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1. Introduction

An investigation of the properties of square-free monomial ideals in polynomial rings
led Francisco et al. [4] to an interesting question about replication in colour-critical
graphs that we answer in the present paper.

In the area of graph colourings, constructions and properties of colour-critical graphs
are a classical subject (see, e.g., [2, Section 14.2]). The replication of a set of vertices,
whose definition we will recall shortly, is a natural operation in this context. It is also of
central importance for the theory of perfect graphs (cf. [15, Chapter 65]).

For the terminology and notation of graph theory, we follow Bondy and Murty [2].
We deal with graphs without parallel edges and loops. The vertex set and the edge set
of a graph G are denoted by V (G) and E(G), respectively.

A graph G is k-chromatic if its chromatic number is k. It is k-critical if G is
k-chromatic and G − v is (k − 1)-colourable for each vertex v of G. Furthermore, G is
k-edge-critical if G is k-chromatic and every proper subgraph of G is (k− 1)-colourable.

Replicating (also duplicating) a vertex w ∈ V (G) means adding a copy (or clone) w′

of w and making it adjacent to w and all its neighbours. To replicate a set W ⊆ V (G),
we replicate each vertex w ∈ W in sequence. The resulting graph GW is independent of
the order in which the individual vertices are replicated.

Francisco et al. [4] posed the following conjecture:

Conjecture 1. For any positive integer k and any k-critical graph G, there is a set W ⊆
V (G) such that GW is (k + 1)-critical.

In Section 2 of the present paper, we disprove the conjecture by showing that each
member of an infinite family of 4-critical graphs constructed by Gallai [5] is a counterex-
ample. In Section 3, we discuss the algebraic properties of the smallest member of this
family and show that it also answers two open questions concerning square-free mono-
mial ideals in polynomial rings. Thus, the result provides a nice example of interplay
and useful exchange between algebra and combinatorics.

2. A counterexample

Gallai’s construction [5] of an infinite family of 4-regular 4-edge-critical graphs pro-
vided the first example of a k-edge-critical graph without vertices of degree k − 1. The
definition can be expressed as follows.

For a positive integer n, let [n] denote the set {0, . . . , n− 1}. Let Pn be a path with
vertex set [n], with vertices in the increasing order along Pn. Let K3 be the complete
graph whose vertex set is the group Z3.

For n � 4, we define Hn as the graph obtained from the Cartesian product Pn�K3

by adding the three edges joining (0, j) to (n− 1,−j) for j ∈ Z3. (See Fig. 1a.)
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Fig. 1. (a) The graph H4. (b) A drawing of H4 as a quadrangulation of the Klein bottle. The opposite sides
of the bounding rectangle are identified in such a way that the arrows match.

The 4-regular graphs Hn are interesting in various ways; for instance, they embed in
the Klein bottle as quadrangulations (cf. Fig. 1b). In this section, we show that Gallai’s
graphs are counterexamples to Conjecture 1:

Theorem 2. For any n � 4 and any W ⊆ V (Hn), the graph HW
n is not 5-critical.

It is interesting to note that by [4, Theorem 1.3], Conjecture 1 holds for graphs G

satisfying χf (G) > χ(G)−1, where χ denotes the chromatic number and χf denotes the
fractional chromatic number (see, e.g., [4, Definition 3.8] for the definition). Since the
graphs Hn are 4-chromatic and their fractional chromatic number equals 3, they show
that the bound in Theorem 1.3 of [4] cannot be improved.

We will divide the proof of Theorem 2 into two parts. First, we show that for certain
sets W , the chromatic number of HW

n is at least 5, but HW
n is not 5-critical (Lemma 3).

We then prove that for any other set W , HW
n is 4-chromatic (Proposition 9).

