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Abstract

The border correlation function�: A∗ → A∗, for A = {a, b}, specifies which conjugates (cyclic
shifts) of a given wordwof lengthnare bordered, in other words,�(w)=c0c1...cn−1, whereci=a orb
according to whether theith cyclic shift�i (w) ofw is unbordered or bordered. Except for some special
cases, no binary wordw has two consecutive unbordered conjugates (�i (w) and�i+1(w)). We show
that this is optimal: in every cyclically overlap-free word every other conjugate is unbordered. We
also study the relationship between unbordered conjugates and critical points, as well as, the dynamic
system given by iterating the function�. We prove that, for each wordw of lengthn, the sequence
w,�(w),�2(w), ... terminates either inbn or in the cycle of conjugates of the wordabkabk+1 for
n = 2k + 3.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A word w is said to beunbordered(or self-uncorrelated[13]), if the only border ofw
is the word itself, that is, ifw = uv = vu′ for a nonempty wordv, thenv = w and,
consequently,u = u′ = ε, the empty word. A wordu is afactorof a wordw, if w = w1uw2
for some (possibly empty) wordsw1 andw2. Unbordered words and factors of words play a
significant role in some proofs concerning combinatorial properties of words. The questions
involving periodicity of finite and infinite words are naturally related to the border structure
of words see, e.g.,[3–7,11].As another example, we mention that the existence of borders in
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words appear in the study of coding properties of sets of words as well as in unavoidability
studies of words; see, e.g.,[1,13].

In this paper, we study the border structure of words with respect to conjugation. We
shall consider solely binary words. To this end, we fix our alphabet to beA = {a, b}. Let
A∗ denote the monoid of all finite words overA including the empty word, denoted byε.
Let �: A∗ → A∗ be the (cyclic)shift functionof words, where�(ε) = ε and�(cw) = wc

for all w ∈ A∗ andc ∈ A. Theborder correlation function�: A∗ → A∗ is defined such
that�(w) specifies which conjugates ofw are unbordered: Letw ∈ A∗ be a word of length
n. Then�(w) = c0c1 . . . cn−1, where

ci =
{

a if �i (w) is unbordered,
b if �i (w) is bordered.

Let �(ε) = ε. For example, letw = aabab. Then

�0(w) = w = aabab, �1(w) = ababa, �2(w) = babaa,

�3(w) = abaab, �4(w) = baaba

and hence�(w) = ababb, since only�0(w) and�2(w) are unbordered. While we consider
only binary words in this paper, note that� can be applied to words over any alphabet and
always yields a binary word.

It is rather easy to show (see Lemma1) that the image�(w) of a binary wordw cannot
have two consecutivea’s (except for some trivial words), that is, for noi are both�i (w) and
�i+1(w) unbordered. In Section2, we show that the bound given by this fact is optimal.
Indeed, we prove that in every cyclically overlap-free word every other conjugate (that is,
either�i (w) or �i+1(w) for eachi) is unbordered.

A word w ∈ A∗ is overlap-free, if it does not have self-overlapping factors, that is,w
does not have a factor of the formcxcxcwherec ∈ A andx ∈ A∗. Moreover,w is cyclically
overlap-free, if all its conjugates are overlap-free. The cyclically overlap-free binary words
were characterized by Thue[15]; see Section2.

There is a close relationship between unbordered conjugates of a word and its critical
points, when critical points are considered independent of cyclic shifts. This relation is
elaborated on in Section3.

In Section4, we shall study the dynamic system given by the border correlation function
�. We prove that, for each wordwof lengthn, the sequencew,�(w),�2(w), . . . terminates
either in the wordbn or in the cycle of the conjugates of the wordabkabk+1 for k = (n−3)/2.

The border correlation function provides a similarity function among the strings. Related
functions of similarity are theauto-correlationfunction of Guibas and Odlyzko[8], and the
border-arrayfunction of Moore et al.[12].

We end this section with some definitions and notation needed in the rest of the paper.
We refer to Lothaire’s book[11] for more basic and general definitions of combinatorics on
words.

