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1. Introduction

All graphs and groups considered in this paper are finite. Let G be a transitive per-
mutation group on a set V and let v ∈ V . An orbit of the point-stabiliser Gv is called 
a suborbit of G and it is non-trivial unless it is {v}. If G is a group of automorphisms 
of a digraph Γ with vertex set V and arc set A, and if G is transitive on A, then the set 
of out-neighbours of v, Γ(v) = {u|(v, u) ∈ A}, is a suborbit of G, and its length is the 
(out)-valency of Γ.

Using groups to study graphs and digraphs of small valency has a long history, reaching 
back at least to Tutte’s seminal work [26,27] on s-arc-transitive cubic graphs. Moreover, 
this work of Tutte, and that of Sims [25] on primitive groups with a suborbit of length 3, 
led to conjectures which were not proved for more than 20 years until the classification of 
finite simple groups could be brought to bear in [33] and [6], respectively. This paper is 
concerned both with primitive groups having a small suborbit and arc-transitive graphs 
of small valency, and solving our problems requires application of the finite simple group 
classification.

It is an easy exercise to show that if a primitive permutation group has a non-trivial 
suborbit of length one, then it must be regular of prime order, while if it has a suborbit of 
length two, it must be dihedral of degree an odd prime. Primitive groups with a suborbit 
of length three have a more complicated structure. Classifying them was accomplished 
by Wong [39] using the work of Sims [25]. The classification of primitive groups with 
a suborbit of length four is even more difficult. After some partial results by Sims [25]
and Quirin [24], this was finally completed by Wang [29] using the classification of finite 
simple groups.

Wang then turned his attention to the case of primitive groups with a suborbit of 
length 5. He proved some strong partial results [31,32] but was unable to complete this 
project. This classification is the main result of our paper.

Theorem 1.1. A primitive permutation group G has a suborbit of length 5 if and only if 
(G, Gv) appears in Table 1 or 2.

Note that each row in Table 1 corresponds to a unique primitive permutation group 
G with a suborbit of length 5 whereas, in Table 2, there exists one group for each 
value of the parameter p. (Throughout this paper, p always denotes a prime, while Dn

denotes a dihedral group of order 2n. When reading the tables, it is useful to keep 
in mind exceptional isomorphisms such as: PSL(2, 5) ∼= Alt(5), PGL(2, 5) ∼= Sym(5), 
PSL(2, 9) ∼= Alt(6) and PΓL(2, 9) ∼= Aut(Sym(6)).)

The classification of primitive groups with suborbits of length three or four was used 
by Li, Lu and Marušič [20] to obtain a classification of arc-transitive vertex-primitive 
graphs of valency three or four. Similarly, as an application of Theorem 1.1, we prove 
the following:
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Table 1
Primitive groups with a suborbit of length 5: sporadic examples.

G Gv |G : Gv|
(1) Alt(5) D5 6
(2) Sym(5) AGL(1, 5) 6
(3) PGL(2, 9) D10 36
(4) M10 AGL(1, 5) 36
(5) PΓL(2, 9) AGL(1, 5) × Z2 36
(6) PGL(2, 11) D10 66
(7) Alt(9) (Alt(4) × Alt(5)) � Z2 126
(8) Sym(9) Sym(4) × Sym(5) 126
(9) PSL(2, 19) D10 171
(10) Suz(8) AGL(1, 5) 1 456
(11) J3 AGL(2, 4) 17 442
(12) J3 �Z2 AΓL(2, 4) 17 442
(13) Th Sym(5) 756 216 199 065 600

Table 2
Primitive groups with a suborbit of length 5: infinite families.

G Gv |G : Gv| Conditions
(1) Zp � Z5 Z5 p p ≡ 1 (mod 5)
(2) Z

2
p � Z5 Z5 p2 p ≡ −1 (mod 5)

(3) Z
4
p � Z5 Z5 p4 p ≡ ±2 (mod 5)

(4) Z
2
p � D5 D5 p2 p ≡ ±1 (mod 5)

(5) Z
4
p � D5 D5 p4 p ≡ ±2 (mod 5)

(6) Z
4
p � AGL(1, 5) AGL(1, 5) p4 p �= 5

(7) Z
4
p � Alt(5) Alt(5) p4 p �= 5

(8) Z
4
p � Sym(5) Sym(5) p4 p �= 5

(9) PSL(2, p) Alt(5) p3−p
120 p ≡ ±1,±9 (mod 40)

(10) PSL(2, p2) Alt(5) p6−p2

120 p ≡ ±3 (mod 10)
(11) PΣL(2, p2) Sym(5) p6−p2

120 p ≡ ±3 (mod 10)
(12) PSp(6, p) Sym(5) p9(p6−1)(p4−1)(p2−1)

240 p ≡ ±1 (mod 8)
(13) PSp(6, p) Alt(5) p9(p6−1)(p4−1)(p2−1)

120 p ≡ ±3,±13 (mod 40)
(14) PGSp(6, p) Sym(5) p9(p6−1)(p4−1)(p2−1)

120 p ≡ ±3 (mod 8), p � 11

Theorem 1.2. A 5-valent graph Γ is vertex-primitive if and only if (Aut(Γ), Aut(Γ)v)
appears in Table 3.

Note that a few well-known graphs appear in Table 3: the Clebsch graph in row (1), 
the Sylvester graph in row (2), the Odd graph O5 in row (4) and, when p = 3, the 
complete graph on 6 vertices in row (9) (recall that PΣL(2, 9) ∼= Sym(6)).

In the process of proving Theorem 1.1, we are led to classify almost simple groups 
admitting a maximal subgroup isomorphic to Alt(5) or Sym(5).

Theorem 1.3. An almost simple group G has a maximal subgroup M isomorphic to Alt(5)
or Sym(5) if and only if G appears in Table 4 or 5, respectively. Moreover, the third 
column in these tables gives the number c of conjugacy classes of such subgroups in G, 
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Table 3
Vertex-primitive graphs of valency 5.

Aut(Γ) Aut(Γ)v |V(Γ)| Conditions
(1) Z

4
2 � Sym(5) Sym(5) 16

(2) PΓL(2, 9) AGL(1, 5) × Z2 36
(3) PGL(2, 11) D10 66
(4) Sym(9) Sym(4) × Sym(5) 126
(5) Suz(8) AGL(1, 5) 1 456
(6) J3 �2 AΓL(2, 4) 17 442
(7) Th Sym(5) 756 216 199 065 600
(8) PSL(2, p) Alt(5) p3−p

120 p ≡ ±1,±9 (mod 40)
(9) PΣL(2, p2) Sym(5) p6−p2

120 p ≡ ±3 (mod 10)
(10) PSp(6, p) Sym(5) p9(p6−1)(p4−1)(p2−1)

240 p ≡ ±1 (mod 8)
(11) PGSp(6, p) Sym(5) p9(p6−1)(p4−1)(p2−1)

120 p ≡ ±3 (mod 8), p � 11

Table 4
Almost simple groups with maximal Alt(5).