Let i ∈ [n] and j ∈ Z3. The i-th column of Hn is the set Ci = {i} ×Z3. Similarly, the
j-th row of Hn is Rj = [n]×{j}. The vertex in Ci ∩Rj is denoted by vi,j . In accordance
with the notation introduced above, the clone of vi,j ∈ W in HW

n is denoted by v′i,j .
We introduce notation for certain subgraphs of HW

n . Let i ∈ [n]. We define Xi as
the clique in HW

n on the vertices in Ci and their clones. Furthermore, Yi is the induced
subgraph of HW

n on V (Xi) ∪ V (Xi+1) (addition modulo n).

Lemma 3. Let n � 4 and let W ⊆ V (Hn). In each of the following cases, the graph HW
n

has chromatic number at least 5 and is not 5-critical:

(a) there is some i ∈ [n] such that the set W ∩ Ci has size at least 2,
(b) W contains at least n− 1 vertices of R0 and n is odd,
(c) the induced subgraph of Hn on W −R0 contains a path with at least n vertices and n

is even.

Proof. (a) Suppose that W ∩ Ci has size at least 2, so |V (Xi)| � 5. Since HW
n contains

the clique Xi as a proper subgraph, it is neither 4-colourable nor 5-critical.
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(b) Without loss of generality, assume that W contains R0 − {vn−1,0}. Furthermore,
suppose that n is odd. For contradiction, let c be a 4-colouring of HW

n . By symmetry,
the vertices v0,0 and v′0,0 may be assumed to have colours 1 and 2 in c. This forces the
pairs of colours assigned to vi,0 and v′i,0 alternate between {1, 2} and {3, 4} as i increases.
Hence, vn−1,0 has neighbours of all four colours, a contradiction which shows that HW

n

is not 4-colourable. Because the argument involves only vertices in R0 and their clones,
it implies that, say, HW

n − v0,2 is not 4-colourable. It follows that HW
n is not 5-critical.

(c) Suppose that n is even and the induced subgraph of W −R0 contains a path with
at least n vertices. By symmetry, we may assume that R1 ⊆ W . We prove that HW

n is not
4-colourable. Suppose the contrary and consider a 4-colouring of HW

n . An argument sim-
ilar to the one used in part (b) implies that the vertices v0,1, v′0,1, vn−1,1 and v′n−1,1 have
distinct colours. Since they have a common neighbour vn−1,2, we obtain a contradiction.
In the same manner as above, it follows that HW

n is not 5-critical. �
Lemma 4. If W ⊆ Hn satisfies none of the conditions (a)–(c) in Lemma 3, then there is
a set Z such that W ⊆ Z ⊆ V (Hn), Z contains exactly one vertex from each Ci (i ∈ [n])
and Z still satisfies none of (a)–(c).

Proof. Since W does not satisfy condition (a), it contains at most one vertex from each
set Ci (i ∈ [n]). Suppose that W ∩ Ci = ∅ for some i. We claim that conditions (a)–(c)
are still violated for the set W ∪ {w}, for some w ∈ Ci. If W ∪ {vi,0} satisfies any of the
conditions, it must be condition (b), which means that n is odd. In that case, W ∪{vi,1}
trivially fails to satisfy the conditions. By adding further vertices in this way, we arrive
at a set Z with the desired properties. �

Before we embark on the proof of Proposition 9, it will be convenient to introduce
some terminology. Assume that W ⊆ V (Hn) is a set which satisfies none of the conditions
in Lemma 3. In addition, we will assume that

W intersects each Ci

(
i ∈ [n]

)
in exactly one vertex. (1)

For each i ∈ [n], we will define wi to be the unique element of Z3 such that W ∩ Ci =
{vi,wi

}. (In the proof of Proposition 9 below, we will ensure condition (1) by appealing
to Lemma 4.)

We will encode the set W into a sequence of signs, defined as follows. A sign sequence σ

is a sequence of elements of Z3. We will often write ‘+’ for the element 1 and ‘−’ for the
element 2 (which coincides with −1). Thus, the sign sequence (0+−+) stands for the
sequence (0, 1, 2, 1).