We denote the length of a wordw by |w|. Also, if w ∈ A∗ andc ∈ A, then|w|c denotes
the number of occurrences of letterc in w. For instance, we have forw = abaab that
|w|a = 3 and|w|b = 2. Supposew = uv. Thenu is called aprefixof w, denoted byu�w,
andv is called asuffixof w. A nonempty wordu ∈ A∗ is aborder of a wordw ∈ A∗, if
w = uv = v′u for some suitable nonempty wordsv andv′ in A∗.
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We call two wordsu andv conjugates, denoted byu ∼ v, if u = �k(v) for somek�0.
Two conjugatesu andv are calledadjacent, if �(u) = v. Clearly,∼ is an equivalence
relation. Let[u] = {v | u ∼ v} denote theconjugate classof u. A word w is primitive if
it is not a proper power of another word, that is,w = uk impliesu = w andk = 1. A
wordw is called aLyndon wordif it is primitive and minimal among all its conjugates with
respect to some lexicographic order. In the binary caseA = {a, b}, there are two orders
given bya�b and its inverseb�−1a. It is well known (see, e.g.,[11]), that each primitive
wordwhas a unique Lyndon conjugate with respect to a given order. For example, consider
w = abaabb. Thenaabbabandbbabaaare conjugates ofw and they are minimal with
respect to the order� and�−1, respectively. These words are thus Lyndon words.

2. Optimal words for border correlation

Letwbe a nonempty word of lengthn inA∗. If it is not primitive, that is,w = uk for someu
andk�2, then it is immediate that all conjugates ofw are nonprimitive, and thus bordered.
Therefore,�(w) = bn in this case. It is also clear that� is invariant under renaming.
That is, if w′ is obtained fromw by exchanging the lettersa andb, then�(w′) = �(w).
Therefore� is not injective, and thus not surjective, that is, there are at most 2n−1 words of
lengthn that are�-images. In fact, this number is much lower as we will show later with
Corollary7.

The following lemma gives some useful properties of the images�(w). By the second
case of the lemma,�(w) does not contain two adjacent lettersa unlessw is a conjugate of
the special wordsabn−1 or ban−1. Notice that�(abn−1) = aabn−2 = �(ban−1).

Lemma 1. Letw ∈ A∗ of lengthn�4.

(i) If w is primitive, then|�(w)|a �2.
(ii) For eachi = 0,1, . . . , n − 1, �i (w) or �i+1(w) is bordered, or w ∈ [

abn−1
]
or

w ∈ [
ban−1

]
.

(iii) The word w can have at most�|w|/2� unbordered conjugates.

Proof. For (i), we notice, as mentioned in the introduction, that each primitive wordw has
two Lyndon conjugates. Since Lyndon words are unbordered (see Lothaire[11]), the claim
follows.

For (ii), assume thatw is not a conjugate ofabn−1 nor ofban−1, and hence, it has at least
two occurrences ofa and ofb. Letw′ = �i (w) be any unbordered conjugate ofw. Without
loss of generality, we assume thatw′ begins witha, and, consequently,w′ = abkxabj ,
wherej > k�0 and the wordxa begins witha, sincew′ is unbordered. (We may have
x = ε.) Now, �(w′) = bkxabja has a borderbka, and hence,�i+1(w) is bordered, as
required.

The claim (iii) is clear from (ii). �
In particular, if the length ofw is an odd number�5, thenwhas two adjacent conjugates

that are both bordered.
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Example 2. Considerw = abbabaa. Although the image�(w) = bababab does not
containb2 as a factor, it has a conjugate that does so. Indeed, the adjacent conjugates
�6(w) = aabbaba and�7(w) = w are both bordered.

Lemma1 (iii) states that a word of length 4 or more has at most�|w|/2� unbordered
conjugates. The next example shows such words.