G c NG(H)/H Conditions
(1) Sym(5) 1 Z2
(2) J2 1 1
(3) PSL(2, p) 2 1 p ≡ ±11,±19 (mod 40)
(4) PSL(2, p) 2 Z2 p ≡ ±1,±9 (mod 40)
(5) PSL(2, p2) 2 Z2 p ≡ ±3 (mod 10)
(6) PSL(2, 22r) 1 1 r prime
(7) PSL(2, 5r) 1 1 r odd prime
(8) PSp(6, 3) 1 Z3
(9) PSp(6, p) 1 Zp−1 p ≡ 13, 37, 43, 67 (mod 120)
(10) PSp(6, p) 1 Zp+1 p ≡ 53, 77, 83, 107 (mod 120)

Table 5
Almost simple groups with maximal Sym(5).

G c NG(H)/H Conditions
(1) Alt(7) 1 1
(2) M11 1 1
(3) M12 �Z2 1 1
(4) J2 �Z2 1 1
(5) Th 1 Z2
(6) PSL(2, 52) 2 1
(7) PΣL(2, p2) 2 Z2 p ≡ ±3 (mod 10)
(8) PSL(2, 22r) � Z2 1 1 r odd prime
(9) PGL(2, 5r) 1 1 r odd prime
(10) PSL(3, 4) � 〈σ〉 1 1 σ a graph-field automorphism
(11) PSL(3, 5) 1 1
(12) PSp(6, p) 2 Z2 p ≡ ±1 (mod 8)
(13) PGSp(6, 3) 1 1
(14) PGSp(6, p) 1 Z2 p ≡ ±3 (mod 8), p � 11

while the fourth column gives the structure of NG(H)/H, where H is a subgroup of 
index 5 in M .

As a consequence of our results, we are also able to prove the following two corollaries. 
(A graph is called half-arc-transitive if its automorphism group acts transitively on its 
vertex-set and on its edge-set, but not on its arc-set.)
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Corollary 1.4. There is no half-arc-transitive vertex-primitive graph of valency 10.

Corollary 1.5. There are infinitely many half-arc-transitive vertex-primitive graphs of 
valency 12.

It is easy to see that a half-arc-transitive graph must have even valency. In [20], it was 
proved that there is no vertex-primitive example of valency at most 8. The two results 
above thus imply that 12 is the smallest valency for a half-arc-transitive vertex-primitive 
graph, solving [20, Problem 1.3].

After some preliminaries in Section 2, we prove Theorem 1.1 in Section 3 and Theo-
rem 1.2 in Section 4. These proofs are conditional on the proof of Theorem 1.3 which, 
being slightly more technical, is delayed until Section 5. We then prove Corollary 1.4
in Section 6 and Corollary 1.5 in Section 7. Before moving on to these proofs, we cor-
rect a few mistakes in the literature on this subject that have, as far as we know, gone 
undetected until now.

Remark 1.6. To increase our confidence in the correctness of our results, we have checked 
them against databases of known examples whenever possible. More specifically, we have 
checked Tables 1–3 against the database of primitive groups of degree less than 4 096 [8], 
and Tables 4 and 5 against the database of almost simple groups of order at most 
16 000 000 implemented in Magma [2].

While we were at it, we have also rechecked large (but not all) parts of [19], [20], [31]
and [32] (our paper does not rely on the first two). In the process, we found the following 
mistakes.

• In [19, Theorem 1.2], it is mistakenly claimed that there exists an infinite family 
of 5-valent vertex-primitive 4-arc-transitive graphs. In fact, as can be inferred from 
Table 3, there is a unique such graph and it has order 17442.

• In [20, Table 2], in the first row, one should have p ≡ 1 (mod 4). In the third row, 
the condition “p ≡ ±1 (mod 8), p �= 7” should be replaced by “p ≡ ±1 (mod 24)”. 
In the fifth row, one should have p �= 3. Finally, in the last row, Aut(Γ) should 
be PSL(3, 7).2 and the vertex-stabiliser should be Sym(4) × Sym(3). (See also next 
item.)

• In [20, Table 3], the case when G = PSL(3, 7).〈σ〉 where σ is a graph automorphism 
is missing. (This can be traced back to a typographical error in [29, Theorem 1.4(6)]
where it should read PSL(3, 7).2 instead of PSL(3, 7).3. Note that the correct version 
appears in Theorem 1.3(2) of the same paper.)

• The case G = Sym(5) is missing from [31, Theorem 2.3(4)]. It is missed as in com-
piling [31, Theorem 0.1(3)] from [30] it is overlooked that [30] is only for primitive 
groups that are not 2-transitive.

• In the main theorem of [32], the case soc(G) = J3 is missing. (Indeed, this example 
was already known to Weiss [34].) The error is in the proof of [32, Proposition 2.2]
where the possibility is considered but erroneously discounted as, using the notation 
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of the reference, V is not the unique maximal abelian normal subgroup of Gαβ and 
so is not a characteristic subgroup of Gαβ.

2. Preliminaries

In this section, as well as in Sections 6 and 7, we will need the notion of a digraph. 
Since this terminology has many usages, we formalise ours here. A digraph Γ is a pair 
(V, A) where V is a set and A is a binary relation on V . The set V is called the vertex-set
of Γ and its elements are the vertices, while A is the arc-set and its elements arcs. If A
is a symmetric relation, then Γ is called a graph.

If (u, v) ∈ A, then v is an out-neighbour of u and u is an in-neighbour of v. The 
number of out-neighbours of v is its out-valency. If this does not depend on the choice 
of v, then it is the out-valency of Γ. An automorphism of Γ is a permutation of V that 
preserves A. We say that Γ is G-arc-transitive if G is a group of automorphisms of Γ
that acts transitively on A.

The following easy lemma will prove useful. Here, for a (not necessarily normal) sub-
group H of a group G, G/H denotes the set of right H-cosets in G.

Lemma 2.1. Let d � 2, let G be a non-regular primitive permutation group on V and 
let v ∈ V such that Gv has a unique conjugacy class of subgroups of index d, and these 
subgroups are maximal and self-normalising in Gv. Let H be a representative of this 
conjugacy class, and let N = NG(H) be the normaliser of H in G. The following hold.

(1) There is a one-to-one correspondence between G-arc-transitive digraphs with vertex-
set V and out-valency d, and elements Hg of (N/H) \ {H}.

(2) Such a digraph is a graph if and only if Hg has order 2 in N/H.
(3) Gv has an orbit of length d if and only if (N/H) \{H} �= ∅ or, equivalently, N > H.

Proof. We prove the three claims in order.