To the set W , we assign the sign sequence σW = s0 . . . sn−1, where each si ∈ Z3 is
defined as

si =
{
wi+1 − wi if 0 � i � n− 2,

−w0 − wn−1 if i = n− 1.
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Fig. 2. Valid colourings of Y0 such that the pattern at X0 is 12·3·4. The colouring of Y0 is represented in
the induced subgraph of Hn on C0 ∪ C1 by assigning a pair of colours to each vertex in W . These vertices
are shown as circles, the other vertices as solid dots.

The change of sign in the latter case reflects the fact that the vertex vn−1,j is adjacent
to v0,−j rather than v0,j . It may be helpful to view Hn as the graph obtained from the
Cartesian product Pn+1�K3 by identifying the vertex (0, j) with (n,−j) for each j ∈ Z3.
It is then natural to define wn = −w0, in which case sn−1 is precisely wn − wn−1.

To describe a 4-colouring of the clique Xi in HW
n (i ∈ [n]), we introduce the notion

of a pattern. This is a cyclically ordered partition of the set {1, 2, 3, 4} into three parts,
with one part of size 2 and the remaining parts of size 1. The two colours contained in
the part of size 2 are paired. Two patterns differing only by a cyclic shift of the parts are
regarded as identical. Given a 4-colouring c of Xi, the corresponding pattern at Xi is

πi(c) =
({

c(vi,wi
), c

(
v′i,wi

)}
,
{
c(vi,wi+1)

}
,
{
c(vi,wi+2)

})
.

We use a more concise notation for patterns: for instance, instead of writing ({1, 2}, {3},
{4}) we write just 12·3·4. Note that a pattern does not determine the colouring uniquely
since it does not specify the order of the paired colours.

We now determine the possible combinations of patterns at Xi and at Xi+1 in a
valid colouring of Yi. Suppose that c0 is a colouring of X0 with pattern 12·3·4, and let
s = w1 − w0. Consider first the case that s = 1. It is routine to check that for any valid
extension of c0 to Y0, the pattern at X1 is 12·3·4, 14·2·3 or 24·1·3 (cf. Fig. 2). Conversely,
each of these patterns determines a valid extension.

Considering the other possibilities for s, we find that the sets of patterns at X1
corresponding to valid extensions of c0 are as follows:

12·3·4 14·2·3 24·1·3 if s = 1,
12·3·4 13·4·2 23·4·1 if s = −1,
34·1·2 34·2·1 if s = 0.

The patterns in the first row of the above table are said to be +-compatible with 12·3·4.
The notions of −-compatibility and 0-compatibility are defined in a similar way using
the second and third row, respectively. Applying a suitable permutation to the set of
colours, we can extend these definitions to any other pattern in place of 12·3·4.

The same discussion applies just as well to patterns at Xi and Xi+1, where 1 � i �
n− 2. For i = n− 1, we need to take into account the ‘twist’ in Yn−1. We find that for a
valid colouring of Yn−1, the pattern π induced at Xn−1 and the pattern ρ induced at X0
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Fig. 3. The auxiliary graph D. Directed loops at all the vertices are not shown.

have the property that ρ is s′-compatible with π, where ρ is the reverse of ρ, i.e., the
pattern obtained by reversing the order of parts in ρ, and s′ = −w0 − wn−1.

There is a simple description of the patterns that are +-compatible with a given
pattern π = xy·z·w. One of them is π itself. To obtain the other ones, choose a colour
that is paired in π (x or y) and move it to the preceding part of π with respect to
the cyclic ordering. Reversing the direction of the move, we obtain the −-compatible
patterns. Finally, to obtain the two 0-compatible patterns, merge the two colours that
are unpaired in π into one part, and put the other two colours into two parts, choosing
any of the two possible orderings.

