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1. Introduction

Cluster algebras are commutative rings with partial bases of a special form, originally 
discovered in the context of dual canonical bases in Lie theory [6]. Their axiomatics 
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encapsulates the fact that many kinds of canonical bases in nature have large subsets 
which are governed by a uniform combinatorics. Elements of these subsets are monomials 
in distinguished elements called cluster variables, which are grouped into overlapping 
collections called clusters. Each cluster has an associated skew-symmetrizable matrix and 
the entire cluster algebra can be reconstructed recursively from any particular cluster 
along with this matrix.

A fundamental issue in the theory is understanding natural completions of the par-
tial basis of cluster monomials to a full basis of the cluster algebra. Depending on the 
context, this question can be analyzed from a wide range of perspectives drawn from 
representation theory, geometry, combinatorics, and mathematical physics [4,16,5,22,2,
26,8]. In general, one expects any cluster algebra to admit several natural bases related 
in potentially subtle ways. A basic example of this is the relationship between the dual 
canonical and dual semicanonical bases of the coordinate ring of the positive unipotent 
subgroup of a simple algebraic group [9]. This example also illustrates that, in general, 
even determining whether or not two constructions of canonical bases in a cluster algebra 
lead to the same result is nontrivial. The purpose of the present paper is to compare two 
such constructions for cluster algebras associated to 2 × 2 skew-symmetrizable matrices.

The first basis we consider is the greedy basis of [27,18]. Every cluster algebra is 
contained in the ring of Laurent polynomials in the cluster variables of any of its clusters. 
The recently-confirmed positivity conjecture, proved in the rank 2 case in [20,25] and 
in the general case in [21,12], asserts that the coefficients of the Laurent expansion of 
any cluster variable are positive integers. The greedy basis is defined so that all of its 
elements, not just cluster variables, have positive Laurent expansions in any cluster and 
that the coefficients of any such Laurent expansion are as small as possible. The resulting 
coefficients turn out to enumerate combinatorial objects called compatible pairs related 
to maximal Dyck paths.

The second basis we consider is the theta basis of [12]. Unlike the greedy basis it is 
defined for cluster algebras of arbitrary rank. In fact, this basis is a special case of a 
much more general construction based on two concepts. The first is that of scattering 
diagram introduced in [17] in two dimensions and in [14] in all dimensions. This diagram 
encodes the relations among cluster transformations and also among elements of the 
tropical vertex group. The second is a combinatorial notion of broken line, introduced in 
[10] with their theory further developed in [3] and then [11]. The coefficients of Laurent 
expansions of theta basis elements enumerate broken lines. These are piecewise-linear 
paths in a tropicalization of the cluster variety whose points of non-linearity lie along 
the scattering diagram. Morally broken lines capture the geometry of holomorphic disks 
in the mirror cluster variety.

Our main result is the following.

Theorem 1.1. Let A be a rank 2 cluster algebra. The greedy and theta bases of A coincide.

The proof is based on an analysis of exactly which monomials may appear in elements 
of the theta basis. It can be shown that elements of the greedy basis are essentially 
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determined by which coefficients of their Laurent expansion are nonzero. That is, if an 
element of A has the same support as a greedy basis element in any particular Laurent 
expansion, it must in fact coincide with that element up to a scalar. Thus to show that 
elements of the theta basis are elements of the greedy basis, it suffices to establish certain 
bounds on the behavior of broken lines rather than explicitly enumerating them.

The organization of the paper is as follows. In sections 2 and 3, we review the ba-
sic definitions and properties of the greedy and theta bases, respectively. The natural 
parametrizing sets of the two bases, the d-vectors and g-vectors, are distinct and we 
explain in section 4 how to relate them. This determines a bijection between the two 
bases and we show in section 5 that the basis elements mapped to each other by this 
bijection actually coincide, proving the main theorem.
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2. Rank 2 cluster algebras and their greedy bases

Fix positive integers b and c. Consider rational functions xk ∈ Q(x1, x2) indexed by 
k ∈ Z and defined recursively by

xk−1xk+1 =
{
xb
k + 1 if k is odd;

xc
k + 1 if k is even.

(2.1)

These functions are called cluster variables and the cluster algebra A(b, c) is the 
Z-subalgebra of Q(x1, x2) which they generate. Each pair {xk, xk+1} is called a clus-
ter and a monomial in the variables of a cluster is called a cluster monomial. Later, we 
will fix a rank 2 lattice M together with an algebra isomorphism Z[M ] ∼= Z[x±1

1 , x±1
2 ], 

xm �→ xm1
1 xm2

2 for m ∈ M . This induces a lattice isomorphism M ∼= Z2, m �→ (m1, m2).
An essential feature of the relations (2.1) is that they imply A(b, c) is actually a 

subalgebra of Z[x±1
1 , x±1

2 ], rather than merely a subalgebra of Q(x1, x2).

Theorem 2.1. [6, Theorem 3.1] Given any cluster variable xj, we have xj ∈ Z[x±1
k , x±1

k+1]
for every k ∈ Z.
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We will denote by Z≥0[x±1
k , x±1

k+1] the subspace of Laurent polynomials with positive 
coefficients. An element of Q(x1, x2) is a universal Laurent polynomial (resp. positive 
universal Laurent polynomial) if it is contained in Z[x±1

k , x±1
k+1] (resp. Z≥0[x±1

k , x±1
k+1]) 

for every k ∈ Z. A primary result of [1], specialized to the rank 2 setting, states that 
A(b, c) is precisely the set of universal Laurent polynomials in Q(x1, x2).

Theorem 2.2. [20,25] Each cluster variable of A(b, c) is positive.

