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We show that in every 3-coloring of the edges of a graph G of 
order N such that δ(G) ≥ 5N

6 − 1, there is a monochromatic 
component of order at least N/2. We also show that this result 
is best possible.
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1. Introduction

In a coloring of the edges of a graph G with k colors, a monochromatic component 
is a maximal subgraph that is connected in one of the colors. Gyárfás [3] showed that 
in every k-coloring of the edges of the complete graph KN there is a monochromatic 
component of order at least N

k−1 . Here we consider k = 3, and extend this result to 
graphs of large minimum degree. Note that for k = 2, Gyárfás and Sárközy [4] proved 
that in every 2-coloring of the edges of a graph G with N vertices and δ(G) ≥ 3N/4, there 
is a monochromatic component with at least δ(G) + 1 vertices (see also [1]). They also 
showed that this result is sharp and thus complete graphs are the only graphs having the 
property that in every 2-coloring of the edges there exists a monochromatic component 
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covering all vertices. But the results obtained for k = 3 state that in every 3-coloring of 
the edges of a non-complete graph G with appropriately large minimum degree, there is 
a monochromatic component which contains at least half of the vertices of G.

Gyárfás and Sárközy [5], conjectured that for any graph G with N vertices and for 
all k ≥ 3, if δ(G) ≥ (1 − k−1

k2 )N , then in every k-coloring of the edges of G, there exists 
a monochromatic component of order at least N

k−1 . In [5], they showed that for a graph 
G of order N and with δ(G) ≥ 9N/10, every 3-coloring of the edges of G contains a 
monochromatic component of order at least N/2. DeBiasio, Krueger and Sárközy [2]
obtained the same result for a graph G with δ(G) ≥ 7N/8 (see also [7]). We disprove 
this conjecture (for k = 3) by showing that 5N/6 − 1 is the correct minimum degree 
threshold for three colors (and not 7N/9). Our goal is to show the following.

Theorem 1. Let G = (V, E) be a graph on N vertices. If δ(G) ≥ 5N/6 − 1, then in every 
three coloring of the edges of G there exists a monochromatic component of order at least 
N/2.

We first show that in the case when N > 6 and 6 divides N , there exists a graph G
with |G| = N and δ(G) = 5N/6 − 2 and a 3-coloring of the edges of G such that every 
monochromatic component has fewer than N/2 vertices.

Let {v1, ..., v6} denote the vertices of complete graph K6. Let us remove v1v5, v2v4
and v3v6 from K6 to obtain the graph H. Color v1v2, v2v3, v1v3 and v4v6 with blue, 
v3v4, v4v5, v3v5 and v1v6 by red and v2v5, v2v6, v5v6 and v1v4 by green.
Now in the 3-colored graph H, replace v1, v4 and v6 by sets V1, V4 and V6 each consisting 
of N/6 + 1 vertices and v2, v3 and v5 by sets V2, V3 and V5 each consisting of N/6 − 1
vertices. All of the edges inside Vi’s and all of the edges between Vi and Vj (if vivj is an 
edge of H) are present. We color the edges inside Vi’s arbitrarily and the edges between 
Vi and Vj inherit the color of the vivj edge. We obtain a 3-coloring of the edges of a graph 
G with |G| = N and δ(G) = 5N/6 − 2 such that its largest monochromatic component 
contains N/2 − 1 vertices.

Here a vertex which has no edges incident with one of the colors, will be considered 
a monochromatic trivial component in that color. For a vertex u ∈ V (G), N̄(u) denotes 
the set of non-neighbors of u.

2. Main result

In the proof of Theorem 1, we shall use the following Lemmas. We start with a Lemma 
of Liu et al. [6] (see also [8]).

Lemma 2. ( [6]) Let m, n ∈ N and c ∈ [0, 1]. If G is a bipartite graph with part-sizes m
and n, and |E(G)| ≥ cmn, then G has a component of order at least c(m + n).

Lemma 3. Let G = (V, E) be a bipartite graph with bipartition V = V1 ∪ V2 where 
|V1| ≤ |V2| and for some δ′ > 0, let |V1| > δ′ and |V2| > 3δ′/2. If every vertex of each 
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part has at most δ′ non-neighbors in the other part, then V (G) can be covered by at most 
two components.