We represent the notion of compatibility of patterns using an auxiliary graph D, in
which we allow both directed and undirected edges as well as directed loops. The vertex
set of D is the set of all 12 patterns. Patterns π and ρ are joined by an undirected edge
if they are 0-compatible. There is a directed edge from π to ρ if ρ is +-compatible with π

(or equivalently, if π is −-compatible with ρ). In particular, D has a directed loop on
each vertex. The graph D is shown in Fig. 3 (with the loops omitted).

Let σ = s0 . . . sk be a sign sequence. A σ-stroll S is a sequence π0π1 . . . πk+1, where
each πi (0 � i � k + 1) is a vertex of D and one of the following conditions holds for
each j (0 � j � k):

• sj = 0 and D contains an undirected edge with endvertices πj and πj+1,
• sj = 1 and there is a directed edge from πj to πj+1,
• sj = −1 and there is a directed edge from πj+1 to πj .

For sj = ±1, the directed edge is allowed to be a loop, reflecting the fact that a pattern
is both +-compatible and −-compatible with itself. A σ-stroll as above is said to start
at π0 and end at πk+1 (or to be a σ-stroll from π0 to πk+1).
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To illustrate the definition, if σ = (−−+0+−), then a σ-stroll from 12·3·4 to 12·4·3 is

(12·3·4, 13·4·2, 34·2·1, 14·3·2, 23·4·1, 13·2·4, 12·4·3).

A sign sequence σ is said to be reversing if there is a σ-stroll from 12·3·4 to 34·1·2.
Note that by interchanging colours 1 and 2, one can then obtain a σ-stroll from 12·3·4
to 34·2·1 as well. Furthermore, σ is good if there exists a σ-stroll from 12·3·4 to 12·4·3.
The latter terminology is justified by the following lemma.

Lemma 5. If σW is good, then the graph HW
n is 4-colourable.

Proof. Let σW = s0 . . . sn−1 and let S = π0 . . . πn be a σW -stroll from 12·3·4 to 12·4·3.
For each i = 0, . . . , n− 1, colour the vertices of Xi in such a way that the pattern is πi.
By the definition, each πi (0 � i � n−2) is si-compatible with πi+1, and so Yi is properly
coloured.

It remains to check the colouring of Yn−1. As observed above, Yn−1 is properly coloured
if the reverse of π0 (that is, 12·4·3) is sn−1-compatible with πn−1. This is ensured by the
requirement that S ends at 12·4·3. �

For a sign sequence σ, we define −σ to be the sign sequence obtained by replacing
each − sign by + and vice versa.

Lemma 6. If σ is good, then −σ is good.

Proof. By inspecting Fig. 3 or directly from the definition, one can see that if D contains
a directed edge from π to ρ, then it also contains a directed edge from ρ to π, and a similar
claim holds for the undirected edges. It follows that if S = (π0, . . . , πk) is a σ-stroll, then
S = (π0, . . . , πk) is a (−σ)-stroll. If S is good, then S starts at 12·4·3 and ends at 12·3·4.
Interchanging colours 3 and 4 in each pattern in S, we obtain a (−σ)-stroll from 12·3·4
to 12·4·3. �

Let σ = s0 . . . sk−1 be a sign sequence and let π and ρ be patterns such that πρ is an
undirected edge of D. We define a σ-stroll S(σ;π, ρ) = π0 . . . πk by the following rule:

• π0 = π,
• if si �= 0, then πi+1 = πi (where 0 � i � k − 1),
• if si = 0, then πi+1 is the vertex in {π, ρ} distinct from πi (where 0 � i � k − 1).

Let σ1 and σ2 be sign sequences and let σ be their concatenation. If P = (π0, . . . , πk)
is a σ1-stroll and R = (ρ0, . . . , ρ�) is a σ2-stroll such that πk = ρ0, then the composition
of P and R is the σ-stroll

P ◦R = (π0, . . . , πk, ρ1, . . . , ρ�).
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For any sign sequence σ, we let z(σ) denote the number of occurrences of the symbol 0
in σ, reduced modulo 2. For clarity, we omit one pair of parentheses in expressions such
as z((0+−)).