Example 3. There are words for which the maximum number�|w|/2� of unbordered con-
jugates is obtained. Every second conjugate ofw is unbordered, for instance, in the fol-
lowing casesw = aabb andw = abaabbaababb. In these examples,�(w) = (ab)|w|/2.
However, there is no word of length 10 that has 5 unbordered conjugates (see Theorem
6). Also, e.g., forw = aabbbab of odd length, we have�(w) = ababbab, and hence,
|�(w)|a = 3 = �|w|/2� in this case.

There is a close relationship between overlap-free binary words and the maximum number
of unbordered conjugates. Theorems5 and6 clarify this relation. Before we prove these
theorems, let us recall that theThue–Morsemorphism[14,15] �: A∗ → A∗ is defined by
�(a) = ab and�(b) = ba.

The following result is due to Thue[15] (see also[9]).

Lemma 4. Letw ∈ A∗ be a cyclically overlap-free word.

(i) �(w) is cyclically overlap-free.
(ii) �−1(w) is cyclically overlap-free ifw ∈ {ab, ba}∗.

(iii) Either w or�(w) has a factorization in terms of ab and ba, that is, w ∈ {ab, ba}∗.
(iv) For someu ∈ {a, b, aab, abb} andn�0, w ∈ [

�n(u)
]
. In particular, |w| = 2n or

3 × 2n for somen�0.

Note, that cyclically overlap-free words longer than 3 are of even length. Theorem5
shows that cyclically overlap-free binary words have a maximum number of unbordered
conjugates. In the theorem, “every other conjugate ofw is unbordered” means, by Lemma
1(iii), that �(w) is (ab)n/2 or (ba)n/2 for some evenn.

Theorem 5. Letw ∈ A∗ and |w| > 3. Every other conjugate of w is unbordered, if and
only if w is a cyclically overlap-free word.

Proof. Letw be a word of lengthn that contains an overlapping factor, i.e.,w = ucxcxcv,
wherec ∈ A andu, v, x ∈ A∗. Let i = |ucx|. Then the conjugates�i (w) = cxcvucx and
�i+1(w) = xcvucxc are both bordered, with borderscxandxc, respectively.

In the other direction, suppose thatw is cyclically overlap-free word such that both�(w)

and�2(w) are bordered. Clearly,|w|�4. We derive a contradiction which proves the claim.
Let u be the shortest border of�(w) andv be the shortest border of�2(w). Note that in
general the shortest border of a wordg is not longer than�|x|/2�.

We shall assume thata�w. The caseb�w is symmetric, and it can be thus
omitted.
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Case1: Assume first thataa�w. Thenu = a, and�(w) ∈ {ab, ba}∗ by Lemma4(iii). It
follows thataab�w, and hencew = aabw0b wherew0 ∈ {ab, ba}∗ and the�-factorization
of �(w) is given by�(w) = (ab)w0(ba). Now,�2(w) = bw0baa. Note thatv �= baa for the
borderv of �2(w), becausew0 ∈ {ab, ba}∗. Consequently,v = bv′baa for somev′ ∈ A∗.
Since�2(w) = vzv for some nonemptyz, and�(w) ∈ {ab, ba}∗, w has a conjugatevvby
(wherez = by). This is a contradiction, sincevbegins withband sovvbis not overlap-free.
Case2: Assume thatab�w. We have now thatbb is a suffix ofw, sincew is unbordered.

Therefore again�(w) ∈ {ab, ba}∗ which implies thatu = ba, and alsoaba�w, sayw =
abaw0b. We havew = abaw1bb, sincew is unbordered. Moreover,w = abaw2abb, since
�(w) ∈ {ab, ba}∗. Actually, w = abaabw3abb, since�−1(�(w)) is cyclically overlap-
free by Lemma4(ii) and thus it is also in{ab, ba}∗. We have the following�-factorization
�(w) = (ba)(ab)w3(ab)(ba), wherew3 ∈ {ab, ba}∗. Now, the shortest borderv of �2(w)

is either (2a)v = aabbab or (2b) v = aabv′abbab for some wordv′. In Case (2a), we
have�2(w) = aabbabw4aabbab, wherew4 �= ε (for, otherwise,�−1(�(w)) /∈ {ab, ba}∗).
Hence,�(w) = (ba)(ab)(ba)(bw4a)(ab)(ba) and sow4 = aw5b, that is,

