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We compute the number of X -variables (also called coeffi-
cients) of a cluster algebra of finite type when the underly-
ing semifield is the universal semifield. For classical types, 
these numbers arise from a bijection between coefficients and 
quadrilaterals (with a choice of diagonal) appearing in tri-
angulations of certain marked surfaces. We conjecture that 
similar results hold for cluster algebras from arbitrary marked 
surfaces, and obtain corollaries regarding the structure of fi-
nite type cluster algebras of geometric type.
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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in the early 2000s [6], 
with the intent of establishing a general algebraic structure for studying dual canonical 
bases of semisimple groups and total positivity. A cluster algebra, or equivalently its seed 
pattern, is determined by an initial set of cluster variables (which we call A-variables) 
and coefficients (which we call X -variables), along with some additional data. As the 
terminology suggests, in the original definitions, A-variables were the main focus. This 
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is reflected in much of the research on cluster algebras to date, which focuses largely on 
A-variables and their dynamics. However, X -variables are important in total positivity, 
and X -variables over the universal semifield have recently appeared in the context of 
scattering amplitudes in N = 4 Super Yang-Mills theory [10]. Moreover, in the setting 
of cluster varieties, introduced by Fock and Goncharov [3], the A- and X -varieties (asso-
ciated with A- and X -variables, respectively) are on equal footing. Fock and Goncharov 
conjectured that a duality holds between the two varieties [3, Conjecture 4.3], which 
was later shown to be true under fairly general assumptions [11]. This duality suggests 
that studying X -variables could be fruitful both in its own right and in furthering our 
understanding of cluster algebras.

A study along these lines was undertaken by Speyer and Thomas in the case of acyclic 
cluster algebras with principal coefficients (that is, the semifield P is the tropical semi-
field P =Trop(t1, . . . , tk) and the X -variables of the initial cluster are (t1, . . . , tk)) [15]. 
Using methods from quiver representation theory, they found that the X -variables are in 
bijection with roots of an associated root system and give a combinatorial description of 
which roots can appear in the same X -cluster. Seven found that in this context, muta-
tion of X -seeds roughly corresponds to reflection across hyperplanes orthogonal to roots 
[14]. However, the above results do not address X -variables over the universal semifield, 
and the numerology in the case of principal coefficients is quite different from what we 
obtain here. Our proofs are also completely combinatorial.

We investigate the combinatorics of X -variables for seed patterns of finite type, 
particularly in the case when the underlying semifield is the universal semifield. The com-
binatorics of A-variables for finite type seed patterns is particularly rich, with connections 
to finite root systems [7] and triangulations of certain marked surfaces [5, Chapter 5]. 
Parker [12] conjectures, and Scherlis [13] gives a partial proof, that in type A, X -variables 
over the universal semifield are in bijection with the quadrilaterals of these triangulations. 
We generalize and prove this statement for all classical types (ABCD).

Theorem 1.1. Let S be an X -seed pattern of classical type Zn over the universal semifield 
such that one X -cluster consists of algebraically independent elements. Let P be the 
marked polygon associated to type Zn. Then the X -variables of S are in bijection with 
the quadrilaterals (with a choice of diagonal) appearing in triangulations of P.

We also obtain the following corollary, which follows from Theorem 1.1 in classical 
types and was verified by computer in exceptional types.

Corollary 1.2. Let R be a finite type A-seed pattern. There is a bijection between ordered 
pairs of exchangeable A-variables in R and X (Ssf ).

As another corollary, we compute the number of X -variables in a classical type X -seed 
pattern Ssf over the universal semifield. We also compute the number |X (Ssf )| of 
X -variables over the universal semifield for exceptional types using a computer alge-
bra system. Note that all other X -seed patterns with the same exchange matrices have 
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at most as many X -variables as Ssf . The numbers |X (Ssf )| are listed in the second row 
of the following table (the numbers for An for n ≤ 6, D4, and E6 were also computed 
in [12]). For comparison, the third row gives the number of X -variables in a finite type 
X -seed pattern Spc with principal coefficients, a corollary of the results in [15].

Type An Bn, Cn Dn E6 E7 E8 F4 G2

|X (Ssf )| 2
(n+3

4
) 1

3n(n + 1)(n2 + 2) 1
3n(n − 1)(n2 + 4n − 6) 770 2100 6240 196 16

|X (Spc)| n(n + 1) 2n2 2n(n − 1) 72 126 240 48 12

2. Seed patterns

We largely follow the conventions of [8].

2.1. Seeds and mutation

We begin by fixing a semifield (P, ·, ⊕), a multiplicative abelian group (P, ·) equipped 
with an (auxiliary) addition ⊕, a binary operation which is associative, commutative, 
and distributive with respect to multiplication.

Example 2.1. Let t1, . . . , tk be algebraically independent over Q. The universal semifield
Qsf (t1, . . . , tk) is the set of all rational functions in t1, . . . , tk that can be written as 
subtraction-free expressions in t1, . . . , tk. This is a semifield with respect to the usual 
multiplication and addition of rational expressions. Note that any (subtraction-free) 
identity in Qsf (t1, . . . , tk) holds in an arbitrary semifield for any elements u1, . . . , uk [1, 
Lemma 2.1.6].

Example 2.2. The tropical semifield Trop(t1, . . . , tk) is the free multiplicative group gen-
erated by t1, . . . , tk, with auxiliary addition defined by

k∏
i=1

tai
i ⊕

k∏
i=1

tbii =
k∏

i=1
t
min(ai,bi)
i .

Let QP denote the field of fractions of the group ring ZP. We fix an ambient field F , 
isomorphic to QP(t1, . . . , tn).

Definition 2.3. A labeled X -seed in P is a pair (x, B) where x = (x1, . . . , xn) is a tuple 
of elements in P and B = (bij) is a skew-symmetrizable n × n integer matrix, that is 
there exists a diagonal integer matrix D with positive diagonal entries such that DB is 
skew-symmetric.

A labeled A-seed in F is a triple (a, x, B) where (x, B) is a labeled X -seed in P and 
a = (a1, . . . , an) is a tuple of elements of F which are algebraically independent over QP

and generate F . We call x the (labeled) X -cluster, a the (labeled) A-cluster, and B the 
exchange matrix of the labeled seed (a, x, B).
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The elements of an X - (respectively A-)cluster are called X - (respectively A-)vari-
ables. In the language of Fomin and Zelevinsky, the X -cluster is the coefficient tuple, 
the A-cluster is the cluster, and the X - and A-variables are coefficients and cluster vari-
ables, respectively. The notation here is chosen to parallel Fock and Goncharov’s A- and 
X - cluster varieties. Note that an X -seed consists only of an exchange matrix and an 
X -cluster, but an A-seed consists of an exchange matrix, an A-cluster and an X -cluster. 
For simplicity, we use “cluster”, “seed”, etc. without a prefix when a statement holds 
regardless of prefix.

One moves from labeled seed to labeled seed by a process called mutation.

Definition 2.4 ([8, Definition 2.4]). Let (a, x, B) be a labeled A-seed in F . The A-seed 
mutation in direction k, denoted μk, takes (a, x, B) to the labeled A-seed (a′, x′, B′)
where

• The entries b′ij of B′ are given by

b′ij =

⎧⎪⎪⎨
⎪⎪⎩
−bij if i = k or j = k

bij + bik|bkj | if bikbkj > 0
bij else.

