show that facets of psd-minimal 
4-polytopes can only intersect in a limited number of ways. In this section and beyond, 
when we refer to a concrete polytope we refer to its combinatorial type; for example, 
“cube” is used as a shortcut for “a polytope of the same combinatorial type as a cube”. 
Similarly, we refer to any quadrilateral as a “square”.

3.1. Combinatorial obstruction lemmas

Definition 3.1. An edge of a 3-polytope P is called a wedge if all the vertices of P are 
contained in the two facets of P that intersect at this edge.

Lemma 3.2. If two facets of a psd-minimal 4-polytope P intersect at an edge, then this 
edge must be a wedge of both facets.

Proof. Suppose the contrary: there is a facet F1 of P which intersects another facet F2
of P at an edge [u, v] that is not a wedge of F1.
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Let v1 be a vertex of P not contained in F1. Let F3 (F4 respectively) be a facet of P
which contains u but not v (contains v but not u respectively). Let F5 and F6 be two 
facets of P , which contain u and v and induce two different facets of F1. Let v2 be a 
vertex of both F6 and F1, but not of F5; let v3 be a vertex of both F5 and F1, but not 
of F6. Moreover, since [u, v] is not a wedge of F1 there is a vertex v4 of F1, which does 
not lie in F5 or F6.

Consider the 6 × 6 submatrix of SP (x) with rows indexed by v1, v, u, v2, v3, v4 and 
columns by F1, F3, F4, F5, F6, F2. This matrix has the form

⎡
⎢⎢⎢⎢⎣

x1 ∗ ∗ ∗ ∗ ∗
0 x2 0 0 0 0
0 0 x3 0 0 0
0 ∗ ∗ x4 0 x5
0 ∗ ∗ 0 x6 x7
0 ∗ ∗ x8 x9 x10

⎤
⎥⎥⎥⎥⎦ ,

and its determinant is a trinomial, contradicting Lemma 2.2. �
Lemma 3.3. If two facets of a psd-minimal 4-polytope P intersect at a vertex, none of 
their facets containing that vertex is a square.

Proof. Let F1 be a facet of P which intersects another facet F2 of P at a vertex v. 
Suppose v is contained in a square facet F ′ of F1.

Let F3 be a facet of P that does not contain v. Pick v1 as a vertex of P not contained 
in F1. Let F4 be the facet of P which intersects F1 at F ′. Take v2 as a vertex of F1 not 
contained in F ′. Let v3 and v4 be the neighbors of v in the square F ′, and let F5 and F6
be facets of P which intersect F ′ at the edge [v4, v] and [v3, v], respectively. Denote by 
v5 the vertex of F ′ different from v, v3 and v4.

Consider the 6 × 6 submatrix of SP (x) with rows indexed by v, v1, v2, v3, v4, v5 and 
columns by F3, F1, F4, F5, F6, F2. This matrix has the form

⎡
⎢⎢⎢⎢⎣

x1 0 0 0 0 0
∗ x2 ∗ ∗ ∗ ∗
∗ 0 x3 ∗ ∗ ∗
∗ 0 0 x4 0 x5
∗ 0 0 0 x6 x7
∗ 0 0 x8 x9 x10

⎤
⎥⎥⎥⎥⎦ ,

and its determinant is a trinomial, contradicting Lemma 2.2. �
While the above two lemmas are general, the next one deals specifically with octa-

hedral facets. Recall that a combinatorial octahedron is psd-minimal if and only if it is 
biplanar (see Theorem 1.2).

Lemma 3.4. An octahedral facet of a psd-minimal 4-polytope cannot intersect another 
facet of the polytope at a vertex.



194 J. Gouveia et al. / Journal of Combinatorial Theory, Series A 145 (2017) 184–226
Proof. Suppose there are facets F and G of a psd-minimal 4-polytope P , such that F is 
octahedral and F ∩G = {v1}, where v1 is a vertex of P .

Consider the submatrix M of SP with rows indexed by the vertices v1, . . . , v6 of the 
octahedral facet and columns indexed by the facets F1, . . . , F8 and G of P , such that 
F1 ∩ F , . . . , F8 ∩ F are different facets of F . The symbolic form of M is

M(x) =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 0 0 0 0 0
0 0 0 0 x5 x6 x7 x8 z1
x9 x10 0 0 x11 x12 0 0 z2
0 0 x13 x14 0 0 x15 x16 z3
x17 0 x18 0 x19 0 x20 0 z4
0 x21 0 x22 0 x23 0 x24 z5

⎤
⎥⎥⎥⎥⎦ .

Observe that rank√ M = 4, since otherwise M extended by F and a vertex of P , 
which is not contained in F , has square root rank bigger than five, contradicting the 
psd-minimality of the 4-polytope P . On the other hand, rankM = 4 because the rows 
of M are indexed by the vertices of the 3-polytope F .

Let M ′ be the matrix obtained from M by dropping the column indexed by G. Since 
the octahedron F is psd-minimal, without loss of generality we may assume that the first 
four rows are linearly dependent in both M ′ and each of its Hadamard square roots of 
rank four. For a justification of this assumption, we refer the reader to Remark 7.2.1 Thus 
both M and each of its square roots of rank four lie in the variety of the ideal generated 
by the 4-minors of the upper left 4 × 8 submatrix of M(x), and the 5-minors of M(x). 
Using a computer algebra system one can verify that this ideal contains trinomials, such 
as

x11x16x17z5 − x1x11x16x18z5 − x3x9x16x19z5.

As in Lemma 2.2, since both M and its square root must satisfy this trinomial, no 
polytope combinatorially equivalent to P can be psd-minimal. �
3.2. Possible facet intersections of a psd-minimal 4-polytope

Based on the three lemmas above we can now provide a short list of allowed intersec-
tions among the facets of a psd-minimal 4-polytope. This is the key tool in finding the 
combinatorial classes of psd-minimal 4-polytopes.

Proposition 3.5. Let P be a psd-minimal 4-polytope and F and G be facets of P intersect-
ing at a vertex or an edge. Then, either F is a simplex or one of the following conditions 
(illustrated in Fig. 1) hold:

1 This fact can be proved independently but follows easily from the algebraic machinery developed in the 
second half of the paper.
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Fig. 1. All possible vertex or edge intersections among facets of a psd-minimal 4-polytope (excluding the 
simplex).

(1) F is a bisimplex and F ∩G is a vertex;
(2) F is a triangular prism and F ∩ G is one of the edges linking the two triangular 

faces;
(3) F is a square pyramid and F ∩G is the apex or an edge of the base.

Proof. This follows from the previous lemmas as all the other possible edge intersec-
tions are not wedges and hence are not intersections by Lemma 3.2. Similarly, all the 
other possible vertex intersections lie in a square face and hence are not intersections 
by Lemma 3.3, except for the vertices of the octahedron, which are not intersections 
directly from Lemma 3.4. �

We state one more result about the combinatorics of a psd-minimal 4-polytope.

Lemma 3.6. An edge of a psd-minimal 4-polytope is contained in at most four facets.

Proof. This follows dually from the fact that faces of dimension two of a psd-minimal 
4-polytope are themselves psd-minimal and hence have at most four vertices. �
4. Classification of combinatorial types

In this section, we prove our main theorem.

Theorem 4.1. There are exactly 31 combinatorial classes of psd-minimal 4-polytopes.

In Table 1 we list all these classes with the following information in each column:

(1) The number which we use to refer to the class.
(2) The reference to its Schlegel diagram, when present in the paper.



196
J.

G
ouveia

et
al.

/
Journal

of
C
om

binatorial
T
heory,

Series
A

145
(2017)

184–226

es Dual f-vector Condition
Self (5, 10, 10, 5) Corollary 5.12
Self (6, 13, 13, 6) Corollary 5.12
Self (7, 17, 17, 7) Corollary 5.12
5 (8, 16, 14, 6) Corollary 5.12
4 (6, 14, 16, 8) Corollary 5.12
7 (9, 18, 15, 6) Corollary 5.12
6 (6, 15, 18, 9) Corollary 5.12

y 9 (7, 15, 14, 6) Corollary 5.12
8 (6, 14, 15, 7) Corollary 5.12

y 11 (8, 18, 17, 7) Corollary 5.12
10 (7, 17, 18, 8) Corollary 5.12

B 13 (9, 22, 21, 8) Proposition 6.2
12 (8, 21, 22, 9) Proposition 6.2
15 (10, 23, 21, 8) Proposition 6.4
14 (8, 21, 23, 10) Proposition 6.4
17 (9, 20, 18, 7) Proposition 7.3
16 (7, 18, 20, 9) Proposition 7.3

B 19 (9, 22, 21, 8) Proposition 7.3
18 (8, 21, 22, 9) Proposition 7.3

y 21 (10, 21, 18, 7) Proposition 7.3
20 (7, 18, 21, 10) Proposition 7.3
23 (9, 24, 24, 9) Proposition 7.3

,3Py 22 (9, 24, 24, 9) Proposition 7.3
25 (10, 30, 30, 10) Proposition 7.3
24 (10, 30, 30, 10) Proposition 7.3
27 (10, 28, 30, 12) Proposition 7.3
26 (12, 30, 28, 10) Proposition 7.3
29 (12, 24, 19, 7) Proposition 7.4
28 (7, 19, 24, 12) Proposition 7.4
31 (16, 32, 24, 8) Proposition 7.6
30 (8, 24, 32, 16) Proposition 7.6
Table 1
Combinatorial classes of psd-minimal 4-polytopes.