An element of Z[x±1
1 , x±1

2 ] is called pointed at (a1, a2) ∈ Z2 if it can be written in the 
form

x−a1
1 x−a2

2

∑
p1,p2≥0

c(p1, p2)xbp1
1 xcp2

2 ,

where c(p1, p2) ∈ Z with c(0, 0) = 1.

Proposition 2.3. [18, Proposition 1.5] Let z be pointed at (a1, a2) ∈ Z2 and suppose 
z ∈ Z≥0[x±1

0 , x±1
1 ] ∩Z≥0[x±1

1 , x±1
2 ] ∩Z≥0[x±1

2 , x±1
3 ]. Then the pointed coefficients c(p1, p2)

satisfy the following recursive inequality:

c(p1, p2) ≥ max
( p1∑

k=1

(−1)k−1c(p1 − k, p2)
(
a2 − cp2 + k − 1

k

)
, (2.2)

p2∑
j=1

(−1)j−1c(p1, p2 − j)
(
a1 − bp1 + j − 1

j

))
.

A positive element of A(b, c) is called indecomposable if it cannot be written as a sum 
of two positive elements. In the search for positive bases of A(b, c) one is naturally led 
to investigate the indecomposable positive elements. A sufficient condition for a positive 
pointed element to be indecomposable is the inequality (2.2) being an equality. It turns 
out that this requirement alone uniquely determines a collection of elements of A(b, c)
with nice properties.

Theorem 2.4. [18, Theorem 1.7] For any (a1, a2) ∈ Z2 there exists a unique indecompos-
able positive element x[a1, a2] ∈ A(b, c) which is pointed at (a1, a2) and whose pointed 
coefficients satisfy the recursion

c(p1, p2) = max
( p1∑

k=1

(−1)k−1c(p1 − k, p2)
(
a2 − cp2 + k − 1

k

)
, (2.3)

p2∑
j=1

(−1)j−1c(p1, p2 − j)
(
a1 − bp1 + j − 1

j

))
.

Moreover, the collection {x[a1, a2] : (a1, a2) ∈ Z2} is a basis of A(b, c) which contains 
the cluster monomials and is independent of the choice of an initial cluster.
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We will call x[a1, a2] the greedy element pointed at (a1, a2) and call {x[a1, a2] :
(a1, a2) ∈ Z2} the greedy basis of A(b, c). In view of the definition of pointed elements, 
(a1, a2) is the d-vector of x[a1, a2]; we refer to [7] for the definitions and basic prop-
erties of d-vectors. In order to better connect with the scattering diagram approach 
from Section 3, we now switch our point of view and consider ordinary support rather 
than pointed support. Given a Laurent polynomial f =

∑
m∈M cmxm in Z[x±1

1 , x±1
2 ], the 

support of f is the set

{m ∈ M | cm �= 0}.

Theorem 2.5. [18, Proposition 4.1], [19, Corollary 3.5] For (a1, a2) ∈ Z2, the smallest 
(possibly degenerate) lattice quadrilateral Ra1,a2 containing the support of x[a1, a2] is 
determined as follows.

(1) If a1 ≤ 0 and a2 ≤ 0, then Ra1,a2 = {(−a1, −a2)}.
(2) If a1 ≤ 0 < a2, then Ra1,a2 = {(p1, −a2) : −a1 ≤ p1 ≤ −a1 + ba2}.
(3) If a2 ≤ 0 < a1, then Ra1,a2 = {(−a1, p2) : −a2 ≤ p2 ≤ −a2 + ca1}.
(4) If 0 < ba2 ≤ a1, then Ra1,a2 =

{
(p1, p2) : −a1 ≤ p1 ≤ −a1 + ba2, −a2 ≤ p2 ≤

−a2 − cp1
}
.

(5) If 0 < ca1 ≤ a2, then Ra1,a2 =
{
(p1, p2) : −a1 ≤ p1 ≤ −a1 − bp2, −a2 ≤ p2 ≤

−a2 + ca1
}
.

(6) If 0 < a1 < ba2 and 0 < a2 < ca1, then

Ra1,a2 =
{

(p1, p2)
∣∣∣∣ − a1 ≤ p1 < 0, −a2 ≤ p2 <

(a2

a1
− c

)
p1

}
⋃{

(p1, p2) : −a1 ≤ p1 <
(a1

a2
− b

)
p2, −a2 ≤ p2 < 0

}
⋃{

(−a1 + ba2,−a2), (−a1,−a2 + ca1)
}
.

Moreover, if z ∈ A(b, c) is pointed at (a1, a2) with support contained in Ra1,a2 , then 
z = x[a1, a2].

Proof. The first claim is the content of [18, Proposition 4.1] and [19, Corollary 3.5].
Suppose z ∈ A(b, c) is pointed at (a1, a2) and that the support of z is contained in 

Ra1,a2 . Suppose z �= x[a1, a2]. Then there exists a monomial x−a′
1

1 x
−a′

2
2 appearing in z

with a different coefficient than in x[a1, a2]. Our assumptions on z imply for any such 
monomial that we have a′1 < a1 or a′2 < a2. Choose a monomial with (a′1, a′2) minimal in 
lexicographic order. Then in the greedy basis expansion of z the element x[a′1, a′2] must 
appear with nonzero coefficient.

Below we refer to the points O, A, B, C from Fig. 1. To reach a contradiction, there 
are two cases to consider.
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Fig. 1. Consider the points O = (0, 0), A = (−a1 + ba2, −a2), B = (−a1, −a2), C = (−a1, −a2 + ca1), 
D1 = (−a1 + ba2, ca1 − (bc + 1)a2), and D2 = (ba2 − (bc + 1)a1, −a2 + ca1). Then the support region of 
x[a1, a2] can be visualized as above.