(2.1)

• The A-cluster a′ = (a′1, . . . , a′n) is obtained from a by replacing the kth entry ak with 
an element a′k ∈ F satisfying the exchange relation

a′kak =
xk

∏
bik>0

abiki +
∏

bik<0
a−bik
i

xk ⊕ 1 . (2.2)

• The X -cluster x′ = (x′
1, . . . , x

′
n) is given by

x′
j =

{
x−1
j if j = k

xj(x
sgn(−bkj)
k ⊕ 1)−bkj else

(2.3)

where sgn(x) = 0 for x = 0 and sgn(x) = |x|/x otherwise.

Similarly, the X -seed mutation μk in direction k takes the labeled X -seed (x, B) in P
to the X -seed (x′, B′) in P and matrix mutation takes B to B′. Two skew-symmetrizable 
integer matrices are mutation equivalent if some sequence of matrix mutations takes one 
to the other.

Note that μk(a, x, B) is indeed another labeled A-seed, as B′ is skew-symmetrizable 
and a′ again consists of algebraically independent elements generating F . One can check 
that μk is an involution.
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2.2. Seed patterns and exchange graphs

We organize all seeds obtainable from each other by a sequence of mutations in a seed 
pattern. Let Tn denote the (infinite) n-regular tree with edges labeled with 1, . . . , n so 
that no vertex is in two edges with the same label.

Definition 2.5. A rank n A-seed pattern (respectively, X -seed pattern) S is an assignment 
of labeled A-seeds (respectively X -seeds) Σt to the vertices t of Tn so that if t and t′ are 
connected by an edge labeled k, then Σt = μk(Σt′).

Since mutation is involutive, a seed pattern S is completely determined by the choice 
of a single seed Σ; we write S(Σ) for the seed pattern containing Σ. Note that in the 
language of Fomin and Zelevinsky, an A-seed pattern is a “seed pattern” and an X -seed 
pattern is a “Y -pattern”.

Given an A-seed pattern S(a, x, B), one can obtain two X -seed patterns. The first is 
S|X := S(x, B), the X -seed pattern in P obtained by simply ignoring the A-clusters of 
every seed. The second is an X -seed pattern in F whose construction is outlined in the 
following proposition.

Proposition 2.6 ([8, Proposition 3.9]). Let S = {Σt}t∈Tn
be an A-seed pattern in F . For 

a seed Σt = (a, x, B) of S with

a = (a1, . . . , an), x = (x1, . . . , xn), and B = (bij)

let Σ̂t = (x̂, B) where x̂ = (x̂1, . . . , ̂xn) is the n-tuple of elements of F given by

x̂j = xj

∏
i

a
bij
i .

Then Ŝ := {Σ̂t}t∈Tn
is an X -seed pattern in F . In other words, if μk(Σt) = Σt′ , then 

μk(Σ̂t) = Σ̂t′ .

One can think of Ŝ as recording the “exchange information” of S(a, x, B); indeed, the 
X -variables of Ŝ are rational expressions whose numerators and denominators are, up to 
multiplication by an element of P, the two terms on the right hand side of an exchange 
relation of S.

Note that seed patterns may carry redundant information, in that the same seed can 
be assigned to multiple vertices of Tn. Further, two labeled seeds in a seed pattern may be 
the same up to relabeling. We remedy this by calling two labeled seeds Σ = (a, x, B) and 
Σ′ = (a′, x′, B′) equivalent (and writing Σ ∼ Σ′) if one can obtain Σ′ by simultaneously 
reindexing a, x, and the rows and columns of B. We define an analogous equivalence 
relation for X -seeds, also denoted ∼.
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An A-seed in F (respectively X -seed in P) is an equivalence class of labeled A-seeds 
in F (respectively labeled X -seeds in P) with respect to ∼. The seed represented by the 
labeled seed Σ is denoted [Σ]. We mutate a seed [Σ] by applying a mutation μk to Σ and 
taking its equivalence class.

Definition 2.7. The exchange graph of a seed pattern S is the (n-regular connected) graph 
whose vertices are the seeds in S and whose edges connect seeds related by a single 
mutation. Equivalently, the exchange graph is the graph one obtains by identifying the 
vertices t, t′ of Tn such that Σt ∼ Σt′ .

Exchange graphs were defined for A-seed patterns in [6, Definition 7.4], but can equally 
be defined for X -seed patterns as we do here. It is conjectured that the exchange graph 
of an A-seed pattern S = S(a, x, B) depends only on B [8, Conjecture 4.3], meaning that 
S|X does not influence the combinatorics of S. The exchange graphs of S|X and Ŝ can 
be obtained by identifying some vertices of the exchange graph of S, as passing to either 
X -seed pattern preserves mutation and the equivalence of labeled seeds. It is not known 
in general when any pair of these exchange graphs is equal.

3. Finite type seed patterns

We now restrict our attention to seed patterns of finite type.

Definition 3.1. An A-seed pattern is of finite type if it has finitely many seeds.

Finite type seed patterns were classified completely in [7]; they correspond exactly to 
finite (reduced crystallographic) root systems, or equivalently, finite type Cartan matrices 
(see for example [2, Chapter 5]).

For a skew-symmetrizable integer matrix B = (bij), its Cartan counterpart is the 
matrix A(B) = (aij) defined by aii = 2 and aij = −|bij | for i �= j.

Theorem 3.2 ([7, Theorems 1.5-1.7]).

(i.) An A-seed pattern is of finite type if and only if the Cartan counterpart of one of 
its exchange matrices is a finite type Cartan matrix.

(ii.) Suppose B, B′ are skew-symmetrizable integer matrices such that A(B), A(B′) are 
finite type Cartan matrices. Then A(B) and A(B′) are of the same Cartan-Killing 
type if and only if B and B′ are mutation equivalent (modulo simultaneous relabeling 
of rows and columns).

In light of this theorem, we refer to a finite type A-seed pattern as type An, Bn, etc.

Definition 3.3. An X -seed pattern S is of type Zn if the Cartan counterpart of one of its 
exchange matrices is a type Zn Cartan matrix.
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We will call such X -seed patterns Dynkin type rather than finite type, since not all 
X -seed patterns with finitely many seeds are of this form. For example, let P be any 
tropical semifield, and B the matrix

[
0 2
−2 0

]
.

Then the X -seed pattern S((1, 1), B) in P has a single unlabeled seed, but the Cartan 
counterpart of B is not finite type. In general, if B is an n × n skew-symmetrizable 
matrix with finite mutation equivalence class, then the X -seed pattern S((1, . . . , 1), B)
in a tropical semifield will have finitely many seeds. Indeed, in this case, mutation of 
the initial seed ((1, . . . , 1), B) in direction k results in the seed ((1, . . . , 1), μk(B)). It 
follows that any sequence of mutations results in a seed with every X -variable equal to 
1, so seeds are distinguished from each other only by their exchange matrices. As B is 
mutation equivalent to finitely many matrices, there are only finitely many seeds in the 
seed pattern.

3.1. Triangulations for types A and D

The material in this section is part of a more general theory of A-seed patterns from 
surfaces, developed in [4].

Let Pn denote a convex n-gon and P•
n denote a convex n-gon with a distinguished 

point p (a puncture) in the interior. For P ∈ {Pn, P•
n}, the vertices and puncture of P

are called marked points. An arc of P is a non-self-intersecting curve γ in P such that 
the endpoints of γ are distinct marked points, the relative interior of γ is disjoint from 
∂P∪{p}, and γ does not cut out an unpunctured digon. An arc incident to the puncture 
p is a radius. Arcs are considered up to isotopy.

A tagged arc of P is either an ordinary arc between two vertices or a radius that is 
labeled either “notched” or “plain.” Two tagged arcs γ, γ′ are compatible if their untagged 
versions do not cross (or to be precise, there are two noncrossing arcs isotopic to γ and 
γ′) with the following modification: if γ is a notched radius and γ′ is plain, they are 
compatible if and only if their untagged versions coincide.

