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We show that the distribution of the major index over the set 
of involutions in Sn that avoid the pattern 321 is given by 
the q-analogue of the n-th central binomial coefficient. The 
proof consists of a composition of three non-trivial bijections, 
one being the Robinson–Schensted correspondence, ultimately 
mapping those involutions with major index m into partitions 
of m whose Young diagram fits inside a �n

2 � × �n
2 � box. We 

also obtain a refinement that keeps track of the descent set, 
and we deduce an analogous result for the comajor index of 
123-avoiding involutions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of statistics on pattern-avoiding permutations is an active area of research. 
In one of the first papers in this area, Robertson, Saracino and Zeilberger [24] considered 
the number of fixed points and excedances in permutations avoiding patterns of length 3, 
which sparked further work on these statistics by several authors [7,16–19]. More recently, 
other statistics such as the number of descents [4,5], the major index and the number 

E-mail addresses: marilena.barnabei@unibo.it (M. Barnabei), flavio.bonetti@unibo.it (F. Bonetti), 
sergi.elizalde@dartmouth.edu (S. Elizalde), matteo.silimbani4@unibo.it (M. Silimbani).
http://dx.doi.org/10.1016/j.jcta.2014.08.002
0097-3165/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcta.2014.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:marilena.barnabei@unibo.it
mailto:flavio.bonetti@unibo.it
mailto:sergi.elizalde@dartmouth.edu
mailto:matteo.silimbani4@unibo.it
http://dx.doi.org/10.1016/j.jcta.2014.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcta.2014.08.002&domain=pdf


M. Barnabei et al. / Journal of Combinatorial Theory, Series A 128 (2014) 132–148 133
of inversions [10,15,26] have been studied on restricted permutations. Many of these 
papers show that certain statistics have the same distribution on permutations avoiding 
different patterns, and in some cases they give this distribution.

There has also been a significant amount of work on pattern-avoiding involutions. 
Recall that an involution is a permutation that equals its inverse. In one of the most 
cited papers on pattern avoidance, Simion and Schmidt [29] count involutions avoid-
ing each pattern of length 3. Other more recent papers consider various statistics on 
pattern-avoiding involutions [8,9,14]. The present paper focuses on the descent number 
and major index statistic on 321-avoiding involutions, and more generally on the distri-
bution of the descent set. Similar problems on unrestricted involutions have been well 
studied [2,11,22,33].

One novelty of our work is that we find a surprising connection between pattern-
avoiding involutions and integer partitions. Our main result is that descent sets on 
321-avoiding involutions have the same distribution as certain hook lengths on parti-
tions whose Young diagram fits inside a box. In particular, the major index statistic 
translates to the area of the Young diagram. We obtain a bijective proof by composing 
three non-trivial statistic-preserving bijections, first going from permutations to lattice 
paths and then to partitions. One peculiarity of our main result is that when the length 
of the permutation is large enough in comparison with the largest descent, one can give 
a much simpler proof (discussed in Section 4.2), which does not seem to extend to all 
cases.

In Section 2 we introduce some background on lattice paths, as well as one of the three 
pieces of the main bijection. In Section 3 we state and prove the main results about 
descents and major index on 321-avoiding involutions, presenting the two remaining 
pieces of the bijection, one of which involves the Robinson–Schensted correspondence 
and has been used in [19], and the other one which is new to the best of our knowledge.

In Section 4 we discuss some consequences and extensions. We show that, using ideas 
from [33], our results extend to the ascent distribution on 123-avoiding involutions. We 
also consider descents on involutions avoiding two patterns of length 3. Finally, in Sec-
tion 5 we turn to the larger set of all 321-avoiding permutations, and we obtain formulas 
enumerating those with a given descent set.

Finally, Appendix A discusses an alternate proof of our result about the distribution 
of the major index on 321-avoiding involutions. This proof uses symmetric functions, 
and it is not bijective, unlike the one provided in Section 3.2.