� Fig Construction Vertices of a psd-minimal embedding Facet typ
1 Δ4 {−e1234, e1, e2, e3, e4} 5S
2 (Δ1 × Δ1) ∗ Δ1 {±e1,±e2, e3, e4} 4S,2Py
3 17B {0, 2e1, 2e2, 2e3, e12 − e3, e4, e34} 3S,2Py,2B
4 6C Δ3 × Δ1 {−e123, e1, e2, e3} + {±e4} 2S,4Pr
5 Δ3 ⊕ Δ1 {−e123, e1, e2, e3,±e4} 8S
6 6A Δ2 × Δ2 {−e12, e1, e2} + {−e34, e3, e4} 6Pr
7 Δ2 ⊕ Δ2 {−e12, e1, e2,−e34, e3, e4} 9S
8 7A (Δ2 × Δ1) ∗ Δ0 {e4} ∪ ({−e12, e1, e2} + {±e3}) 2S,1Pr,3P
9 (Δ2 ⊕ Δ1) ∗ Δ0 {−e12, e1, e2,±e3, e4} 6S,1B
10 6B {0, e1, e2, e3, e13, e23, e4, e14} 1S,2Pr,4P
11 {e1, e2, e3, e4,−2e1 − e24,−e13 − 2e2,−2e12} 4S,4Py
12 6F {0, e1, e2/2, e3, e4, e14, e12/2, e13, e2 + 4e34} 3Pr,3Py,2
13 17C {e1, e2, 9/4e3, e4, e124/2, e13, e2 + e3/4, e34} 2S,6Py,1B
14 6D (Δ2 ⊕ Δ1) × Δ1 {0, e1, e2, e3, e4, e12, e23, e24, 2e13 + e4, 2e13 + e24} 6Pr,2B
15 (Δ2 × Δ1) ⊕ Δ1 {e1, 2e2, e3, 2e4, e2 + 2e3, e2 + 4e4, 2e1 + e2, e134} 4S,6Py
16 3D (Δ1 × Δ1 × Δ1) ∗ Δ0 ({±e1} + {±e2} + {±e3}) ∪ {e4} 1C,6Py
17 (Δ1 ⊕ Δ1 ⊕ Δ1) ∗ Δ0 {±e1,±e2,±e3, e4} 1O,8S
18 6H {0, e1, e2/2e4, e234, e23, e24/2, e134, e13} 2Pr,4Py,2
19 13B {0, e1, e3, e4, e14, e23, e24, e234} 1O,4S,4Py
20 3C ((Δ1 × Δ1) ∗ Δ0) × Δ1 {±e1,±e2, e3} + {±e4} 1C,4Pr,2P
21 ((Δ1 × Δ1) ∗ Δ0) ⊕ Δ1 {±e1,±e2, e3, e3/2 ± e4} 8S,2Py
22 {0, 2e1, 2e3, 2e4, e12, e123, e1234, 2e24, 2e34} 6Py,3B
23 7C {0, e1, e3, e4, e12, e123, e23, e24, e234} 2O,3S,1Pr
24 {0, 2e1, 2e2, 2e3, 2e4, e123, e124, e134, e1234, e234} 10B
25 13A {e1, e2, e3, e4, e12, e13, e14, e23, e24, e34} 5O,5S
26 (Δ1 × Δ1 × Δ1) ⊕ Δ1 ({±e1} + {±e2} + {±e3}) ∪ {±e4} 12Py
27 6E (Δ1 ⊕ Δ1 ⊕ Δ1) × Δ1 {±e1,±e2,±e3} + {±e4} 2O,8Pr
28 3B Δ1 × Δ1 × Δ2 {±e1} + {±e2} + {−e34, e3, e4} 3C,4Pr
29 Δ1 ⊕ Δ1 ⊕ Δ2 {±e1,±e2,−e34, e3, e4} 12S
30 3A Δ1 × Δ1 × Δ1 × Δ1 {±e1} + {±e2} + {±e3} + {±e4} 8C
31 Δ1 ⊕ Δ1 ⊕ Δ1 ⊕ Δ1 {±e1,±e2,±e3 ± e4} 16S
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(3) A construction (if one is known) of a polytope in the class using standard operations 
on simplices. In the table, Δd denotes a simplex with d + 1 vertices, and ×, ⊕ and 
∗ denote the product, free sum and join operations.

(4) The vertices of a psd-minimal polytope in the combinatorial class, where psd-
minimality of the polytope can be verified by constructing a slack matrix and 
checking its square root rank. For S ⊆ {1, 2, 3, 4}, eS denotes the zero-one vector 
with a one in position i if and only if i ∈ S.

(5) Information about the combinatorial types of facets, i.e. how many facets of a 
polytope in this class are cubes (C), triangular prisms (Pr), octahedra (O), bisim-
plices (B), square pyramids (Py) and simplices (S).

(6) The number of the dual of the combinatorial class, or Self if it is self dual. Recall 
that psd-minimality is closed under polarity, and we list dual pairs of combinatorial 
classes consecutively.

(7) The f -vector of the polytopes in the combinatorial class.
(8) The reference to the result characterizing psd-minimality in the combinatorial class.

Since we provide a psd-minimal polytope in each of the 31 classes of Table 1, to 
prove Theorem 4.1, it suffices to argue that there are no further combinatorial classes of 
psd-minimal 4-polytopes. To enumerate the possible combinatorial classes of psd-minimal 
4-polytopes we systematically study the combinatorics of their facets. For example, we 
start by listing all combinatorial classes of psd-minimal 4-polytopes with a cubical facet. 
We assume that a psd-minimal 4-polytope P has a facet combinatorially equivalent to a 
cube, and then using combinatorial arguments we leverage the facet intersection results 
of Proposition 3.5 to dramatically restrict the possible combinatorial classes of P . After 
all classes of psd-minimal 4-polytopes with a cubical facet are obtained, we add them 
and their dual classes to our list of possibilities, and move on to study polytopes with a 
different combinatorial type of facet, until we cover all cases. Naturally, when studying 
a new type of facet, we can assume that neither the polytope P nor its dual has facets 
of the combinatorial types previously studied. Otherwise, we would be double counting. 
The combinatorial types of facets to consider are those of the psd-minimal 3-polytopes, 
i.e., cubes, triangular prisms, octahedra, bisimplices, square pyramids and simplices in 
this order. We treat each case in a separate subsection.

4.1. Cube

Let P be a psd-minimal 4-polytope with a cubical facet F . We provide a detailed dis-
cussion of this case, skipping similar arguments in later subsections. By Proposition 3.5, 
any other facet of P either has an empty intersection with F or intersects F in one of 
its facets. This fact is crucial for the analysis below. Fig. 2 shows the graph of F , along 
with some marked facets, F ′

1, F ′
2, F ′

3 and F ′
4 of F .

Let F1 and F2 be the facets of P such that F ∩F1 = F ′
1 and F ∩F2 = F ′

2. The facets 
F1 and F2 are cubes, triangular prisms or square pyramids since they must have the 
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Fig. 2. The graph of a 3-cube.

Fig. 3. All possible cases of F1 and F2 from Fig. 2, together with the corresponding Schlegel diagrams.

square facets F ′
1 and F ′

2, respectively. By Proposition 3.5, the edge F ′
1 ∩ F ′

2 is not the 
intersection of F and some other facet of P . Hence F1 ∩ F2 is a two dimensional face of 
P , i.e. F1 ∩ F2 is a facet of both F1 and F2.

If there is a cube attached to F , we may assume that it is F2. Then F1 must be 
either a cube or a triangular prism attached to F2 by a square face. If there are no cubes 
attached to F , but there are triangular prisms, then again we may assume that F2 is 
a triangular prism and then all square faces of F2 other than F ′

2 must be attached to 
triangular prisms. Finally, if there are no cubes or triangular prisms attached to F , then 
all facets attached to F are square pyramids. These possibilities are represented by the 
diagrams in the upper row of Fig. 3 where we have drawn the Schlegel diagrams of F1

and F2 inside their faces F ′
1 and F ′

2.
The analysis of the four cases depicted in the upper row of Fig. 3 leads us to 

unique ways of completing them to potentially psd-minimal polytopes. The correspond-
ing Schlegel diagrams are shown in the lower row of Fig. 3. We elaborate on Fig. 3A, 
when both F1 and F2 are cubes.