A tagged triangulation T is a maximal collection of pairwise compatible tagged arcs. 
All tagged triangulations of P consist of the same number of arcs.

Definition 3.4. Let T be a tagged triangulation, γ an arc in T , and γ′ either an arc in 
T or a boundary segment. Then γ and γ′ are adjacent in T if they are adjacent in a 
triangle of T or if there is a third arc α in T such that {α, γ, γ′} form a once-punctured 
digon with a radius (see Fig. 2).

In particular, if T contains two arcs forming a once-punctured digon, the two sides 
of the digon are adjacent, each side is adjacent to each radius inside the digon, and the 
two radii inside the digon are not adjacent.
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Fig. 1. Triangulations of P8 and P•
8 are shown in solid lines; the dashed arc is the flip of γ. On the right, the 

quadrilateral qT (γ) = {α, β, δ, ε} is shown in bold.

Fig. 2. Triangulations of P8 and P•
8 and the associated quivers Q(T ).

Definition 3.5. Let T be a tagged triangulation, and γ an arc in T . The quadrilateral
qT (γ) of an arc γ in T consists of the arcs of T and boundary segments adjacent to γ if γ
is not a radius in a once-punctured digon (see Fig. 1); if γ is a radius in a once-punctured 
digon, qT (γ) consists of the arcs and boundary segments adjacent to γ together with the 
two radii compatible with γ in the once-punctured digon (see Fig. 4, lower right). The 
arc γ is a diagonal of its quadrilateral.

Note that if γ is a radius in a once-punctured digon, qT (γ) is not part of any tagged 
triangulation.

The following result gives us a local move on tagged triangulations.

Proposition 3.6 ([4, Theorem 7.9]). Let T = {γ1, . . . , γn} be a tagged triangulation of P. 
For all k, there exists a unique tagged arc γ′

k �= γk such that μk(T ) := T \ {γk} ∪ {γ′
k} is 

a tagged triangulation of P.

The arc γ′ in the above proposition is called the flip of γ with respect to T (or with 
respect to qT (γ), since γ and γ′ are exactly the two diagonals of qT (γ)).
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We define the flip graph of P to be the graph whose vertices are tagged triangulations 
of P and whose edges connect triangulations that can be obtained from each other by 
flipping a single arc. The flip graph of P is connected.

We can encode a tagged triangulation T = (γ1, . . . , γn) in a skew-symmetric n × n

integer matrix B(T ). The nonzero entries in B(T ) correspond to pairs of adjacent arcs; 
the sign of these entries records the relative orientation of the arcs.

To find the entries of B(T ), we define a quiver Q(T ). Place a vertex i in the interior 
of each arc γi. Then put an arrow from i to j if γi and γj are two sides of a triangle in T
and i immediately precedes γj moving clockwise around this triangle, unless γi and γj
are arcs in a triangle containing the notched and plain versions of the same radius. In 
this case, add arrows as shown in Fig. 2. Finally, delete a maximal collection of 2-cycles. 
If there is an arrow from i to j in Q(T ), we write i → j.

Let bij(T ) := #{arrows i → j in Q(T )} − #{arrows j → i in Q(T )}. We define 
B(T ) := (bij(T )).

Flips of arcs are related to matrix mutation in the following way: for a tagged trian-
gulation T = {γ1, . . . , γn} of P, μk(B(T )) = B(μk(T )), or, in words, flipping γk changes 
B(T ) by mutation in direction k.

As the following theorem shows, these triangulations entirely encode the combinatorics 
of type A and D A-seed patterns.

Theorem 3.7 ([4]). Let P = Pn+3 (resp. P = P•
n). Consider an A-seed pattern S such that 

some exchange matrix is B(T0) for some triangulation T0 of P. Then S is type An (resp. 
Dn) and there is a bijection γ 	→ aγ between arcs of P and A-variables of S. Further, 
if Σ = (a, x, B) is a seed of S, there is a unique triangulation T such that a = {aγ}γ∈T

and B = B(T ). Finally, mutation in direction k takes the seed corresponding to T to the 
seed corresponding to μk(T ), implying that the exchange graph of S is isomorphic to the 
flip graph of P .

3.2. Triangulations for types B and C

To obtain triangulations whose adjacency matrices are exchange matrices of type Bn

and Cn A-seed patterns, we “fold” triangulations of P2n+2 and P•
n+1. This is part of a 

larger theory of folded cluster algebras (see [5, Chapter 4]).
Let G = Z/2Z. We write P G

2n for P2n equipped with the G-action taking vertex i to 
vertex i′ := i +n (with labels considered modulo 2n). This induces an action of G on the 
arcs of P2n. The triangulations of P G

2n are defined to be the triangulations of P2n fixed 
by the G-action, commonly called centrally symmetric triangulations (see Fig. 3).

We write P• G
n for P•

n equipped with the G-action switching the notched and plain 
version of a radius. Again, the triangulations of P• G

n are defined to be the triangulations 
of P•

n fixed under the G-action, which are exactly those triangulations containing both 
the notched and plain versions of the same radius.
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Fig. 3. Triangulations of PG
8 and P• G

8 are shown in solid lines. The orbit [γ] of γ is {γ, γ′} and the flip of 
[γ] is dashed. On the right, qT ([γ]) = {α, β, γ, γ′}.

Let P ∈ {P2n, P•
n}, and let T be a triangulation of PG. For γ ∈ T , let [γ] denote the 

G-orbit of γ. The quadrilateral of [γ], denoted qT ([γ]), is all of the arcs and boundary 
segments adjacent to arcs in [γ] (which is exactly the G-orbit of qT (γ) as long as γ
is not a radius in a once-punctured digon). Flipping the arcs in [γ] results in another 
triangulation of PG (which does not depend on the order of arc flips, since arcs in the 
same orbit are pairwise not adjacent). We define the flip graph of PG in direct analogy 
to that of P ; again, it is connected.

We associate to each triangulation T of PG a skew-symmetrizable integer matrix 
BG(T ), whose rows and columns are labeled by G-orbits of arcs of T . Let T =
{γ1, . . . , γm}, and let I, J be the indices of arcs in the G-orbit of γi and γj . Then

bGIJ(T ) =
∑
i∈I

bij(T ) (3.1)

where B(T ) = (bij(T )) is the usual signed adjacency matrix of T . In terms of Q(T ), 
bGIJ (T ) is the total number of arrows from all representatives of I to a fixed representative 
of J . The entries of BG(T ) are well-defined: for g ∈ G, if g(γi) = γ′

i and g(γj) = γ′
j , 

then bij = bi′j′ , so the value of bGIJ does not change if a different element of J is used to 
compute (3.1).

Just as with usual triangulations, (orbits of) arc flips and matrix mutation interact 
nicely: if T is a triangulation containing arc γ, flipping the arcs in [γ] corresponds to 
mutating BG(T ) in the direction labeled by [γ]. Further, we have the following theorem.