2. Lattice paths

An important tool in our study of pattern-avoiding involutions will be lattice paths. 
In this section we define the paths that we will use and we give some background. 
Unless explicitly stated otherwise, all the paths in this paper are lattice paths with steps 
N = (0, 1) and E = (1, 0) starting at the origin (0, 0). The length of a path is its number 
of steps.
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Fig. 1. The bijection ξ : Pn → Gn. The unmatched steps changed by ξ are thicker and colored in red. The 
labels indicate the positions of the peaks, which are preserved by the bijection. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

A Dyck path is a path ending on the line y = x and not going below y = x. Denote 
by Dn the set of Dyck paths of length 2n. A Dyck path prefix (sometimes called ballot 
path) is a path not going below y = x. We denote by Pn the set of Dyck path prefixes of 
length n. A Grand Dyck path of length n is a path ending at (�n2 �, �

n
2 �). We denote by Gn

the set of Grand Dyck paths of length n. Note that this definition is more general than 
the standard one, which considers only Grand Dyck paths with an even number of steps.

A peak in a path is an occurrence of NE, which we sometimes identify with the vertex 
in the middle of such an occurrence. If we label the vertices of path P ∈ Pn or P ∈ Gn

from 0 to n starting at the origin, the peak set of P , denoted Peak(P ), is the set of 
labels of the vertices that are peaks. For example, the peak set of both paths in Fig. 1
is {2, 6, 9, 14}.

Next we describe a bijection ξ between Pn and Gn, which belongs to mathematical 
folklore. A very similar construction was used by Greene and Kleitman [21] to give a 
symmetric chain decomposition of the boolean algebra, and also more recently by Elizalde 
and Rubey [20] in the context of lattice paths.

Given P ∈ Pn, match Ns and Es that face each other, in the sense that the line 
segment (called a tunnel in [17]) from the midpoint of N to the midpoint of E has slope 
1 and stays below the path. Fig. 1 shows an example. Thinking of the Ns as opening 
parentheses and the Es as closing parentheses, the matched parentheses properly close 
each other. Let j be the number of unmatched steps, which are necessarily N steps, since 
P ∈ Pn. Note that j and n have the same parity. To obtain ξ(P ), change the first � j

2�
unmatched N steps into E steps.

It is clear that ξ(P ) ∈ Gn, since it has �n
2 � E steps and �n

2 � N steps. The inverse map 
is obtained again by matching Ns and Es that face each other in the Grand Dyck path, 
and then changing all the unmatched Es (which necessarily come before the unmatched 
Ns) into Ns.

Lemma 2.1. For every P ∈ Pn, we have

Peak(P ) = Peak
(
ξ(P )

)
.
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Proof. For each peak NE in a Dyck path prefix or Grand Dyck path, the steps N and E
forming the peak are matched to each other, so peaks remain unchanged when applying 
ξ or ξ−1. �
3. 321-avoiding involutions

This section contains the main results of the paper, which concern statistics on 
321-avoiding involutions.

Let Sn (resp. In) denote the set of permutations (resp. involutions) of {1, 2, . . . , n}. 
Recall that a permutation π is an involution if π = π−1. A permutation π(1) . . . π(n) is 
321-avoiding if there exist no i < j < k such that π(i) > π(j) > π(k). Denote by Sn(321)
(resp. In(321)) the set of 321-avoiding permutations (resp. involutions) in Sn.

We say that a permutation π has a descent at position i, where 1 ≤ i < n, if π(i) >
π(i + 1). Otherwise, we say that π has an ascent at that position. The set of descent 
positions of π will be denoted by Des(π), while Asc(π) will denote the set of ascent 
positions. Moreover, we denote by des(π) and asc(π) the cardinalities of Des(π) and 
Asc(π), respectively. The sum of the entries in Des(π) is called the major index of π:

maj(π) =
∑

i∈Des(π)

i.

Similarly, the comajor index of π is the sum

comaj(π) =
∑

i∈Asc(π)

i.

3.1. Number of descents

Our first goal is to give the distribution of the number of descents on 321-avoiding 
involutions. We start by describing a bijection ρ between In(321) and Pn which, without 
the restriction to involutions, appears in [19, Section 3], in [1], and in a similar form in 
[23, p. 64].

Given π ∈ In(321), we first apply the Robinson–Schensted algorithm (see [25, Sec-
tion 3.1]) to obtain a pair of standard Young tableaux of the same shape. By the symmetry 
of this algorithm (see [28]), the fact that π = π−1 translates into the fact that these two 
tableaux are identical. Denote the resulting tableau by Q. Since π avoids 321, this tableau 
has at most two rows (by Schensted’s Theorem [27], the number of rows equals the length 
of the longest decreasing subsequence of π). Thus, the Robinson–Schensted algorithm 
gives a bijection π �→ Q between In(321) and the set of standard Young tableaux with 
n boxes and at most 2 rows.