�(w) = (ba)(ab)(ba)(ba)w5(ba)(ab)(ba)

and thus�−1(�(w) = babb�−1(w5)bab, and thereforebabbabbis a factor in a conjugate
of the preimage�−1(�(w)) contradicting the overlap-freeness requirement. In Case (2b),
we have thatvvayoccurs in a conjugate ofw. This is a contradiction, sincev begins witha,
and thusvva is an overlapping factor. This completes the proof of the theorem.�

The next theorem shows that words (of even length) with a maximum number of unbor-
dered conjugates are cyclically overlap-free with two exceptions.

Theorem 6. Letn�1.Every word of length2n that has n unbordered conjugates is either
cyclically overlap-free or a conjugate of abbb or aaab.

Proof. Note that�(abbb) = aabb and�(aaab) = abba. The claim follows easily now
from Lemma1 and Theorem5. �

Theorems5 and6 show that every word with a maximum number of unbordered con-
jugates is cyclically overlap-free, except for the conjugates ofabbbandaaab. By Lemma
4(iv), each such word has length either 2n or 3× 2n for somen�1.

Lemma6 and Theorem5 give an upper bound on the number of�-images. LetAn denote
all words overA of lengthn, and letBn denote the number of all�-images of lengthn. Let
Fn be thenth Fibonacci number so thatF0 = 1 andF1 = 1 andFn = Fn−1 + Fn−2, for all
n�3.

Corollary 7. LetM = {2i | i�0} \ {2j ,3 × 2j | j �0}. Then for alln�3

�(An) ⊆
[
aabn−2

]
∪

{
w

∣∣∣ |w|a �2, a2 not in ww
}

\
{
(ab)k, (ba)k | k ∈ M

}
(1)
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Table 1
The numbermof �-images for lengths 1�n�30

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 1 2 4 7 11 18 29 47 76 121 199 310 521 8411364 2207
n 17 18 19 20 21 22 23 24 25 26

m 3571 5776 9349 15125 24476 39601 64079 103682 167761 271441

n 27 28 29 30

m 439204 710645 1149851 1860496

and

Bn�Fn + Fn−2 − m, (2)

wherem = 2, if n ∈ M, andm = 0 otherwise.

Proof. Clearly, (1) follows from Lemma6 and Theorem5. We show how (2) follows from
(1).

Let An denote the set of words of lengthn that have no factorsa2. Now,

(i) eachw ∈ An−1 yields an elementwb ∈ An, and all elements ofAn ending inb can
be so obtained;

(ii) eachw ∈ An−1 ending withb yieldswa ∈ An, and all elements ofAn ending ina can
be so obtained.

By case (i), the number of required wordsw in case (ii) is equal to|An−2|. Therefore,
|An| = |An−1| + |An−2|. Since|A1| = 2, we have that|An| = Fn+1 for all n�1.

Moreover, forn�5, the wordsw ∈ An that begin and end inaare of the formw = abvba,
wherev ∈ An−4. Hence the number of these words isFn−3. We conclude that there are
Fn+1 − Fn−3 = Fn + Fn−2 words of lengthnwith n�5 whose conjugates do not have the
factora2.

We do not consider then different words of lengthnwith exactly onea. Therefore,{w |
|w|a �2, a2 not inww} hasFn + Fn−2 − n elements. Clearly,[aabn−2] hasn elements.
The claim then follows forn�5 from Lemma1. By inspection, we see that (2) holds for
n = 3 and 4, and thus the claim follows for alln�3. �

Remark 8. We have calculatedBn for all n�30 using a computer; see Table1.
It is remarkable that the bound (2) given in Corollary7 is tight for all n�30 except

if n = 12. That isBn = Fn + Fn−2 − m for all 3�n�30 except ifn = 12 where
m = 2, if n ∈ M, andm = 0 otherwise. Actually, there exists no wordw such that
�(w) ∈ [abababbababb]. We have thatB12 = F12 + F10 − 12.