Theorem 3.8 ([5, Section 5.5]). Let P = P•
n+1 (resp. P = P2n+2). Consider an A-seed 

pattern S such that some exchange matrix is BG(T0) for some triangulation T0 of PG. 
Then S is type Bn (resp. Cn) and there is a bijection [γ] 	→ a[γ] between arcs of P and 
A-variables of S. Further, if Σ = (a, x, B) is a seed of S, there is a unique triangulation 
T such that a = {a[γ]}γ∈T and B = BG(T ). Finally, mutation in direction K takes the 
seed corresponding to T to the seed corresponding to μK(T ), implying that the exchange 
graph of S is isomorphic to the flip graph of PG.
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4. Dynkin type X -seed patterns

Let S be an X -seed pattern of type Zn (Z ∈ {A, B, C, D}) over an arbitrary semifield 
P, and let X (S) denote the set of X -variables of S. Let P be the surface whose triangu-
lations encode the combinatorics of type Zn A-seed patterns (P = Pn+3 for Zn = An, 
P = P•

n for Zn = Dn, P = P G
2n+2 for Zn = Cn, P = P• G

n+1 for Zn = Bn). In this section, 
we relate the X -variables of S to the triangulations of P, and show a bijection between 
X (S) and quadrilaterals (with a choice of diagonal) of P in the case when P is the uni-
versal semifield. Note that in what follows, “arc” should usually be understood to mean 
“orbit of arc” if S is type B or C.

First, notice that Theorems 3.7 and 3.8 imply that one can associate to each triangu-
lation of P a seed of S such that mutation of seeds corresponds to flips of arcs. Indeed, 
consider any A-seed pattern R with R|X = S; if the triangulation T corresponds to 
the A-seed (a, x, B) with arc γk corresponding to A-variable ak, then we associate to 
T the X -seed (x, B) and to the arc γk the X -variable xk. We write ΣT to indicate this 
association, and write xT,γ for the X -variable associated to arc γ in ΣT .

Note that a priori two distinct triangulations may be associated to the same X -seed, 
and an X -variable may be associated to a number of different arcs (though we will see 
that this is not the case). Further, an arc may be associated to different X -variables in 
different triangulations.

The next observation follows immediately from the definition of seed mutation.

Remark 4.1. Consider an X -seed (x, B), and let B′ = (b′ij) be the mutation of B in 
direction k. For j �= k, if bjk = 0, then mutating at k will not change xj . Further, 
b′ji = bji and b′ij = bij for all i, since the skew-symmetrizability of B implies bkj = 0
as well. Thus, if k1, . . . , kt are indices such that bksj = 0, then the mutation sequence 
μkt

◦ · · · ◦ μk2 ◦ μk1 leaves xj unchanged.

In other words, consider xT,γ , an X -variable in ΣT . Any sequence of flips of arcs not
in qT (γ) ∪ {γ} will result in a triangulation S such that γ ∈ S and xS,γ = xT,γ .

Proposition 4.2. Let Q′ = {qT (γ) ∪ {γ}| T a triangulation of P, γ ∈ T} be the set of 
quadrilaterals (with a choice of diagonal) of P. Then the following map is a surjection:

f : Q′ → X (S)

qT (γ) ∪ {γ} 	→ xT,γ .

We remark that this proposition in fact holds in the generality of X -seed patterns 
from marked surfaces, by the discussion following Proposition 9.2 in [4]. If one considers 
a collection A of compatible tagged arcs of a marked surface (S, M), the simplicial 
complex of tagged arcs compatible with A is the tagged arc complex of another (possibly 
disconnected) surface (S′, M ′), so its dual graph (that is, the flip graph of (S′, M ′)) is 
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connected by [4, Proposition 7.10]. This implies that any two triangulations containing 
A are connected by a series of flips of arcs not in A. However, Proposition 4.2 is not hard 
to see directly in this case, so we provide a proof here.

Proof. If f is well-defined, it is clearly surjective. By Remark 4.1, to show f is well-
defined, it suffices to show that all triangulations T with γ ∈ T and qT (γ) = q can be 
obtained from one another by flipping arcs not in q ∪ {γ}.

Observe that removing the interior of q from P gives rise to a new surface P′, whose 
connected components are polygons, once-punctured polygons, or unions of several of 
these that intersect only at vertices. The triangulations of P′ do not include the arcs in 
q, and the flip graph of P′ is connected. There is a bijection from triangulations T ′ of P′

to triangulations of P containing q ∪ {γ}: T ′ 	→ T ′ ∪ q ∪ {γ} (up to changing the tagging 
of radii in T ). This bijection respects flips, so this shows the desired result. �

We have the immediate corollary:

Corollary 4.3. Let q(P) denote the number of quadrilaterals of P. Then |X (S)| ≤ 2q(P ).

The above statements hold regardless of the choice of P and initial X -cluster. However, 
|X (S)| can vary for different choices of P and the X -cluster of a fixed seed, as the following 
example shows.

Example 4.4. Let B be the following matrix with Cartan counterpart of type A3:

[ 0 1 0
−1 0 1
0 −1 0

]
.

If P is any tropical semifield, then the X -seed pattern S((1, 1, 1), B) in P has a single 
X -variable, which is equal to 1.

If P = Qsf (x1, x2, x3), the X -seed pattern S1 := S((1/x2, x1/x3, x2), B) in P has fewer 
X -variables than S2 := S((x1, x2, x3), B). For example, in S1, we have

((
1
x2

,
x1

x3
, x2

)
, B

)
μ1−−→

((
x2,

x1

x3(1 + x2)
, x2

)
, μ1(B)

)
.

Note that x2 appears twice in μ1((1/x2, x1/x3, x2), B).
In S2, we have

((x1, x2, x3) , B) μ1−−→
((

1
x1

,
x1x2

(1 + x1)
, x3

)
, μ1(B)

)
.

So |X (S1)| ≤ |X (S2)| − 1. Using a computer algebra system, one can check that 
|X (S1)| = 18, while |X (S2)| = 30.
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If we fix an exchange matrix B and allow P and the X -cluster of the seed (x, B) to 
vary, S(x, B) will have the largest number of X -variables when P = Qsf (t1, . . . , tn) and 
x consists of elements that are algebraically independent over Q(t1, . . . , tn). Indeed, let 
Ssf be such a seed pattern, and S an arbitrary seed pattern in a semifield P containing 
the exchange matrix B. The X -variables of S can be obtained from the X -variables 
of Ssf by replacing “+” with “⊕” and evaluating at the appropriate elements of P, so 
we have |X (S)| ≤ |X (Ssf )|. As can be seen in Example 4.4, the assumption that the 
elements of x are algebraically independent is necessary. Note also that if the elements 
of x are algebraically independent, so are the elements of an arbitrary X -seed in Ssf , 
since X -seed mutation in this case simply has the effect of multiplying the X -variables 
by rational functions.

In light of this observation, we now focus on X (Ssf ). To show that the surjection f
of Proposition 4.2 is a bijection for Ssf , it suffices to show that f is injective for some 
X -seed pattern of type Zn. To do this, we use specific examples of A-seed patterns of 
type Zn given in [5, Chapter 5] and [7, Section 12.3], which we denote by R(Zn). These 
seed patterns are over a tropical semifield P; the A-variables and the generators of P are 
SL2- or SO2-invariant polynomials in the entries of a 2 ×m matrix.

Proposition 4.5. Consider the A-seed pattern R = R(Zn). Then the surjection f : Q′ →
X (R̂) of Proposition 4.2 is injective.

We delay the description of R(Zn) and the proof of this proposition to Section 5.
Theorem 1.1 is an immediate corollary of Proposition 4.5, as is the number of 

X -variables in Ssf .

Corollary 4.6. |X (Ssf )| = 2q(P).

4.1. Quadrilateral counts

We label the vertices of P ∈ {Pn, P•
n, P

G
n , P•G

n } clockwise with 1, . . . , n.

Proposition 4.7. The number of quadrilaterals of each surface P are listed in the following 
table.

P Pn+3 P G
2n+2,P

•G
n+1 P•

n

q(P)
(n+3

4
) 1

6n(n + 1)(n2 + 2) 1
6n(n − 1)(n2 + 4n − 6)

For P �= P G
2n+2, q(P) follows from a fairly straightforward inspection of the triangu-

lations of the appropriate surfaces. It is clear that q(Pn+3) =
(
n+3

4
)
, as quadrilaterals in 

a polygon are uniquely determined by their vertices.