(1) Let Γ be a G-arc-transitive digraph with vertex-set V and out-valency d. Since 
Γ is G-arc-transitive, Γ also has in-valency d. Also Gv is transitive on the d in-
neighbours of v and hence the stabilisers of these in-neighbours form a conjugacy 
class of subgroups of Gv of index d. As there is a unique such conjugacy class and 
H is contained in it, we have H = Guv for some in-neighbour u of v. Since H is a 
self-normalising proper subgroup of Gv, it follows that u is the unique in-neighbour 
of v fixed by H (this is easily proved, and, for example, is set as an exercise in [11, 
Exercise 1.6.3]). The same argument on out-neighbours shows that H = Gvw for a 
unique out-neighbour w of v. Since Γ is G-arc-transitive, there exists a unique coset 
Hg ∈ G/H such that (u, v)g = (v, w). Note that Hg = Gg

uv = Gvw = H, and hence 
Hg ∈ N/H. Also u �= v, and hence Hg �= H. Thus ϕ : Γ → Hg is a well-defined map 
from G-arc-transitive digraphs of out-valency d to (N/H) \ {H}. We show that ϕ is 
a bijection.
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To show that ϕ is onto, let Hg ∈ (N/H) \ {H}, and let w = vg. Since g /∈ Gv, 
w �= v. Let Γ be the G-arc-transitive digraph with arc-set (v, w)G. We have H =
Hg � (Gv)g = Gw and thus H � Gvw. Since G is primitive but not regular, we 
have Gvw < Gv. As H is maximal in Gv, it follows that H = Gvw, and hence Γ
has out-valency d. Finally, as in the previous paragraph, Gvw = H = Guv for some 
unique in-neighbour u of v, and we have (u, v)g = (v, w) so ϕ(Γ) = Hg.
To show that ϕ is one-to-one, suppose that Γ = (V, A) and Δ = (V, B) are G-arc-
transitive digraphs with vertex-set V and out-valency d, with images ϕ(Γ) = Hg

and ϕ(Δ) = Hk such that Hg = Hk. By the first paragraph of the proof, H = Guv

where A = (u, v)G, ug = v and g ∈ N \Gv, and also H = Gxv, where B = (x, v)G, 
xk = v and k ∈ N \ Gv. Since Hg = Hk, we have k = hg for some h ∈ H, and so 
ug = v = xk = xhg = xg. Hence u = x which implies that A = B and Γ = Δ.

(2) Suppose that Γ is a G-arc-transitive graph with vertex-set V and valency d. Adopting 
the notation from the first paragraph of the proof of (1), we have u = w. Hence 
(u, v)g = (v, u) and g2 ∈ Guv = H. In other words, Hg has order 2.
Conversely, if Hg is an element of order 2 in (N/H) \{H} then, adopting the notation 
from the second paragraph of the proof of (1), we have that g2 ∈ H = Gvw. Hence 
wg = vg

2 = v and (w, v) = (v, w)g, so Γ is a graph.
(3) Suppose that Gv has an orbit of length d. Let w be an element of that orbit, and let 

Γ be the digraph with vertex-set V and arc-set (v, w)G. Clearly, Γ is G-arc-transitive 
and has out-valency d. Hence, by (1), (N/H) \ {H} �= ∅.
Conversely, if (N/H) \{H} �= ∅, then, by (1), there exists a G-arc-transitive digraph 
of out-valency d and thus Gv has an orbit of length d. �

2.1. Brauer characters

We will often use the Brauer character tables of Sym(n), Alt(n) and their double covers 
for n = 4 or 5. For an algebraically closed field F of characteristic p and a group G, the 
Brauer character β of a finite-dimensional F -representation ϕ of G is a function that 
maps each p-regular element g of G to the sum of lifts to C of the eigenvalues of ϕ(g)
(see [14] for definitions).

The degree of β is β(1), which equals the dimension of ϕ, and the image of β lies in the 
ring of algebraic integers in C. By [14, Lemma 15.2], there is a ring homomorphism − from 
the ring of algebraic integers to F with the property that β(g) = χ(g) for all p-regular 
elements g of G, where χ is the character of ϕ. In particular, if β(g) is an integer, then 
χ(g) lies in the prime subfield of F . The Brauer character of ϕ is the sum of the Brauer 
characters of the irreducible constituents of ϕ, and two irreducible representations are 
equivalent precisely when their Brauer characters are equal [14, Theorem 15.5], which 
occurs exactly when their characters are equal [14, Corollary 9.22]. The Brauer character 
table describes the irreducible Brauer characters. If p � |G|, then the Brauer table is the 
same as the complex character table [14, Theorem 15.13] and, for the groups above, can 
be accessed in GAP [12] or Magma [2], as well as the Atlas [7] when n = 5. Otherwise, 



254 J.B. Fawcett et al. / Journal of Combinatorial Theory, Series A 157 (2018) 247–266
the Brauer table can be accessed in GAP, or the Brauer Atlas [16] when n = 5. See [16]
for details on how to read the tables.

The following theory will be used in conjunction with Brauer character tables. Let G
be a group and F a field. If V is an FG-module and H is a subgroup of G, then V is also 
an FH-module which we denote by V ↓ H. An irreducible FG-module V is absolutely 
irreducible if the extension of scalars V ⊗E is irreducible for every field extension E of F . 
Note that V is absolutely irreducible if and only if EndFG(V ) = F [13, Lemma VII.2.2], 
where EndFG(V ) denotes the ring of FG-endomorphisms of V . The field F is a splitting 
field for G if every irreducible FG-module is absolutely irreducible. For a character χ of 
an FG-module V and a subfield K of F , let K(χ) denote the subfield of F generated by 
K and the image of χ.

Now suppose that G is one of the groups above. By the Brauer character tables of 
these groups and [13, Theorem VII.2.6], F = GF(q2) is a splitting field for G for any 
prime power q, so every irreducible representation of G over the algebraic closure of F can 
be realised over F . Let K = GF(q). If V is an irreducible FG-module with character χ, 
then either K(χ) = K and V = U ⊗ F for some absolutely irreducible KG-module U
[13, Theorem VII.1.17], or K(χ) = F and V is an irreducible KG-module of dimension 
2 dimF (V ) [13, Theorem VII.1.16]. Moreover, every irreducible KG-module arises in 
this way. Indeed, suppose that W is an irreducible KG-module that is not absolutely 
irreducible, and let k := EndKG(W ). Then k is a finite field by Wedderburn’s theorem, 
and W is an absolutely irreducible kG-module where k-scalar multiplication is defined 
to be evaluation. Let χ be the character of W as a kG-module. Then k = K(χ) by 
[13, Theorem VII.1.16], and K(χ) ⊆ F by [13, Theorem VII.2.6] (or the Brauer tables). 
Hence k = F and W is an irreducible FG-module, as desired. Further, W ⊗ F (with W
as a KG-module) is a direct sum of two non-isomorphic irreducible FG-modules with 
the same dimension, one of which is W as an FG-module [13, Lemma VII.1.15 and 
Theorem VII.1.16].

To determine whether K(χ) = K or K(χ) = F , we can use the Brauer character table 
of G. To see this, let β be the Brauer character corresponding to the FG-module V . 
Now K(χ) = K exactly when β(g) ∈ K for all p-regular g ∈ G (since for each h ∈ G, 
χ(h) = χ(h′) for some p-regular h′ ∈ G). In particular, if β has no irrational values, then 
K(χ) = K. Otherwise, we can use [16, Appendix 1] (or [3, Section 4.2]) to determine 
whether − maps the irrational values of β into K.

3. Proof of Theorem 1.1

For the rest of this section, let G be a primitive group, let Gv be one of its point-
stabilisers, let Δ be an orbit of Gv of length 5 and let GΔ

v be the permutation group 
induced by the action of Gv on Δ.

We first report the following result of Wang [31]. (As noted earlier, the case corre-
sponding to Table 1 (2) was mistakenly omitted in [31].)
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Theorem 3.1. GΔ
v is soluble if and only if (G, Gv) appears in Table 1 (1–6, 9, 10) or 

Table 2 (1–6).

It thus remains to consider the case when GΔ
v is not soluble. Since it is a transitive 

permutation group of degree 5, it must be isomorphic to either Alt(5) or Sym(5). We 
first consider the case when Gv does not act faithfully on Δ.