3. Unbordered conjugates and critical factorizations

In this section, we investigate the relation between the border correlation function and
critical factorizations. First, we introduce the critical points of words.
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Let w = a0a1 . . . an−1 ∈ A∗, whereai ∈ A for eachi. An integer 1�q�n is aperiod
of w, if ai = ai+q for all 0� i < n − q. The smallest period ofw is denoted by�(w). For
instance,�(w) = |w|, if and only ifw is unbordered. It is easy to see thatq, with 1�q� |w|,
is a period ofw, if and only if there is a wordv of lengthq such thatw is a factor ofvn for
somen�1. Let for examplew = abaababa. Then the periods ofw are 5,7, and 8= |w|.
In this example,�(w) = 5.

An integerp with 1�p < |w| is called apoint in w. Intuitively, a pointp denotes the
place betweenap−1 andap in w above. A nonempty wordu is called arepetition wordat
pointp if w = xy with |x| = p and there existx′ andy′ such thatu is a suffix ofx′x and a
prefix ofyy′. For a pointp in w, let

�(w, p) = min{|u| | u is a repetition word atp}

denote thelocal period at pointp in w. Let for examplew = abaabab. Now, for in-
stance,�(w,2) = 3, since the shortest repetition word atp = 3 is aab. Indeed,aw =
(aab)(aab)ab. The shortest repetition words ofw for the pointsp = 1,2, . . . ,6 are, re-
spectively,ba, aab, aba, babaa, ab, andba. We notice that�(w) = 5 = �(w,4).

Note that the repetition word of length�(w, p) at pointp is necessarily unbordered and
�(w, p)��(w). A factorizationw = uv, with u, v �= ε and|u| = p, is calledcritical, if
�(w, p) = �(w), and, if this holds, thenp is calledcritical point.

We recall the critical factorization theorem next[11] (see also[10]).

Theorem 9. Every word w, with |w|�2, has at least one critical factorizationw = uv,
with u, v �= ε and|u| < �(w), i.e., �(w, |u|) = �(w).

The following lemma is a consequence of the critical factorization theorem. It is proven
in [2].

Lemma 10. Letw = uv be unbordered and|u| be a critical point. Then vu is unbordered.

There is no direct relationship between critical points and unbordered conjugates in
general, since, for instance, the number of critical points is not invariant under cyclic shifts
whereas the border correlation function is; see Remark15 in the next section. Moreover, if
w = uv such thatvu is unbordered, then|u| is not a critical point in general.

Example 11. Consider the conjugate class ofw = ababa

[w] = {ababa, babaa, abaab, baaba, aabab}

with 4, 1, 2, 2, and 1 critical points, respectively. However, the wordw has exactly two
unbordered conjugatesbabaaandaabab.

In general, it is not so that there is a wordw′ in the conjugate class of some wordw such
that the critical points ofw′ mark the unbordered conjugates ofw like babaaandaababin
the above example.
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Example 12. Consider the conjugate class ofw = abbabaab. We have exactly two critical
points for everyw′ ∈ [w], but four unbordered conjugates in[w].

However, if critical points are considered modulo cyclic shifts, the situation changes. Let
w be a word of lengthn. We call an integerp, with 0�p < n, an internal critical point
of w, if p + n is a critical point ofwww. The following lemma shows that internal critical
points are invariant under cyclic shifts.

Lemma 13. Let w be a word of length n. The point p is internal critical of w, if and only if
the point

q =
{

p − i if p� i,
p + n − i otherwise

with 0� i < n, is an internal critical point ofu = �i (w).

Proof. Clearly,wwwcontains all conjugates ofww. Moreover, it follows from�(ww) =
�(w)�(w) that uuu also contains all conjugates ofww. In fact, let v ∈ [w] such that
v = �j (w) with 0�j < n, thenvv = �j (ww) andwww = xvvz where|x| = j . In
particular,uuu = x′vvz′, where|x′| = j − i, if j � i, and|x′| = j + n − i otherwise.