Proposition 4.8. q(P•
n) = 4

(
n
4
)

+ 9
(
n
3
)

+ 2
(
n
2
)

= 1
6n(n − 1)(n2 + 4n − 6).
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Fig. 4. The 4 types of quadrilaterals in a triangulation of P•
n, listed in clockwise order from the upper left. 

The arcs of the quadrilateral are solid; diagonals are dashed. The cut, the segment from p to the boundary 
arc between vertices 1 and n, is shown in bold.

Proof. We first introduce a “cut” from p to the boundary arc between vertices 1 and n
(see Fig. 4). For any two vertices i and j, there are two distinct arcs between i and j, one 
crossing the cut and the other not. For convenience, we here refer to boundary segments 
between adjacent vertices as “arcs,” though they are not arcs of any triangulation.

Let q be a quadrilateral in some triangulation of P•
n. There are 4 possibilities (see 

Fig. 4):

(i) The quadrilateral q consists of arcs between four vertices of S; the diagonals of q
are arcs between vertices. Then q cannot enclose the puncture, since its diagonals 
are arcs between vertices. This places restrictions on the possible configurations of 
arcs. If 1 ≤ i < j < k < l ≤ n are the vertices of q, then either no arcs cross the 
cut or the arc from i to l and one other arc must cross the cut. This gives four 
quadrilaterals for each choice of four vertices.

(ii) The quadrilateral q consists of arcs between three vertices and p; one diagonal is a 
radius and the other is an arc between vertices. Then q must consist of two radii 
and two arcs between vertices. For any choice of three vertices 1 ≤ i < j < k ≤ n, 
there is a unique triangle on these vertices enclosing the puncture: the arc from i
to k must cross the cut and the other two arcs must not. The quadrilateral q can 
include any two of the arcs of this triangle. Once the two arcs are chosen, the radii 
in q are determined. The radii must either be both notched or both unnotched, six 
choices in all. So there are 6

(
n
3
)

of these quadrilaterals.
(iii) The quadrilateral q consists of arcs between three vertices and p; the diagonals are 

arcs between vertices. Then q must enclose p, and the arcs involving p must be 
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the notched and unnotched version of the same radius (otherwise the quadrilateral 
is of type (ii)). Once the three vertices are chosen, the arcs between vertices are 
determined. There are three choices for the radii, so 3

(
n
3
)

quadrilaterals total.
(iv) The quadrilateral q consists of arcs between two vertices and p; the diagonals are 

radii. Once the two vertices i, j have been selected, the arcs between vertices are 
determined; they must be the two arcs between i and j. This quadrilateral also 
contains 2 radii which are not compatible, for which there are 2 choices. �

Proposition 4.9. q(P•G
n+1) = 4

(
n+1

4
)

+ 3
(
n+1

3
)

+
(
n+1

2
)

= 1
6n(n + 1)(n2 + 2).

Proof. Recall that the triangulations of P•G
n+1 are triangulations of P•

n+1 using the 
notched and unnotched versions of the same radius; these two arcs are identified. To 
count quadrilaterals, we modify our count of quadrilaterals of P•

n+1. In triangulations 
of P•G

n+1, there are no quadrilaterals of type (ii), and there are fewer quadrilaterals of 
type (iv). In particular, these quadrilaterals are completely determined by a choice of 
two vertices. There are the same number of quadrilaterals of types (i) and (iii). �

We now consider P = P G
2n+2. For i ∈ {1, . . . , 2n + 2}, let i′ := i + n + 1 (considered 

mod 2n + 2).

Definition 4.10. A diameter of P G
2n+2 is an arc from vertex i to vertex i′, denoted by δi. 

The (closures of) half-disks resulting from removing δi from P G
2n+2 are (closed) δi-half-

disks. Two vertices j, k are separated by a diameter δi if they do not lie in the same closed 
δi-half-disk.

Proposition 4.11. Let Q be the set of quadrilaterals of P2n+2, Q1 be the set of quadrilater-
als contained in a closed δi-half-disk some i, and Q2 the subset of Q \Q1 of quadrilaterals 
whose vertices are not {i, j, i′, j′}. There is a bijection α : Q1 → Q2.

Proof. We consider P2n+2 as a disk with 2n + 2 vertices on the boundary. Let i, j, k be 
vertices. We denote by i|j a segment of the boundary with endpoints i and j. To specify 
a particular segment, we give an orientation (e.g. “clockwise segment i|j”) or an interior 
point k (e.g. i|k|j). If a number of interior points are given, they are listed respecting 
the orientation of the segment. If a quadrilateral is in Q1, we list its vertices in clockwise 
order, starting from any point in a half-disk disjoint from the quadrilateral. Note that 
in this order, a quadrilateral (a, b, c, d) ∈ Q1 is contained in a closed δa-half-disk and a 
closed δd-half-disk. If the quadrilateral is not in Q1, we list its vertices in clockwise order 
from an arbitrary starting point.

Let (a, b, c, d) ∈ Q1. The map α “flips” b to b′, sending (a, b, c, d) to (a, c, d, b′). The 
map α is well-defined, as {a, c, d, b′} �= {i, i′, j, j′} for any i, j and for all i ∈ {a, b, c, d}
no closed δi-half-disk contains all 4 vertices of α(a, b, c, d).

We now show that α has an inverse, similarly given by flipping a vertex. Let q =
(a, b, c, d) ∈ Q2. Note that flipping a vertex of q results in a quadrilateral in Q1 only if it 
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is the only vertex in some half-disk; one may take this half-disk to be a δi-half-disk for 
some i ∈ {a, b, c, d}.

Suppose for some i ∈ {a, b, c, d}, i′ is also in {a, b, c, d}. Wlog, i = a and thus i′ = c

(otherwise q would be contained in a half-disk). Flipping a or c would result in 3 vertices, 
so they cannot be flipped to produce an element of Q1. Since Q2 does not contain 
quadrilaterals of the form (i, j, i′, j′), b′ �= d. The clockwise segment a|c necessarily 
includes d′, since for all i, j, the segment i|i′ includes exactly one of j and j′. So this 
segment is either a|d′|b|c or a|b|d′|c; the clockwise segment c|a is c|d|b′|a or c|b′|d|a, 
respectively. In the first case, flipping d gives a preimage of q, and flipping b does not; 
vice-versa in the second case.

Now, suppose no vertices in q are flips of each other. There are two vertices of q in 
one δa-half-disk and one, say i, in the other. Similarly, there are two vertices of q in one 
δi-half disk and one, say j, in the other.

We claim that i and j are the only vertices alone in δk-half-disks for k ∈ {a, b, c, d}.
If j = a, then the segments a|i|a′ and i|a|i′ contain no other vertices of q, implying 

that i′|a|i|a′ is a segment containing no other vertices of q. Let k be one of the other 
vertices of q. Either k or k′ must lie on i′|a|i|a′ between a and a′, and between i and i′. 
Thus k′ in fact lies between a and i on this segment, so δk separates a and i. Since one 
δk-half-disk contains a single vertex, the statement follows.

If j �= a, then the segments a|i|a′ and i|j|i′ contain no other vertices of q, so a|i|a′|j|i′
is a segment containing no other vertices of q. Further, j′ must lie somewhere on a|i|a′
and cannot lie on i|j|i′, implying that a|j′|i|a′|j|i′ is a segment. Since no other vertices 
of q appear in this segment, i is the single vertex in one δj-half-disk. Let k be the other 
vertices of q. As in the above case, one of k and k′ must lie between a and a′, and i and 
i′. Thus, k′ lies between i and a′ in the arc a|i|a′|j|i′, implying δk separates i and j. The 
statement follows.