Observe that the cube is the only psd-minimal 3-polytope with a vertex contained in 
three square facets. This observation applied to the vertices of F1 ∩ F2 ∩ F , shows that 
F3 and F4 are cubes, where F3 and F4 are the facets of P such that F ′

3 = F3 ∩ F and 
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Fig. 4. The graph of a triangular prism.

F ′
4 = F4∩F (see Fig. 2). Repeating this argument, we deduce that all facets of P having 

a nonempty intersection with F are cubes.
Consider the vertex v of P such that v ∈ (F1 ∩ F2 ∩ F3) � F . There exists a facet G

of P different from F1, F2 and F3 such that v ∈ G, because every vertex lies in at least 
four facets of P . Since F1, F2 and F3 are cubes and they intersect G, by Proposition 3.5, 
each of the intersections G ∩ Fi, i = 1, . . . , 3 must be a square face of G containing v. 
Therefore, G must be a cube as it is the only psd-minimal 3-polytope with three square 
facets meeting at a vertex. This implies that the four vertices of Fi, i = 1, . . . , 3 that 
are not in F are in G. Applying the same argument to different triples of facets of P
intersecting F we conclude that they all meet G in a square face, giving rise to the 
Schlegel diagram in 3A. The other cases of Fig. 3 are obtained by a similar and simpler 
application of Proposition 3.5.

We conclude that there are four distinct combinatorial classes of psd-minimal poly-
topes with cubical facets, namely classes 16, 20, 28 and 30. Since none of them are self 
dual, we obtain eight classes in Table 1.

4.2. Triangular prism

Suppose P has a facet F that is a triangular prism. We may assume that P has no 
cubical facets since otherwise we would be in the previous case. Consider the facets F1, 
F2 and F3 of P such that F ′

1 = F1 ∩ F , F ′
2 = F2 ∩ F and F ′

3 = F3 ∩ F are the square 
faces of F (see Fig. 4).

The facet F1 is a triangular prism or a square pyramid, since its facet F ′
1 is a square. 

Thus, we have three possibilities for F1, shown in Fig. 5: two ways in which F1 can be a 
triangular prism and one way in which F1 can be a square pyramid.

We start by considering all the possibilities when F1 is a triangular prism. To do this 
we have to list all possible combinatorial types and positions of F1, F2 and F3, and draw 
the corresponding diagrams as in the case of the cube. By Lemma 3.6 we know that every 
edge of F is in at most four facets of P , while by Proposition 3.5 we know that certain 
edges of prisms and pyramids can only appear in three facets of P . Therefore, besides 
combinatorial types, we also consider all the possibilities for edges of F to be contained 
in exactly three facets of P (in which case we draw the edge thick) or in exactly four 



200 J. Gouveia et al. / Journal of Combinatorial Theory, Series A 145 (2017) 184–226
Fig. 5. All possible cases of F1 from Fig. 4.

facets of P (in which case we draw the edge dashed). The diagrams obtained are shown 
in Fig. 6.

The rules to obtain these diagrams are simply that if Fi and Fj share a thick edge, 
their facets that contain this edge, and are not facets of F , must be combinatorially the 
same, as they are identified. If these face identifications force distinct vertices from the 
same facet to be identified, we discard the underlying diagram, as it does not correspond 
to a polytope. The diagrams in the upper rows in Fig. 6 are all the cases that result from 
this process. We explain in detail how we obtain the diagrams in Fig. 6 that come from 
the first diagram in Fig. 5.

Since F2 and F3 must share a triangular face with F1, there are three cases to consider. 
Both F2 and F3 can be triangular prisms sharing a triangular face which gives imme-
diately the case in Fig. 6A. The second possibility is that both F2 and F3 are square 
pyramids. In this case, either they intersect in a triangular face or an edge. If they inter-
sected in a triangular face, then two vertices of F1 would be identified with each other 
which cannot happen. Therefore, we can obtain only the case in Fig. 6B. Lastly, suppose 
F2 is a triangular prism and F3 is a square pyramid. Then Proposition 3.5 implies that 
each pair of F1, F2, F3 intersect in a triangular face which would force the identification 
of two vertices of F1 and F2 not belonging to their already common triangular face which 
is a contradiction. The remaining seven cases in Fig. 6 arise similarly from the second 
case in Fig. 5.

As in the case of cubical facets, it is easy to show that for each diagram there is a 
unique way to complete it to a potentially psd-minimal combinatorial polytope. Below 
each case in the upper rows of Fig. 6 we present the corresponding Schlegel diagram. 
Next we assume that none of the facets F1, F2 and F3 are triangular prisms. All possible 
diagrams and the corresponding Schlegel diagrams are shown in Fig. 7.

Further analysis allows us to rule out some of these diagrams. In Figs. 6G and 6I two 
octahedra intersect in a vertex and in an edge respectively, contradicting Proposition 3.5. 
We can exclude the case in Fig. 7B as well because there two bisimplices intersect in an 
edge. What remains are 9 distinct combinatorial classes, namely classes 4, 6, 8, 10, 12, 
14, 18, 23 and 27 in Table 1. Along with their duals we get 18 new classes.
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Fig. 6. All possible cases of F1, F2, F3 from Fig. 4, such that not all F1, F2, F3 are square pyramids, together 
with the corresponding Schlegel diagrams.
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Fig. 7. All possible cases of F1, F2, F3 from Fig. 4, such that all F1, F2, F3 are square pyramids, together 
with the corresponding Schlegel diagrams.

Fig. 8. The graph of an octahedron.

4.3. Octahedron

We may now assume that no facet of P or its dual is a cube or a triangular prism. 
Let F be an octahedral facet of P and let F ′

1 be one of its facets (see Fig. 8). Take F1
to be the facet of P such that F ′

1 = F1 ∩ F .
Every vertex of F ′

1 is contained in three or four facets of F1, because F1 is a psd-
minimal 3-polytope. We use this fact for the classification and introduce a new type of 
diagram: the pair consisting of F ′

1 and its vertex v is marked by a blue angle when v is 
contained in three facets of F1 and by a red cut angle if v is contained in four facets of 
F1 (see Fig. 9 for all possible markings of F ′

1). Moreover, given the labeling of F ′
1, we 

can now uniquely determine the combinatorial type of F1, since the triangular faces of 
the four remaining psd-minimal 3-polytopes available to use as facets all have different 
vertex degree distributions.
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Fig. 9. Correspondence between simplex, square pyramid, bisimplex, octahedron and four possible labellings
of a triangle.

Fig. 10. Labeling rules in the octahedron case.

Fig. 11. Cases in which Rules 10A and 10B are applicable.

To enumerate all possible labellings of the facets of F we use the three labeling rules 
in Fig. 10. Rule 10A comes from the fact that by Proposition 3.5 no facet of P intersects 
F in a vertex or an edge. To elaborate, let (v, F ′

1) be the pair marked with a red cut 
angle and F ′

2, F
′
3, F

′
4 be the facets of F that touch v numbered clockwise from F ′

1 (see 
Fig. 11A). As usual, Fi denotes the facet of P that intersects F in F ′

i . Let G′ be the 
facet of F1 that intersects F in only v and G be the facet of P that intersects F1 in G′. 
Since the intersection of G and F is nonempty, G intersects F in one of its facets. Hence 
G intersects F in F ′

2, F ′
3 or F ′

4, i.e. G equals F2, F3 or F4. Note that G cannot be either 
F2 or F4 as they already contain facets of F1 distinct from G′. Thus, G equals F3 and v
has degree four in F3, showing that (v, F ′

3) is marked by a red cut angle. It is now easy 
to see that v must have degree three in F2 as its intersections with F3 and F1 share an 
edge of G′. Similarly for F4 and we get that (v, F ′

2) and (v, F ′
4) must be blue angles.

Let us prove that rule 10B is valid. Indeed, let v, F1, F2, F3, F4 be as in Fig. 11B with 
F1 being the bisimplicial facet. By Rule 10A we know that (v, F ′

3) must be a blue angle 
and (v, F ′

2) and (v, F ′
4) are either both blue angles or both red cut angles. If all are blue, 

then F1, . . . , F4 all share a common edge. In particular, the bisimplicial facet F1 and 
facet F3 intersect in an edge, contradicting Proposition 3.5.
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Fig. 12. All possible labellings of the graph in Fig. 8.

Fig. 13. The Schlegel diagrams corresponding to labellings in Fig. 12.