• If (−a′1, −a′2) lies on or North of the line segment OB, i.e. a1a
′
2 ≤ a′1a2, then we 

consider the point C ′ = (−a′1, −a′2 + ca′2) at the Northern boundary of the support 
region Ra′

1,a
′
2

of x[a′1, a′2] and compare with the line segment OC. In this case, we 
have

−a1(−a′2 + ca′1) = a1a
′
2 − ca1a

′
1 ≤ a′1a2 − ca1a

′
1 = −a′1(−a2 + ca1)

and thus C ′ lies on or North of OC. If C ′ is North of OC or C ′ �= C is on OC, then it 
lies outside Ra1,a2 which is impossible. Thus we must have C ′ = C, but this implies 
(a′1, a′2) = (a1, a2) which clearly must be false.

• If (−a′1, −a′2) lies on or East of the line segment OB, i.e. a′1a2 ≤ a1a
′
2, then we 

consider the point A′ = (−a′1 + ba′2, −a′2) at the Eastern boundary of the support 
region Ra′

1,a
′
2

of x[a′1, a′2] and compare with the line segment OA. In this case, we have

(−a′1 + ba′2)(−a2) = a′1a2 − ba2a
′
2 ≤ a1a

′
2 − ba2a

′
2 = (−a1 + ba2)(−a′2)
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and thus A′ lies on or East of OA. If A′ is East of OA or A′ �= A is on OA, then it 
lies outside Ra1,a2 which is impossible. Thus we must have A′ = A, but this implies 
(a′1, a′2) = (a1, a2) which is clearly false.

It follows that z = x[a1, a2]. �
The proof of Theorem 2.5 actually establishes the following stronger result, which 

never uses the special ‘pointed’ form, thus allowing for support anywhere in the re-
gion Ra1,a2 .

Scholium 2.6. If z ∈ A(b, c) is any element containing the monomial x−a1
1 x−a2

2 with 
coefficient 1 and whose support is contained in the half-open quadrilateral OABC from 
Fig. 1 associated to (a1, a2), then z = x[a1, a2].

Remark 2.7. The existence of integers c(p1, p2) satisfying the recursive equations (2.3), 
and thus the existence of the greedy basis itself, is quite non-trivial. The authors of 
[18] characterize each c(p1, p2) as the solution to an enumerative problem; specifically, 
the number of certain ‘compatible pairs of edges’ inside a type of lattice path called a 
‘maximal Dyck path’.

This enumerative description not only establishes the existence of the greedy basis, 
but shows that the coefficients c(p1, p2) are manifestly non-negative. Finding naturally-
defined bases for cluster algebras whose elements have positive coefficients has been one 
of the core goals of the theory since its inception.

3. Scattering diagrams and broken lines

In this section we describe the theta basis of a rank 2 cluster algebra. We use [12] as 
a reference, adapting the notation to the rank 2 situation.

Recall from the previous section the lattice M ∼= Z2 such that Z[M ] ∼= Z[x±1
1 , x±1

2 ]. 
We write N = Hom(M, Z) for its dual lattice, MR := M ⊗ R, NR := N ⊗ R, and we 
denote the standard pairing of m ∈ M and n ∈ N by m · n. Given a strictly convex 
rational cone σ � MR, we write P = Pσ = σ∩M . Let Ẑ[P ] denote the completion of the 
monoid ring Z[P ] at the maximal monomial ideal m generated by {xm |m ∈ P � {0}}.

The following are special cases of definitions which originally appeared in [17,14].

Definition 3.1. A wall is a pair (d, fd), where

• d ⊂ MR is either a ray R≤0w or a line Rw with w ∈ σ ∩ (M � 0);
• fd ∈ Ẑ[P ] is such that

fd = fd(xw) = 1 +
∑
k≥1

ckx
kw,

for some ck ∈ Z.
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The set d ⊂ MR is called the support of the wall (d, fd). (Note the different use of the 
word “support” in this geometric context.)

Definition 3.2. A scattering diagram D is a collection of walls such that, for each k ≥ 0, 
the set

{(d, fd) ∈ D | fd �= 1 mod mk}

is finite. The support of a scattering diagram is the union of the supports of its walls.

For simplicity, we will impose the additional condition that no two walls in the scat-
tering diagram have the same support.

Given a wall (d, fd) and a direction v ∈ M transversal to d, we associate the element 
pv,d ∈ AutZ−alg

(
Ẑ[P ]

)
defined by

pv,d(xm) := xmfm·n
d ,

where n ∈ N is the primitive vector annihilating the tangent space to d determined by 
the sign convention v · n < 0. Note that the only role of the transversal direction v is to 
fix which of the two normals ±n is used in the exponent.

Let D be a scattering diagram. A path γ : [0, 1] → MR � {0} is called regular with 
respect to D if it is a smooth immersion with endpoints not in the support of D which 
is transverse to each wall of D that it crosses. We define the path-ordered product pγ,D

along such γ as follows. For each power k ≥ 1, let

0 < t1 < t2 < · · · < ts < 1

be the longest sequence such that γ(ti) ∈ di for a wall (di, fdi
) ∈ D with fdi

�= 1 mod mk. 
In view of the definition of scattering diagrams, such a sequence is finite; we can therefore 
consider the composition

p
(k)
γ,D := pγ′(ts),ds

◦ · · · ◦ pγ′(t1),d1 .

Then we define

pγ,D := lim
k→∞

p
(k)
γ,D.

Definition 3.3. A scattering diagram is consistent if pγ,D depends only on the endpoints 
of γ for any path γ which is regular with respect to D.

