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Abstract

Using a noncommutative analog of Chevalley’s decomposition of polynomials into symmetric polynomi-
als times coinvariants due to Bergeron, Reutenauer, Rosas, and Zabrocki we compute the graded Frobenius
characteristic for their two sets of noncommutative harmonics with respect to the left action of the sym-
metric group (acting on variables). We use these results to derive the Frobenius series for the enveloping
algebra of the derived free Lie algebra in n variables.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A central result of Claude Chevalley [3] decomposes the ring of polynomials in n variables
(as graded representation of the symmetric group Sn) as the tensor product of the symmetric
polynomials times the coinvariants of Sn (i.e., polynomials modulo symmetric polynomials with
no constant term).

The coinvariants of the symmetric group can also be defined as its harmonics (the polynomi-
als annihilated by all symmetric polynomial differential operators with no constant term). They
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admit as a basis the famous Schubert polynomials of Schubert calculus, that play an important
role in algebraic combinatorics, see for instance [6].

The space of invariant polynomials in noncommutative variables was introduced in 1936 by
Wolf [16] where she found a noncommutative version of the fundamental theorem of symmet-
ric functions. This space has been studied from a modern perspective in [1,2,13]. On the other
hand, two sets of noncommutative harmonics for the symmetric group were introduced in [1] that
translated into two noncommutative analogues of Chevalley decomposition for the ring of poly-
nomials in noncommuting variables. The question of decomposing as Sn-modules both kinds of
noncommutative harmonics was left open. This is the starting point in our investigations.

We begin the present work with the computation of the graded Frobenius characteristic of
noncommutative harmonics. We then use these calculations to derive the Frobenius series for
the enveloping algebra of the derived free Lie algebra in n variables, A′

n. This last computation
is achieved by using the existence of an isomorphism of GLn(Q)-modules between the space
of polynomials in noncommutative variables, and the tensor product of the space of commuting
polynomials with A′

n.
We conclude this introduction with some basic definitions and results that we will be us-

ing in the following sections. Let Sn denote the symmetric group in n letters. Denote by
Q[Xn] = Q[x1, x2, . . . , xn] the space of polynomials in n commuting variables and by Q〈Xn〉 =
Q〈x1, x2, . . . , xn〉 the space of polynomials in n noncommutative variables.

The space of symmetric polynomials in n variables will be denoted by Symn and the space of
noncommutative polynomials which are invariant under the canonical action of the symmetric
group Sn will be denoted by NCSymn.

Given any polynomial f (Xn) ∈ Q[Xn], the notation f (∂Xn) represents the polynomial turned
into an operator with each of the variables replaced by its corresponding derivative operator.
Analogous notation will also hold for f (Xn) ∈ Q〈Xn〉 except that there are two types of differen-
tial operators acting on words in noncommutative variables. The first is the Hausdorff derivative,
∂x , whose action on a word w is defined to be the sum of the subwords of w with an occurrence
of the letter x deleted. The second derivative is the twisted derivative, dx , which is defined on w

to be w′ if w = xw′, and 0 otherwise. Both derivations are extended to polynomials by linearity.
It is interesting to remark (as does Lenormand in [8], section Séries comme opérateurs) that

these two operations are dual to the shuffle and concatenation products respectively, with respect
to a scalar product where the noncommutative monomials are self dual. That is,

〈∂xf, g〉 = 〈f,x ��g〉, and

〈dxf,g〉 = 〈f,xg〉.
Following [1], we introduce the following two sets of noncommutative analogues of the har-

monic polynomials. The canonical action of the symmetric group endow them with the structure
of Sn-modules.

MHarn = {
f ∈ Q〈Xn〉: p(∂Xn)f (Xn) = 0 for all p ∈ Mn

}
,

NCHarn = {
f ∈ Q〈Xn〉: p(dXn)f (Xn) = 0 for all p ∈ Mn

}
where Mn = {p ∈ NCSymn with p(0) = 0}.