Observation 7. Let σ be a sign sequence and π, ρ be patterns such that πρ is an undirected
edge of D. Then the σ-stroll S(σ;π, ρ) starting at π satisfies the following:

(i) if z(σ) = 0, then S(σ;π, ρ) ends at π,
(ii) otherwise, S(σ;π, ρ) ends at ρ.

We define an order � on sign sequences. Let τ, σ be two sign sequences, where σ =
s0 . . . sk. We define τ � σ if there are indices 0 � i0 < i1 < · · · < im � k such that:

• τ = si0si1 . . . sim ,
• z(s0s1 . . . si0−1) = 0, and
• for every j such that 0 � j � m− 1, z(sij+1 . . . sij+1−1) = 0.

Lemma 8. Let σ and τ be sign sequences such that τ � σ. The following holds:

(i) if z(σ) = z(τ) and τ is good, then σ is good,
(ii) if z(σ) �= z(τ) and τ is reversing, then σ is good.

Proof. (i) Suppose that σ = s0 . . . sk and τ = si0 . . . sim , where 0 � i0 < · · · < im � k.
Let S = (ρ0, . . . , ρm) be a τ -stroll from 12·3·4 to 12·4·3. For simplicity, set i−1 = −1
and for j = 0, . . . ,m let σj be the subsequence of σ from sij−1+1 to sij−1. For each j,
0 � j � m, choose a pattern εj such that ρjεj is an undirected edge of D.

By the definition of the order �, we have z(σj) = 0 for each j, 0 � j � m. Observa-
tion 7(i) implies that S(σj ; ρj , εj) is a σj-stroll from ρj to ρj . Thus, the composition

S′ = S
(
σ0; ρ0, ε0

)
◦ (ρ0, ρ1) ◦ S

(
σ1; ρ1, ε1

)
◦ (ρ1, ρ2)

◦ · · · ◦ S
(
σm−1; ρm−1, εm−1

)
◦ (ρm−1, ρm)

is a valid σ-stroll from 12·3·4 to 12·4·3.
Let σm+1 denote the sequence sim+1 . . . sk. Then

z
(
σm+1) ≡ z(σ) − z(τ) (mod 2). (2)

By (2), z(σm+1) = 0 and so S′′ := S(σm+1; 12·4·3, 12·3·4) is a σm+1-stroll from 12·4·3
to 12·4·3 by Observation 7(i). The σ-stroll S′ ◦ S′′ then shows that σ is good.

The proof of (ii) is similar, except that S is now a τ -stroll from 12·3·4 to 34·1·2.
Furthermore, z(σm+1) = 1 and S′′ := S(σm+1; 34·1·2, 12·4·3) is a σm+1-stroll from 34·1·2
to 12·4·3. Composing S′ and S′′, we obtain a σ-stroll from 12·3·4 to 12·4·3 as required. �
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Table 1
Some good sign sequences σ and corresponding σ-strolls S.

σ S

(+−+) 12·3·4, 14·2·3, 24·3·1, 12·4·3
(++++) 12·3·4, 14·2·3, 34·1·2, 24·3·1, 12·4·3
(+++−) 12·3·4, 14·2·3, 13·4·2, 23·1·4, 12·4·3
(++−−) 12·3·4, 14·2·3, 34·1·2, 13·2·4, 12·4·3
(+−−−) 12·3·4, 14·2·3, 24·3·1, 23·1·4, 12·4·3
(00) 12·3·4, 34·1·2, 12·4·3
(0++) 12·3·4, 34·1·2, 24·3·1, 12·4·3
(0+00−) 12·3·4, 34·1·2, 23·4·1, 14·3·2, 23·1·4, 12·4·3

Proposition 9. Let n � 4 and W ⊆ V (Hn). If none of the conditions (a)–(c) in Lemma 3
is satisfied, then HW

n is 4-colourable.