Theorem 3.4. [17,14] Given any scattering diagram D, there exists a consistent scattering 
diagram D′ which contains D such that D′ �D only consists of rays.
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Fig. 2. The scattering diagram D(2,1). Since the initial diagram Din,(2,1) consists of the walls (R(−1, 0), 1 +
x−2
1 ) and (R(0, 1), 1 + x2), the associated consistent scattering diagram D(2,1) contains Din,(2,1) together 

with the two walls (R≤0(−1, 1), 1 + x−2
1 x2

2) and (R≤0(−2, 1), 1 + x−2
1 x2).

We now associate a consistent scattering diagram D(b,c) to A(b, c). Following [12, 
Example 1.30], we take σ to be the second quadrant, i.e., the cone generated by (−1, 0)
and (0, 1). Define the “initial” scattering diagram associated A(b, c) as

Din,(b,c) :=
{(

R(−1, 0), 1 + x−b
1

)
,
(
R(0, 1), 1 + xc

2
)}

.

We then let D(b,c) denote the consistent scattering diagram obtained by applying Theo-
rem 3.4 to Din,(b,c). The case of D(2,1) is illustrated in Fig. 2.

While this example portrays a scattering diagram with finitely many rays, the dia-
gram D(b,c) will consist of an infinite number of rays precisely when bc ≥ 4. A detailed 
description of the rays which appear for bc ≥ 4 can be found in [12, Example 1.30]. We 
summarize the crucial points here.

First of all note that, in view of the definition of scattering diagrams, all the rays in 
D(b,c) �Din,(b,c) are contained in the fourth quadrant. To make our next observation we 
need to extend the action of linear operators on MR to an action on pairs (d, fd). If S is 
linear on MR, set

S(d, fd(xw)) :=
(
S(d), fd

(
xS(w)

))
. (3.1)

Note that, even if (d, fd) is a wall, S(d, fd) needs not be a wall since S(w) may lie outside 

of the cone σ (in which case we also get that fd
(
xS(w)) is not an element of Ẑ[Pσ], it 

will actually be contained in ̂Z[PS(σ)]).
Now consider the two linear involutions S1 and S2 given by

S1 =
(
−1 −b
0 1

)
and S2 =

(
1 0
−c −1

)
.
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Fig. 3. The supports of all the walls (d, fd) in D(3,2) such that fd �= 1 mod m
100; the boundary rays of the 

irrational cone are highlighted.

If (d, fd) ∈ D(b,c) �Din,(b,c) and Si(d) is contained strictly in the fourth quadrant, then 
Si(d, fd) ∈ D(b,c) �Din,(b,c). Moreover, both

S2
(
R≤0(−1, 0), 1 + x−b

1
)

and S1
(
R≤0(0, 1), 1 + xc

2
)

(3.2)

are walls in D(b,c) �Din,(b,c) even though neither

(
R≤0(−1, 0), 1 + x−b

1
)

nor
(
R≤0(0, 1), 1 + xc

2
)

is a wall in D(b,c). Using [13, Section 4] with a change of basis, these considerations gives 
us a recipe to produce elements of D(b,c) �Din,(b,c): it is enough to apply alternatively 
S1 and S2 to the walls (3.2).

We need to distinguish three cases. If bc < 4, this procedure will construct, in finitely 
many steps, all the walls in D(b,c) �Din,(b,c). If bc ≥ 4, we will get two infinite families 
of walls whose supports will converge respectively to the rays spanned by the vectors

(
2b,−bc +

√
bc(bc− 4)

)
and

(
2b,−bc−

√
bc(bc− 4)

)
.

These will exhaust all the walls in D(b,c)�Din,(b,c) with support lying outside the convex 
cone spanned by these vectors. When bc = 4, this cone will be a single rational ray 
in D(b,c). For bc > 4, the structure of the remaining part of D(b,c) is not completely 
understood; the expectation is that there is a wall for each possible rational slope inside 
this irrational cone, partial evidence for this is displayed in Fig. 3 for the case (b, c) =
(3, 2).

On the other hand, the chamber structure (i.e. the collection of cones in which the 
rays cut the plane) one sees outside of the irrational cone is very well-behaved and 
familiar in the theory of cluster algebras. This chamber structure coincides with the 
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Fock–Goncharov cluster complex, see e.g. [12, Section 2], the mutation fan of Reading 
[23], and the picture group of Igusa–Orr–Todorov–Weyman [15].

The next result explains how to obtain Laurent polynomials out of scattering diagrams 
and serves as the motivation for our later connections to cluster algebras.

Theorem 3.5. Let D := D(b,c) be as constructed above and consider a Laurent polynomial 
f ∈ Z[M ]. For any path γ which is regular with respect to D, pγ,D(f) can be viewed as 
an element of Z[[x−1

1 , x2]] localized at x−1
1 x2. If for any such γ in MR, with starting point 

in the first quadrant and endpoint in one of the chambers of D, we have that pγ,D(f)
lies in Z[M ], then f is a universal Laurent polynomial.

Proof. This is [12, Theorem 4.4] applied to the case at hand. Specifically, let A be the 
cluster variety defined by the given choice of seed. By definition, A is obtained by gluing 
together a collection of tori via cluster transformations and thus a regular function on A
is precisely a universal Laurent polynomial. On the other hand, in [12, Section 4] another 
variety A′ is defined. This is done by associating a torus A′

τ := SpecZ[M ] to a chamber 
τ ⊆ MR of D. For any two chambers τ , τ ′ we can glue A′

τ to A′
τ ′ using the rational map 

defined on function fields by pγ,D : Z(x1, x2) → Z(x1, x2), where γ is a path beginning 
in τ ′ and ending in τ . Performing these gluings gives A′.