Theorem 3.2. GΔ
v ∈ {Alt(5), Sym(5)} and Gv does not act faithfully on Δ if and only if 

(G, Gv) appears in Table 1 (7, 8, 11, 12).

Proof. This is essentially a result of Wang [32], except that the author left open the case 
when G is isomorphic to one of the Monster or Baby Monster sporadic groups and Gv

is a maximal 2-local subgroup of G. Also, as noted earlier, the case where soc(G) = J3

is missed in [32]. By [18, Theorem 5.2] or [32], the order of Gv divides 214 · 32 · 5. 
This is impossible for the Monster by [4], and for the Baby Monster by [36]. Moreover, 
while running some computations, we noticed that Wang mistakenly excluded the cases 
corresponding to Table 1 (11, 12). �

By Theorems 3.1 and 3.2, it suffices to consider the case when Gv
∼= GΔ

v ∈
{Alt(5), Sym(5)}. Since Alt(5) and Sym(5) are 2-transitive, it follows by [23, Theorem A]
that either G is almost simple, or it has a unique minimal normal subgroup which is reg-
ular. We deal with the latter case in the next two results. (Recall that a primitive group 
is affine if it has an elementary abelian regular normal subgroup.)

Lemma 3.3. If Gv ∈ {Alt(5), Sym(5)} and G has a unique minimal normal subgroup 
which is regular, then G is affine.

Proof. Let N be the unique minimal normal subgroup of G. If N is abelian, then G is 
affine. We thus assume that N is non-abelian and hence N = Tm for some non-abelian 
simple group T . Write N = T1 × · · · × Tm and let X = NGv

(T1).
By [11, Theorem 4.7B], m � 6, the action by conjugation of Gv on {T1, . . . , Tm}

is faithful and transitive, and X has a composition factor isomorphic to T . The only 
non-abelian composition factor of Gv is Alt(5) and thus m = |Gv : X| � 2, which is a 
contradiction. �
Lemma 3.4. G is affine and Gv ∈ {Alt(5), Sym(5)} if and only if (G, Gv) appears in 
Table 2 (7, 8).

Proof. We assume that G is affine and Gv ∈ {Alt(5), Sym(5)}. By definition, G has an 
elementary abelian regular normal subgroup V , with V ∼= Zd

p. Note that G = V � Gv. 
We view V as a faithful irreducible GF(p)Gv-module.
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Let H be a subgroup of index 5 in Gv and let CV (H) be the centraliser of H in V . 
Since H is self-normalising in Gv, it follows that NG(H) = CV (H) �H. Lemma 2.1 (3)
implies that CV (H) �= 0, so the trivial GF(p)H-module is a submodule of V .

Suppose that p > 5 and Gv = Sym(5). In this case, V is isomorphic to a Specht 
module Sμ for some partition μ of 5. Since the trivial GF(p)H-module is a submodule 
of V , [15, Theorem 9.3] implies that we can remove an element from one of the parts of 
μ and obtain the partition (4). If μ = (5), then V is the trivial module, a contradiction. 
Hence μ = (4, 1), in which case d = 4 and (G, Gv) appears in Table 2 (8), and conversely, 
the pair (G, Gv) has the required properties.

Suppose that p > 5 and Gv = Alt(5). In particular, H = Alt(4). Using the Brauer 
character tables of Alt(4) and Alt(5), we determine that d = 4. Hence (G, Gv) appears 
in Table 2 (7), and conversely, the pair (G, Gv) has the required properties.

Finally, suppose that p � 5. Using Magma, we determine that p � 3 and V is the 
deleted permutation module. Hence d = 4 and (G, Gv) appears in Table 2 (7, 8), and 
conversely, the pairs (G, Gv) are examples. �

By Lemmas 3.3 and 3.4 and the remark preceding them, we may now assume that G
is an almost simple group. In particular, by Theorem 1.3, the possible groups G appear 
in Table 4 or 5. In view of Lemma 2.1 (3), Theorem 1.1 now follows by going through 
these tables and ignoring the rows with NG(H)/H = 1. (Row (1) of Table 4 must also 
be ignored as M is not core-free in G in this case.)

4. Proof of Theorem 1.2

Let Γ be a 5-valent vertex-primitive graph and let G = Aut(Γ). We first show that Γ is 
G-arc-transitive. Suppose, on the contrary, that Γ is not G-arc-transitive and thus GΓ(v)

v

is intransitive. If GΓ(v)
v has a fixed point then, since G is primitive, it is regular and cyclic 

of prime order at least 7. However, a non-trivial regular abelian group G of odd order 
cannot be the full automorphism group of a graph since the permutation sending each 
element to its inverse is a nontrivial automorphism with a fixed point. Thus GΓ(v)

v has 
two orbits, one of length 2 and one of length 3. Having an orbit of length 2 implies that 
Gv is a 2-group, contradicting the fact that Gv has an orbit of length 3. This concludes 
the proof that Γ is G-arc-transitive. In particular, Gv has an orbit of length 5, and hence, 
by Theorem 1.1, (G, Gv) appears in Table 1 or 2. It follows that G is either affine or 
almost simple.

If G is of affine type, it has a regular elementary abelian subgroup R and Γ is a Cayley 
graph on R, with connection set S, say. Recall that S generates R and that |S| = 5. 
Since S is inverse-closed, this implies that R ∼= Za

2 for some a � 5 and thus |R| � 32. It 
is then easy to check that Γ appears in Table 3 (1) and, conversely, that the graph in 
Table 3 (1) does exist and has the required properties.

We may now assume that G is almost simple. If Gv is not isomorphic to Alt(5) or 
Sym(5) then, by Tables 1 and 2, there are only finitely many possibilities for Γ (in fact, it 
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has order at most 17442) and we can deal with them on a case-by-case basis, by computer 
if necessary. We obtain the graphs in Table 3 rows (2–4) and (6). We may therefore 
assume that Gv is isomorphic to Alt(5) or Sym(5). In particular, G appears in Table 4
or 5. Note that, in these tables, NG(H)/H always has at most one element of order 2. 
By Lemma 2.1 (2), it follows that | NG(H)/H| is even and that Γ is uniquely determined 
by G and Gv. Note that the number of choices for Gv for a given G corresponds to the 
number of conjugacy classes of maximal Alt(5) or Sym(5) in G, which is listed in the 
third column of Tables 4 and 5, respectively. It can be checked that, in the cases where 
there are multiple conjugacy classes, the classes are fused by an outer automorphism of 
G and hence the different conjugacy classes give rise to isomorphic graphs. Finally, note 
that the groups appearing in rows (5), (9) and (10) of Table 4 are subgroups of the ones 
appearing in rows (7) and (14) of Table 5. In particular, the former can be ignored as 
G will not be the (full) automorphism group of Γ in these cases. Finally, the groups in 
row (4) of Table 4 and rows (5, 7, 12, 14) of Table 5 lead to the graphs in rows (8, 7, 9, 
10, 11) of Table 3. (Row (1) of Table 4 must also be ignored for the same reason as in 
the last section.)

5. Proof of Theorem 1.3

Throughout this section, let G be an almost simple group with socle T , let M be a 
maximal subgroup of G isomorphic to Alt(5) or Sym(5), and let H be a subgroup of 
index 5 in M . We prove Theorem 1.3 via a sequence of lemmas.