Proof. By Lemma 4, there is a set Z such that W ⊆ Z and Z intersects each set Ci in
precisely one vertex. Since HZ

n contains HW
n as a subgraph, it is sufficient to prove the

proposition under the assumption (1).
Let us therefore assume that (1) holds for W , so the ensuing discussion applies. We

retain its notation and definitions. By analyzing several cases, we will show that σW is
good, so the 4-colourability of HW

n follows from Lemma 5. For the sake of a contradiction,
suppose that σW is not good.

Case 1. σW contains a nonzero even number of occurrences of the symbol 0.

Considering the first two occurrences of 0 in σW , we find that (00) � σW . Since (00)
is good (cf. Table 1) and z(00) = 0 = z(σW ), Lemma 8(i) implies that σW is good,
a contradiction.

Case 2. σW contains no occurrence of the symbol 0.

In view of Lemma 6, we may assume that s0 = +. If (+−+) � σW , then σW is good
by Lemma 8(i) and the fact that (+−+) is good (see Table 1). Thus, (+−+) �� σW .
Since n � 4, we may consider the subsequence σ′ = (s0, s1, s2, s3) of σW of length 4. To
avoid an occurrence of the sequence (+−+), we necessarily have

σ′ ∈
{
(++++), (+++−), (++−−), (+−−−)

}
.

Table 1 shows that each possible value for σ′ is a good sign sequence. Since σ′ � σ and
z(σ′) = 0 = z(σW ), σW is good by Lemma 8(i). This is a contradiction.

Case 3. z(σW ) = 1.

Applying a suitable symmetry of the graph Hn, and using the fact that W does not
satisfy conditions (b), (c) in Lemma 3, we may assume that s0 = 0 �= s1. In view of
Lemma 6, it may further be assumed that s1 = +.



248 T. Kaiser et al. / Journal of Combinatorial Theory, Series A 123 (2014) 239–251
Table 2
Some reversing sign sequences σ and corresponding σ-strolls S. The
σ-strolls to 34·2·1 can be obtained by interchanging colours 1 and
2 in all the patterns.

σ S

(0+0+) 12·3·4, 34·1·2, 23·4·1, 14·2·3, 34·1·2
(0+0−) 12·3·4, 34·2·1, 13·4·2, 24·3·1, 34·1·2

The sequence (0++) is good and we have z(0++) = z(σW ). Consequently,
(0++) /� σW , and by symmetry, (0−−) /� σW . In particular, none of s2, s3 is the
symbol + and at least one of s2, s3 is different from −. It follows that 0 ∈ {s2, s3}.
Choose the least j such that j � 2 and sj = 0.

We claim that there is k > j such that sk �= 0. Suppose the contrary. Since the sum
of all si (i ∈ [n]) is

n−1∑
i=0

si = (w1 − w0) + (w2 − w1) + · · · + (wn−1 − wn−2) + (−w0 − wn−1) = w0,

we find that there are two possibilities: either σW = (0+−00 . . . 0) and w0 = 0, or
σW = (0+00 . . . 0) and w0 = 1. In the first case, however, W would satisfy condition (b)
in Lemma 3, while in the second case, condition (c) would be satisfied, a contradic-
tion.

Let us choose the least k such that k > j and sk �= 0. Assume first that sk = +.
This implies that k − j is odd, since otherwise (0++) � σW and as we have seen, this
would mean that σW is good. However, if k − j is odd, then (0+0+) � σW and we get
a contradiction with Lemma 8(ii) as (0+0+) is reversing (cf. Table 2) and z(0+0+) �=
z(σW ).

It remains to consider the possibility that sk = −. If k − j is odd, then for the
reversing sequence (0+0−) we have (0+0−) � σW and we obtain a contradiction with
Lemma 8(ii) again. Thus, k− j is even. In this case, we find (0+00−) � σW . As we can
see from Table 1, (0+00−) is good. Furthermore, z(0+00−) = z(σW ), so σW is good by
Lemma 8(i), a contradiction.

