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Abstract

The border correlation functiofi: A* — A*, for A = {a, b}, specifies which conjugates (cyclic
shifts) of a given wordav of lengthn are bordered, in other words$(w)=cqc1...c;,—1, wherec;=a orb
according to whether thiéh cyclic shifte’ (w) of wis unbordered or bordered. Except for some special
cases, no binary wond has two consecutive unbordered conjugatégg) andai+1(w)). We show
that this is optimal: in every cyclically overlap-free word every other conjugate is unbordered. We
also study the relationship between unbordered conjugates and critical points, as well as, the dynamic
system given by iterating the functigh We prove that, for each wond of lengthn, the sequence
w, B(w), B2(w), ... terminates either i" or in the cycle of conjugates of the word*ab 1 for
n=2k+ 3.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A word w is said to beunbordered(or self-uncorrelated13]), if the only border ofw
is the word itself, that is, ifw = uv = vu’ for a nonempty words, thenv = w and,
consequentlyy = u’ = ¢, the empty word. A wordi is afactor of a wordw, if w = winw>
for some (possibly empty) words; andw,. Unbordered words and factors of words play a
significant role in some proofs concerning combinatorial properties of words. The questions
involving periodicity of finite and infinite words are naturally related to the border structure
of words see, e.g[3—-7,11] As another example, we mention that the existence of borders in
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words appear in the study of coding properties of sets of words as well as in unavoidability
studies of words; see, e.fl,13].

In this paper, we study the border structure of words with respect to conjugation. We
shall consider solely binary words. To this end, we fix our alphabet té be{a, b}. Let
A* denote the monoid of all finite words ovArincluding the empty word, denoted by
Letag: A* — A* be the (cyclic)shift functionof words, wheres(¢) = ¢ ando(cw) = we
forallw € A* andc € A. Theborder correlation functions: A* — A* is defined such
that f(w) specifies which conjugates wfare unbordered: Laet € A* be a word of length
n. Thenf(w) = coc1 . . . cp—1, Where

- Ja if 6/ (w) is unbordered,
"7 | b if ¢'(w)is bordered.

Let f(e) = ¢. For example, letv = aabab. Then

O'O(w) = w = aabab, al(w) = ababa, 0'2(w) = babaa,
03(w) = abaab, 0'4(u)) = baaba

and hencgd(w) = ababb, since onlys®(w) ands?(w) are unbordered. While we consider
only binary words in this paper, note thatan be applied to words over any alphabet and
always yields a binary word.

It is rather easy to show (see Lemmjethat the images(w) of a binary wordw cannot
have two consecutivas (except for some trivial words), that is, for hare boths’ (w) and
o't1(w) unbordered. In Sectiod, we show that the bound given by this fact is optimal.
Indeed, we prove that in every cyclically overlap-free word every other conjugate (that is,
eithers’ (w) or ¢'*t1(w) for eachi) is unbordered.

A word w € A* is overlap-freg if it does not have self-overlapping factors, thatuis,
does not have a factor of the folrtrexcwherec € A andx € A*. Moreoverw s cyclically
overlap-fregif all its conjugates are overlap-free. The cyclically overlap-free binary words
were characterized by Th{ig5]; see SectioR.

There is a close relationship between unbordered conjugates of a word and its critical
points, when critical points are considered independent of cyclic shifts. This relation is
elaborated on in Sectid)

In Sectiord, we shall study the dynamic system given by the border correlation function
. We prove that, for each wosl of lengthn, the sequence, f(w), fZ(w), .. . terminates
eitherinthe wor@” or in the cycle of the conjugates of the waiek a b+ fork = (n—3)/2.

The border correlation function provides a similarity function among the strings. Related
functions of similarity are thauto-correlationfunction of Guibas and OdlyzK8], and the
border-arrayfunction of Moore et al[12].

We end this section with some definitions and notation needed in the rest of the paper.
We refer to Lothaire’s booKL1] for more basic and general definitions of combinatorics on
words.