Now [12, Theorem 4.4] gives an explicit isomorphism between A and A′, and thus the 
algebra of regular functions on A and A′ are isomorphic. Furthermore, this isomorphism 
restricts to the identity on the torus of A corresponding to the initial seed and the torus 
of A′ corresponding to the positive chamber. In particular, a function f on this torus 
extends to a function on A′ if pγ,D(f) lies in Z[M ] for any path γ from the positive 
chamber to any other chamber. This shows the characterization of universal Laurent 
polynomials. �

We now recall the notion of broken lines, which are tropical analogues of holomorphic 
disks. They were introduced in [10], their theory was further developed in [3], and they 
were used in [11] and [12] to construct canonical bases in various circumstances.

Definition 3.6. Let D be a scattering diagram, m ∈ M � {0}, and q ∈ MR � Supp(D). 
A broken line with initial exponent m and endpoint q is a continuous, piecewise linear 
path γ : (−∞, 0] → MR � {0} with a finite number of domains of linearity and a choice 
of monomial c(�)xm(�) ∈ Z[M ] for each domain of linearity � ⊆ (−∞, 0] of γ.

The path γ and the monomials c(�)xm(�) need to satisfy the following conditions:

• γ(0) = q;
• if � is the first (i.e. unbounded) domain of linearity of γ, then

c(�)xm(�) = xm;

• for t in a domain of linearity �, γ′(t) = −m(�);
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Fig. 4. The scattering diagram D(2,2) and the broken lines described in Example 3.8.

• γ bends only when it crosses a wall. If γ bends from the domain of linearity � to �′

when crossing (d, fd), then c(�′)xm(�′) is a term in

p−m(�),d

(
c(�)xm(�)

)
.

We refer to m(�) ∈ Z2 as the exponent of that domain of linearity.
We are finally ready to introduce the main player of our discussion. For a broken line 

γ we denote by Mono(γ) the monomial attached to the last domain of linearity of γ.

Definition 3.7. Let D, m, q be as in Definition 3.6. Define the theta function corresponding 
to m and q as

ϑq,m =
∑
γ

Mono(γ),

where the sum is over all broken lines with initial exponent m and endpoint q.

Example 3.8. Consider the scattering diagram D(2,2) and let q be a small irrational 
perturbation of the point (1.5, 1). There are three broken lines with initial exponent 
m = (1, −1) and endpoint q as shown in Fig. 4. First of all, we can have a broken line 
γ1 which does not bend. Therefore

Mono(γ1) = x1x
−1
2 .

There is the broken line γ2 which bends only at the x-axis. Since

p(−1,1),R(−1,0)(x1x
−1
2 ) = x1x

−1
2 (1 + x−2

1 ) = x1x
−1
2 + x−1

1 x−1
2 ,
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to bend we need to choose the second term and obtain

Mono(γ2) = x−1
1 x−1

2 .

The last broken line γ3 bends both at the x- and y-axes, the latter bend coming from

p(1,1),R(0,1)(x−1
1 x−1

2 ) = x−1
1 x−1

2 + x−1
1 x2.

This time we have

Mono(γ3) = x−1
1 x2.

Thus the theta function associated to m = (1, −1) with endpoint point q is

ϑq,(1,−1) = x1x
−1
2 + x−1

1 x−1
2 + x−1

1 x2.

The following summarizes the main properties of the theta functions as shown in [3]
and [12].

Theorem 3.9.

(1) If D is any consistent scattering diagram, q and q′ are two general irrational points 
on MR � Supp(D), and γ is a path joining q to q′, then pγ,D(ϑq,m) = ϑq′,m.

(2) Take D = D(b,c).
(a) If q and m lie in the interior of the same chamber of D, then ϑq,m = xm.
(b) If q lies in the interior of a chamber of D, then ϑq,m is a Laurent polynomial 

for any m.
(c) If q lies in the interior of the first quadrant, then ϑq,m is a universal Laurent 

polynomial for any m.

Proof. (1) is a main result of [3], see also [12, Theorem 3.5] for its application to scattering 
diagrams in the current context. (2a) is [12, Proposition 3.8] if q and m are both in the 
positive quadrant of MR. If q and m are in some other chamber, say σ, then by [12, 
Construction 1.38], there is a scattering diagram D′ obtained from a mutation of the 
initial seed defining D and a piecewise linear map Tv : MR → MR which takes the 
support of D to the support of D′, and such that the positive chamber of D′ pulls back 
to σ. Furthermore, there is a one-to-one correspondence between broken lines for D and 
D′ by [12, Proposition 3.6]. Thus the claim follows from [12, Proposition 3.8] applied 
to D′.

(2b) is [12, Example 7.18]. In slightly more detail, let Θ ⊆ M denote the set of m ∈ M

for which ϑq,m is a Laurent polynomial for q general in the first quadrant of MR. By 
[12, Theorem 7.16,(3)], Θ contains all points of M contained in chambers (i.e., the set 
of points denoted as Δ+

V (Z) in [12, Theorem 7.16,(3)]). Thus in particular, Θ contains 
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all integral points in the first three quadrants of MR. But by [12, Theorem 7.16,(4)], Θ
is closed under addition, and hence consists of all points in M . It then follows that ϑq,m

is a Laurent polynomial for q in any chamber by [12, Proposition 7.1].
Finally, (2c) follows from (2b) and Theorem 3.5. �

Remark 3.10. If m ∈ M lies in one of the chambers of D(b,c) and q lies in the first 
quadrant, then from (1) and (2a) above we see that ϑq,m = pγ,D(b,c)(xm) for a path γ
joining the chamber containing m to q. Moreover, it follows from the details of the proof 
of Theorem 3.5 that ϑq,m is a cluster monomial and then from [12, Theorem 7.5] that the 
g-vector of this cluster monomial is precisely m. We again refer to [7] for the definitions 
and basic properties of g-vectors.