Surely, the implication directions of the claim are symmetric to each other. Assumep is
an internal critical point ofw. Let v be the shortest repetition word at pointp + n in www.
We have thatv is a conjugate ofw, sincep+n is critical. So,www = xvvz where|x| = p.
Now,uuu = x′vvz′ where|x′| = p− i, if p� i, and|x′| = p+n− i otherwise, and hence,
the pointq + n is critical, and this proves the claim.�

Theorem 14. Let w be a primitive word of length n, and let0�p < n. Then the following
statements are equivalent:

• p is an internal critical point of w.
• The conjugate�p(w) is unbordered.

Proof. Assumep is an internal critical point ofw. Thenwww = xvvz where|x| = p and
v is an unbordered factor of lengthn in ww. Hence,�p(w) = v.

Assumev = �p(w) is an unbordered conjugate ofw. Thenwww = xvvz with |x| = p,
andp + n is a critical point ofwww. Hence,p is an internal critical point ofw. �

4. Iterations of the border correlation function

In this section we investigate iterations of the border correlation function. We start by
considering the�-graphG�(n) for eachn�1. It is the directed graph with the setAn =
{w | |w| = n,w ∈ A∗} as vertices, and with edges determined by the border correlation
function�, that is, there is a (directed) edgeu → v, if and only if �(u) = v. Note that
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every vertex has exactly one outgoing edge. In order to avoid trivial exceptions, we assume
in this section thatn�3.

Remark 15. It is straightforward to see that�(�(w)) = �(�(w)), that is, the following
diagram commutes.

w
�−−−−→ u

�




�

w′ �−−−−→ u′

So, the�-graphG�(n) consists of components where each component contains exactly
one cycle, since for all members of one conjugate class[w] the images are mapped to the
conjugate class

[
�(w)

]
and every vertex has not more than one outgoing edge.

In the following we show that any cycle in the graphG�(n) consists of exactly one
conjugate class. Moreover, we describe all conjugate classes that form a cycle.

Let �: A∗ → N where�(w) denotes the minimumk such thatabka occurs in any
conjugate ofw, orw is a conjugate ofabk, or w = bk. Note thatk = 0, if, and only if,a2

occurs inwor �(w). Let�: A∗ → N × N be defined such that�(w) = (|w|a, |w|−�(w)).
Note that�(w) = �(�(w)). Let< denote the extension of the ordering of natural numbers
to the lexicographic order onN × N; in other words,(p, q) < (r, s) if p < r, or p = r

andq < s.

Theorem 16. Let w be a word not inb∗ and not in[abk] ∪ [abkabk+1], for all k�0.Then
�(�(w)) < �(w).

Proof. Let w be a word of lengthn that is not inb∗ ∪ [abn−1] and not in[abkabk+1], for
k = (n − 3)/2. Note thata occurs at least twice inw. If w is not primitive, then�(w) =
bn and, in this case, it is clear that�(�(w)) < �(w). Assume then thatw is primitive.
Because�(w) = �(�(w)), we can choose any conjugate ofwwithout changing its� image.
Therefore, we can assume thatw begins witha and that it is unbordered. For example, we
may take the Lyndon word in the conjugate class[w] with respect to the ordera�b. We
have now a unique factorization in the formw = B1B2 · · ·Br , where eachBi = abki with
r�2 andki �0 for all 1� i�r. Letmbe the minimum of allki .

Note that|�(w)|a � |w|a by Lemma1. So, every occurrence of the lettera in w implies
at most onea in �(w), because if theith letter ofw is a, then�i−1(w) and�i (w), cannot
both be unbordered conjugates ofw by Lemma1(ii). If an occurrence ofa in w does not
imply ana in �(w), we say that this occurrence ofa is dropped.