We denote the length of a wordby |w|. Also, if w € A* andc € A, then|w|, denotes
the number of occurrences of letteiin w. For instance, we have fav = abaab that
|lw|, = 3andjw|, = 2. Supposew = uv. Thenuis called gprefixof w, denoted by: < w,
andyv is called asuffixof w. A nonempty wordk € A* is aborder of a wordw € A*, if
w = uv = v'u for some suitable nonempty wordsandv’ in A*.
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We call two wordsu andv conjugatesdenoted by: ~ v, if u = ¢*(v) for somek >0.
Two conjugatess andv are calledadjacent if a(u) = v. Clearly, ~ is an equivalence
relation. Let[u] = {v | u ~ v} denote theconjugate clas®f u. A word w is primitive if
it is not a proper power of another word, thatis,= u* impliesy = w andk = 1. A
wordw is called a_yndon wordif it is primitive and minimal among all its conjugates with
respect to some lexicographic order. In the binary case {a, b}, there are two orders
given bya<ib and its inversé<1—1a. It is well known (see, e.g[11]), that each primitive
wordw has a unique Lyndon conjugate with respect to a given order. For example, consider
w = abaabb. Thenaabbabandbbabaaare conjugates ofr and they are minimal with
respect to the orden and<i—1, respectively. These words are thus Lyndon words.

2. Optimal words for border correlation

Letwbe a nonempty word of lengttin A*. Ifitis not primitive, thatisp = u* for someu
andk > 2, then it is immediate that all conjugatesmére nonprimitive, and thus bordered.
Therefore,f(w) = b" in this case. It is also clear th@tis invariant under renaming.
That is, if w’ is obtained fromw by exchanging the lettegandb, thenf(w’) = f(w).
Thereforef is not injective, and thus not surjective, that is, there are at nfost@ords of
lengthn that aref-images. In fact, this number is much lower as we will show later with
Corollary7.

The following lemma gives some useful properties of the imgijes. By the second
case of the lemmgi(w) does not contain two adjacent letteranlessw is a conjugate of
the special wordsb"~1 or ba" 1. Notice thatf(ab" 1) = aab" 2 = f(ba"1).

Lemma 1. Letw € A* of lengthn > 4.

(i) If wis primitive, then|f(w)|, > 2.
(i) Foreachi = 0,1,....n — 1, ¢/ (w) or ¢’ "1(w) is bordered or w € [ab"~1] or
w e [ba"’l].
(i) The word w can have at mogtw|/2] unbordered conjugates

Proof. For (i), we notice, as mentioned in the introduction, that each primitive wdnels
two Lyndon conjugates. Since Lyndon words are unbordered (see Lofhajyethe claim
follows.

For (ii), assume thaw is not a conjugate afs”~1 nor of ba”~1, and hence, it has at least
two occurrences ai and ofb. Letw’ = ¢’ (w) be any unbordered conjugatevafWithout
loss of generality, we assume that begins witha, and, consequentlyy’ = abfxab’,
wherej > k>0 and the wordka begins witha, sincew’ is unbordered. (We may have
x = &.) Now, o(w’) = bFxab/a has a bordeb*a, and henceg*1(w) is bordered, as
required.

The claim (jii) is clear from (ii). [

In particular, if the length ofvis an odd numbel: 5, thenw has two adjacent conjugates
that are both bordered.



334 T. Harju, D. Nowotka / Journal of Combinatorial Theory, Series A 108 (2004) 331-341

Example 2. Considerw = abbabaa. Although the imagef(w) = bababab does not
containb? as a factor, it has a conjugate that does so. Indeed, the adjacent conjugates
o®(w) = aabbaba ande’ (w) = w are both bordered.

Lemmal (iii) states that a word of length 4 or more has at mdst|/2| unbordered
conjugates. The next example shows such words.