The tableau Q can be interpreted as a Dyck path prefix, by letting the entries in 
the first row determine the positions of the N steps, and the entries in the second row 
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Fig. 2. The bijection ρ : In(321) → Pn.

determine the positions of the E steps. Define ρ(π) to be this Dyck path prefix. Fig. 2
shows an example of the bijection ρ.

We now show that the distribution of the descent set on 321-avoiding involutions is 
the same as the distribution of the peak set on Dyck path prefixes.

Lemma 3.1. For every π ∈ In(321), we have

Des(π) = Peak
(
ρ(π)

)
.

Proof. Let Q be the tableau obtained by applying the Robinson–Schensted algorithm 
to π. A property of this algorithm (see [28, Remarque 2] and [31, Lemma 7.23.1]) is that 
Des(π) equals the descent set of Q, that is, the set of indices i such that i appears in the 
top row of Q and i + 1 appears in the bottom row. This is equivalent to the i-th step of 
ρ(π) being an N step immediately followed by an E step, namely, a peak. �
Theorem 3.2. For every 0 ≤ k < n,

∣∣{π ∈ In(321) : des(π) = k
}∣∣ =

(
�n

2 �
k

)(
�n

2 �
k

)
.

Proof. By Lemmas 3.1 and 2.1, the composition ξ ◦ρ is a bijection between In(321) and 
Gn with the property that if π ∈ In(321) and P = ξ(ρ(π)) ∈ Gn, then Des(π) = Peak(P ), 
and in particular des(π) = |Peak(P )|. Thus, it is enough to find the number of paths in 
Gn with k peaks. This number equals

(
�n

2 �
k

)(
�n

2 �
k

)
,

since such a path is uniquely determined by the coordinates of its peaks (x1, y1), . . . ,
(xk, yk) with x1 < · · · < xk and y1 < · · · < yk, where the x-coordinates are an ar-
bitrary subset of {0, 1, . . . , �n

2 � − 1} and the y-coordinates are an arbitrary subset of 
{1, 2, . . . , �n

2 �}. �
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Fig. 3. The Young diagram of the partition λ = (4, 4, 3, 3, 2) � 16 inside the box B12, and its hook decom-
position HD(λ) = {2, 6, 8}. The lower-right boundary of the Young diagram determines a Grand Dyck path 
from (0, 0) to (6, 6), which is highlighted in blue. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

3.2. Major index and descent set

In this section we prove our main result. Its unrefined version states that the distribu-
tion of the major index over 321-avoiding involutions is given by the central q-binomial 
coefficients. Recall that the q-binomial coefficients are polynomials defined as

(
n

j

)
q

= (1 − qn)(1 − qn−1) . . . (1 − qn−j+1)
(1 − qj)(1 − qj−1) . . . (1 − q) .

Theorem 3.3. For n ≥ 1,

∑
π∈In(321)

qmaj(π) =
(

n

�n
2 �

)
q

. (1)

It is well known [32, Chapter 6] that the coefficient of qm in the central q-binomial 
coefficient on the right hand side of (1) equals the number of partitions of m whose 
Young diagram fits inside a �n

2 � × �n
2 � box. In the rest of the paper, we denote this box 

by Bn, and we place coordinates on it so that its lower-left corner is at the origin and 
its upper-right corner is at (�n

2 �, �
n
2 �). We write λ � m to denote that λ is a partition 

of m, and we write λ ⊆ Bn to denote that the Young diagram of λ fits inside Bn. By 
looking at the lower-right boundary of their Young diagrams, partitions satisfying the 
above two conditions can be interpreted as Grand Dyck paths from (0, 0) to (�n2 �, �

n
2 �)

with steps N and E such that the area of the region in R2 inside Bn that lies above the 
path is m, as shown in Fig. 3.

We will prove a refinement of Theorem 3.3, which we state as Theorem 3.4 below. 
Given a partition λ � m, we define its hook decomposition HD(λ) = {i1, i2, . . . , ik}
(always written such that i1 < · · · < ik) as follows. The number of entries k is the 
length of the side of the Durfee square of λ, that is, the largest value such that λk ≥ k. 
The largest entry ik is the number of boxes in the largest hook of λ, which consists of 
the first column and first row of its Young diagram. Now remove the largest hook of λ
and define ik−1 to be the number of boxes in the largest hook of the remaining Young 
diagram. Similarly, the remaining entries ij are defined recursively by peeling off hooks 
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In(321) ρ−→ Pn
ξ−→ Gn

ψ−1

−→ {λ ⊆ Bn}
Des Lem. 3.1←→ Peak Lem. 2.1←→ Peak Lem. 3.5←→ HD

Fig. 4. The statistic-preserving bijections used in the proof of Theorem 3.4.

in the Young diagram. See Fig. 3 for an example. Note that ij − ij−1 > 1 for all j by 
construction.