Lemma 5.1. Theorem 1.3 holds if T is an alternating group.

Proof. Suppose that T ∼= Alt(n) for some n � 5. The case n � 10 can be handled in 
various ways, including by computer, and we find that G appears in Table 4 rows (1, 5) 
or Table 5 rows (1, 7). (Recall that Alt(6) ∼= PSL(2, 9) and Sym(6) ∼= PΣL(2, 9).) We 
thus assume that n � 11. Note that Alt(n) � G � Sym(n) and we may view G as a 
permutation group of degree n in the natural way. If M is an intransitive subgroup of G, 
then (Sym(k) × Sym(m)) ∩ Alt(n) � M where n = k + m, a contradiction since n � 8. 
If M is imprimitive, then M = (Sym(k) � Sym(m)) ∩ G where n = km and k, m � 2, 
so Sym(k)m ∩ Alt(n) is a normal subgroup of M , a contradiction. (Here we need no 
restrictions on n.) Finally, Alt(5) and Sym(5) have no primitive actions of degree greater 
than 10. �
Lemma 5.2. Theorem 1.3 holds if T is a sporadic simple group.

Proof. Suppose that T is a sporadic simple group. By [4,22], we may assume that T
is not the Monster. The maximal subgroups of the remaining sporadic groups can be 
found in a variety of places, including [38] or the Atlas [7] (whose lists are not al-
ways complete). Most of the cases can be handled in a straightforward manner using 
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the GAP package AtlasRep [37], and we find that G appears in Table 4 (2) or Ta-
ble 5 (2–5).

The only case which presents some difficulty is when G = Th, the Thompson sporadic 
group and M ∼= Sym(5). A computation yields that | NG(H) : H| is non-trivial and 
we give a few details. The difficulty arises because the minimum degree of a permuta-
tion representation of Th is 143 127 000. Combined with the order of Th, this makes it 
computationally very hard to do any non-trivial calculations directly. To overcome this 
problem, we perform most calculations in one of the maximal subgroups of Th, only 
“pulling back” to the full group when computations in two different maximal subgroups 
have to be reconciled. Even using these tricks, the task is computationally non-trivial. 
We used Magma as it seems to perform better with very high degree permutation 
representations than GAP.

It follows from the Atlas [7] that there is a unique choice for the conjugacy class of 
M and, clearly, there is a unique choice for the conjugacy class of H in M . Note that 
NTh(H) is a 2-local subgroup (as it normalises the Klein 4-subgroup of H) and therefore, 
by [35, Theorem 2.2] it must lie in either M2 or M3, which are maximal subgroups of 
Th isomorphic to 25.L5(2) and 21+8.A9 (in Atlas notation), respectively.

We then use information from the Atlas [7] to find a permutation representation of 
degree 143 127 000 for M2 and M3. Despite the very high degree, the fact that the order 
of Mi is known means that it is possible to construct a base and strong generating set for 
Mi using randomised algorithms. It is then easy to determine the orbits of Mi, and by 
taking the action of Mi on one of these orbits, obtain a faithful representation of Mi of 
a more reasonable degree. With a representation of relatively low degree (less than 106), 
it is possible to compute all the subgroups of Mi isomorphic to Sym(4) and determine 
their normalisers (in Mi).

Carrying out this process, we find that M2 has a single conjugacy class of subgroups 
isomorphic to Sym(4), while M3 has four such classes. To identify which of these classes 
contain H, we pull them back into the degree 143 127 000 representation of Th. Due to 
the extremely high degree, it is impossible to test directly the conjugacy of these groups 
in Th, but we can compute simple invariants of them. In particular, we can determine 
the number of points fixed by a representative of each class. It turns out that only one 
conjugacy class matches the number of fixed points of H, thereby identifying H as con-
jugate to a particular subgroup of M3. We can then compute the normalizer in M3 of 
H to find that it has order 48, completing the verification of Table 5 (5). �

We may now assume that T is a group of Lie type. By [9], it is not an exceptional 
group, so it must be a classical group. Let V be the natural module for the covering 
group of T , let n be the dimension of V , let q be the order of the underlying field and p
its characteristic.

Lemma 5.3. If T is a classical group, then either G is as in Table 5 (10, 11) or T is 
isomorphic to one of PSL(2, q) or PSp(6, p).
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Proof. For a subgroup K of PΓL(V ), we denote the preimage of K in ΓL(V ) by K̂. That 
is, K is the image of K̂ under the homomorphism φ : ΓL(V ) → ΓL(V )/ Z(GL(V )).

Suppose first that n � 6. The maximal subgroups of the classical groups of dimension 
at most 6 are given in [3]. The tables at the end of this book are especially useful. Care 
must be taken due to the fact that the tables give the structure of the pre-images in 
the matrix group instead of the projective group. One must also have in mind the many 
exceptional isomorphisms involving Alt(5) and Sym(5) (and other isomorphisms, such 
as PSp(4, 2) ∼= Sym(6)). With this in mind, one finds that, apart from the two examples 
which appear in Table 5 (10, 11), all examples have T isomorphic to either PSL(2, q) or 
PSp(6, p).

From now on, we assume that n � 7. In particular, T � M and, since M is maximal 
in G, TM = G and G/T ∼= M/(T ∩ M). By the Schreier conjecture, G/T is soluble, 
and hence T ∩ M �= 1. Let X = soc(M) ∼= Alt(5). Then X � T , M = NG(X) and 
|G : T | = |M/(T ∩ M)| � |M/X| � 2. In particular, if T = PΩ+(8, q), then G does 
not contain a triality automorphism. Our argument is aided by Aschbacher’s theorem 
for maximal subgroups of classical groups as developed in [17]. Since n � 7, either 
G � PΓL(V ) or T = PSL(V ) and G contains a graph automorphism. In both cases, G
acts on the set of subspaces of V .

Suppose that M is the stabiliser in G of a nontrivial decomposition V = U ⊕ W . 
Let m = dim(W ). Without loss of generality, we may assume that m � �n/2� � 4. Let 
Ŷ be the subgroup of ΓL(W ) induced on W by M̂W . In the case where T �= PSL(V ), 
the maximality of M implies that either U and W are both nondegenerate, or U and 
W are both totally singular of dimension n/2. If either T = PSL(V ) or both U and W
are totally singular of dimension n/2, then Ŷ contains SL(W ) as a normal subgroup. 
However, m � 4, contradicting the fact that M is isomorphic to one of Alt(5) or Sym(5). 
Thus T �= PSL(V ) and both U and W are nondegenerate. In particular, Ŷ contains 
one of SU(W ), Sp(W ) or Ωε(W ) as a normal subgroup. Since none of PSU(m, q) for 
m � 4, or PSp(m, q) for m � 4, or PΩε(m, q) for m � 5, have Alt(5) as a composition 
factor, it follows that G is an orthogonal group and m = 4. Since m � n/2 it follows 
that n = 7 or 8. Thus M̂ contains either Ω(3, q) × Ωε2(4, q) or Ωε1(4, q) × Ωε2(4, q) as 
a normal subgroup. Note that, if n = 7, then q is odd. Also Ω(3, q) ∼= PSL(2, q) for q
odd, Ω−(4, q) ∼= PSL(2, q2) and Ω+(4, q) ∼= SL(2, q) ◦ SL(2, q). Since M is insoluble and 
has Alt(5) as a unique non-abelian composition factor it follows that n �= 7. Moreover, 
when n = 8 we must have that ε1 = +, ε2 = − and q = 2. In this case, the stabiliser 
of a decomposition in G will be 3-local (as PSL(2, 2) ∼= Sym(3)) which M is not. This 
contradiction completes the proof that M is not the stabiliser in G of a decomposition 
V = U ⊕W .