Proof. Since each vertex of V1 has at most δ′ non-neighbors in V2, any component of G
covers all but at most δ′ vertices of V2. Thus any component covers at least |V2| −δ′ > δ′/2
vertices of V2 and so two disjoint components, say U1 and U2, cover more than δ′ vertices 
of V2. Hence each vertex of V1 has a neighbor in one of the U1 or U2 and thus U1 and U2
cover V1. Moreover since |V1| > δ′, each vertex of V2 has a neighbor in V1. So all vertices 
of G can be covered by at most two components. �
Lemma 4. Let G = (V, E) be a bipartite graph with bipartition V = V1 ∪ V2 where 
|V1| ≤ |V2| and for some δ′ > 0, let |V1| ≤ δ′ and |V2| ≥ 2δ′. If every vertex of V1
has at most δ′ non-neighbors in V2, then either there is a component which covers all 
vertices of V1 and all but at most δ′ vertices of V2 or V (G) can be covered by at most 
two components.

Proof. If |V2| > 2δ′, each two vertices of V1 share a neighbor in V2 and thus all of them 
belong to a component which covers all but at most δ′ vertices of V2, so let us suppose 
that |V2| = 2δ′. Consider a component of G and let U1 denote this component. Since 
each vertex of V1 has at most δ′ non-neighbors in V2, U1 covers all but at most δ′ vertices 
of V2 and so it covers at least δ′ vertices of V2. Suppose that U1 does not cover V1. A 
non-covered vertex of V1 belongs to another component, say U2, which again covers at 
least δ′ vertices of V2. Thus U1 and U2 cover all of V2 and so all vertices of V1. �

Now we are ready to prove the main result of this paper.

Proof of Theorem 1. Let us consider a 3-coloring of the edges of G with colors blue, 
red and green. Let F1 be a monochromatic component of G with the largest number of 
vertices. Without loss of generality assume that F1 is a blue component. Let V1 = V (F1)
and suppose indirectly that |V1| < N/2. Let F2 be the largest monochromatic component 
from the two other colors such that V (F1) ∩ V (F2) �= ∅. Without loss of generality, let 
F2 be a red component, V2 = V (F2) and suppose that |V2| < N/2. Let A = V1 \ V2, 
B = V2 \ V1, C = V \ (V1 ∪ V2) and D = V1 ∩ V2. Note that all edges between A and 
B are green. Also all of the edges between C and D are green. It is obvious that either 
|A ∪B| ≥ N/2, or |C ∪D| ≥ N/2, but since |V1|, |V2| < N/2, we always have

|B ∪ C|, |A ∪ C| > N/2. (1)

Note that since δ(G) ≥ 5N/6 − 1, every vertex has at most N/6 non-neighbors.

Claim 1. |B| > N/6.

proof of Claim 1. Let us suppose indirectly that |B| ≤ N/6. From (1) we have |C| >
N/3. Thus each two vertices of D share a neighbor in C. So D is contained in a green 
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component which covers all but at most N/6 vertices of C. Since |C| −N/6 > N/6 ≥ |B|, 
this component is larger than F2, which is impossible. �

Now we show that |V1| > N/3. In the following Claim we prove something stronger, 
but in the rest of proof we use only this fact that the largest component has more than 
N/3 vertices.

Claim 2. |V1| > N/3.

proof of Claim 2. Let U = V (G) \V1 = B ∪C. Consider the bipartite graph between V1
and U of which every edge is either red or green. Let e(V1, U) denote the number of the 
edges between V1 and U . We have

e(V1, U) ≥ |V1|(|U | −N/6) = |V1|(5N/6 − |V1|) >
2
3 |V1|(N − |V1|) ,

where the last inequality holds provided |V1| < N/2. So without loss of generality, the 
number of red edges between V1 and U is more than 13 |V1|(N−|V1|) and thus by Lemma 2, 
there is a red component on more than N/3 vertices. Thus |V1| ≥ |V2| > N/3. �

Now we consider two cases.