Theorem 3.4. Let 1 ≤ i1 < i2 < · · · < ik < n, and let m = i1 + · · · + ik. There is a 
bijection

{
π ∈ In(321) : Des(π) = {i1, i2, ..., ik}

}
−→

{
λ � m : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn

}
.

Note that if ij − ij−1 = 1 for some j, then both sides in Theorem 3.4 are empty sets, 
since two consecutive descents in a permutation would produce an occurrence of 321. For 
fixed m, taking the union over all subsets {i1, . . . , ik} ⊆ [n − 1] with i1 + · · · + ik = m, 
Theorem 3.4 gives a bijection

{
π ∈ In(321) : maj(π) = m

}
−→ {λ � m : λ ⊆ Bn},

so it implies Theorem 3.3.
To prove Theorem 3.4 we will use a sequence of bijections, as summarized in Fig. 4. 

The composition ξ ◦ ρ used in the proof of Theorem 3.2 is not enough here, because it 
does not translate the major index of the 321-avoiding involution into the area above 
the Grand Dyck path. We will need an additional bijection mapping the statistic HD to 
Peak, which we define next.

Lemma 3.5. There is a bijection ψ from the set of partitions λ inside Bn to Gn such that, 
for all λ,

HD(λ) = Peak
(
ψ(λ)

)
.

Proof. Given a partition λ ⊆ Bn, suppose that its Durfee square has side k and that 
HD(λ) = {i1, . . . , ik}. Let G ∈ Gn be the path given by the boundary of the Young 
diagram of λ. Splitting G at the point M = (k, �n

2 � −k) we can write it as a concatenation 
G = AB, where A and B have �n

2 � and �n
2 � steps, respectively. Counting the steps of 

A starting at the point M , suppose that the E steps occur at positions 1 ≤ a1 < a2 <

· · · < ak ≤ �n
2 � (an E step incident with M would be considered to be at position 1). 

Similarly, counting the steps of B starting at M , suppose that the N steps occur at 
positions 1 ≤ b1 < b2 < · · · < bk ≤ �n

2 �. For each 1 ≤ j ≤ k, the hook of λ of length ij
is delimited by the E step of A at position aj and the N step of B in position bj , from 
where it follows that aj + bj = ij + 1.
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Fig. 5. The bijection ψ. In the path on the left, the numbers are the positions aj and bj , which are then 
used in the path on the right to determine the locations of the peaks.

Fig. 6. An example of the sequence of bijections in the proof of Theorem 3.4. Note that the resulting 
partition (4, 4, 3, 3, 2) has hook decomposition {2, 6, 8}, which agrees with the descent set of the 321-avoiding 
involution that we started from.

Define ψ(λ) to be the unique path in Gn that has peaks at coordinates (bj − 1, aj)
for 1 ≤ j ≤ k. The elements of its peak set are then aj + bj − 1 = ij for 1 ≤ j ≤ k, so 
Peak(ψ(λ)) = HD(λ) as claimed. Fig. 5 shows an example of this construction.

The map ψ is clearly invertible, because given a path in Gn, the coordinates of its 
peaks determine the positions of the N and E steps in the boundary of the Young 
diagram of the corresponding partition inside Bn. �
Proof of Theorem 3.4. By Lemmas 3.1, 2.1 and 3.5, the composition of bijections ψ−1 ◦
ξ ◦ ρ : In(123) → {λ ⊆ Bn} maps the statistic Des to the statistic HD. See Fig. 4 for a 
diagram of the preserved statistics, and Fig. 6 for an example. �

As a consequence of Theorem 3.4, we obtain the following refinement of Theorems 3.2
and 3.3.