Example 3. There are words for which the maximum numbgo|/2] of unbordered con-
jugates is obtained. Every second conjugateva$ unbordered, for instance, in the fol-
lowing casesy = aabb andw = abaabbaababb. In these exampleg(w) = (ab)™!/?,
However, there is no word of length 10 that has 5 unbordered conjugates (see Theorem
6). Also, e.g., forw = aabbbab of odd length, we hav@(w) = ababbab, and hence,
|f(w)|, = 3= [|w]|/2] in this case.

There is a close relationship between overlap-free binary words and the maximum number
of unbordered conjugates. TheoreBhand6 clarify this relation. Before we prove these
theorems, let us recall that tAdnue—Morsemorphism[14,15] t: A* — A* is defined by
t(a) = ab andt(b) = ba.

The following result is due to Thuéd5] (see alsg9]).

Lemma 4. Letw € A* be a cyclically overlap-free word

(i) t(w) is cyclically overlap-free
(i) v Y(w) is cyclically overlap-free ifv € {ab, ba}*.
(i) Either w ora(w) has a factorization in terms of ab and that is w € {ab, ba}*.
(iv) For someu € {a,b,aab,abb} andn>0, w € [t"(u)]. In particular, |w| = 2" or
3 x 2" for somen > 0.

Note, that cyclically overlap-free words longer than 3 are of even length. Thebrem
shows that cyclically overlap-free binary words have a maximum number of unbordered
conjugates. In the theorem, “every other conjugate & unbordered” means, by Lemma
A(iii), that f(w) is (ab)"/? or (ba)"/? for some evem.

Theorem 5. Letw € A* and|w| > 3. Every other conjugate of w is unborderetiand
only if w is a cyclically overlap-free word

Proof. Letw be a word of lengt that contains an overlapping factor, i.@.= ucxcxcv,
wherec € A andu, v, x € A*. Leti = |ucx|. Then the conjugates (w) = cxcvucx and
o't (w) = xcvucxc are both bordered, with borders andxc, respectively.

In the other direction, suppose thats cyclically overlap-free word such that batlw)
anda?(w) are bordered. Clearlyw| > 4. We derive a contradiction which proves the claim.
Let u be the shortest border afw) andv be the shortest border ef(w). Note that in
general the shortest border of a wgrs not longer thar |x|/2].

We shall assume that <w. The caseb<w is symmetric, and it can be thus
omitted.
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Casel: Assume first thaia < w. Thenu = a, ando(w) € {ab, ba}* by Lemmad(iii). It
follows thataab < w, and hence = aabwob Wherewg € {ab, ba}* and ther-factorization
of a(w) is given bys (w) = (ab)wo(ba). Now,c?(w) = bwobaa. Note thab # baa for the
borderv of 6?(w), becausevg € {ab, ba}*. Consequentlyy = bv'baa for somev’ € A*.
Sinced?(w) = vzv for some nonempty, anda(w) € {ab, ba}*, w has a conjugatevby
(wherez = by). Thisis a contradiction, sinaebegins withb and sovvbis not overlap-free.

Case2: Assume thatb <w. We have now thatbis a suffix ofw, sincew is unbordered.
Therefore agaiw(w) € {ab, ba}* which implies thatt = ba, and alsaba < w, sayw =
abawgb. We havew = abaw1bb, sincewis unbordered. Moreovelsy = abawoabb, since
o(w) € {ab, ba}*. Actually, w = abaabwzabb, sincet 1(a(w)) is cyclically overlap-
free by Lemmad(ii) and thus it is also i{ab, ba}*. We have the following-factorization
o(w) = (ba)(ab)ws(ab)(ba), wherews € {ab, ba}*. Now, the shortest borderof o2(w)
is either (2a)v = aabbab or (2b)v = aabv’abbab for some wordv’. In Case (2a), we
haves?(w) = aabbabwsaabbab, wherew, # ¢ (for, otherwisez1(a(w)) ¢ {ab, ba}*).
Henceo(w) = (ba)(ab)(ba)(bwsa)(ab)(ba) and sows = awsb, that is,

a(w) = (ba)(ab)(ba)(ba)ws(ba)(ab)(ba)

and thust—1(c(w) = babbt~1(ws)bab, and therefordabbabhis a factor in a conjugate

of the preimage—1(c(w)) contradicting the overlap-freeness requirement. In Case (2b),
we have thatvayoccurs in a conjugate @f. This is a contradiction, sinaebegins witha,

and thusyvais an overlapping factor. This completes the proof of the theorem.