We are now ready to state the two decompositions of Q〈Xn〉 as the tensor product (over Q) of
its invariants times its coinvariants that we have described.

Proposition 1. (See [1, Theorems 6.8 and 8.8].) As graded Sn-modules,
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Q〈Xn〉 � MHarn ⊗ Symn,

Q〈Xn〉 � NCHarn ⊗ NCSymn.

2. The Frobenius characteristic of noncommutative harmonics

In this section we compute the Frobenius characteristic of both kinds of noncommutative
harmonics. This section is based of the observation that the graded Frobenius series for each of
the Sn-modules appearing in Proposition 1 is either known or can be deduced from the existence
of the isomorphisms described there.

The expressions for Frobenius images and characters will require a little use of symmetric
function notation and identities. We will follow Macdonald [9] for the notation of the sλ Schur, hλ

homogeneous, eλ elementary and pλ power sums bases for the ring of symmetric functions Sym,
that we identify with Q[p1,p2,p3, . . .]. For convenience we will make use of some plethystic
notation.

For a symmetric function f , f [X] represents the symmetric function evaluated at an unspec-
ified (possibly infinite) alphabet X. Then, f [X(1 − q)] is the image of f under the algebra
automorphism sending the power sum symmetric function pk to (1 − qk)pk[X]. Similarly,
f [ X

1−q
] is the image of the symmetric function f under the inverse automorphism (sending the

power sum pk to pk/(1 − qk)).
In our calculations, we use the Kronecker product 	 of symmetric functions. This opera-

tion on symmetric functions corresponds, under the Frobenius map, to the inner tensor product
of representations of the symmetric group (tensor product of representations with the diagonal
action on the tensors). It can also be defined directly on symmetric functions by the equation
pλ 	 pμ = δλ,μ(

∏
i ni(λ)!ini (λ))pλ where ni(λ) is the number of parts of size i in λ, and then

extended by bilinearity.
We introduce the notations

(q;q)k = (1 − q)
(
1 − q2) · · · (1 − qk

)
,

{q;q}k = (1 − q)(1 − 2q) · · · (1 − k q).

Then qd/{q;q}d is the generating function for the set partitions with length d and qd/(q;q)d is
the generating function for partitions with length d , [15]. Finally, since Symn and NCSymn are
made of graded copies of the trivial Sn-module we conclude that

FrobSn
(NCSymn) = hn[X]

n∑
d=0

qd

{q, q}d ,

FrobSn
(Symn) = hn[X] 1

(q;q)n
= hn[X]

n∑
d=0

qd

(q;q)d
.

In the following lemma we compute the graded Frobenius characteristic for the module
Q〈Xn〉.

Lemma 2 (The Frobenius characteristic of Q〈Xn〉).

FrobSn

(
Q〈Xn〉

) =
n∑

d=0

qd

{q, q}d h(n−d,1d )[X].
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Proof. For each monomial xi1 · · ·xir , we define its type ∇(xi1 · · ·xir ) to be the set partition of
[r] = {1,2, . . . , r} such that a and b are in the same part of the set partition if and only if ia = ib in
the monomial. For a set partition A with at most n parts, we will let MA equal the Sn submodule
of Q〈Xn〉 spanned by all monomials of type A. As Sn-module,

Q〈Xn〉 �
n⊕

d=0

⊕
A: �(A)=d

MA

where the second direct sum is taken over all set partitions A with d parts.
Fix a set partition A, and let d be the number of parts of A, and x�i = xi1xi2 . . . xir be the small-

est monomial in lex order in MA. It involves only the variables x1, x2, . . . , xd . The representation
MA is the representation of Sn induced by the action of the subgroup Sd × S

n−d
1 � Sd on the

subspace Q[Sd ] · x�i . The representation Q[Sd ] · x�i of Sd is isomorphic to the regular represen-
tation. We use the rule for a representation R of Sd induced to Sn,

FrobSn

(
R ↑Sn

Sd

) = hn−d [X]FrobSd
(R),

and conclude that the Frobenius characteristic of MA is h(n−d,1d )[X]. Hence the graded Frobe-
nius characteristic of Q〈Xn〉 is

FrobSn

(
Q〈Xn〉

) =
n∑

d=0

∑
A: �(A)=d

q |A|h(n−d,1d )[X] =
n∑

d=0

qd

{q, q}d h(n−d,1d )[X]. �

We are now able to compute the Frobenius characteristic for MHarn and NCHarn.