Corollary 3.6. For every 0 ≤ k < n,

∑
π∈In(321)
des(π)=k

qmaj(π) = qk
2
(
�n

2 �
k

)
q

(
�n

2 �
k

)
q

.
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Proof. By the bijection in Theorem 3.4, the left hand side is the generating polynomial 
for Young diagrams inside Bn with Durfee square of side k with respect to area. The 
formula on the right hand side follows by decomposing such diagrams as in Fig. 7 and 
using that 

(
a+b
a

)
q

is the generating polynomial for Young diagrams inside an a × b box 
with respect to area. �
4. Consequences

4.1. Ascent sets on 123-avoiding involutions

Our work on descents on 321-avoiding involutions easily extends to describe the dis-
tribution of the ascent set and comajor index on 123-avoiding involutions. Note that 
this does not follow from any trivial symmetries on permutations, since those that take 
321-avoiding permutations to 123-avoiding ones do not preserve the property of being 
an involution.

Given π ∈ In, the Robinson–Schensted algorithm associates to it a pair (Q, Q) of 
identical standard Young tableaux of size n. Let QT be the standard Young tableaux ob-
tained by transposing Q, and let πT ∈ In be the preimage of the pair (QT , QT ) under the 
Robinson–Schensted correspondence. The map π �→ πT is a bijection from In to itself. As 
an example, the image of the involution 8 6 12 11 5 2 10 1 9 7 4 3 is 3 4 1 2 7 9 5 10 6 8 11 12.

The following result, which first appeared in [33] (see [3] for a detailed exposition), is 
an immediate consequence of the fact that the descent set of a permutation equals the 
descent set of its recording tableau.

Proposition 4.1. (See [33].) For every π ∈ In, we have Asc(π) = Des(πT ).

Consider now the set In(12 . . . k) of involutions in Sn that avoid the pattern 12 . . . k. 
By Schensted’s Theorem [27], the Robinson–Schensted algorithm associates to each π ∈
In(12 . . . k) a standard Young tableau Q with at most k − 1 columns. Equivalently, the 
tableau QT has at most k−1 rows, and so its corresponding involution πT avoids k . . . 21. 
It follows that the map π �→ πT induces a bijection between In(12 . . . k) and In(k . . . 21)
with the property that Asc(π) = Des(πT ). For k = 3, the following results are now 
equivalent to Theorems 3.4 and 3.3, respectively.

Corollary 4.2. Let 1 ≤ i1 < i2 < · · · < ik < n, and let m = i1 + · · · + ik. There is a 
bijection
{
π ∈ In(123) : Asc(π) = {i1, i2, ..., ik}

}
−→

{
λ � m : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn

}
.

Corollary 4.3. For n ≥ 1,

∑
π∈In(123)

qcomaj(π) =
(

n

�n
2 �

)
q

.
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4.2. Large n

Even though the simplest proof of Theorem 3.4 that we know uses a composition of 
three non-trivial bijections, as described in Section 3.2, it is interesting to note that for n
large enough (relative to ik), there is a simpler proof. It will be more convenient to work 
with 123-avoiding involutions, so we will consider Corollary 4.2, which is equivalent to 
Theorem 3.4 via the map in Proposition 4.1. Next we sketch a direct proof of Corollary 4.2
for large n which does not use lattice paths.

Fix 1 ≤ i1 < i2 < · · · < ik � n. It is easy to see that any involution π ∈ In(123)
is uniquely determined by the positions of its left-to-right minima, that is, the set of 
indices i such that π(i) < π(j) for all j < i. Note also that since π avoids 123, we have 
i ∈ Asc(π) if and only if i is a left-to-right minimum and i + 1 is not. It follows that if 
Asc(π) = {i1, i2, ..., ik} �= ∅, then the set of left-to-right minima of π has the form

[1, i1] ∪ [a2, i2] ∪ [a3, i3] ∪ · · · ∪ [ak, ik] ∪ [b, n], (2)

where ij−1 + 2 ≤ aj ≤ ij for each 2 ≤ j ≤ k, and n − i1 + 2 ≤ b ≤ n + 1. In fact, for n
large enough (more precisely, n ≥ 2(ik − k + 1)), any such choice of the aj and b yields 
a valid π ∈ In(123). Thus,

∣∣{π ∈ In(123) : Asc(π) = {i1, i2, ..., ik}
}∣∣ = i1

k∏
j=2

(ij − ij−1 − 1).