As noted above, flipping i will result in a quadrilateral q′ in Q1. The vertex i′ will not 
be the first or last vertex in q′, as by assumption the vertices of q are not contained in a 
δi-half-disk. However, j will be, since all vertices of q′ are contained in one δj-half-disk. 
The vertex of q′ closest to j is i′, as if there is a vertex k between i′ and j, then j is 
not alone in a δi-half-disk. So flipping i gives a preimage of q only if i|j|i′ is a clockwise 
arc. Reversing the roles of i and j in the above argument yields that flipping j gives a 
preimage of q only if j|i|j′ is clockwise (i.e. i|j|i′ is counterclockwise). �

Since |Q| = |Q1| + |Q2| + |{q ∈ Q : q = (i, j, i′, j′) for 1 ≤ i < j ≤ n + 1}|, we have 
the following corollary.

Corollary 4.12. |Q1| = 1
2 (
(2n+2

4
)
−
(
n+1

2
)
).

Note that the quadrilaterals of centrally symmetric triangulations of P2n+2 are either 
in Q1 or have vertex set {i, j, i′, j′} for 1 ≤ i < j ≤ n + 1. The latter quadrilaterals are 
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fixed by the action of G; the quadrilaterals in Q1 have G-orbits of size two. So we have 
that

q(P G
2n+2) = 1

2
|Q1| +

(
n + 1

2

)
= 1

6
n(n + 1)(n2 + 2). (4.1)

4.2. Exceptional types

Let Z ∈ {E6, E7, E8, F4, G2} and let Ssf be a type Z X -seed pattern over Qsf with 
one (equivalently every) X -cluster consisting of algebraically independent elements. The 
value of |X (Ssf )| was computed using a computer algebra system (Mathematica), by 
generating all possible X -seeds via mutation.1

5. Proof of Proposition 4.5

We proceed type by type. The general recipe is as follows. As usual, for non-simply 
laced types, “arc” should be read as “orbit of arc.”

Let V be a vector space and k the field of rational functions on V . For P ∈
{Pn+3, P•

n, P
•G
n+1, P

G
2n+2}, we assign a function Pγ ∈ k to each arc and boundary seg-

ment γ of P.
Let T be a triangulation of P. We define seeds ΣT = (a, x, B(T )), where the clusters 

and exchange matrix are indexed by arcs in T . The matrix B(T ) is the exchange matrix 
as defined in Sections 3.1 and 3.2, whose entries are based on Q(T ). The A-variable 
associated to γ ∈ T is just Pγ .

To describe the X -variables, we first extend our construction of Q(T ) to the boundary 
segments of P to create the quiver Q(T ). That is, we place a vertex at the midpoint 
of every arc and boundary segment, put an arrow from γ to γ′ if γ precedes γ′ moving 
clockwise around some triangle of T , and delete a maximal collection of 2-cycles (making 
slight modifications for punctured polygons). If there is an arrow from γ to γ′ in Q(T ), 
we write γ → γ′. For simply laced types, the X -variable associated to γ is

∏
γ′∈∂P P

#{arrows γ′→γ}
γ′∏

γ′∈∂P P
#{arrows γ→γ′}
γ′

. (5.1)

For non-simply laced types, the X -variable associated to [γ] is

∏
γ′∈∂P P

#{arrows [γ′]→γ}
γ′∏

γ′∈∂P P
#{arrows γ→[γ′]}
γ′

where #{arrows [γ′] → γ} =
∑

τ∈[γ′] #{arrows τ → γ in Q(T )} and #{arrows γ →
[γ′]} =

∑
τ∈[γ′] #{arrows γ → τ in Q(T )}.

1 The code is available at https://math .berkeley.edu /~msb.

https://math.berkeley.edu/~msb
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These seeds form R(Zn), an A-seed pattern of type Zn over QP where P =Trop(Pγ :
γ ⊆ ∂P). The reader familiar with cluster algebras of geometric type should note that we 
could equally define this seed pattern by declaring Pγ a frozen variable for γ a boundary 
arc, defining an extended exchange matrix B(T ) from the quiver Q(T ), and then finding 
the X -variable associated to each arc via the formula [8, Equation 2.13].

In R̂(Zn), the X -variables of Σ̂T are also indexed by arcs of T . To emphasize that the 
X -variable associated to γ in Σ̂T depends only on the quadrilateral q := qT (γ) of γ, we 
denote it by x̂q,γ . In simply laced types,

x̂q,γ =
∏

γ′∈T∪∂P P
#{arrows γ′→γ}
γ′∏

γ′∈T∪∂P P
#{arrows γ→γ′}
γ′

(5.2)

and in non-simply laced types,

x̂q,[γ] =
∏

γ′∈T∪∂P P
#{arrows [γ′]→γ}
γ′∏

γ′∈T∪∂P P
#{arrows γ→[γ′]}
γ′

.

To show that x̂q,γ and x̂q′,γ′ are distinct for q �= q′, we show that they evaluate 
differently at specific elements of V .

In the subsequent sections, we again label the m vertices of P clockwise with 1, . . . , m.

5.1. Type An

Let V =Mat2,n+3(C) be the vector space of 2 × (n +3) complex matrices. Let k be the 
field of rational functions on V , written in terms of the coordinates of the column vectors 
v1, . . . , vn+3. Let the Plücker coordinate Pij ∈ k be the determinant of the 2 × 2 matrix 
with columns vi and vj . Plücker coordinates will be the basis of all of the following 
constructions. They give an embedding of the Grassmannian Gr2,n+3 of 2-planes in 
Cn+3 into complex projective space of dimension 

(
n+3

2
)
− 1, as the Plücker coordinates 

of a matrix z ∈ V (up to simultaneous rescaling) depend only on the rowspan of z. 
The Plücker coordinates also generate the coordinate ring of the affine cone over the 
Grassmannian Gr2,n+3 in the Plücker embedding.

If γ is an arc or boundary segment of Pn+3 between vertices i and j (i < j), we 
define Pγ := Pij . In other words, the A-variables of R(An) are exactly the Plücker 
coordinates Pij where i < i + 1 < j. The semifield P is the tropical semifield generated 
by all consecutive Plücker coordinates Pi,i+1. For γ an arc with quadrilateral q in some 
triangulation, the X -variable xq,γ records which boundary arcs τ are in triangles with 
γ. By the construction of Q(T ) and (5.1), if τ precedes γ moving around the triangle 
clockwise, Pτ appears in the numerator of xq,γ . If τ instead follows γ, Pτ appears in the 
denominator.

Let T be a triangulation of Pn+3 containing an arc γ with vertices i and k. Suppose 
q := qT (γ) has vertices 1 ≤ i < j < k < l ≤ n + 3 (see Fig. 5). Then (5.2) becomes
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Fig. 5. A quadrilateral and its associated quiver.

x̂q,γ =

∏
τ :τ→γ

Pτ∏
τ :γ→τ

Pτ
= PilPjk

PijPkl
. (5.3)

The X -variable associated to the other diagonal of the quadrilateral is x̂−1
q,γ. Clearly, 

x̂q,γ �= x̂−1
q,γ , so the X -variables associated to the two diagonals of the same quadrilateral 

are distinct.
Consider another quadrilateral q′ with vertices 1 ≤ a < b < c < d ≤ n + 3 and 

diagonal γ. Choose s ∈ {a, b, c, d} \ {i, j, k, l}. The Plücker coordinate ±Pst appears in 
x̂±1
q′,γ for some t ∈ {a, b, c, d}. Let z be any matrix such that {vi(z), vj(z), vk(z), vl(z)} =

{(1, 0), (0, 1), (1, 1), (−1, 1)} and vs(z) = vt(z). Then x̂q,γ(z) is nonzero and x̂±1
q′,γ(z) is 

either zero or undefined. This completes the proof of Proposition 4.5 for type An.