Theorem 3 (The Frobenius characteristic of the noncommutative harmonics).

FrobSn
(MHarn) = (q;q)n

n∑
d=0

qd

{q, q}d h(n−d,1d )[X]

and

FrobSn
(NCHarn) =

(
n∑

d=0

qd

{q, q}d

)−1 n∑
d=0

qd

{q, q}d h(n−d,1d )[X].

Proof. This follows since FrobSn
(MHarn ⊗ Symn) = FrobSn

(MHarn) 	 FrobSn
(Symn).

Since hn[X] is the unity for the Kronecker product on symmetric functions of degree n,
and since FrobSn

(Symn) = hn[X]/(q;q)n, we conclude that FrobSn
(MHarn)/(q;q)n =

FrobSn
(Q〈Xn〉). We can now solve for FrobSn

(MHarn).
A similar argument demonstrates the formula for FrobSn

(NCHarn). We have from Proposi-
tion 1 and Lemma 2,

n∑
d=0

qd

{q, q}d h(n−d,1d )[X] = FrobSn

(
Q〈Xn〉

)
= FrobSn

(NCHarn) 	FrobSn
(NCSymn)
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=
n∑

d=0

qd

{q, q}d hn[X] 	FrobSn
(NCHarn)

=
(

n∑
d=0

qd

{q, q}d

)
FrobSn

(NCHarn).

From this equation we can solve for FrobSn
(NCHarn). �

As a corollary, we obtain the generating functions for the graded dimensions of these spaces.

Corollary 4 (The Hilbert series of the noncommutative harmonics).

dimq(MHarn) = (q;q)n

1 − nq
,

dimq(NCHarn) = 1

(1 − nq)
∑n

d=0
qd

{q,q}d
.

Proof. After Theorem 3,

FrobSn
(MHarn) = (q;q)nFrobSn

(
Q〈Xn〉

)
,

FrobSn
(NCHarn) =

(
n∑

d=0

qd

{q, q}d

)−1

FrobSn

(
Q〈Xn〉

)
.

This implies

dimq(MHarn) = (q;q)n dimq

(
Q〈Xn〉

)
,

dimq(NCHarn) =
(

n∑
d=0

qd

{q, q}d

)−1

dimq

(
Q〈Xn〉

)
since the Hilbert series of a graded Sn-module is obtained by coefficient extraction from the
graded Frobenius characteristic (the coefficient of p(1n)[X]/n! in the expansion in power sum
symmetric functions). Last, the Hilbert series of Q〈Xn〉 is 1

1−nq
. �

The graded dimensions of MHarn for 2 � n � 5 are listed in [14] as sequences A122391
through A122394. The sequences of graded dimensions of NCHarn for 3 � n � 8 are listed in
[14] as sequences A122367 through A122372.

3. Noncommutative harmonics and the enveloping algebra of the derived free Lie algebra

Let Ln be the canonical realization of the free Lie algebra inside the ring of polynomials
in noncommuting variables Q〈Xn〉. More precisely, Ln is the linear span of the minimal set of
polynomials in Q〈Xn〉 that includes Q and the variables Xn, and is closed under the bracket
operation [x, y] = xy − yx. Let L′

n = [Ln,Ln] be the derived free Lie algebra. Remark that
Ln = L′

n ⊕ QXn, where QXn denotes the space of linear polynomials. The enveloping algebra
A′

n of Ln can be realized as a subalgebra of Q〈Xn〉 as follows (see [12, 1.6.5]):

A′
n =

⋂
ker ∂x.
x∈Xn



1082 E. Briand et al. / Journal of Combinatorial Theory, Series A 115 (2008) 1077–1085
More explicitly, A′
n is the subalgebra of Q〈Xn〉 generated by all the brackets under concatenation.