Case 1. |A ∪B| > N/2.
Since |A| ≥ |B|, here we have |A| > N/4. By Lemma 3 applied with δ′ = N/6, A ∪B

can be covered by two green components. Let A1 and A2 denote the set of vertices of 
these two components. Note that since every vertex has at most N/6 non-neighbors, we 
have

|A1 ∩A|, |A2 ∩A|, |A1 ∩B|, |A2 ∩B| ≤ N/6 . (2)

Let C1 be the vertices in C ∪D which have a green path to A1, let C2 be the vertices 
in C ∪D which have a green path to A2, and let C3 = (C ∪D) \ (C1∪C2). For all i ∈ [3], 
let C ′

i = Ci∩C. It is obvious that A1∪C1 and A2∪C2 are connected green components. 
There are no green edges from C ′

1 to A2 since otherwise A1 ∪A2 is contained in a green 
component, which is impossible. So all of the edges between C ′

1 and A2 ∩ A are red. 
Similarly all of the edges between C ′

2 and A1 ∩A are red. Also C ′
3 sends only red edges 

to A.
Note that C3 �= ∅, since otherwise all vertices of G can be covered by two connected 

green components A1∪C1 and A2∪C2 and so one of these components contains at least 
N/2 vertices, which is impossible.

Claim 3. C ′
3 �= ∅ and there exists a red component which covers A ∪C ′

3.

proof of Claim 3. Note that from (1) and (2) we have |C| > N/6. Now let us assume 
first that |C3 ∩D| > 0. Considering a vertex, say w ∈ C3 ∩D, since C ′

1 ∪C ′
2 ⊆ N̄(w), we 

have
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|C ′
1 ∪ C ′

2| ≤ N/6 , (3)

which implies that C ′
3 �= ∅. Suppose that u ∈ A1 ∩ A and v ∈ A2 ∩ A. By the degree 

condition, we have |N̄(u) ∪ N̄(v)| ≤ N/3 and we have B ⊆ N̄(u) ∪ N̄(v). Since |B∪C| >
N/2, (3) implies that |B ∪C ′

3| > N/3. Thus |C ′
3 \ (N̄(u) ∪ N̄(v))| > 0, which means that 

u and v share a neighbor in C ′
3. So A is contained in a red component. Moreover, since 

|A| > N/6 every vertex in C ′
3 has a red edge to A.

Assume now that |C3 ∩D| = 0, i.e., C ′
3 is non-empty (since C3 �= ∅) and sends only 

red edges to V1. Since by Claim 2 we have |V1| > N/3, each pair of vertices of C ′
3 share a 

neighbor in A and thus C ′
3 is contained in a red component. Let R denote this component 

(and its set of vertices). Suppose that R does not cover A. For a vertex w ∈ C ′
3 we have 

(A \R) ∪D ⊆ N̄(w). Thus

|A \R| + |D| ≤ N/6 . (4)

Note that here A1 ∩R �= ∅ and A2 ∩R �= ∅. Indeed if this is not true, then for one of A1
or A2, say A2, we have A2∩A ⊆ A \R. Thus by (4), |A2 ∩A| + |D| ≤ N/6 and by (2) we 
have |A1∩A| ≤ N/6, so |V1| ≤ N/3 which contradicts Claim 2. Now since all of the edges 
between A1 ∩A and C ′

2 must be red, there aren’t any edges between A1 ∩R and C ′
2 \R. 

Thus by considering a vertex u ∈ A1 ∩R, we have (C ′
2 \R) ∪ (A2 ∩B) ⊆ N̄(u). Similarly 

by considering a vertex v ∈ A2 ∩ R we have (C ′
1 \ R) ∪ (A1 ∩ B) ⊆ N̄(v). Therefore we 

have

|C ′
1 \R| + |C ′

2 \R| + |B| ≤ N/3 . (5)

From (4) and (5) we have

|A \R| + |C \R| + |D| + |B| ≤ N/2 ,

which implies that |R| ≥ N/2, that is a contradiction. �
We denote this component and its set of vertices by the same letter R. We show that 

R covers all vertices of C. Let us suppose that this is not the case and there is a vertex, 
say u ∈ C ′

1, that is not in R. Since all of the edges between C ′
1 and A2 ∩A must be red, 

u can not have any neighbors in A2 ∩A. So (A2 ∩A) ∪ (D \ C1) ⊆ N̄(u) and we have

|A2 ∩A| + |D \ C1| ≤ N/6 . (6)

This implies that |C1 ∩ D| > 0, since otherwise |D \ C1| = |D| and by (2) and (6), 
we have |V1| ≤ N/3 that contradicts Claim 2. From |C1 ∩ D| > 0, we conclude that 
|C ′

2 ∪ C ′
3| ≤ N/6, since vertices of C ′

2 ∪ C ′
3 are non-neighbors of a vertex v ∈ C1 ∩ D. 