Example 3.11. Let us try one more calculation with broken lines. We take the same 
scattering diagram as in Example 3.8. Now take the initial exponent m = (2, −2) with 
the same endpoint q. By similar calculations we get

ϑq,(2,−2) = x2
1x

−2
2 + x−2

1 x2
2 + x−2

1 x−2
2 + 2x−2

2 + 2x−2
1 .

Note that

ϑq,(2,−2) =
(
ϑq,(1,−1)

)2 − 2.

In the scattering diagram D(2,2) considered here, the ray with exponent (1, −1) does not 
lie in the interior of any chamber. So neither ϑq,(1,−1) nor ϑq,(2,−2) is a cluster monomial.

There are a number of known bases for A(2, 2) (see [4,22,18]) which all prescribe 
different elements having g-vectors (d, −d) for d > 0. The calculations above show that 
at least for d = 1 or 2, theta functions agree with the greedy basis elements.

4. From g-vectors to d-vectors

As mentioned in Remark 3.10, theta functions are parametrized by their g-vectors. 
On the other hand the description of greedy elements given in [18] is in terms of their 
d-vectors (cf. [18, Remark 1.9]).

In order to compare the two we will leverage the observation that, in rank 2, these 
families of vectors are related by an easy piecewise-linear transformation as explained in 
the paragraph following Conjecture 3.21 in [24]. We will do so via a scattering diagram 
Dd

(b,c) closely related to D(b,c).
Let T : MR → MR be the piecewise-linear map given by

T (m) :=
{
m m2 ≥ 0
m + (bm , 0), m ≤ 0.
2 2
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We will denote its domains of linearity by

H+ := {m ∈ MR |m2 ≥ 0} and H− := {m ∈ MR |m2 ≤ 0} .

Let T+ and T− be the linear extensions to MR of T |H+ and T |H− respectively (T+ is just 
the identity map but it will be convenient to use this notation in what follows). By (3.1), 
both T+ and T− act on pairs (d, fd) so we can use them to define the image of such pairs 
under T . Namely set

T (d, fd) := {T+ (d ∩H+, fd) , T− (d ∩H−, fd)} .

Having fixed the notation we are ready to introduce Dd
(b,c). The set

T (D(b,c)) :=
⋃

(d,fd)∈D(b,c)

T (d, fd)

is not a scattering diagram according to Definition 3.2 (not all of its elements are walls 
for the same convex cone), but can be made into one by a few simple fixes.

First of all, 
(
R(0, 1), 1 + xc

2
)

is the only wall of D(b,c) whose support is not totally 
contained in one of the domains of linearity of T ; therefore, under T , it breaks into two 
parts:

(
R≥0(0, 1), 1 + xc

2
)

and
(
R≤0(b, 1), 1 + xbc

1 xc
2
)
.

Next note that, since T (−1, 0) = (−1, 0) and T (b, −1) = (0, −1), T maps all the walls 
of D(b,c) � Din,(b,c) to the third quadrant. Indeed, 

(
R≤0(−b, 1), 1 + x−bc

1 xc
2
)

is the wall 
with the biggest slope in D(b,c) �Din,(b,c) and its image is 

(
R≤0(0, 1), 1 + xc

2
)
.

Definition 4.1. Dd
(b,c) is the scattering diagram obtained from T

(
D(b,c)

)
by replacing

•
(
R(−1, 0), 1 + x−b

1
)

with 
(
R(1, 0), 1 + xb

1
)
,

• both 
(
R≥0(0, 1), 1 + xc

2
)

and 
(
R≤0(0, 1), 1 + xc

2
)

with 
(
R(0, 1), 1 + xc

2
)
.

Its base region is the cone σd generated by (1, 0) and (0, 1).

Remark 4.2. It is not too hard to see that the scattering diagram Dd
(b,c) is consistent. 

This fact, together with the uniqueness property implied by [12, Theorem 1.7], gives an 
alternative way to introduce it. Indeed, in analogy with the definition of D(b,c), one could 
consider the scattering diagram Dd

in,(b,c) given by

Dd
in,(b,c) =

{(
R(1, 0), 1 + xb

1
)
,
(
R(0, 1), 1 + xc

2
)}

and obtain Dd using Theorem 3.4. The case of Dd is illustrated in Fig. 5.
(b,c) (2,1)
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Fig. 5. The scattering diagram D
d

(2,1).

For a broken line γ in D(b,c), we denote its image under T as T (γ): this is the broken 
line in Dd

(b,c) whose underlying map is T ◦γ. Given any domain of linearity � of γ, by sub-
dividing it when necessary, we can always assume that either γ(�) ⊂ H+ or γ(�) ⊂ H−. 
The monomial attached to � in T (γ) is then obtained by applying, accordingly, either 
T+ or T− to the exponent of the monomial attached to � in γ.

Theorem 4.3. The map T defines a one-to-one correspondence from broken lines in D(b,c)
with exponent m and endpoint q to broken lines in Dd

(b,c) with exponent T (m) and end-
point T (q). In particular, for q ∈ H+ or q ∈ H−, we have

ϑd
T (q),T (m) = T+ (ϑq,m) or ϑd

T (q),T (m) = T− (ϑq,m)

respectively.

Proof. This is essentially the same as the argument of [12, Proposition 3.6]. To prove 
the statement, we only need to check the bending at the x-axis. Let �, �′ be the domains 
of linearity of γ before and after bending along R(−1, 0). So c(�′)xm(�′) is a term in

p−m(�),R(−1,0)

(
c(�)xm(�)

)
= c(�)xm(�) (1 + x−b

1
)|m2(�)|

.