Suppose now that M fixes some nontrivial subspace U . As M is maximal in G, it is the 
stabiliser of U in G. Since M is not p-local, M is not a parabolic subgroup. In particular, 
T �= PSL(V ) and U is not a totally singular subspace. Thus, according to Aschbacher’s 
theorem (see [17, Table 4.1A]), U is either nondegenerate or p = 2, G is an orthogonal 
group and U is a nonsingular 1-space. The latter is not possible as the stabiliser of such 
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a 1-space in PΩ±(n, q) is isomorphic to Spn−2(q), which is not contained in Sym(5). It 
follows that U is nondegenerate and M also fixes U⊥ and the decomposition V = U⊕U⊥. 
This contradicts the previous paragraph.

We may now assume that M does not fix any nontrivial subspace of V . Suppose that, 
on the other hand, X does fix a nontrivial subspace U . Since M = NG(X), there is 
another subspace W fixed by X such that M fixes the set {U, W}. Moreover, as M is 
maximal in G, it is the stabiliser in G of {U, W} and either U < W or V = U ⊕ W . 
The latter case contradicts an earlier statement. In the former case, since M does not 
fix W , we must have that T = PSL(V ) and G contains a graph automorphism (recall 
that n � 7 so T � PSp(4, q)). However, this contradicts M not being p-local.

We have shown that X does not fix any nontrivial subspace of V and hence X̂ is 
irreducible. By [1, 31.1], we have X̂ = X̂ ′ ◦ Z(X̂). Since Z(X̂) consists of scalars, it 
follows that X̂ ′ is irreducible on V . Moreover, since X̂ ′ is a perfect central extension 
of Alt(5), it is isomorphic to Alt(5) or 2 . Alt(5). In the Brauer character table of X̂ ′, 
we see that the Brauer characters with no irrational values have degree at most 6, 
while those with some irrational value have degree at most 3. Thus the (not necessarily 
absolutely) irreducible representations of X̂ ′ have dimension at most 6 (see Section 2.1), 
contradicting our assumption that n � 7. �

The next lemma follows from Dickson’s classification of the subgroups of PGL(2, q)
[10].

Lemma 5.4. A subgroup of PSL(2, q) isomorphic to Alt(4) is self-normalising if and only 
if q is even or q ≡ ±3 (mod 8). For q odd, Sym(4) is a self-normalising subgroup of 
PGL(2, q) and it is the normaliser of an Alt(4).

Lemma 5.5. Theorem 1.3 holds when T ∼= PSL(2, q).

Proof. Since PSL(2, 5) ∼= Alt(5), we see from [3, Table 8.1] that PSL(2, 52) has two 
classes of maximal subgroups isomorphic to Sym(5). This gives row (6) of Table 5. The 
same isomorphism also yields that there is a unique conjugacy class of maximal Alt(5)
subgroups in PSL(2, 5r) for r an odd prime and a unique conjugacy class of maximal 
Sym(5) subgroups in PGL(2, 5r) (and no such maximal subgroups when q = pr with r
not prime). Since r is odd, 5r ≡ −3 (mod 8) and Lemma 5.4 implies row (7) of Table 4
and row (9) of Table 5.

Since PSL(2, 4) ∼= Alt(5), we see from [3, Table 8.1] that Alt(5) is a maximal subgroup 
of PSL(2, 22r) for r an odd prime and there is a unique conjugacy class of such subgroups. 
Such a subgroup is normalised by a field automorphism of T of order 2r. When r = 2, 
such an Alt(5) is the centraliser of the field automorphism of order two but when r
is odd the centraliser of a field automorphism of order two is PSL(2, 2r), which does 
not contain an Alt(5). Thus when r is odd, the normaliser of Alt(5) in PSL(2, 22r).2
is Sym(5) and is a maximal subgroup. Again there is a unique conjugacy class of such 
subgroups. Lemma 5.4 then yields row (6) of Table 4 and row (8) of Table 5.
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Using [3, Table 8.1], we see that Alt(5) is a maximal subgroup of PSL(2, p) for p ≡
±1 (mod 10). There are two classes of such maximals and they are self-normalising in 
PSL(2, p). This gives rows (3) and (4) of Table 4 with the normaliser of an Alt(4) given 
by Lemma 5.4. We also see that there are two classes of maximal Alt(5) subgroups in 
PSL(2, p2) when p ≡ ±3 (mod 10). Since p2 ≡ 1 (mod 8), by Lemma 5.4 the normaliser 
in T of an Alt(4) is Sym(4) and we get row (5) of Table 4. Finally, each of these Alt(5)
subgroups is normalised but not centralised by a field automorphism. Hence we obtain 
two conjugacy classes of maximal Sym(5) subgroups in PΣL(2, p2). The normaliser of 
an Alt(4) in PΣL(2, p2) is then Sym(4) × Z2 and hence the Sym(4) in PΣL(2, p2) has 
normaliser twice as large. Hence we have row (7) of Table 5. �

Before dealing with the case where T ∼= PSp(6, p) we need a couple of lemmas. For a 
permutation group X fixing a set U , we denote by XU the permutation group induced 
by X on U .

Lemma 5.6. [28, p. 36] Let p be an odd prime. A semisimple element A of GL(d, p) is 
conjugate to an element of Sp(d, p) if and only if A is conjugate to (A−1)T .

Lemma 5.7. [17, Lemmas 4.1.1 and 4.1.12] Let X � Sp(d, p) and suppose that X fixes an 
m-dimensional subspace U of the natural module. If XU is irreducible, then U is either 
nondegenerate or totally isotropic. Moreover

(i) if U is nondegenerate then Sp(d, p)U ∼= Sp(m, p) × Sp(d −m, p);
(ii) if (|X|, p) = 1 and U is totally isotropic, then X fixes another totally isotropic 

subspace U∗ such that U and U∗ are disjoint and dimU = dimU∗. Moreover,

(Sp(d, p)U⊕U∗)U⊕U∗
=

{[
A 0
0 (A−1)T

]
| A ∈ GL(m, p)

}
.

Lemma 5.8. Theorem 1.3 holds when T ∼= PSp(6, p).

Proof. The cases when p � 5 can be verified by a Magma calculation. (In this case, we 
obtain row (8) of Table 4 and row (13) of Table 5.) We assume now that p � 7.