Thus from (6), and since |A2 ∩B| ≤ N/6 we have
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|C1 ∪A1| ≥ N − |A2 ∩A| − |A2 ∩B| − |D \ C1| − |C ′
2 ∪ C ′

3| ≥ N/2,

which is impossible since C1∪A1 is a connected green component. So R covers all vertices 
of A ∪ C and thus |R| > N/2. This contradiction shows that in this case G contains a 
monochromatic component covering at least N/2 vertices.

Case 2. |A ∪B| ≤ N/2.
Here we have |C ∪ D| ≥ N/2. Also |C| > N/4, otherwise since |B ∪ C| > N/2 we 

have |A| ≥ |B| > N/4 which is impossible by the assumption of Case 2. Note that 
by Claim 1 we have |A| ≥ |B| > N/6, thus each vertex of A ∪ B belongs to a green 
non-trivial component. Let Ua1 , Ua2 , . . . , Uas

, s ≥ 1, be green non-trivial components 
covering A ∪ B and let A1 = V (Ua1), . . . , As = V (Uas

). For each i = 1, 2, . . . , s, since 
vertices in A \ Ai are non-neighbors of vertices in B ∩ Ai and vertices in B \ Ai are 
non-neighbors of vertices in A ∩Ai we have

|A \Ai|, |B \Ai| ≤ N/6 . (7)

If |D| > N/6, then since |C| > N/4, Lemma 3 implies that C ∪D can be covered by two 
green components, but if |D| ≤ N/6, then by Lemma 4, either C ∪D can be covered by 
two green components, or G contains a green component which covers D and all but at 
most N/6 vertices of C. Thus we consider two following subcases.

Subcase 2.1. G contains a green component which covers D, and all but at most N/6
vertices of C.

Let UD denote this component and C ′ denote the subset of C covered by UD. Since 
|C ∪D| ≥ N/2, UD doesn’t cover all of C ∪D and thus |C \ C ′| > 0. Vertices of D and 
C \ C ′ are non-neighbors of each other, so

|D|, |C \ C ′| ≤ N/6 . (8)

Thus |C| ≥ N/3 and |C ′| ≥ N/6.
A green edge between C ′ and A, connects UD to Ai, for one 1 ≤ i ≤ s. Therefore 

there are no green edges between C ′ and A, since otherwise by (7) and (8), G contains 
a green component covering at least N/2 vertices. So all of the edges between C ′ and A
are red.

Note that A ∪B is covered by at least two disjoint green components. Indeed if A ∪B

is covered by one green component, then since V1 = A ∪D is the largest component we 
should have |B| ≤ |D|, while |B| > N/6 and |D| ≤ N/6.

Claim 4. C ′ ∪A can be covered by one red component.

proof of Claim 4. Let u ∈ Ai ∩ A and v ∈ Aj ∩ A with i �= j. By the degree condition, 
we have |N̄(u) ∪ N̄(v)| ≤ N/3 and we have B ⊆ N̄(u) ∪ N̄(v). Since |B| > N/6, this 
implies that |(N̄(u) ∪ N̄(v)) ∩ C| < N/6. Since |C ′| ≥ N/6, this implies that u and v
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have a common neighbor in C ′. Furthermore, since |A| > N/6 every vertex in C ′ has a 
red edge to A. �

Let R denote this red component. Now if |C ′| > |D|, then |V (R)| > |V1| which 
is impossible. Thus, since |C ′| ≥ |D| by (8), and |C ′| ≥ N/6 we may assume that 
|C ′| = |D| = N/6 and thus |V (R)| = |V1|. If some vertex in C \ C ′ sends a red edge to 
A, then we have a component larger than V1 which is impossible. If C \ C ′ sends only 
green edges to A then since |D| = N/6, there is a single green component in G covering 
all of A ∪B ∪ (C \C ′), that is a contradiction because G would be covered by two green 
components.