First, assume γ passes from H− to H+. In this case, we have m2(�) < 0. Now in 
order for the monomial c(�′)xT+(m(�′)) = c(�′)xm(�′) attached to �′ in T (γ) to satisfy the 
bending rule, it must be a term in

p−T−(m(�)),R(1,0)

(
c(�)xT−(m(�))

)
.

Since the second component of T−(m(�)) is m2(�), we get

p−T−(m(�)),R(1,0)

(
c(�)xT−(m(�))

)
= c(�)xT−(m(�)) (1 + xb

1
)−m2(�)
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= c(�)xm(�)x
bm2(�)
1

(
1 + xb

1
)−m2(�)

= c(�)xm(�) (1 + x−b
1

)−m2(�)
.

This shows that T (γ) satisfies the correct rule when bending along (R(1, 0), 1 + xb
1) if γ

passes from H− to H+. By repeating similar calculations, we can see that this also holds 
when γ passes from H+ to H−. �

The following demonstrates the utility of using Dd
(b,c).

Proposition 4.4. For any m ∈ M , if q lies in the first quadrant, then

ϑd
q,m = xm (1 + f(x1, x2))

where f ∈ (x1, x2) ⊆ k[x1, x2]. In particular, m is the negative of the d-vector of ϑd
q,m.

Proof. For any m ∈ M and any q in the first quadrant, there is always a broken line γ
for m and q that does not bend at any wall. Therefore Mono(γ) = xm always appears 
as a term in ϑd

q,m.
However, because the functions attached to the walls of Dd

(b,c) are all of the form 
1 + g(x1, x2) with g(x1, x2) ∈ (x1, x2) ⊆ k[[x1, x2]], it follows that any term coming from 
a broken line which bends must be of the form cxmxd1

1 xd2
2 with d1, d2 ≥ 0, d1 + d2 > 0. 

This proves the result. �
Remark 4.5. Combining Theorem 4.3 with the above result, when q is in the first quad-
rant we obtain the parametrization of theta functions we were after. Indeed, we get

ϑd
q,T (m) = ϑq,m

with m being its g-vector and T (m) the negative of its d-vector.

5. Proof that the bases coincide

We may now state the main theorem in our current notation.

Theorem 5.1. For any integers b, c > 0, for each m = (m1, m2) ∈ Z2, and for each 
generic point q in the first quadrant, we have that

ϑd
q,m = x[−m1,−m2]

as elements in the cluster algebra A(b, c). Hence, the greedy basis and the theta basis for 
A(b, c) coincide.
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The proof will be to show that the support of ϑd
q,m is contained in the poly-

gon Rm1,m2 in Theorem 2.5. By Scholium 2.6, this is already enough to show that 
ϑd
q,m = x[−m1, −m2].
We begin our analysis by describing the “changes of direction” of a broken line γ in 

Dd
(b,c). Let � be a domain of linearity of γ. We say that γ moves right (resp. up) in � if 

m1(�) < 0 (resp. m2(�) < 0). Conversely we will say that γ moves left or down in �.

Lemma 5.2. Let � and �′ be two consecutive domains of linearity of a broken line γ in 
Dd

(b,c). Then

m1(�) ≤ m1(�′) and m2(�) ≤ m2(�′).

Proof. Suppose γ bends along the wall (d, fd) when passing from � to �′ then c(�′)xm(�′)

is a term in

p−m(�),d

(
c(�)xm(�)

)
= c(�)xm(�)f

m(�)·n
d

with m(�) · n > 0. The desired property then follows immediately from the observation 
that, by how Dd

(b,c) has been constructed, all the exponents of the monomials of fd are 
non-negative. �

An immediate consequence of this lemma is that, once a broken line begins to move 
left or down, it will continue to do so. In particular, if γ is a broken line ending in the 
first quadrant, it can move left (resp. down) only in the first and fourth (resp. second) 
quadrant.

At any point q = (q1, q2) ∈ γ at which γ is linear with exponent m = (m1, m2), define 
the angular momentum of γ at q to be q2m1 − q1m2.

Lemma 5.3. The angular momentum is constant on γ.

Proof. Let q and q′ be two points on γ. First, assume that q = (q1, q2) and q′ = (q′1, q′2)
are in the same linear region of γ, with exponent m = (m1, m2). Since γ′ = −m at q, 
there is some t such that

(q′1, q′2) = (q1 + tm1, q2 + tm2)

Then the angular momentum at q′ is

(q2 + tm2)m1 − (q1 + tm1)m2 = q2m1 − q1m2

Next, assume that q and q′ are points on γ on either side of a bend at a wall (d, fd)
at point q′′ = (q′′1 , q′′2 ). If the exponent of γ at q is m = (m1, m2) and fd is a series in 
x(w1,w2), then the exponent of γ at q′ must be of the form (m1 +kw1, m2 +kw2) for some 
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Fig. 6. A broken line with positive angular momentum.

positive integer k. By the argument of the previous paragraph, the angular momentum 
at q is q′′2m1 − q′′1m2 and the angular momentum at q′ is

q′′2 (m1 + kw1) − q′′1 (m2 + kw2) = (q′′2m1 − q′′1m2) + k(q′′2w1 − q′′1w2)

Since the point (q′′1 , q′′2 ) lies on the ray through (w1, w2), the expression q′′2w1 − q′′1w2
is zero, and so the angular momenta at q and q′ are the same. This equality extends 
transitively to any pair of points q, q′ on γ. �

The sign of the angular momentum is a useful invariant for characterizing the qual-
itative behavior of a broken line. For a broken line ending in the first quadrant, the 
sign of the angular momentum characterizes whether that broken line could have passed 
through the fourth quadrant (positive) or the second quadrant (negative).