For Rule 10C we use the fact that only square pyramids among facets of P can have 
a square face. Thus, if F1 is a square pyramid, the triangular facet of F not containing 
the apex of F1 but containing an edge of F ′

1 must also be a facet of a square pyramid.
We now use these rules to produce all valid diagrams. If we start by assuming F1

is an octahedron we get a unique valid diagram, shown in Fig. 12A. If we assume F1

to be a square pyramid we only obtain the diagram in Fig. 12B. The assumption that 
F1 is a bisimplex does not lead to any valid diagram. As before, there is a unique 
way to produce a polytope that complies with each diagram and respects the facet 
intersection properties of psd-minimal 4-polytopes. The Schlegel diagrams of polytopes 
in these classes are presented in Fig. 13. It turns out that the class shown in Fig. 13A is 
dual to class 18, so it is already accounted for.

The other option left to explore is if F1 is not an octahedron, square pyramid or 
a bisimplex. Without loss of generality we may then assume that all facets of P that 
intersect F in a facet are simplices, otherwise we would consider a non-simplex facet as 
the new F1 and be in one of the previous cases. However, this case immediately gives 
a pyramid over an octahedron, a case that is already accounted for, as it is the dual 
of the pyramid over the cube, namely class 16. Therefore we only get one new class of 
psd-minimal polytopes which is class 25, and its dual.
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Fig. 14. The graph of a bisimplex.

Fig. 15. Additional labeling rules in the bisimplex case.

4.4. Bisimplex

Suppose now that P has a bisimplicial facet F . We can assume that neither P nor its 
dual has a cube, triangular prism or octahedron as a facet. In particular, every vertex of 
P is contained in at most five facets.

Consider the graph of F with a marked vertex of degree four (with respect to the 
graph of F ) and four marked facets of F as shown in Fig. 14. Let F1, F2, F3 and F4 be 
the facets of P such that F ′

1 = F1 ∩ F , F ′
2 = F2 ∩ F , F ′

3 = F3 ∩ F and F ′
4 = F4 ∩ F . 

Clearly, the vertex v is contained in at least five facets of P , namely in F1, F2, F3, F4
and F . Hence, there is no other facet of P containing v, otherwise v is contained in at 
least six facets of P . Additionally note that every edge of F contains a vertex of degree 
four. By these observations, we can conclude that no facet of P intersects F in an edge 
or in a vertex of degree four.

This strengthened version of Proposition 3.5 allows us to apply all the labeling rules 
in Fig. 10 to the bisimplicial case as well. Note that the graph of F contains also vertices 
of degree three.

For these vertices we introduce the two additional rules in Fig. 15 which are saying 
that we cannot mix blue angles and red cut angles around a degree three vertex of F . 
Suppose we have a red cut angle (v, F ′

1) and two blue angles. Then the two edges of F1
that contain v and are not contained in F have to be the same which is a contradiction. 
If there were two red cut angles (v, F ′

1) and (v, F ′
2) they share an edge that contains v

and is not contained in F and the remaining such edge of each would both get identified 
with the only such edge of the blue angle face, again a contradiction.

We obtain four valid diagrams up to symmetry, by considering all the different possi-
bilities for the bottom triangle. The first is gotten by making all other facets simplices, 
which gives us the pyramid over a bisimplex. This is however dual to the pyramid over a 
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Fig. 16. All possible labellings of the graph in Fig. 14.

Fig. 17. The contradiction obtained while constructing a Schlegel diagram corresponding to labeling in 
Fig. 16A; the Schlegel diagrams corresponding to labellings in Figs. 16B and 16C.

prism, which is already accounted for in class 8. The remaining three possible diagrams 
for the graph of F are shown in Fig. 16.

The labeling in Fig. 16A does not correspond to any 4-polytope. To see this just 
note that the straightforward identification of nodes implied by the facet intersection 
rules leads to Fig. 17A, where nodes of the same shape represent the same vertex. This 
identification implies the existence of two facets of P whose intersection is not a face of 
P , for instance the outer facet and the middle left facet in the diagram intersect at two 
vertices not sharing an edge, which would be impossible if P was actually a polytope.

The diagram in Fig. 16B leads to a unique psd-minimal 4-polytope, whose Schlegel 
diagram is in Fig. 17B. It is also straightforward to obtain the Schlegel diagram in 
Fig. 17C of the polytope corresponding to the diagram in Fig. 16C. However, we can 
see in that Schlegel digram that the vertices of the central triangle are contained in six 
facets of P , which means that this must be dual to a previously discovered polytope, 
and in fact, it is dual to class 12. So again we only get one new class of polytopes, class 
3, which turns out to be self dual.
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Fig. 18. The case when a square pyramid shares a triangular face with another square pyramid.

4.5. Square pyramid

Now we assume that the facets of P are simplices and square pyramids. By duality we 
can additionally assume that every vertex of P is contained in at most five facets of P , 
and that every vertex of P is adjacent to at most five other vertices of P .

Take a facet F of P , where F is a square pyramid. Let one of the triangular faces of 
F belong to another facet of P , which is a square pyramid. Fig. 18 is the only possibility 
under this assumption. Indeed, note that if two square pyramids would have the same 
apex then this apex would be adjacent to six other vertices. Furthermore, by Proposi-
tion 3.5 no facet of P can intersect F in an edge containing the apex of F . Now it is easy 
to see that if u is not identified with the triangle-nodes or circle-nodes then the vertex 
v4 is adjacent to at least six other vertices of P . If u is a circle-node then v3 is contained 
in at least six facets and if u is triangle-node then v1 is contained in at least six facets 
of P . All these cases have been accounted for already.

Thus we can now assume that triangular facets of F are not contained in any other 
square pyramid facet. In this case a similar identification of vertices shows that P is a 
pyramid over F , giving us the self dual polytope class 2.

4.6. Simplex

Finally, we can assume that all facets of P are simplices, and by duality, that every 
vertex of P is contained in exactly four facets. Then P is a simplex, and we obtain the 
last class of psd-minimal polytopes, class 1.

5. Slack ideals and the binomial condition (classes 1–11)

5.1. Slack ideals of polytopes

We now define the slack ideal of a d-polytope which we use to understand psd-
minimality in the rest of this paper.
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Definition 5.1. The slack ideal IP of a d-polytope P is the ideal of all (d + 2)-minors of 
SP (x) saturated with respect to all the variables in SP (x). In mathematical notation, if 
the variables in SP (x) are x1, . . . , xt, then

IP = 〈(d + 2)-minors of SP (x)〉 : (Πt
i=1xi)∞.

Recall that the saturation of an ideal I with all its variables is the ideal generated by 
all polynomials f for which a monomial multiple of f lies in I. Recall also that in this 
paper, a binomial is a polynomial of the form ±xa±xb. We say that an ideal is binomial 
if it is generated by binomials. Since the variety of IP contains positive points, namely 
the vector of positive elements in the slack matrix SP , any binomial in IP is of the form 
xa − xb.

Example 5.2. For a square,

SP (x) =

⎡
⎢⎣

0 x1 x2 0
0 0 x3 x4
x5 0 0 x6
x7 x8 0 0

⎤
⎥⎦

and IP = 〈x2x4x5x8 − x1x3x6x7〉 is a binomial ideal.
We now compute the slack ideal of a polytope in class 3. One can compute the slack 

matrix of the specific polytope in class 3 given in the table and check that the following 
is the symbolic slack matrix of a polytope in this class:

SP (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 x1 0 0 0 x2 0
x3 0 0 0 0 x4 0
x5 0 x6 0 0 0 x7
0 x8 x9 0 0 0 x10
0 0 0 0 x11 0 x12
0 0 0 x13 x14 x15 0
0 0 x16 x17 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The ideal of all 6-minors of SP (x) is generated by 49 polynomials all of which are 
binomials except the following four:

x4x5x10x11x13x16 − x4x5x9x12x14x17 + x3x7x9x11x15x17 − x3x6x10x11x15x17,

x2x7x8x11x13x16 − x2x6x8x12x14x17 − x1x7x9x11x15x17 + x1x6x10x11x15x17,

x2x3x7x8x13x16 − x1x4x5x10x13x16 − x1x3x7x9x15x17 + x1x3x6x10x15x17,

x2x3x6x8x12x14 − x1x4x5x9x12x14 + x1x3x7x9x11x15 − x1x3x6x10x11x15.

(3)

Saturating the ideal of minors with the product of all variables we obtain the binomial 
ideal:
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IP = 〈x7x9 − x6x10, x10x11x13x16 − x9x12x14x17, x7x11x13x16 − x6x12x14x17,

x2x8x13x16 − x1x9x15x17, x4x5x13x16 − x3x6x15x17, x2x8x12x14 − x1x10x11x15,

x4x5x12x14 − x3x7x11x15, x2x3x7x8 − x1x4x5x10, x2x3x6x8 − x1x4x5x9〉.