Subcase 2.2. C ∪D is covered by two green non-trivial components.
Let C1 and C2 denote the set of vertices of these two components and let C ′

i = Ci∩C, 
i = 1, 2. Let A′

1 be the vertices in A ∪ B which have a green path to C1, let A′
2 be the 

vertices in A ∪B which have a green path to C2 and let A′
3 = (A ∪B) \ (A′

1 ∪A′
2). Note 

that A′
1 ∩ A �= ∅ or A′

2 ∩ A �= ∅. Indeed if A′
1 ∩ A = ∅ and A′

2 ∩ A = ∅, all of the edges 
between A and C are red. Then for all u ∈ C ′

1 and v ∈ C ′
2, since D ⊆ N̄(u) ∪ N̄(v)

and since |V1| > N/3 we have |A \ (N̄(u) ∪ N̄(v))| > 0. Thus u and v have a common 
neighbor in A. Moreover, since |C| > N/6 every vertex in A has a red edge to C and so 
there is a red component covering A ∪C which is impossible by (1). Thus using Claim 1
we have

|A \A′
3|, |B \A′

3| > 0 . (9)

Also it is obvious that A′
3 �= ∅ (as otherwise G would be covered by two green compo-

nents). So Claim 1 implies that A′
3 ∩A �= ∅.

Claim 5. There is a red component covering A and some vertices of C.

proof of Claim 5. If there is one vertex, say u, in A′
3 ∩A which has at most |C|/2 neigh-

bors in C, then we have

|C|/2 + |B \A′
3| ≤ N/6 , (10)

since |C|/2 vertices of C and all vertices of B \A′
3 are non-neighbors of u. Moreover from 

(9) we have |A′
3 ∩ B| ≤ N/6, since vertices of A′

3 ∩ B are non-neighbors of vertices of 
A \A′

3, and from (10) we have |C|/2 ≤ N/6, thus

|V1| ≥ N − (|C| + |B|) = N − |C| − |B \A′
3| − |A′

3 ∩B| ≥ N/2 ,

which is a contradiction. Thus let us assume that each vertex of A′
3 ∩ A has more than 

|C|/2 neighbors in C. Then since all such neighbors are red, all pairs of vertices of A′
3∩A

share a neighbor in C. So there is a red component in G covering A′
3 ∩A. Let R denote 

this component. We show that R covers A.
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Without loss of generality, let us suppose that (A′
1 ∩A) \R �= ∅. Considering a vertex 

u ∈ (A′
1 ∩A) \R, since (C ′

2 ∩R) ∪ (B \A′
1) ⊆ N̄(u), we have |C ′

2 ∩R| + |B \A′
1| ≤ N/6. 

Now considering a vertex v ∈ A′
3 ∩ A, since (C \ R) ∪ (A′

1 ∩ B) ⊆ N̄(v), we have 
|C \R| + |A′

1 ∩B| ≤ N/6. Also since C2 ∩D �= ∅, we have |C ′
1| ≤ N/6. Thus

|B| + |C| ≤ |B \A′
1| + |A′

1 ∩B| + |C ′
1| + |C ′

2 ∩R| + |C \R| ≤ N/2,

which contradicts (1). So R covers A. �
Now we shall show that R covers all vertices of C. Let us suppose that R doesn’t cover 

either C ′
1 or C ′

2. Without loss of generality suppose that C ′
1 \R �= ∅ and let v ∈ C ′

1 \R. 
Then |(A′

2 ∪A′
3) ∩A| + |D \C1| ≤ N/6. Therefore since by Claim 1, |A| ≥ |B| > N/6, we 

have |A′
1 ∩A| > 0. Moreover |(A′

2 ∪A′
3) ∩B| ≤ N/6 (by considering a vertex in A′

1 ∩A) 
and since |C ′

2| ≤ N/6 (by considering a vertex in C1 ∩D) we have

|A′
1 ∪ C1| = N − |A′

2 ∪A′
3| − |D \ C1| − |C ′

2| ≥ N/2,

which is a contradiction, so R covers C.
Thus R covers A ∪ C, but since |A ∪ C| > N/2 by (1), this is a contradiction. Thus 

we have |V1| ≥ N/2. �
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