Suppose first that p ≡ ±1 (mod 8). By [3, Table 8.29], M ∼= Sym(5), G = T and 
there are two possibilities for the conjugacy class containing M . Let M̂ ∼= 2 . Sym(5)− be 
the preimage of M in Sp(6, p) and let Ĥ ∼= 2 . Sym(4)− be the index five subgroup of M̂
corresponding to H. Note that V ↓ M̂ is absolutely irreducible. By considering the Brauer 
character tables for 2 . Sym(5)− and 2 . Sym(4)−, we deduce that V ↓ Ĥ = U ⊕W where 
U and W are absolutely irreducible representations of Ĥ over GF(p) with degree two 
and four respectively. Since p � 7, Lemma 5.7 implies that U and W are nondegenerate 
and hence the stabiliser in Sp(6, p) of this decomposition is Sp(2, p) × Sp(4, p). Since Ĥ
is absolutely irreducible on U and W , it follows from Schur’s Lemma that the centraliser 
of Ĥ in Sp(6, p) is Z(Sp(2, p)) × Z(Sp(4, p)). By Lemma 5.4, Sym(4) is self-normalising 
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in PSL(2, p) and hence Ĥ is self-normalising in SL(2, p) = Sp(2, p). Thus NSp(6,p)(Ĥ) =
CSp(6,p)(Ĥ)Ĥ and so | NG(H) : H| = 2. This verifies Row (12) of Table 5.

Next suppose that p ≡ ±3 (mod 8). It follows from [3, Table 8.29] that M ∼= Alt(5) �
PSp(6, p). Let M̂ ∼= 2 . Alt(5) be the preimage of M in Sp(6, p). When p ≡ ±3, ±13
(mod 40), [3, Table 8.29] asserts that M is maximal in PSp(6, p) and, moreover, X :=
NPGSp(6,p)(M) ∼= Sym(5) is a maximal subgroup of PGSp(6, p). When p ≡ ±11, ±19
(mod 40), M is not maximal in PSp(6, p) but X := NPGSp(6,p)(M) ∼= Sym(5) is max-
imal in PGSp(6, p). As usual, we denote the preimage of X in GSp(6, p) by X̂. Let 
Ĥ = 2 . Alt(4) be the subgroup of M̂ corresponding to H. Note that V ↓ M̂ is absolutely 
irreducible. Let χ be the character for V ↓ M̂ and let F be a splitting field for 2 .Alt(4). 
By the Brauer character table of 2 . Alt(4), we conclude that χ = χ1 + χ2 + χ3 over F , 
where the χi are the three irreducible representations of 2 .Alt(4) of degree two. More-
over, when p ≡ 1 (mod 3), we may take F = GF(p), and when p ≡ 2 (mod 3), we may 
take F = GF(p2). We divide our analysis into these two cases.

Suppose first that p ≡ 1 (mod 3) and F = GF(p). In this case V splits as the sum 
of three irreducible spaces U, W1 and W2 for Ĥ of dimension two. By looking at the 
character tables and using Lemmas 5.6 and 5.7, it follows that U is nondegenerate while 
W1 and W2 are complementary totally isotropic subspaces. By Lemma 5.7, the partwise 
stabiliser in Sp(6, p) of the decomposition of V preserved by Ĥ is Sp(2, p) × GL(2, p). 
Since the actions of Ĥ on W1 and W2 are dual, the centraliser in Sp(6, p) of Ĥ = 2 . Alt(4)
is Z1 × Z(GL(2, p)) where Z1 = Z(Sp(2, p)). By Lemma 5.4, Alt(4) is self-normalising in 
PSp(2, p) ∼= PSL(2, p) when p ≡ ±3 (mod 8) and hence NSp(6,p)(Ĥ) = Ĥ CSp(6,p)(Ĥ). 
Thus NPSp(6,p)(H)/H is a cyclic group of order p − 1. This verifies row (9) of Table 4.

Now consider X̂. It has an index five subgroup R̂ containing Z = Z(GSp(6, p)) ∼=
Zp−1 such that R = R̂/Z ∼= Sym(4) and R̂ normalises Ĥ. Now R̂ must preserve the 
decomposition V = U ⊥ (W1⊕W2) fixed by Ĥ. The partwise stabiliser of this partition in 
GSp(6, p) is (Sp(2, p) ×GL(2, p)) �〈δ〉 where δ is an element of order p −1 that centralises 
the GL(2, p) and generates GSp(2, p) with Sp(2, p). Since R̂ contains an element that 
does not centralise Ĥ, it follows that R̂ must interchange W1 and W2. In particular, 
| CZ(R̂)| = 2. It follows that CGSp(6,p)(R̂) = Z1Z and hence | NPGSp(6,p)(R) : R| = 2. 
This verifies row (14) of Table 5 when p ≡ 1 (mod 3).

We now assume that p ≡ 2 (mod 3) and F = GF(p2). It follows from the Brauer 
character table of 2 . Alt(4) that χ1 can be realised over GF(p) while χ2 and χ3 cannot, 
hence the restriction of V to Ĥ must decompose as V = U ⊕ W with dim(U) = 2
and dim(W ) = 4. Since dim(U) �= dim(W ) it follows from Lemma 5.7 that U and 
W are both nondegenerate and hence the stabiliser of this decomposition in Sp(6, p)
is Sp(2, p) × Sp(4, p). Moreover, the image of 2 . Alt(4) in the group induced on W is 
contained in the subgroup Zp+1 ◦Sp(2, p2). Thus the centraliser of Ĥ in Sp(6, p) is equal 
to Z1 × Z2 where Z1 = Z(Sp(2, q)) and Z2 has order p + 1. Since p ≡ ±3 (mod 8), 
we again have that NSp(6,p)(Ĥ) = Ĥ CSp(6,p)(Ĥ) and hence NPSp(6,p)(H)/H is cyclic of 
order p + 1. This verifies row (10) of Table 4.
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Now consider X̂ and again let Z = Z(GSp(6, p)). Again it has an index five subgroup 
R̂ containing Z such that R = R̂/Z ∼= Sym(4) and R̂ normalises Ĥ. Also R̂ must 
preserve the decomposition of V = U ⊕W preserved by Ĥ. The stabiliser in GSp(6, p)
of this decomposition is (Sp(2, p) × Sp(4, p)) � 〈δ〉 where δ has order p − 1 and acts 
as an outer automorphism of order p − 1 on both Sp(2, p) and Sp(4, p). Consider Ĥ
acting on V ′ = V ⊗ GF(p2) as a 6-dimensional space over GF(p2). Since GF(p2) is a 
splitting field for Ĥ, we have that Ĥ decomposes V ′ as a nondegenerate 2-space and two 
totally isotropic 2-spaces. The partwise stabiliser in GSp(6, p2) of this decomposition 
is (Sp(2, p2) × GL(2, p2)) � 〈δ〉 where δ is an element of order p2 − 1 that centralises 
the GL(2, p2) and, together with Sp(2, p2), generates GSp(2, p2). Since R̂\Ĥ contains an 
element that does not centralise Ĥ, it follows that R̂ (when viewed as acting on V ′) must 
interchange the two totally isotropic 2-spaces. Thus R̂ is absolutely irreducible on W . 
Hence CGSp(6,p)(R̂) = Z1Z and | NPGSp(6,p)(R) : R| = 2. This completes the verification 
of row (14) of Table 5. �
6. Proof of Corollary 1.4

Suppose, to the contrary, that Γ is a half-arc-transitive vertex-primitive graph of 
valency 10, let G be its automorphism group, and let (u, v) be an arc of Γ. Let 	Γ be the 
digraph with the same vertex-set V Γ as Γ and with arc-set (u, v)G. Note that 	Γ is an 
asymmetric G-arc-transitive digraph of out-valency 5. In particular, Gv has an orbit of 
length 5 and (G, Gv) appears in Table 1 or 2. It follows that G is either affine or almost 
simple.