5.2. Type Bn

Let V = Mat2,n+2(C) be the vector space of 2 × (n + 2) complex matrices. Again, 
let k be the field of rational functions on V , written in terms of the coordinates of the 
column vectors v1, . . . , vn+3 and Pij ∈ k be the determinant of the 2 × 2 matrix with 
columns vi and vj . We define a modified Plücker coordinate Pij := Pi,n+2Pj,n+2 − Pij .

Let γ be an arc or boundary segment of P•
n+1. If γ has endpoints i, j ∈ {1, . . . , n +1}, 

let P[γ] := Pij (respectively P[γ] := Pij) if it does not (respectively, does) cross the cut. 
If γ is a radius with endpoints i and p, then let P[γ] := Pi,n+2.

Let q be a quadrilateral with vertices 1 ≤ i < j < k < l ≤ n + 1. Then

x̂q,[γ] ∈
{(

PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1
}
. (5.4)

Consider a quadrilateral q with two vertices i and j (i < j) and let γ be the plain 
radius with endpoints i and p. Then

x̂q,[γ] =
P 2
ij

P 2 . (5.5)

ij
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Finally, given a quadrilateral q with three vertices i < j < k and diagonal γ,

x̂q,[γ] ∈

⎧⎨
⎩
(
PijP

2
k,n+2

PikPjk

)±1

,

(
PikP

2
j,n+2

PijPjk

)±1

,

(
PjkP

2
i,n+2

PikPij

)±1
⎫⎬
⎭ . (5.6)

We would like to show that all of these expressions are distinct. Note that in general, 
expressions from quadrilaterals on different vertices are definitely distinct (as long as 
none are identically zero on their domains, which follows easily from arguments below). 
Indeed, if a is a vertex of q′ and not q, then one can find a matrix z such that x̂q,γ(z) �= 0
and this will not depend on va(z). However, the index a appears in the expression x̂q′,γ′ , 
and thus one can freely choose va(z) in order to make x̂q′,γ′(z) either zero or undefined.

The only instance in which this is not clear is when x̂±1
q,γ = PilPjk

PijPkl
and q′ is a quadri-

lateral with vertices j, k, and l. Because i appears only in modified Plücker coordinates, 
it is not immediate that one can choose columns to make the expressions differ. The 
following remark gives a way to do this.

Remark 5.1. Pab = 0 for va = (1, 0), vb = (0, 1), vn+2 = (−1, 1), and, if vc = (1, 1), vd =
(−1, 1), Ps,t �= 0 for all other pairs s, t ∈ {a, b, c, d} with s �= t.

So there exists a matrix z such that Pik(z) = 0 and all other (usual or modified) 
Plücker coordinates involving the indices i, j, k, l are nonzero, which covers the problem-
atic case.

Remark 5.1 also gives us that two X -variables associated to different quadrilaterals on 
the same 4 vertices are distinct, as each expression in (5.4) involves a different modified 
Plücker coordinate.

In the case when the quadrilaterals are on the same 3 vertices, if {vi, vj , vk} =
{(1, 0), (1, 1), (−1, 1)}, choosing vn+2 = va for a = i, j, k makes a unique expression 
in (5.6) zero or undefined.

There are no two quadrilaterals on the same two vertices, and the expressions in (5.5)
are clearly not identically zero, so no further argument is needed.

5.3. Type Cn

Let V =Mat2,n+1(C). Let M ∈SO2(C) be

[
0 −1
1 0

]
.

Again, let k be the field of rational functions on V , written in terms of the coordinates 
of the column vectors v1, . . . , vn+1 and Pij ∈ k be the determinant of the 2 × 2 matrix 
with columns vi and vj . We define the modified Plücker coordinate Pij as the determinant 
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of the 2 × 2 matrix whose first column is vj and whose second column is Mvi. More 
explicitly, if vi = (vi,1, vi,2), then Pij = vj,1vi,1 + vj,2vi,2.

Let γ be an arc or boundary segment of P2n+2. We define P[γ] := Pij if [γ] contains an 
arc from i to j with i < j ≤ n + 1, i.e. if one element of [γ] is contained in a δ1-half-disk 
(see Definition 4.10). We define P[γ] := Pij if [γ] contains an arc from i to j +n + 1 with 
i ≤ j ≤ n + 1, i.e. if one element of [γ] is not contained in a δ1-half-disk.

In a departure from earlier notation, we will use i solely to denote a vertex in 
{1, . . . , n + 1}; i′ := i + n + 1, as before. We will also include the vertices 1 (respec-
tively n + 2) in the δ1-half-disk containing 2 (respectively, n + 3). Recall that in PG

2n+2, 
qT ([γ]) = [qT (γ)] for some arc γ and triangulation T containing γ. If [qT (γ)] contains 2 
quadrilaterals of P2n+2, we will choose as a representative the quadrilateral containing 
the smallest vertex; if this does not determine one of the quadrilaterals, we will choose 
the quadrilateral containing the two smallest vertices. Quadrilaterals are given as tuples 
of their vertices, listed in clockwise order starting with the smallest vertex.

If q = [qT (γ)] consists of a single quadrilateral, then qT (γ) = (i, j, i′, j′). Then

x̂q,[γ] ∈

⎧⎨
⎩
(
P 2
ij

P 2
ij

)±1
⎫⎬
⎭ .

For the remaining cases, q = [qT (γ)] contains 2 quadrilaterals. If qT (γ) = (i, j, k, l)
(i.e. all vertices are in one δ1-half-disk), then

x̂q,[γ] ∈
{(

PilPjk

PijPkl

)±1
}
.

If qT (γ) has 3 vertices in one δ1-half-disk, qT (γ) is (i, j, k, l′) for k < l, (i, j′, k′, l′) for 
i < j, (i, j, k, i′), or (i, j, k, k′) (see Fig. 6). Then x̂q,[γ] is, respectively

(
PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1

,

(
PiiPjk

PijPik

)±1

,

(
PikPjk

PijPkk

)±1

.

If qT (γ) has 2 vertices in each δ1-half-disk, qT (γ) is (i, j, k′, l′) for j < k, or (i, j, j′, k′)
(see Fig. 6). Then x̂q,[γ] is, respectively

(
PilPjk

PijPkl

)±1

or
(
PikPjj

PijPjk

)±1

.

As long as none are identically zero, X -variables from quadrilaterals involving different 
indices are distinct by a similar argument as the type Bn case. Note that M is invertible, 
so modified Plücker coordinates Pij can be made zero by choosing either ci = M−1cj or 
cj = Mci.
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Fig. 6. The 6 types of quadrilaterals of P G
2n+2 that are not contained in δ1-half-disks but are contained in 

some closed half-disk. The thick vertical line is δ1. The distinguished representative of each quadrilateral is 
solid; the other representative is dashed.

Consider a matrix with va = (1, 0), vb = (0, 1), vc = (1, 1), vd = (−2, 1). The only 
(usual or modified) Plücker coordinates that are zero are Pab and Pba. Note also that 
Paa > 0. This shows that no X -variable is identically zero, and also that X -variables 
involving the 4 same indices, but corresponding to different quadrilaterals, are distinct.

To see that X -variables containing the same 3 indices i, j, k and corresponding to 
different quadrilaterals are distinct, note that they each have different values under the 
specialization vi = (1, 1), vj = (−2, 1), vk = (0, 1).