The discussion of Case 3, as well as the proof of Proposition 9, is complete. �
Theorem 2 is now an immediate consequence of Lemma 3 and Proposition 9.
We conclude this section by pointing out that the graph H4 is the only counterexample

to Conjecture 1 among edge-critical graphs on up to 12 vertices, as was shown by a
computer search using a list of edge-critical graphs provided in [14].

3. Connection to monomial ideals

As mentioned in Section 1, Conjecture 1 was motivated by questions arising from
commutative algebra. It turns out that the graph H4 serves as a counterexample for two
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other problems on the properties of square-free monomial ideals which we state in this
section. For the terms not defined here, as well as for more information on commutative
algebra and its relation to combinatorics, see [12]. Monomial ideals are the subject of
the monograph [8].

Let R be a commutative Noetherian ring and I ⊆ R an ideal. A prime ideal P is
associated to I if there exists an element m ∈ R such that P = I : 〈m〉 (the ideal
quotient of I and 〈m〉). The set of associated prime ideals (associated primes) is denoted
by Ass(I). Brodmann [3] showed that Ass(Is) = Ass(Is+1) for all sufficiently large s.
The ideal I is said to have the persistence property if

Ass
(
Is
)
⊆ Ass

(
Is+1)

for all s � 1.
Let k be a fixed field and R = k[x1, . . . , xn] a polynomial ring over k. An ideal in R

is monomial if it is generated by a set of monomials. A monomial ideal is square-free if
it has a generating set of monomials where the exponent of each variable is at most 1.
The question that motivated Francisco et al. [4] to pose Conjecture 1 is the following
one (see [16, Question 3.28], [13, Question 4.16] or [9,10]):

Problem 10. Do all square-free monomial ideals have the persistence property?

Francisco et al. [4] proved that if Conjecture 1 holds, then the answer to Problem 10
is affirmative. While our counterexample to Conjecture 1 does not necessarily imply a
negative answer to Problem 10, the cover ideal of H4 does in fact show that the answer
is negative.

Given a graph G, a transversal (or vertex cover) of G is a subset T ⊆ V (G) such that
every edge of G has an end vertex in T . If V (G) = {x1, . . . , xn}, we can associate each
xi with the variables in the polynomial ring k[x1, . . . , xn]. The cover ideal J(G) is the
ideal generated by all inclusion-wise minimal transversals of G.

Let J = J(H4) denote this cover ideal in the polynomial ring R = k[x1, . . . , x12],
where H4 is the graph on 12 vertices defined in Section 2. Using the commutative algebra
program Macaulay2 [6], we can compute the set of associated primes of J3 and J4. By
comparing the output, one finds that

Ass
(
J4) = Ass

(
J3)− {M},

where M is the maximal ideal of R. In particular:

Theorem 11. The cover ideal J(H4) does not have the persistence property.

The second question concerns the depth function of monomial ideals. If I is an ideal
in R, then the depth function of I is the function f : N → N defined by
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f(s) = depth
(
R/Is

)
,

where depth(·) is the depth of a ring as defined, e.g., in [11, Chapter 6].
Herzog and Hibi [7] noted that the depth function of most monomial ideals is non-

increasing, but they constructed examples where this is not the case (for instance, one
where the depth function is non-monotone). They asked the following question:

Problem 12. Do all square-free monomial ideals have a non-increasing depth function?

(See also [1,9].) As noted in [1], the question of Problem 12 is a natural one since a
monomial ideal I satisfies the persistence property if all monomial localisations of I have
a non-increasing depth function. According to [1], a positive answer was ‘expected’.

However, the cover ideal of H4 again provides a counterexample. Using Macaulay2 we
find that

depth
(
R/J3) = 0 < 4 = depth

(
R/J4),

so we have the following:

Theorem 13. The depth function of the cover ideal J(H4) is not non-increasing.
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