Lemma 5.4. Let γ be a broken line Dd
(b,c) with endpoint q in the first quadrant. If γ

has positive (resp. negative) angular momentum, then the slope of the linear domains of 
γ decreases (resp. increases) at each bend, except possibly at the boundary of the first 
quadrant.

Fig. 6 depicts a broken line with positive angular momentum. The slopes of the linear 
domains decrease from 5

4 to 1 to 1
2 before increasing to +∞.

Proof. The lemma is straightforward except for broken lines with initial exponent 
(m1, m2) with m1, m2 < 0. Consider a bend of γ at a point (q1, q2) in a wall 
(d, fd(x(w1,w2))). If the exponent immediately before the bend is (m1, m2), the expo-
nent immediately after the bend is (m1 + kw1, m2 + kw2) for some positive integer k.
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Assume that (q1, q2) is not in the boundary of the first quadrant, so that (q1, q2)
is a negative scalar multiple of the exponent (w1, w2). By this assumption, in view of 
Lemma 5.2 and the fact that q lies in the first quadrant, we have also m1 + kw1, m2 +
kw2 < 0.

If the angular momentum q2m1−q1m2 is positive, then the cross-product w2m1−w1m2

is negative. But for positive k,

k(w2m1 − w1m2) = m1(m2 + kw2) −m2(m1 + kw1) < 0 ⇒ m2 + kw2

m1 + kw1
<

m2

m1

as desired. If the angular momentum is negative, the slope increases by an identical 
argument. �

We can now constrain the possible final exponent of a broken line, which will be used 
to bound the support of the corresponding theta function.

Lemma 5.5. Let γ be a broken line in Dd
(b,c) which begins in the third quadrant, with 

endpoint q in the first quadrant. Denote the initial exponent by m = (m1, m2) and the 
final exponent by mq = (mq

1, m
q
2).

(1) If γ has positive angular momentum, then m2 ≤ mq
2 < 0 and

m1 ≤ mq
1 ≤

(
m1

m2
− b

)
mq

2

where the upper bound is equality only when mq = (m1 − bm2, m2).
(2) If γ has negative angular momentum, then m1 ≤ mq

1 < 0 and

m2 ≤ mq
2 ≤

(
m2

m1
− c

)
mq

1

where the upper bound is equality only when mq = (m1, m2 − cm1).

Proof. Assume γ has positive angular momentum; consequently, γ passes through the 
fourth quadrant before entering the first quadrant. Let (m′

1, m
′
2) be the exponent on γ in 

the fourth quadrant. By the preceding lemma, m
′
2

m′
1
≤ m2

m1
with equality only if γ doesn’t 

bend before it reaches the fourth quadrant.
As the broken line passes into the first quadrant, it may bend at the wall (R(1, 0), 1 +

x(b,0)). By definition, the final exponent mq on γ must be an exponent that appears in 
x(m′

1,m
′
2)(1 + x(b,0))−m′

2 . It follows that

(mq
1,m

q
2) = (m′

1 + kb,m′
2)
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for some 0 ≤ k ≤ −m′
2. Consequently, mq

2 = m′
2 < 0 and

mq
1 ≤ m′

1 − bm′
2 =

(
m′

1
m′

2
− b

)
m′

2 =
(
m′

1
m′

2
− b

)
mq

2 ≤
(
m1

m2
− b

)
mq

2

The second inequality is equality only if (m′
1, m

′
2) = (m1, m2), and so the composite 

inequality is equality only if mq = (m1 − bm2, m2).
Analogous inequalities hold for negative angular momentum by the same argu-

ment. �
Proof of Theorem 5.1. If m = (m1, m2) such that m1 ≥ 0 or m2 ≥ 0, then ϑd

q,m is the 
cluster monomial x[−m1, −m2], by Remark 3.10. Next, assume that m = (m1, m2) such 
that m1 ≤ 0 and m2 ≤ 0. The coefficient of x(a1,a2) in ϑd

q,m can have non-zero coefficient 
only if there is a broken line γ in Dd

(b,c) with initial exponent m and final exponent 
a = (a1, a2). By the preceding lemma, this implies that

m1 ≤ a1 ≤
(
m1

m2
− b

)
a2, m2 ≤ a2 ≤

(
m2

m1
− c

)
a1

Furthermore, the upper bounds are only satisfied in the specific cases when (a1, a2) is 
equal to (m1−bm2, m2) or (m1, m2−cm1). Since ϑd

q,m ∈ Ab,c, Scholium 2.6 implies that 
ϑd
q,m is a scalar multiple of x[−m1, −m2].
To show they coincide, we consider the coefficient of x(m1,m2) in each element. The 

coefficient of x(m1,m2) in x[−m1, −m2] is 1, by the definition of a pointed element. The 
coefficient of x(m1,m2) in ϑd

q,m is the sum of the coefficients of all broken lines in Dd
(b,c) with 

initial exponent (m1, m2) and final exponent (m1, m2). Since any bend in a broken line 
would increase one of the components of the exponent, this only happens for the unique 
broken line with initial exponent (m1, m2) that has no bends. Hence, the coefficient of 
x(m1,m2) in ϑd

q,m is 1, and so ϑd
q,m = x[−m1, −m2]. �

Remark 5.6. As mentioned in Remark 2.7, the coefficients of x[−m1, −m2] may be in-
terpreted as counting ‘compatible pairs’ in a lattice path called a ‘maximal Dyck path’. 
One consequence of Theorem 5.1 is that the coefficients c(p, q) are equal to a weighted 
sum of certain broken lines. An interesting open problem is to reprove the coincidence of 
the two bases by giving a combinatorial bijection between broken lines and compatible 
pairs which directly proves the equality of the respective coefficients.
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