5.4. Type Dn

Let V =Mat2,n(C) and

A :=
[

1 0
−1 2

]
.

The eigenvalues of A are λ = 1 and λ = −1; a = (1, 1) and a	
 = (0, −1) are 
eigenvectors for λ and λ respectively. For i < j, we define a modified Plücker coordinate 
Pij as the determinant of the 2 × 2 matrix with columns vj and Avi. We also use the 
shorthand Pia (respectively Pia��) for the determinant of the 2 × 2 matrix with columns 
vi and a (respectively a	
).
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Let γ be an arc or boundary segment of P •
n . Then

Pγ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pij if γ has endpoints i, j with i < j and does not cross the cut.
Pij if γ has endpoints i, j with i < j and crosses the cut.
Pia if γ is a plain radius with endpoints p and i.

Pia�� if γ is a notched radius with endpoints p and i.

We make a slight modification to the usual recipe for producing an A-seed pattern 
from this information. We add two additional vertices to Q(T ), one labeled with λ and 
the other with λ. Let T be the triangulation of P•

n consisting only of radii. In Q(T ), we 
add an arrow from λ to the radius with endpoints 1, p, and an arrow from the radius 
with endpoints n, p to λ. This is enough to determine the arrows involving λ and λ for 
the remaining triangulations (for example, by performing X -seed mutation on Σ̂T ).

Let i and j > i be vertices of P•
n, γ be the plain radius from j to p and γ′ be the 

notched version of the same radius. Let q be the quadrilateral on i, j with γ as a diagonal, 
and q′ be the quadrilateral on i, j with γ′ as a diagonal. Then, by [5, Proposition 5.4.11], 
x̂q,γ and x̂q′,γ′ are, respectively,

λPij

Pij

,
λPij

Pij

. (5.7)

Their inverses are the X -variables corresponding to plain and notched diagonals from i
to p, respectively.

For all other quadrilaterals, it suffices to consider the associated X -variables up to 
some Laurent monomial in λ, λ. Since A is full rank, this ignored Laurent monomial will 
not impact the X -variables being well-defined or nonzero, and we omit it for the sake of 
brevity.

If q has vertices i < j < k < l, it does not enclose the puncture. Let γ be a diagonal 
of q. Then

x̂q,γ ∈
{(

PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1

,

(
PilPjk

PijPkl

)±1
}
. (5.8)

If q has vertices i < j < k and has one diagonal γ that is a radius, x̂q,γ is one of

(
PijPka

PiaPjk

)±1

,

(
PjkPia

PikPja

)±1

,

(
PikPja

PijPka

)±1

(5.9)

or one of these expressions with a	
 instead of a.
If q has vertices i < j < k and both diagonals are arcs between vertices, then

x̂q,γ ∈
{(

PijPkaPka��

P Pjk

)±1

,

(
PikPjaPja��

PijPjk

)±1

,

(
PjkPiaPia��

P Pij

)±1
}
. (5.10)
ik ik
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As with the other types, X -variables of quadrilaterals involving different vertices are 
distinct, as long as none are identically zero. The matrix A is of course invertible, so 
modified Plücker coordinates can be made zero regardless of which index is constrained. 
The rest of the argument is the same as with the other types.

To see that X -variables from quadrilaterals on the same 4 vertices are distinct, notice 
that if va = (1, 0), vb = (−1, 1), and {vc, vd} = {(0, 1), (1, 1)}, then the only (usual or 
modified) Plücker coordinate that is zero is Pab. Since each expression in (5.8) contains a 
unique modified Plücker coordinate, the result follows. (It is also clear that no expression 
is identically zero.)

For X -variables from quadrilaterals on the same 3 vertices, it suffices to consider 
{vi, vj , vk} = {(1, 0), (0, 1), (1, 1)}. Then Pik �= 0. By making different columns equal to 
a or a	
, one can differentiate between any 2 expressions. (Also, under the specialization 
vi = (0, 1), vj = (−1, 1), vk = (2, 1), all expressions are nonzero.)

For X -variables from quadrilaterals on the same 2 vertices, the presence of λ and λ
serve to distinguish between them. For example, under the specialization vi = (1, 1), 
vj = (1, 0), the X -variables in (5.7) have different (nonzero) values.

6. Corollaries and conjectures

We make a few remarks regarding the implications of these results to the larger theory 
of X -seed patterns and cluster algebras, and conjectural extensions.

First, we conjecture that Theorem 1.1 extends to seed patterns from arbitrary marked 
surfaces.

Conjecture 6.1. Let S be an X -seed pattern from a marked surface (S, M). Then the map 
from {qT (γ) ∪ {γ}| T a triangulation of (S, M), γ ∈ T} to X (Ssf ), which sends q ∪ {γ}
to xq,γ, is a bijection.

As remarked upon previously, a surjection from quadrilaterals (with choice of diago-
nal) to X -variables holds by results of [4].

Theorem 1.1 implies that, for Ssf of classical type, the X -variables of an X -seed deter-
mine the X -seed. Indeed, the X -variables give the quadrilaterals of a tagged triangulation 
and a tagged triangulation is uniquely determined by its set of quadrilaterals. Thus each 
X -seed corresponds to a unique triangulation, and we have the following corollary.

Corollary 6.2. The exchange graph of the X -seed pattern Ssf in classical types coincides 
with the exchange graph of any A-seed pattern of the same type.

Recall that the diagonals of a quadrilateral can be uniquely associated to a pair of 
A-variables. These pairs are precisely those variables that appear together on the left 
hand side of an exchange relation; such A-variables are called exchangeable. Clearly, 
there is a bijection from ordered pairs of exchangeable A-variables to quadrilaterals with 
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a choice of diagonal. Composing this bijection with the bijection of Theorem 1.1 gives 
Corollary 1.2 for classical types, which we give again here for the reader’s convenience. 
It was checked by computer for exceptional types.

Corollary 1.2. Let R be a finite type A-seed pattern. There is a bijection between ordered 
pairs of exchangeable A-variables in R and X (Ssf ).

Let R be a finite type A-seed pattern over the tropical semifield with one (equivalently, 
every [9, Lemma 1.2]) extended exchange matrix of full rank. As is remarked in [8, 
Section 7], in this case the X -variables in the corresponding seed of R̂ are algebraically 
independent. Thus, the number of X -variables in R̂ is |X (Ssf )|. (Note that without this 
condition, the number of X -variables in R̂ could be smaller, as Example 4.4 shows.) 
Recall that in this setting, the X -variables of R̂ exactly record the two terms on the 
right hand side of an exchange relation. In the bijection of Corollary 1.2, the pairs of 
exchangeable A-variables are mapped to the X -variables recording the exchange relation 
that the A-variables satisfy. This implies the following corollary.

Corollary 6.3. Let R be an A-seed pattern of classical type over the tropical semifield 
such that one (equivalently, every) extended exchange matrix is full rank. Then the two 
monomials on the right hand side of an exchange relation (2.2) uniquely determine the 
variables being exchanged.

Lastly, in the original development of finite type A-seed patterns, seed patterns 
were connected to root systems of the same type. In particular, there is a bijection 
between A-variables and almost positive roots (positive roots and negative simple 
roots). Two variables are exchangeable if and only if the corresponding roots α, β have 
(α||β) = (β||α) = 1, where (−||−) is the compatibility degree [7]. This, combined with 
Corollary 1.2, give a root theoretic interpretation of the number of X -coordinates of Ssf .

Corollary 6.4. For Ssf of Dynkin type, |X (Ssf )| is the number of pairs of almost-positive 
roots (α, β) such that (α||β) = (β||α) = 1 in the root system of the same type.
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