The next theorem shows that words (of even length) with a maximum number of unbor-
dered conjugates are cyclically overlap-free with two exceptions.

Theorem 6. Letn > 1. Every word of lengtt2n that has n unbordered conjugates is either
cyclically overlap-free or a conjugate of abbb or aaab

Proof. Note thatfi(abbb) = aabb and ff(aaab) = abba. The claim follows easily now
from Lemmal and Theorend. [

Theoremss and6 show that every word with a maximum number of unbordered con-
jugates is cyclically overlap-free, except for the conjugategbibandaaah By Lemma
4(iv), each such word has length eithér@ 3 x 2" for somen > 1.

Lemma6 and Theorenb give an upper bound on the numberfisimages. LetA” denote
all words overA of lengthn, and letB,, denote the number of gh-images of lengt. Let
F, be thenth Fibonacci number so thé = 1 andF; = 1 andF,, = F,,_1 + F,,_», for all
n=>3.

Corollary 7. Let M = {2i | i>0}\ {2/,3 x 2/ | j>0}. Then for alln >3

B(A™) © [aab"_z] U {w ’ \wla>2, a2 not in ww} \ {(ab)k, (ba)* |k e M}
(1)



336 T. Harju, D. Nowotka / Journal of Combinatorial Theory, Series A 108 (2004) 331-341

Table 1
The numbem of f-images for lengths & n < 30

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 1 2 4 7 11 18 29 47 76 121 199 310 521 8411364 2207
n 17 18 19 20 21 22 23 24 25 26

m 3571 5776 9349 15125 24476 39601 64079 103682 167761 271441
n 27 28 29 30
m 439204 710645 1149851 1860496

and
B, <F,+F,_2—m, (2)

wherem = 2,if n € M, andm = 0 otherwise

Proof. Clearly, () follows from Lemma6 and Theoren®. We show how 2) follows from

.

Let A, denote the set of words of lengttthat have no factors?. Now,

(i) eachw € A, _; yields an elemenib € A,, and all elements ofi,, ending inb can
be so obtained;

(i) eachw € A,_1 ending withbyieldswa € A,, and all elements o, ending ina can
be so obtained.

By case (i), the number of required wordsin case (ii) is equal tdA,_2|. Therefore,
|An| = |Ap—1| + |An—_2|. Since|A1| = 2, we have thaA,,| = F, 11 foralln>1.

Moreover, fom > 5, the wordsw € A, that begin and end imare of the formw = abvba,
wherev € A,_4. Hence the number of these wordsFs_3. We conclude that there are
Fy11— F,—3 = F, + F,_> words of lengtm with n > 5 whose conjugates do not have the
factora?.

We do not consider the different words of lengtim with exactly onea. Therefore{w |
lwle =2, a? notinww} hasF, + F,_» — n elements. Clearlyjaab” 2] hasn elements.
The claim then follows for >5 from Lemmal. By inspection, we see tha?)(holds for
n = 3 and 4, and thus the claim follows for all>3. [

Remark 8. We have calculate®, for all n <30 using a computer; see Taldle

It is remarkable that the boun@)(given in Corollary7 is tight for all n <30 except
if n = 12. ThatisB, = F, + F,—2 — m for all 3<n <30 except ifn = 12 where
m = 2,ifn € M, andm = 0 otherwise. Actually, there exists no wowdsuch that
B(w) € [abababbababb]. We have thaBi, = F12 + F19 — 12.