Notice that saturation changed the ideal of minors into a binomial ideal. For example, 
the first generator in (3), which is the 6-minor of SP (x) obtained by dropping the first 
row and second column, can be written as

x4x5(x10x11x13x16 − x9x12x14x17) + x3x11x15x17(x7x9 − x6x10).

Saturation puts x7x9−x6x10 and x10x11x13x16−x9x12x14x17 in the slack ideal and hence 
prevents this four-term polynomial from being a minimal generator of IP . Similarly, 
all the other four-term polynomials are also unnecessary to generate IP . This example 
highlights the fact that the slack ideal may be different from the ideal of (d + 2)-minors 
of SP (x) and, in particular, that IP can be binomial even if the ideal generated by the 
(d + 2)-minors is not.

Matrices with a fixed zero pattern and all non-zero entries being variables are known 
in the literature as sparse generic matrices. Furthermore, sparse determinantal ideals are 
the ideals of fixed size minors of a sparse generic matrix, and have been studied in differ-
ent situations [5,10]. The slack ideal of a polytope is not exactly a sparse determinantal 
ideal, but is the saturation of one, i.e., the saturation of the ideal of all (d + 2)-minors 
of the sparse generic matrix SP (x). In this paper, we define and use slack ideals for psd-
minimality computations, but they could be of independent interest to both algebraists 
and combinatorialists.

Let V(IP ) denote the real zeros of the slack ideal IP . It is convenient to identify 
s ∈ V(IP ) with the matrix SP (s). Then, by construction, rank (SP (s)) ≤ d + 1. If Q is a 
polytope that is combinatorially equivalent to P , then a slack matrix of Q is a positive 
element of V(IP ). Conversely, by [9, Theorem 24], every positive element of V(IP ) is, up 
to row scaling, the slack matrix of a polytope in the combinatorial class of P . In fact, 
Corollary 1.5, gives a more precise description of V(IP ).

Theorem 5.3. Given a polytope P there is a one to one correspondence between the pos-
itive elements of V(IP ), modulo row and column scalings, and the classes of projectively 
equivalent polytopes of the same combinatorial type as P .

5.2. Binomial slack ideals

Definition 5.4. We say that a d-polytope P is combinatorially psd-minimal if all 
d-polytopes that are combinatorially equivalent to P are psd-minimal.
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A d-simplex is combinatorially psd-minimal. By Proposition 2.4, a square is also com-
binatorially psd-minimal.

Lemma 5.5. If the slack ideal IP of a polytope P is binomial then P is combinatorially 
psd-minimal.

Proof. If IP is a binomial ideal then for every positive s ∈ V(IP ) and generator xa − xb

of IP , we have that sa = sb, which implies ( +
√
s)a = ( +

√
s)b where +

√
s is the entry-wise 

positive square root of s. Thus +
√
s annihilates every generator of IP , so rank ( +

√
SP (s)) ≤

d + 1. �
It was shown in Theorem 4.3 in [13] that every d-polytope with d + 2 vertices is com-

binatorially psd-minimal. In view of Lemma 5.5, this fact is a corollary of the following 
result.

Theorem 5.6. If a d-polytope P has d + 2 vertices or facets then IP is binomial.

By polarity it suffices to prove the result for the case when P has d + 2 vertices. 
We recall the structure of such polytopes from [14, Section 6.1]. Any d-polytope with 
d +2 vertices is combinatorially equivalent to a repeated pyramid over a free sum of two 
simplices, pyrr(Δk ⊕ Δl), with k, l ≥ 1, r ≥ 0 and r + k + l = d. Since taking pyramids 
preserves the slack ideal, it is enough to study the slack ideals of free sums of simplices 
or, dually, products of simplices. This class of polytopes has a very simple slack matrix 
structure.

Lemma 5.7. If P = Δk⊕Δl, then SP (x) has the zero pattern of the vertex-edge incidence 
matrix of the complete bipartite graph Kk+1,l+1.

Example 5.8. A polytope in class 5 in Table 1 is of the type Δ1 ⊕ Δ3 hence its slack 
matrix is the vertex-edge incidence matrix of K2,4. Therefore,

SP (x) =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 0 0 0 0
0 0 0 0 x5 x6 x7 x8
x9 0 0 0 x10 0 0 0
0 x11 0 0 0 x12 0 0
0 0 x13 0 0 0 x14 0
0 0 0 x15 0 0 0 x16

⎤
⎥⎥⎥⎥⎦ .

Let K be the complete bipartite graph associated to P as above and consider a simple 
cycle C in K with c edges and hence c distinct vertices. Let MC(x) be the c × c symbolic 
matrix whose support is the vertex-edge incidence matrix of C
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⎡
⎢⎢⎢⎢⎢⎢⎣

x1 0 0 . . . 0 x2
x3 x4 0 . . . 0 0
0 x5 x6 . . . 0 0
...

...
...

0 0 0 . . . x2c−2 0
0 0 0 . . . x2c−1 x2c

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that det(MC(x)) is a binomial.

Proposition 5.9. If P = Δk ⊕ Δl then IP is generated by the binomials det(MC) as C
varies over the simple cycles of Kk+1,l+1.

Proof. Let J denote the ideal generated by the binomials det(MC) as C varies over the 
simple cycles in Kk+1,l+1. The ideal J is the toric ideal of the Lawrence lifting of the 
vector configuration consisting of the column vectors of the vertex-edge incidence matrix 
of Kk+1,l+1 [23, Corollary 14.12]. Further, toric ideals are saturated [23, Chapter 12] and 
hence, J : (

∏
xi)∞ = J .

Since d = dim(P ) = k+ l, by Lemma 5.7, a (d +2)-minor of SP (x) is a maximal minor 
of the vertex-edge incidence matrix of Kk+1,l+1. Let M be a (d + 2) × (d + 2) submatrix 
of SP (x). Suppose that a row of M has zero or one non-zero entries. In the former 
case, det(M) = 0 and in the latter case, det(M) is a variable times a (d + 1)-minor of 
SP (x). Repeating this argument for rows and columns, we see that det(M) is a product 
of variables times the minor of a submatrix of SP (x) with at least two non-zero entries 
per row and column, and hence, exactly two non-zero entries per row and column. This 
submatrix is thus the vertex-edge incidence matrix of a disjoint union of simple cycles 
in Kk+1,l+1, hence block diagonal (after permuting rows and columns) with each block 
indexed by one such cycle. Therefore, det(M) lies in J and IP ⊆ J : (

∏
xi)∞ = J . Note 

that det(M) is not a product of variables, as this would imply that the corresponding 
minor in SP is not zero and hence rank (SP ) = d + 2 which is a contradiction.

For the reverse inclusion notice that the incidence matrix of a cycle C can be extended 
to a (d +2) ×(d +2) submatrix of the incidence matrix of Kk+1,l+1 by picking a vertex on 
each side of Kk+1,l+1 contained in C and connecting each of these vertices to all vertices 
on the other side not already in C. As before, the resulting (d +2)-minor is a product of 
variables times the minor corresponding to C. This shows that J ⊆ IP , and we conclude 
that J = IP . �

This finishes the proof of Theorem 5.6.

Example 5.10. As we saw in Example 5.8, the symbolic slack matrix of a polytope P in 
combinatorial class 5 has support equal to the vertex-edge incidence matrix of K2,4. The 
graph K2,4 has six simple cycles all of length four and the minors of the submatrices 
they index are
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x3x8x14x15 − x4x7x13x16, x2x8x12x15 − x4x6x11x16, x1x8x10x15 − x4x5x9x16,

x2x7x12x13 − x3x6x11x14, x1x7x10x13 − x3x5x9x14, x1x6x10x11 − x2x5x9x12.

By Proposition 5.9, the slack ideal IP is generated by these binomials.

Theorem 5.11. The slack ideals of classes 2, . . . , 11 in Table 1 are binomial.

Proof. The 4-polytopes in classes 2, 4, 5, 6, 7, 8, 9 have 6 = 4 + 2 vertices or facets and 
hence the result follows in these cases from Theorem 5.6. We saw in Example 5.2 that 
the slack ideal of a polytope in class 3 is binomial. Since classes 10 and 11 are dual, we 
only need to show that the slack ideal of a polytope in class 10 is binomial.