The claim follows, if|�(w)|a < |w|a , and therefore, we can assume that|�(w)|a = |w|a ,
that is, no occurrence ofa is dropped: for everyi�1, if the ith letter inw is ana, then either
�i−1(w) or �i (w) is unbordered. Sincew begins witha and is unbordered, we have that
�(w) = B ′

1B
′
2 · · ·B ′

r , whereB ′
i = abk′

i andk′
i > 0 for all 1� i�r. Note that thea in B ′

i

corresponds to the unbordered conjugate ofw, if w is factored either before or after the
occurrence ofa in Bi . We show that�(w) < �(�(w)) in this case.
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Let i + 1 be modulor in the following, and letj = |B1B2 · · ·Bi |. If ki = ki+1 then the
a in Bi+1 is dropped, that is, neither�j (w) nor �j+1(w) is bordered; a contradiction. So,
assume thatki �= ki+1.

Note that ifki > ki+1 then�j+1(w) is bordered and�j (w) is unbordered by assumption,
and ifki < ki+1 then�j (w) is bordered and�j+1(w) is unbordered by assumption.

If ki > ki+1 thenk′
i = ki , in caseki−1 > ki , andk′

i = ki − 1, in caseki−1 < ki .
If ki < ki+1 thenk′

i = ki + 1.

Now, we have that|ki −k′
i |�1. If ki = m thenk′

i = k+1. However, we getk′
i = m, if and

only if ki−1 = m andki = k + 1 andki+1 = m, andr�4, sincew /∈ [abkabk+1] and, by
assumption,|�(w)|a = |w|a . Therefore, we also haveki−2 > m andbm+1abmabm+1abma

occurring in a conjugate ofw, and both�j (w) and�j+1(w) are bordered; a contradiction.
So, k′

! > m, for all 1�!�r, if |�(w)|a = |w|a , and therefore we have�(�(w)) <

�(w). �

Lemma 17. Letw ∈ [abkabk+1] with k�0.Then

[abkabk+1] = {�i (w) | 0� i < |w|} .

Proof. We have thatw = brabsabt , where eitherr + t = k ands = k + 1, or r + t =
k + 1 ands = k. Now �(w) = br+1abs−1abt = �s(w) in the former case and�(w) =
brabs+1abt−1 = �s+1(w) in the latter case. That is,�(w) = �k+1(w), and the claim
follows, since 2k + 3 andk + 1 are relatively prime. �

Note that the proof of Lemma17gives�j (�i (abkabk+1)) = �m(abkabk+1) wherem is
i + j (k + 1) modulo(2k + 3).

We are now ready to show that iterations of� on any binary word result in a word of a
certain shape.

Theorem 18. For every word w, there exists ani�0 such that�i (w) ∈ b∗ or �i (w) ∈
[abkabk+1].

Proof. Letwbe a word of lengthn. Note that�(w) = bn, if w is not primitive. Assume thus
thatw is primitive. Note that if�(w) �= �(u) then[w] �= [u], and that�(w) �∈ [abn−1],
sincew has at least two unbordered conjugates. Ifw ∈ [abn−1] then�(w) ∈ [aabn−2]. If
w ∈ [abkabk+1] then�(w) ∈ [abkabk+1] by Lemma17.

Suppose now thatw is different frombn andw is not in [abn−1] ∪ [abkabk+1] for
k = (n − 3)/2. Since the values of� strictly decrease after an application of�, by Theorem
16, we conclude that there exists ani�1 such that�i (w) = bn or �i (w) ∈
[abkabk+1]. �

Observe that by Theorem18 for every wordw of even length there exists ani�0 such
that�(w) = b|w|.
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5. Discussion

We have investigated the border correlation function� of binary words. The shape of�
images for words with a minimal and maximal number of unbordered conjugates has been
clarified. Nevertheless, the set�(A∗) has not been completely described. Corollary7 seems
to give a very good estimation. All�-images up to length 30 have been checked and only
words of length 12 seem to be exceptional.

Apart from the border correlation function� one could investigate an extension�′: A∗ →
N∗ of that function such that a wordw of lengthn is mapped tom0m1 · · ·mn−1 wheremi

is the length of the shortest border of�i (w) for all 0� i < n. We just notice here that�′ is
injective, since, ifu = wau′ andv = wbv′, then clearly the shortest borders of the|w|th
conjugatesau′w andbv′w are different, because one of them is equal to 1, and the other is
not.
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