3. Unbordered conjugates and critical factorizations

In this section, we investigate the relation between the border correlation function and
critical factorizations. First, we introduce the critical points of words.
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Letw = apay ...a,—1 € A*, whereq; € A for eachi. An integer 1< g <n is aperiod
of w, if ¢; = a;14 forall 0<i < n — q. The smallest period o is denoted by (w). For
instance¢(w) = |w|, ifand only ifwis unbordered. It is easy to see thawvith 1< g < |w],
is a period ofw, if and only if there is a word of lengthq such thatwv is a factor ofv” for
somen > 1. Let for examplew = abaababa. Then the periods of are 57, and 8= |w|.
In this exampleg(w) = 5.

An integerp with 1< p < |w] is called apoint in w. Intuitively, a pointp denotes the
place between,_; anda, in w above. A nonempty word is called arepetition wordat
pointpif w = xy with |x| = p and there exist’ andy’ such thau is a suffix ofx'x and a
prefix of yy’. For a pointp in w, let

O(w, p) = min{lu| | u is a repetition word ap}

denote thdocal period at pointp in w. Let for examplew = abaabab. Now, for in-
stanced(w, 2) = 3, since the shortest repetition word at= 3 is aab. Indeed,aw =
(aab)(aab)ab. The shortest repetition words wffor the pointsp = 1,2, ..., 6 are, re-
spectivelypa, aab, aba, babaa, ab, andba. We notice that(w) =5 = d(w, 4).

Note that the repetition word of lengthw, p) at pointp is necessarily unbordered and
d(w, p) < 0(w). A factorizationw = uv, with u, v # ¢ and|u| = p, is calledcritical, if
d(w, p) = d(w), and, if this holds, thep is calledcritical point.

We recall the critical factorization theorem néki] (see alsq10]).

Theorem 9. Every word wwith |w|>2, has at least one critical factorizatiom = uv,
withu, v # ¢ and|u| < d(w), i.e., d(w, |u]) = d(w).

The following lemma is a consequence of the critical factorization theorem. It is proven
in[2].

Lemma 10. Letw = uv be unbordered anfl| be a critical point. Then vu is unbordered
There is no direct relationship between critical points and unbordered conjugates in

general, since, for instance, the number of critical points is not invariant under cyclic shifts

whereas the border correlation function is; see Rert&ihk the next section. Moreover, if

w = uv such thawvuis unbordered, thejx| is not a critical point in general.

Example 11. Consider the conjugate classwf= ababa

[w] = {ababa, babaa, abaab, baaba, aabab}

with 4, 1, 2, 2, and 1 critical points, respectively. However, the werdas exactly two
unbordered conjugatédmbaaandaabahb

In general, it is not so that there is a wardin the conjugate class of some wasdsuch
that the critical points ofv’ mark the unbordered conjugatesmiike babaaandaababin
the above example.
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Example 12. Consider the conjugate classwf= abbabaab.\We have exactly two critical
points for everyw’ € [w], but four unbordered conjugatesyin].

However, if critical points are considered modulo cyclic shifts, the situation changes. Let
w be a word of lengtin. We call an integep, with 0< p < n, aninternal critical point
of w, if p + n is a critical point ofwww. The following lemma shows that internal critical
points are invariant under cyclic shifts.

Lemma 13. Let w be a word of length n. The point p is internal critical ofifxand only if
the point

_Jp—i if p=>i,
1= p+n—i otherwise

with 0<i < n, is an internal critical point oft = ¢’ (w).

Proof. Clearly, www contains all conjugates afw. Moreover, it follows frome(ww) =
a(w)a(w) that uuu also contains all conjugates ofw. In fact, letv € [w] such that
v = ¢/ (w) with 0<j < n, thenvv = ¢/ (ww) andwww = xvvz where|x| = j. In
particular,uuu = x’vvz’, where|x’| = j — i, if j>i, and|x’| = j +n — i otherwise.