The symbolic slack matrix of a polytope in class 10 is the following:

SP (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x1 x2 0 0 x3
0 x4 0 x5 0 0 0
0 0 0 x6 0 x7 x8
x9 0 x10 0 0 0 0
x11 0 0 0 0 x12 0
0 0 x13 0 x14 0 x15
0 x16 0 0 x17 0 0
0 0 0 0 x18 x19 x20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using Macaulay 2 one can compute that IP is binomial. More precisely,

IP = 〈x8x19 − x7x20, x15x18 − x14x20, x3x13 − x1x15, x3x6 − x2x8,

x10x11x15x19 − x9x12x13x20, x3x10x11x19 − x1x9x12x20, x5x8x16x18 − x4x6x17x20,

x5x7x16x18 − x4x6x17x19, x3x5x16x18 − x2x4x17x20, x9x12x13x18 − x10x11x14x19,

x2x7x13x18 − x1x6x14x19, x5x8x14x16 − x4x6x15x17, x3x5x14x16 − x2x4x15x17,

x1x5x14x16 − x2x4x13x17, x8x9x12x13 − x7x10x11x15, x3x7x10x11 − x1x8x9x12,

x2x7x10x11 − x1x6x9x12, x1x5x9x12x16x18 − x2x4x10x11x17x19,

x5x7x10x11x14x16 − x4x6x9x12x13x17〉. �
We will see at the end of the paper that no other combinatorial class in Table 1 has 

a binomial ideal. Since the table lists all possible combinatorial types of psd-minimal 
4-polytopes, using Lemma 5.5 we can conclude that we have identified all 4-polytopes 
with a binomial polytope ideal.

Corollary 5.12. Any 4-polytope in classes 1–11 is combinatorially psd-minimal.

Remark 5.13. In [21], McMullen exhibited 11 combinatorial classes of 4-polytopes that 
are projectively unique and this list is conjectured to be complete. These are precisely 
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the classes 1, . . . , 11 in Table 1. This connection yields an alternate short proof of Corol-
lary 5.12. Since psd rank is invariant under projective transformations, and there is only 
one polytope in each of these classes up to projective equivalence, Corollary 5.12 follows 
from the psd-minimality of these representative polytopes.

6. Four interesting classes of 4-polytopes (classes 12–15)

For the remaining classes from Table 1 we want to establish conditions for psd-
minimality. Since the table lists a psd-minimal instance in each class, every class contains 
psd-minimal polytopes. In this section, we consider the dual pairs 12–13 and 14–15. In 
theory, a method to derive conditions for the psd-minimality of polytopes of a fixed 
combinatorial type is as follows.

(1) Compute the slack ideal IP ⊂ R[x1, . . . , xt] of a polytope P in the class and let JP
be a copy of IP in the variables y1, . . . , yt.

(2) Consider the ideal

KP = IP + JP + 〈y2
i − xi i = 1, . . . , t〉 ⊂ R[x1, . . . , xt, y1, . . . , yt].

By construction, for any (x, y) ∈ V(KP ) the matrix SP (y) is a Hadamard square 
root of SP (x). Thus, the polytope P is psd-minimal if and only if there are s, r ∈ R

t

such that (s, r) ∈ V(KP ) and SP = SP (s).
(3) Eliminating y1, . . . , yt from KP we obtain the ideal KP ∩ R[x1, . . . , xt]. A minimal 

generating set of this elimination ideal gives the conditions for a polytope in the 
class of P to be psd-minimal.

In practice, the computation of the slack ideal as defined in Definition 5.1 is often 
prohibitive due to the large number of variables in SP (x). Therefore, in this section 
and the next, we rely on various simplifications. We first illustrate these ideas on the 
combinatorial class 12.

Example 6.1 (Class 12). By scaling the rows and columns of a slack matrix of P , an 
operation that leaves both psd rank and square root rank unchanged, we may assume 
that several of the variables xi in SP (x) have been set to one. This allows us to start 
with the following partially symbolic slack matrix of a polytope in class 12 in only 13 
variables
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1
x1 0 0 0 1 1 0 0
0 1 0 0 0 1 x12 x13
0 x4 0 0 x11 1 0 0
x2 0 1 0 0 0 1 0
0 x5 x7 0 0 0 1 0
x3 0 0 1 0 0 0 1
0 x6 0 x9 0 0 0 1
0 0 x8 x10 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

To attain as many ones as we have above, we need to scale rows and columns in a 
carefully chosen order. For instance, in the above matrix, we can start by scaling columns 
1, 6, 7, 8 to get ones in the first row, and then rows 2, . . . , 8 to get the remaining ones in 
the last three columns. Next we scale columns 2, . . . , 5 to set the first non-zero entry in 
each of those columns to one, and finally, we scale the last row to get the remaining one 
in the matrix. Note that if we are only interested in preserving the usual rank then we 
may also scale with negative scalars. This allows us to put any matrix with the same zero 
pattern as the above one into the same form without changing its rank. In all remaining 
examples, we fix variables to one using a similar procedure.

Our goal is to obtain a parametrization of the slack matrices of class 12 with the 
scalings we have fixed above. Saturating the ideal of all 6-minors of the above matrix we 
get the ideal

I = 〈x13 − 1, x12 − 1, x11 − 1, x10 − 1, x9 − 1, x8 − 1, x7 − 1,

x3 − x6, x2 − x5, x4 + x5 + x6 − 1, x1 + x5 + x6 − 1〉.

All slack matrices of class 12 of the form (4) must satisfy the equations given by the 
generators of I. This fixes all variables except x1, x2, x3 yielding

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1
x1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 1
0 x1 0 0 1 1 0 0
x2 0 1 0 0 0 1 0
0 x2 1 0 0 0 1 0
x3 0 0 1 0 0 0 1
0 x3 0 1 0 0 0 1
0 0 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Running the ideal calculation again yields the principal ideal with generator

x1 + x2 + x3 − 1.

Thus we can conclude that the matrices of rank 5 with the same zero-pattern as a slack 
matrix of class 12 can be parametrized (up to scalings) as
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Fig. 19. Set of parameters for which psd-minimality is verified on combinatorial type 12.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1
x1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 1
0 x1 0 0 1 1 0 0
x2 0 1 0 0 0 1 0
0 x2 1 0 0 0 1 0

1 − x1 − x2 0 0 1 0 0 0 1
0 1 − x1 − x2 0 1 0 0 0 1
0 0 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

In particular, for every polytope P in class 12 we can choose a slack matrix SP of the 
above form. If P is psd-minimal then there is a Hadamard square root of SP of rank at 
most five. As remarked earlier, we can scale rows and columns of the Hadamard square 
root to bring it into the form (4). Due to the rank condition, the Hadamard square root 
has the same symbolic form as (5).

Let us denote the parameters of SP by x1 and x2 and the ones of its square root by 
y1 and y2. Therefore, for psd-minimality we must have

y2
1 = x1, y2

2 = x2, (1 − y1 − y2)2 = 1 − x1 − x2. (6)

Eliminating y1, y2 from these equations we obtain the following condition on x1, x2:

x4
1 + 2x3

1x2 + 3x2
1x

2
2 + 2x1x

3
2 + x4

2 − 2x3
1 − 2x3

2 + x2
1 − 2x1x2 + x2

2 = 0. (7)

Thus the psd-minimal polytopes in the combinatorial class 12 are those whose slack 
matrices can be parametrized (up to scalings) as in (5) with x1, x2 satisfying (7). The 
algebraic variety of (7) is shown in Fig. 19.

The above calculation proves the following statement for classes 12 and 13.
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Proposition 6.2. A polytope in the combinatorial class 12 (respectively, 13) is psd-minimal 
if and only if, the entries of its slack matrix in the form (5) (respectively, transpose of (5)) 
satisfy the quartic equation (7).

This example breaks some conjectures on the behavior of square root rank and psd-
minimality which we now discuss.

(1) Up to now, in all known psd-minimal polytopes, the positive square root +
√
SP of 

the slack matrix SP had rank d + 1. It was asked in Problem 2 [4] whether this 
was always the case for psd-minimal polytopes. If we set x1 = 1/9 and x2 = 4/9 in 
the parametrization (5), condition (7) is verified and the resulting matrix is a slack 
matrix of a psd-minimal polytope in class 12. However it is easy to see that the 
positive square root of this slack matrix is not of rank five, in fact, we must take the 
square root parametrized by y1 = −1/3 and y2 = 2/3 to obtain one of rank five.

(2) The support matrix of a matrix M is the 0, 1 matrix with the same zero pattern as 
M . A weaker version of the previous conjecture that is also broken by this example 
is that the support matrix of a psd-minimal d-polytope is always of rank d +1. This 
was true in all previously known examples, but here it is trivial to check that the 
support matrix has rank larger than 5. This, in some sense, provides evidence that 
the class of psd-minimal polytopes is fundamentally larger than the class of 2-level 
polytopes.