In [1] it was established that there is an isomorphism of vector spaces between MHarn and
A′

n ⊗Hn. In this section we will show the following result.

Theorem 5. As Sn-modules,

MHarn � A′
n ⊗Hn.

The proposition will be established by comparing the Frobenius image of MHarn (known
from Theorem 3) to FrobSn

(A′
n ⊗Hn), which is equal to FrobSn

(A′
n)	FrobSn

(Hn). We will
determine FrobSn

(A′
n) in Theorem 8 below. An intermediate step will make use the following

theorem due to V. Drensky.

Proposition 6. (Drensky [5, Theorem 2.6].) As GLn(Q)-modules (and consequently as Sn-
modules),

Q〈Xn〉 � Q[Xn] ⊗A′
n.

Drensky proved Proposition 6 by exhibiting an explicit isomorphism between these two repre-
sentations. We will provide a shorter, alternative proof of this proposition, but before we proceed
we need to introduce some notation.

It is known that Q〈Xn〉 is the universal enveloping algebra (u.e.a.) of the free Lie algebra,
Ln. Using the Poincaré–Birkhoff–Witt theorem, a linear basis for Q〈Xn〉 is given by decreasing
products of elements of Ln. Since we can choose an ordering of the elements of Ln so that
the space of linear polynomials is smallest and decreasing products of linear polynomials are
isomorphic to Q[Xn] (as a vector space), we note that as vector spaces

Q〈Xn〉 = u.e.a.(Ln) = u.e.a.
(
QXn ⊕L′

n

) � Q[Xn] ⊗A′
n.

To distinguish between the commutative elements of Q[Xn] and the noncommutative words
of Q〈Xn〉, we will place a dot over the variables (as in ẋi ) to indicate the commutative variables.

Let [n] = {1,2, . . . , n} and let [n]r denote the words of length r in the alphabet of the numbers
1,2, . . . , n. A word w ∈ [n]r is called a Lyndon word if w < wkwk+1 · · ·wr for all 2 � k � r

where < represents lexicographic order on words.
Every word w ∈ [n]r is equal to a unique product w = �1�2 · · ·�k such that �1 � �2 � · · · � �k

and each �i is Lyndon (e.g. Corollary 4.4 of [12]).
Let � be a Lyndon word of length greater than 1. We say that � = uv is the standard factoriza-

tion of � if v is the smallest nontrivial suffix in lexicographic order. It follows that u and v are
Lyndon words and u < v.

For a Lyndon word �, if � is a single letter a then define Pa = xa ∈ Q〈Xn〉. If � = uv is the
standard factorization of �, then P� = [Pu,Pv]. For any w ∈ [n]r with Lyndon decomposition
w = �1�2 · · ·�k , define

Pw = P�1P�2 · · ·P�k
.

The set {Pw}w∈[n]r forms a basis for the noncommutative polynomials of degree r [12, The-
orem 5.1]. The elements Pw with Lyndon decomposition w = �1�2 · · ·�k such that each Lyndon
factor has degree at least 2 are a basis of A′

n.

Proof of Proposition 6. To prove that Q〈Xn〉 and Q[Xn] ⊗ A′
n are isomorphic as GLn(Q)-

modules, we use the fact that two polynomial GLn(Q)-modules with the same character are



E. Briand et al. / Journal of Combinatorial Theory, Series A 115 (2008) 1077–1085 1083
isomorphic (see for instance the notes by Kraft and Procesi, [7]). The character of a GLn(Q)-
module is the trace of the action of the diagonal matrix diag(a1, a2, . . . , an).