Surely, the implication directions of the claim are symmetric to each other. Asgisne
an internal critical point ofv. Letv be the shortest repetition word at pot- n in www.
We have that is a conjugate ofv, sincep + n is critical. Sowww = xvvz wherelx| = p.
Now, uuu = x'vvz where|x’| = p—i,if p>i,and|x’| = p+n —i otherwise, and hence,
the pointg + n is critical, and this proves the claim.]

Theorem 14. Let w be a primitive word of length, and letO< p < n. Then the following
statements are equivalent

e pis an internal critical point of w
e The conjugater” (w) is unbordered

Proof. Assumep is an internal critical point oiv. Thenwww = xvvz where|x| = p and
vis an unbordered factor of lengthin ww. Henceg? (w) = v.

Assumev = ¢”(w) is an unbordered conjugatewf Thenwww = xvvz with |x| = p,
andp + n is a critical point ofwww. Hencep is an internal critical point ofv. [J

4. lterations of the border correlation function

In this section we investigate iterations of the border correlation function. We start by
considering the-graph G g(n) for eachn > 1. It is the directed graph with the sat =
{w | |lw| =n,w € A*} as vertices, and with edges determined by the border correlation
function g, that is, there is a (directed) edge— v, if and only if f(«) = v. Note that
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every vertex has exactly one outgoing edge. In order to avoid trivial exceptions, we assume
in this section that > 3.

Remark 15. It is straightforward to see thgi(a(w)) = a(f(w)), that is, the following
diagram commutes.

B
w —— u

/! 'B /
w —> U
So, thep-graphG(n) consists of components where each component contains exactly
one cycle, since for all members of one conjugate dlagshe images are mapped to the
conjugate clasﬁﬁ(w)] and every vertex has not more than one outgoing edge.

In the following we show that any cycle in the grapiy(n) consists of exactly one
conjugate class. Moreover, we describe all conjugate classes that form a cycle.

Let k1 A* — N wherex(w) denotes the minimurk such thatab*a occurs in any
conjugate ofy, orw is a conjugate ofib*, or w = b*. Note thatk = 0, if, and only if,a?
occursinvora(w). Letu: A* — N x N be defined such that(w) = (Jw|,, |w| — k(w)).
Note thatu(w) = u(a(w)). Let < denote the extension of the ordering of natural numbers
to the lexicographic order oN x N; in other words(p,q) < (r,s)if p <r,orp =r
andg < s.

Theorem 16. Let w be a word not in* and not in[ab*] U [abfab**1], for all k>0.Then
w(Bw)) < p(w).

Proof. Let w be a word of lengttn that is not inb* U [ab"~1] and not infab*ab**1], for
k = (n — 3)/2. Note thata occurs at least twice iw. If wis not primitive, thens(w) =
b" and, in this case, it is clear that{f(w)) < wu(w). Assume then that is primitive.
Becauseu(w) = u(a(w)), we can choose any conjugatemivithout changing itgcimage.
Therefore, we can assume thabegins witha and that it is unbordered. For example, we
may take the Lyndon word in the conjugate clgs$ with respect to the order<ib. We
have now a unique factorization in the form= B1B> - - - B,, where eaclB; = ab* with
r>=2 andk; >0 for all 1<i <r. Letmbe the minimum of alk;.

Note that|f(w)|, < |w|, by Lemmal. So, every occurrence of the leteeim w implies
at most ona in f(w), because if théth letter ofw is a, thens’~1(w) and¢ (w), cannot
both be unbordered conjugatesvoby Lemmal(ii). If an occurrence of in w does not
imply anain f(w), we say that this occurrence afs dropped

The claim follows, if| f(w)|, < |wl,, and therefore, we can assume tifdtv)|, = |wlq,
thatis, no occurrence afis dropped: for every> 1, if theith letter inw is ana, then either
o'~L(w) or ¢’ (w) is unbordered. Since begins witha and is unbordered, we have that
p(w) = B{B;--- B, whereB] = abki andk; > 0O for all 1<i <r. Note that thea in B;
corresponds to the unbordered conjugatevpif w is factored either before or after the
occurrence o&in B;. We show thak(w) < x(f(w)) in this case.
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Leti + 1 be modula in the following, and letj = |B1B2 - - - B;|. If k; = k; 1 then the
ain Biy1 is dropped, that is, neither (w) nor ¢/ *1(w) is bordered; a contradiction. So,
assume that; # k1.