Example 6.3 (Class 14). We employ the same general ideas that we used for class 12. 
Scaling the rows and columns of the symbolic slack matrix of a polytope in class 14 to 
set as many entries to 1 as possible, we obtain the symbolic matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0
1 x3 0 0 x7 0 0 0
0 x4 1 x5 0 x10 0 0
0 1 0 0 x8 x11 0 0
x1 0 0 1 0 0 1 0
0 0 0 x6 0 1 1 0
x2 0 1 0 0 0 0 1
0 0 1 0 0 x12 0 x16
1 0 0 0 1 0 x14 x17
0 0 0 0 x9 x14 x15 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

We then saturate the ideal of the 6-minors of the above matrix, and use all the linear 
generators to eliminate variables as we did in the previous example. In addition, we 
also use some of the quadratic generators to eliminate more variables. For instance, the 
polynomial x8x17 − 1 is a generator of the ideal and can be used to replace x17 by 1/x8. 
Since scalings are allowed, we then multiply the row by x8 to get rid of denominators. 
Continuing this way, we arrive at a parametrization of the slack matrices of class 14 in 
the form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x10 1 1 1 0 0 0 0
x11 1 0 0 1 0 0 0
0 1 1 1 0 x10 0 0
0 1 0 0 1 x11 0 0
1 0 0 1 0 0 1 0
0 0 0 1 0 1 1 0
x12 0 1 0 0 0 0 1
0 0 1 0 0 x12 0 1

1 + x12 + x11 − x10 0 0 0 1 0 1 1
0 0 0 0 1 1 + x12 + x11 − x10 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

As before, we let y1, y2 and y3 be the parameters of a symbolic square root of the above 
slack matrix. Then psd-minimality imposes the conditions

y2
1 = x10, y2

2 = x11, y2
3 = x12, (1 − y1 + y2 + y3)2 = 1 − x10 + x11 + x12. (10)

Eliminating the y variables, results in the following degree eight algebraic equation:
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Fig. 20. Set of parameters for which psd-minimality is verified on combinatorial type 14.

Thus the psd-minimal polytopes in the combinatorial class 14 are those whose slack 
matrices can be parametrized (up to scalings) as in (9) with x10, x11, x12 satisfying (11). 
This algebraic variety is shown in Fig. 20.

Proposition 6.4. A polytope in the combinatorial class 14 (respectively, 15) is psd-minimal 
if and only if, the entries of its slack matrix in the form (9) (respectively, transpose of (9)) 
satisfy the degree eight equation (11).

7. The remaining cases: classes 16–31

In this section we briefly describe the methods to characterize psd-minimality in the 
remaining combinatorial classes from Table 1.

7.1. The 3-cube

To illustrate the techniques, and because we use this in the forthcoming arguments, 
we reprove the conditions under which a cube (or dually, an octahedron) is psd-minimal.

As before, we scale the rows and columns of the symbolic slack matrix of a cube to 
fix 15 entries to be one, obtaining the following matrix:



J. Gouveia et al. / Journal of Combinatorial Theory, Series A 145 (2017) 184–226 219
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 x1 0 0 1
1 0 0 1 x6 0
1 0 0 x3 0 x9
0 1 1 0 x7 0
0 1 x2 0 0 x10
0 1 0 x4 x8 0
0 1 0 x5 0 x11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Computing the saturation of the ideal of 5-minors of this matrix, we obtain algebraic 
conditions that allow us to eliminate variables and get the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 x1 0 0 1
1 0 0 1 x6 0
1 0 0 x1x9 − x9 + 1 0 x9
0 1 1 0 x7 0
0 1 x1x7 − x7 + 1 0 0 x7
0 1 0 1 x6 + x7 − 1 0
0 1 0 x1x11 − x11 + 1 0 x11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Instead of eliminating more variables, we now impose psd-minimality requirements on 
this matrix. If matrix (12) and one of its square roots have rank four, both have the 
parametrization (13). Let y1 and y11 denote the square roots of x1 and x11 respectively. 
Entry (8, 4) then implies that

y2
1y

2
11 − y2

11 + 1 = x1x11 − x11 + 1 = (y1y11 − y11 + 1)2.

Simplifying, we obtain y1(1 −y1)(1 −y11) = 0 which implies either y1 or y11 is 1. Similarly, 
looking at the other entries of (13) we get that y1 or y7 must be 1, y1 or y9 must be 1, 
and y6 or y7 must be 1.

Therefore, if y1 is not 1 then y9, y7 and y11 must be 1. Making this substitution and 
recomputing the ideal we see that y6 must be 1. If y1 is 1, further computations force 
us to decide if y6 or y7 is 1. In the end we get three possibilities for a Hadamard square 
root of rank four:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 y1 0 0 1
1 0 0 1 1 0
1 0 0 y1 0 1
0 1 1 0 1 0
0 1 y1 0 0 1
0 1 0 1 1 0
0 1 0 y1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 y6 0
1 0 0 1 0 y6
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 y6 0
0 1 0 1 0 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 y7 0
0 1 1 0 0 y7
0 1 0 1 y7 0
0 1 0 1 0 y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

The three possibilities above are the same up to permuting rows and columns, which 
yields the following result.
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Proposition 7.1. A 3-cube is psd-minimal if and only if its slack matrix, up to scalings 
and permutations of rows and columns is of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 x 0
1 0 0 1 0 x
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 x 0
0 1 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Remark 7.2. From the proof of Proposition 7.1 it follows that a psd-minimal 3-cube has 
a slack matrix of the same support as (12) such that both the slack matrix, and each of 
its Hadamard square roots of rank four, have the property that their first, second, third 
and fourth columns are linearly dependent, and also the third, fourth, fifth and sixth 
columns are dependent.

Furthermore, the matrix in (15) is the slack matrix of the Cartesian product of the 
unit segment and the trapezoid with vertices {(0, 0), (1, 0), (0, 1), (x, 1)}, hence by Corol-
lary 1.5, a 3-cube is psd-minimal if and only if it is projectively equivalent to the product 
of a segment and a trapezoid. Note that Proposition 7.1, together with Proposition 2.6
and Theorem 5.6 finishes an alternate proof of the complete characterization of psd-
minimality in R3, as stated in Theorem 1.2.

In what follows we make extensive use of the above idea of imposing psd-minimality 
requirements during the process of parametrizing the slack matrix to make some entries 
constant at the price of branching the computation. This makes the computations pos-
sible and easier to track. We can also explicitly use the parametrization (15) whenever a 
4-polytope or its dual has a cubical or octahedral facet, since facets of psd-minimal poly-
topes must be psd-minimal. This allows us to set many variables to 1 at the start, leading 
to big computational savings. These tricks are enough to complete the characterization 
of psd-minimality in the remaining classes from Table 1.

7.2. Classes 16–31

We first provide the full result for classes 19 through 27 leaving the remaining classes 
to be explored in more detail after that. The computations follow the exact same ideas 
as in the previous sections, and hence are not included in the paper.

Proposition 7.3. A polytope of combinatorial type 16, 18, 20, 22, 24 or 26 (respectively 
17, 19, 21, 23, 25 or 27) is psd-minimal if and only if, after scaling and permuting rows 
and columns, its slack matrix (respectively, its transpose) is of the following form:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 1 0
0 1 1 0 x 0 0
0 1 1 0 0 x 0
0 1 0 1 x 0 0
0 1 0 1 0 x 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 0 1 0 1 0 0 1
0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1
1 0 0 1 1 0 x 0
1 0 0 1 1 0 0 x
0 0 0 1 0 1 x 0
0 0 0 1 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 1 0 1 0
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 1 0 x 0
0 0 1 1 0 0 x
0 0 1 0 1 x 0
0 0 1 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 1 0
1 0 1 1 0 0 1 0 1
0 x 0 0 1 1 0 x 0
0 0 0 0 1 1 0 0 x
0 x 1 0 1 0 1 x 0
0 0 1 0 1 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 1 0
1 0 0 1 1 0 1 x 0 1
1 0 0 1 0 1 0 x 0 0
0 1 1 0 x 0 x 0 x x
0 1 1 0 0 x 0 0 x 0
0 1 0 1 x 0 0 0 0 1
0 1 0 1 0 x 0 x x 1
0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 x 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 0 1 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0
1 0 0 1 0 1 1 0 0 1 0 1
0 1 1 0 x 0 0 1 1 0 x 0
0 1 1 0 0 x 0 1 1 0 0 x

0 1 0 1 x 0 0 1 0 1 x 0
0 1 0 1 0 x 0 1 0 1 0 x

0 0 0 0 0 0 y 1 1 y y x

y 1 1 y y x 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A point to note is that in all these cases, the positive square root and the support of 
the slack matrix are of rank five. Thus these classes fail to provide counter-examples to 
the conjectures that were disproved by the polytopes in classes 12–15 as discussed before. 
Furthermore, unlike in classes 12–15 where the spaces of slack matrices of psd-minimal 
polytopes were higher degree algebraic varieties, in the above cases, these are just affine 
spaces.

We now come to the last two dual pairs of combinatorial classes from Table 1.