A basis for Q[Xn] ⊗ A′
n are the elements ẋα ⊗ P�1 · · ·P�k

with �1 � �2 � · · · � �k and
|�i | � 2. The action of the diagonal matrix diag(a1, a2, . . . , an) on this basis element is the same
as the action on the noncommutative polynomial x

α1
1 x

α2
2 · · ·xαn

n P�1P�2 · · ·P�k
(multiplication by

a
α1+m1
1 a

α2+m2
2 · · ·aαn+mn

n where mi is the number of occurrences of i in the word �1�2 · · ·�k).
By the Poincaré–Birkhoff–Witt theorem, these polynomials form a basis for Q〈Xn〉, hence the
trace of the action of diag(a1, a2, . . . , an) acting on Q〈Xn〉 and Q[Xn] ⊗ A′

n are equal. Since
their characters are equal, we conclude that they are isomorphic as GLn(Q) modules. �

The GLn(Q)-character of Q[Xn] is
∏n

i=1
1

1−ai
, and the GLn(Q)-character of Q〈Xn〉 is

1
1−(a1+a2+···+an)

. Therefore, the existence of a GLn(Q)-module isomorphism between Q〈Xn〉
and Q[Xn] ⊗A′

n implies the following result.

Corollary 7 (The GLn(Q)-character of A′
n).

charGLn(Q)

(
A′

n

)
(a1, a2, . . . , an) = (1 − a1) · · · (1 − an)

1 − (a1 + a2 + · · · + an)

=
∑
k�0

k∑
i=2

(−1)ie(i,1k−i )(a1, a2, . . . , an).

Moreover this last sum is equal to∑
T

sshape(T )(a1, a2, . . . , an)

where the sum is over all standard tableaux T such that the smallest integer which does not
appear in the first column of T is odd.

By Schur–Weyl duality, the above formula also describes the decomposition of the subspace
of multilinear polynomials (i.e. with distinct occurrences of the variables) of A′

n. That is, if
n is the number of variables, the multilinear polynomials of degree n will be an Sn-module
with Frobenius image equal to

∑n
i=2(−1)ie(i,1n−i )[X]. This decomposition was considered in

the papers [4,10,11] where an expression was given degree by degree up to n = 7. The expansion
of this formula in the Schur basis provided in the theorem agrees with the computations in those
papers.

We can derive a formula for the Frobenius characteristic of A′ by using a similar technique.

Theorem 8 (The Frobenius characteristic of A′
n).

FrobSn

(
A′

n

) =
n∑

d=0

qd

{q;q}d h(n−d,1d )

[
X(1 − q)

]
.

Proof. For any symmetric function f [X] of degree n, we have that

f [X] 	 hn

[
X

1 − q

]
= f

[
X

1 − q

]
.

In particular, since FrobS (Q[Xn]) = hn[ X ], we conclude that

n 1−q
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FrobSn

(
Q〈Xn〉

) = FrobSn

(
A′

n ⊗ Q[Xn]
)

= FrobSn

(
A′

n

) 	 hn

[
X

1 − q

]
= FrobSn

(
A′

n

)[ X

1 − q

]
.

This implies that if we make the plethystic substitution X → X(1 − q) into both sides of this
equation and using Lemma 2 we arrive at the stated formula. �

We can now prove Theorem 5.

Proof of Theorem 5. From Theorem 3 we know the Frobenius image of MHarn, we compare
this to

FrobSn

(
A′

n ⊗Hn

) = FrobSn

(
A′

n

) 	FrobSn
(Hn),

=
n∑

d=0

qd

{q;q}d h(n−d,1d )

[
X(1 − q)

] 	 hn

[
X

1 − q

]
(q;q)n

= (q;q)n

n∑
d=0

qd

{q;q}d h(n−d,1d )[X]

= FrobSn
(MHarn).

Since the two Sn-modules have the same Frobenius image, we conclude that they must be iso-
morphic. �
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