Note that ifk; > k;1 thens/*1(w) is bordered and/ (w) is unbordered by assumption,
and ifk; < k; 1 thena/ (w) is bordered and/*1(w) is unbordered by assumption.

If k; > k;11thenk! = k;, in casek;_1 > k;, andk; = k; — 1, in case;_1 < k;.

If k; < kit thenklf =k + 1.

Now, we have thajk; —k;| <1.If k; = m thenk] = k+1. However, we get; = m, ifand
only if k;_1 = m andk; = k + 1 andk; 1 = m, andr >4, sincew ¢ [abFab**1] and, by
assumption,f(w)|, = |w|,. Therefore, we also havg_» > m andb”ab™ab™1ab™a
occurring in a conjugate of, and boths/ (w) ande/*1(w) are bordered; a contradiction.

So,k, > m, for all 1<e<r, if |Bf(w)la = |wls, and therefore we have(f(w)) <
u(w). O

Lemma 17. Letw € [abfab*t1] with k>0. Then

[ab*ab* ™ = (B (w) | 0<i < |wl} .

Proof. We have thaiw = b"ab’ab’, where either +¢t = kands = k+1,0rr +1t =
k + 1 ands = k. Now B(w) = b" ab*~tab’ = ¢*(w) in the former case anfi(w) =
b ab*tlab'~1 = ¢t(w) in the latter case. That ii(w) = ¢**1(w), and the claim
follows, since 2 4+ 3 andk + 1 are relatively prime. [J

Note that the proof of Lemma7 gives’ (¢’ (ab*ab*+1)) = ™ (ab*ab**+1) wheremis
i + j(k+ 1) modulo(2k + 3).

We are now ready to show that iterationsfodn any binary word result in a word of a
certain shape.

Theorem 18. For every word wthere exists an >0 such that[i’i(w) € b* or ,Bi (w) €
[ab¥ab**1].

Proof. Letw be a word of lengtim. Note thatf(w) = »", if wis not primitive. Assume thus
thatw is primitive. Note that ifu(w) # w(u) then[w] # [u], and thatf(w) ¢ [ab" 1],
sincew has at least two unbordered conjugatesv I€ [ab"~1] thenf(w) € [aab™2]. If
w € [abFab*t1] thenB(w) € [ab*ab 1] by Lemmal7.

Suppose now thalv is different froms” andw is not in [ab" 1] U [ab¥ab**1] for
k = (n — 3)/2. Since the values gfstrictly decrease after an applicationfhby Theorem
16, we conclude that there exists an=1 such thatf'(w) = »b" or f(w) €
labkabt1]. O

Observe that by Theored8 for every wordw of even length there exists a0 such
that p(w) = b/,
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5. Discussion

We have investigated the border correlation funciiast binary words. The shape ¢f
images for words with a minimal and maximal number of unbordered conjugates has been
clarified. Nevertheless, the §&tA*) has not been completely described. Corollasgems
to give a very good estimation. All-images up to length 30 have been checked and only
words of length 12 seem to be exceptional.

Apart from the border correlation functighone could investigate an extensignA* —

N* of that function such that a womd of lengthn is mapped tongms - - - m,_1 wherem;

is the length of the shortest bordera{w) for all 0<i < n. We just notice here tha is
injective, since, ifu = wau’ andv = whv’, then clearly the shortest borders of {hgth
conjugatesiu’w andbv’w are different, because one of them is equal to 1, and the other is
not.
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