Proposition 7.4. A polytope of combinatorial type 28 (respectively 29) is psd-minimal if 
and only if, after scaling and permuting rows and columns, its slack matrix (respectively, 
its transpose) is of one of the following forms:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0
0 1 0 1 0 0 1
0 1 0 0 1 x 0
0 1 0 0 1 0 x
0 0 1 1 0 1 0
0 0 1 1 0 0 1
0 0 1 0 1 x 0
0 0 1 0 1 0 x
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 0 1 x 0
1 0 0 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 1 0 y 0
0 0 1 1 0 0 y
0 0 1 0 1 y 0
0 0 1 0 1 0 y
1 0 0 1 0 x 0
1 0 0 1 0 0 x
1 0 0 0 1 x 0
1 0 0 0 1 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

While it is still true that the positive square root and the support of these slack 
matrices have rank five, it differs from the previous instances since the space of slack 
matrices is a union of two components, each an affine space. One can check that the first 
case corresponds to polytopes projectively equivalent to the product of a triangle and a 
trapezoid, while the second corresponds to those projectively equivalent to a prism over 
a wedge.

The computation involved in Proposition 7.4 is similar to those in Proposition 7.3. 
The only difference is that while in classes 16–27 all the slack matrices obtained by 
the disjunctive process collapse to the same one, in classes 28 and 29 two distinct slack 
matrices remain at the end.

We now consider the 4-cube and its dual. Once again we will see that the space of 
slack matrices is the union of two components, however the techniques used are more 
involved than in the previous cases.

Example 7.5 (Class 30: the 4-cube). We start by reordering rows and columns of the 
slack matrix so that the upper left 8 × 6 submatrix corresponds to the slack matrix of a 
facet of the 4-cube. If the 4-cube is psd-minimal, this facet is as well, and hence, we can 
assume that this submatrix is as in Proposition 7.1:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 x25 0
1 0 1 0 0 1 x26 0
1 0 0 1 x 0 x27 0
1 0 0 1 0 x x28 0
0 1 1 0 0 0 x29 0
0 1 1 0 0 0 x30 0
0 1 0 1 x 0 x31 0
0 1 0 1 0 x x32 0
x1 0 x9 0 x17 0 0 x33
x2 0 x10 0 0 x21 0 x34
x3 0 0 x13 x18 0 0 x35
x4 0 0 x14 0 x22 0 x36
0 x5 x11 0 x19 0 0 x37
0 x6 x12 0 0 x23 0 x38
0 x7 0 x15 x20 0 0 x39

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

0 x8 0 x16 0 x24 0 x40
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There are still too many variables for computations, but we can repeat the idea on the 
lower left submatrix, which also corresponds to the slack matrix of a 3-cube. Recall that 
we already used scalings and permutations of the first six columns to put the top left 8 ×6
submatrix into the present form. Therefore we can only assume that the bottom left 8 ×6
submatrix is of one of the forms in (14) up to column scalings. Since we want to keep the 
top left submatrix intact, we cannot freely permute to reduce the three possible matrices 
in (14) to just one as we did in Proposition 7.1. However, there is enough freedom to 
reduce it to one of the last two types in (14). In addition, scaling the last two columns 
of the full slack matrix, we get two possibilities:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
1 0 1 0 0 1 x9 0
1 0 0 1 1 0 x10 0
1 0 0 1 0 1 x11 0
0 1 1 0 x1 0 x12 0
0 1 1 0 0 x1 x13 0
0 1 0 1 x1 0 x14 0
0 1 0 1 0 x1 x15 0
x2 0 x4 0 x6 0 0 1
x2 0 x4 0 0 x8 0 x16
x2 0 0 x5 x6x7 0 0 x17
x2 0 0 x5 0 x8x7 0 x18
0 x3 x4 0 x6 0 0 x19
0 x3 x4 0 0 x8 0 x20
0 x3 0 x5 x6x7 0 0 x21
0 x3 0 x5 0 x8x7 0 x22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
1 0 1 0 0 1 x9 0
1 0 0 1 1 0 x10 0
1 0 0 1 0 1 x11 0
0 1 1 0 x1 0 x12 0
0 1 1 0 0 x1 x13 0
0 1 0 1 x1 0 x14 0
0 1 0 1 0 x1 x15 0
x2 0 x4 0 x6 0 0 1
x2 0 x4 0 0 x8 0 x16
x2 0 0 x5 x6 0 0 x17
x2 0 0 x5 0 x8 0 x18
0 x3 x4 0 x6x7 0 0 x19
0 x3 x4 0 0 x8x7 0 x20
0 x3 0 x5 x6x7 0 0 x21
0 x3 0 x5 0 x8x7 0 x22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We then apply our techniques to each of them, with the added idea that we not always 
take the full ideal of the 6-minors, opting instead to work with minors of submatrices 
to reduce the size of computations while still eliminating variables. There are several 
branching points but in the end we obtain just two distinct possibilities, as described in 
the proposition below.
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Proposition 7.6. A combinatorial 4-cube (respectively a combinatorial 4-cross polytope) 
is psd-minimal if and only if, after scaling and permuting rows and columns its slack 
matrix (respectively its transpose) has one of the following forms:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 0
1 0 0 1 1 0 y 0
1 0 0 1 0 1 y 0
0 1 1 0 x 0 1 0
0 1 1 0 0 x 1 0
0 1 0 1 x 0 y 0
0 1 0 1 0 x y 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 y
1 0 0 1 0 1 0 y
0 1 1 0 x 0 0 1
0 1 1 0 0 x 0 1
0 1 0 1 x 0 0 y
0 1 0 1 0 x 0 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 x 0 y 0
0 1 1 0 0 x y 0
0 1 0 1 x 0 y 0
0 1 0 1 0 x y 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 0 1 0 1
0 1 1 0 x 0 0 y
0 1 1 0 0 x 0 y
0 1 0 1 x 0 0 y
0 1 0 1 0 x 0 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can check that the first slack matrix is the slack matrix of the prod-
uct of two trapezoids, namely the ones with vertices {(0, 0), (1, 0), (0, 1), (1, x)} and 
{(0, 0), (1, 0), (0, 1), (1, y)}, while the second one is the slack matrix of the polytope with 
vertices ({0} × {0, 1}3) ∪ ({1} × {0, 1} × {0, x} × {0, y}), a cubical prismoid.

8. Open questions

In this paper we classified all psd-minimal 4-polytopes. Such a classification in higher 
dimensions seems unwieldy with the current techniques, although it might be possible 
to tackle 5-polytopes using similar ideas to those in this paper. For any fixed d there is 
only a finite number of combinatorial classes of psd-minimal d-polytopes. An answer to 
the following question, besides being of independent interest, would also be useful for 
efficiently enumerating these classes.

Problem 8.1. What is the maximum number of facets in a psd-minimal d-polytope?

By the invariance of psd rank under polarity, this is equivalent to asking how many 
vertices a psd-minimal d-polytope can have. For 2-level polytopes in Rd, it was shown 
in [11] that the number of vertices and facets cannot exceed 2d and that this bound is 
tight. Since 2-level polytopes are all psd-minimal, 2d is a lower bound for the maximum 
number of facets in a psd-minimal d-polytope, and we suspect that it is in fact also an 
upper bound.

It might be easier to classify psd-minimal polytopes of a fixed combinatorial type. For 
instance, [0, 1]d is 2-level and thus a psd-minimal d-polytope.
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Problem 8.2. What are the precise conditions for psd-minimality of a d-cube (cross-
polytope)?

The cube [0, 1]d is a product of psd-minimal polytopes, and it is natural to ask about 
the connection between psd-minimality and standard polytope operations.

Problem 8.3. How does psd-minimality behave under the polytope operations of free 
sum, product and join?

We saw that, unlike a d-cube, some polytopes are combinatorially psd-minimal, in 
particular, those with a binomial slack ideal. All known combinatorially psd-minimal 
polytopes have a binomial slack ideal (see Section 5).

Problem 8.4. Is the slack ideal of a combinatorially psd-minimal polytope always bino-
mial?

All d-polytopes with at most d + 2 vertices have a binomial slack ideal. We also saw 
in Section 5 that there are psd-minimal d-polytopes with more than d + 2 vertices that 
have binomial slack ideals.

Problem 8.5. What can be said about the combinatorics of a polytope with a binomial 
slack ideal?

Toric ideals [23] form a rich class of binomial ideals and we saw in Section 5 that the 
slack ideal of a d-polytope with d + 2 vertices is, in fact, toric.

Problem 8.6. When a slack ideal is binomial, is it also toric?

We saw that the stable set polytope of a perfect graph is 2-level, and thus psd-minimal. 
Further, this polytope admits a simple semidefinite representation that allows the stable 
set problem to be solved in polynomial time in a perfect graph.

Problem 8.7. Are there other interesting examples of polytopes from combinatorial op-
timization that are psd-minimal (and not necessarily 2-level)? Do these polytopes admit 
semidefinite representations that lead to efficient algorithms for linear optimization over 
them?
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