If G is of affine type, it has a regular elementary abelian subgroup R and Γ is a Cayley 
graph on R, with connection set S, say. Since R is abelian, the permutation sending every 
element of R to its inverse is an automorphism of Γ. On the other hand, if s ∈ S, then 
the composition of the inversion map with multiplication by s is an automorphism of Γ
that reverses the arc (1, s), contradicting the fact that Γ is half-arc-transitive.

We may now assume that G is almost simple. If Gv is not isomorphic to Alt(5) or 
Sym(5) then, as in the proof of Theorem 1.2, there are only finitely many possibilities 
which can be handled on a case-by-case basis. These yield no examples. We may therefore 
assume that Gv is isomorphic to Alt(5) or Sym(5). In particular, by Theorem 1.3, G
appears in Table 4 or 5. By Lemma 2.1 (1–2), we may restrict our attention to rows 
where NG(H)/H contains an element of order at least 3. In particular, G ∼= PSp(6, p)
for some prime p with p ≡ ±3, ±13 (mod 40) and Gv

∼= Alt(5).
Let H = Guv and note that H ∼= Alt(4). Let G∗ = PGSp(6, p). By [3, Table 8.29], 

NG∗(Gv) ∼= Sym(5) and hence G∗ � NSym(V Γ)(G) and G∗
v = NG∗(Gv). Let Δ be the orbit 

of G∗
v containing u. If Δ is also an orbit of Gv, then (u, v)G∗ = (u, v)G and G∗ is contained 

in the automorphism group G of Γ, a contradiction. Since |G∗
v : Gv| = 2, the only other 

possibility is that Δ is a union of two orbits of Gv of the same size, namely 5. In particular 
|Δ| = 10. It follows that G∗

uv = H. Let H∗ = NG∗
v
(H). Note that H∗ ∼= Sym(4). Since 

H is a characteristic subgroup of H∗, we have that NG∗(H) = NG∗(H∗). If p = 3, then 
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Table 5 implies that NG∗(H) = H∗. If p �= 3, then it follows by Table 5 (and the fact 
that Sym(4) is a complete group) that NG∗(H) = H∗ × Z for some Z ∼= Z2. In both 
cases, we have that NG∗(H)/H is an elementary abelian 2-group.

Let Γ∗ be the digraph with vertex-set V Γ and with arc-set (u, v)G∗ . Since |Δ| = 10, 
Γ∗ has out-valency 10. Let w′ be an out-neighbour of v. As Γ∗ is G∗-arc-transitive, 
H and G∗

vw′ are conjugate in G and, in particular, isomorphic. On the other hand, 
G∗

v has a unique conjugacy class of subgroups isomorphic to Alt(4), and hence H and 
G∗

vw′ are conjugate in G∗
v. It follows that H = G∗

vw for some out-neighbour w of v
in Γ∗. Since Γ∗ is G∗-arc-transitive, there exists g ∈ G∗ such that (u, v)g = (v, w). Note 
that g normalises H. By the previous paragraph, this implies that g2 ∈ H. However 
ug2 = vg = w and so u = w and Γ∗ is actually a graph. Since G < G∗, 	Γ is a sub-digraph 
of Γ∗ and hence Γ∗ = Γ. This implies that G∗ is contained in the automorphism group 
of Γ which is a contradiction.

7. Proof of Corollary 1.5

We first need the following lemma.

Lemma 7.1. Let p be a prime with p ≡ 7, 23 (mod 40), let G = PSp(6, p) and let M be a 
maximal subgroup of G isomorphic to Sym(5). If H is a subgroup of index 6 in M , then 
NG(H)/H ∼= Zp+1.

Proof. First, note that M actually exists by Theorem 1.3. Note also that Sym(5) has 
a unique conjugacy class of subgroups of index 6. These subgroups are maximal and 
isomorphic to AGL(1, 5). Let M̂ and Ĥ be the preimage of M and H in Sp(6, p), respec-
tively. Note that M̂ ∼= 2 . Sym(5)− and Ĥ ∼= Z5�Z8. Let V be the natural 6-dimensional 
module for Sp(6, p) over GF(p). Since p ≡ 7 (mod 8), it follows from the Brauer char-
acter tables of M̂ and Ĥ (available in Magma, for example) that V ↓ Ĥ splits as a 
sum of an absolutely irreducible 4-dimensional subspace W and an irreducible but not 
absolutely irreducible subspace U of dimension 2. Moreover, Ĥ is faithful on W while 
elements of order 5 in Ĥ act trivially on U . Since p � 7, Lemma 5.7 implies that U
and W are nondegenerate and hence the stabiliser in Sp(6, p) of this decomposition is 
Sp(2, p) × Sp(4, p). By Schur’s Lemma, CSp(6,p)(Ĥ) = Z1 × Z2 where Z1 ∼= Zp+1 and 
Z2 = Z(Sp(4, p)) ∼= Z2. Since elements of order 5 in Ĥ act trivially on U , any element 
of NSp(6,p)(Ĥ) \ CSp(6,p)(Ĥ)Ĥ, must centralise the elements of order 5 in Ĥ. Moreover, 
for p ≡ −1 (mod 8), the normaliser in Sp(2, p) of a cyclic group of order 8 is Q2(p+1). 
Now 5 divides p2 + 1, and so the centraliser C of an element of order 5 in Sp(4, p) is 
cyclic of order p2 + 1 (see [5, Proposition 3.4.3 and Remark 3.4.4]). However, 4 does 
not divide p2 + 1 and so the Sylow 2-subgroup of C is equal to Z(Sp(4, p)) = Z2. Thus 
NSp(6,p)(Ĥ) = CSp(6,p)(Ĥ)Ĥ and so

NG(H)/H ∼= NSp(6,p)(Ĥ)/Ĥ ∼= CSp(6,p)(Ĥ)/Z(Ĥ) = (Z1 × Z2)/Z2 ∼= Zp+1. �
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We are now ready to prove Corollary 1.5. Let p be a prime with p ≡ 7, 23 (mod 40)
and let G = PSp(6, p). By Theorem 1.3, there exists a maximal subgroup M of G
isomorphic to Sym(5). Note that Sym(5) has a unique conjugacy class of subgroups of 
index 6, and these subgroups are maximal and not normal. Let H be a subgroup of 
index 6 in M . By Lemma 7.1, NG(H)/H ∼= Zp+1. By Lemma 2.1, there exists Γ′ a 
G-arc-transitive digraph of out-valency 6 that is not a graph. Let Γ be the underlying 
graph of Γ′ and let A be the automorphism group of Γ. Note that Γ has valency 12
and that G � A � Sym(V Γ). Since Alt(V Γ) �� A, it follows from [21] that soc(A) = G

and thus A = G or A = PGSp(6, p). However, by [3, Table 8.29], M is self-normalising 
in PGSp(6, p) and thus PGSp(6, p) �� Sym(V Γ). It follows that A = G and hence Γ is 
half-arc-transitive.

As there are infinitely many primes p with p ≡ 7, 23 (mod 40), this proves that there 
are infinitely many vertex-primitive half-arc-transitive graphs of valency 12, as required.
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