On the other hand, if n ≥ 2(ik − k + 1), then every partition λ with HD(λ) =
{i1, i2, . . . , ik} �= ∅ has a Young diagram that fits inside Bn, and so

∣∣{λ : HD(λ) = {i1, i2, . . . , ik}, λ ⊆ Bn

}∣∣ =
∣∣{λ : HD(λ) = {i1, i2, . . . , ik}

}∣∣

= i1

k∏
j=2

(ij − ij−1 − 1),

since we can construct such a partition by first choosing among the i1 ways to bend the 
innermost hook (the one of size i1), then choosing among the i2−i1−1 ways to place the 
hook of size i2 around the hook of size i1, and so on, placing the hooks from the inside 
to the outside. The degenerate case Asc(π) = ∅ corresponds to the empty partition.

The above argument, which proves Corollary 4.2 when n is large, breaks down for 
small n, and there does not seem to be a natural way to fix it. It is not true for any 
n that every choice of left-to-right minima of the form (2) is realized by an involution 
in In(123), nor that every placement of hooks as described above will produce a Young 
diagram that fits inside Bn.

Next we discuss some consequences of Theorem 3.3 and Theorem 3.4 when n is large. 
Using that every partition of m fits inside Bn for n large enough, Theorem 3.3 implies 
the following.
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Corollary 4.4. For n ≥ 2m,
∣∣{π ∈ In(321) : maj(π) = m

}∣∣ = p(m),

where p(m) is the number of partitions of m.

We remark that this result is somewhat reminiscent of Propositions 11 and 15 in [12], 
which give formulas in terms of m for counting pattern-avoiding permutations in Sn with 
m inversions when n is large enough.

Along the same lines, Theorem 3.4 can be used to obtain the generating func-
tion for 321-avoiding involutions with k descents according to their descent set. If 
S = {i1, i2, ..., ik} with i1 < · · · < ik, we write xS = xi1

1 . . . xik
k .

Corollary 4.5.

lim
n→∞

∑
π∈In(321)

xDes(π) =
∑
k≥0

x1x
3
2 . . . x

2k−1
k

(1 − xk)2(1 − xk−1xk)2 . . . (1 − x1x2 . . . xk)2
,

lim
n→∞

∑
π∈In(321)

tdes(π)qmaj(π) =
∑
k≥0

tkqk
2

(1 − q)2(1 − q2)2 . . . (1 − qk)2 .

Proof. Let 1 ≤ i1 < i2 < · · · < ik. For n ≥ 2(ik − k + 1), Theorem 3.4 gives a bijection 
between the set of involutions π ∈ In(321) with Des(π) = {i1, i2, ..., ik} and the set 
of partitions λ with HD(λ) = {i1, i2, . . . , ik}, since the Young diagram of every such 
partition fits inside Bn. The generating function for partitions λ with Durfee square of 
side k according to their hook decomposition is

∑
λ

xHD(λ) =
x1x

3
2 . . . x

2k−1
k

(1 − xk)2(1 − xk−1xk)2 . . . (1 − x1x2 . . . xk)2
, (3)

since such partitions can be decomposed into pairs of partitions with at most k parts, 
each contributing ((1 − xk)(1 − xk−1xk) . . . (1 − x1x2 . . . xk))−1, attached to the k × k

Durfee square, which contributes x1x
3
2 . . . x

2k−1
k . This decomposition is illustrated in 

Fig. 7.
The generating function for involutions with k descents with respect to maj, or equiv-

alently partitions with Durfee square of side k with respect to their size, is obtained by 
substituting xj = q for all j in Eq. (3). Multiplying by tk and summing over all k ≥ 0
we obtain the second formula in the statement. �
4.3. Double avoidance

In closing this section, we look at the distribution of descents and major index on 
involutions that avoid 321 and an additional pattern τ ∈ S3. The set of such involutions of 
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Fig. 7. Decomposition of the Young diagram of a partition.

length n is denoted by In(321, τ). We only consider the cases τ = 312 and τ = 213, since 
the set In(321, 123) is empty for n ≥ 6, and In(321, 231) and In(321, 132) correspond 
via the usual reverse-complement map to the studied cases.

For the case τ = 213, it is easy to verify that π ∈ In(321, 213) if and only if π =
p(p +1) . . . n12 . . . (p −1) for some 1 ≤ p ≤ n. Hence, π has either one descent in position 
n + 1 − p (if p �= 1) or no descents at all. It follows that

∑
π∈In(321,213)

qmaj(π) = 1 − qn

1 − q
.

Now we consider the case τ = 312. It is easy to see that if π ∈ In(321, 312), then 
for every 1 ≤ i ≤ n, the entry π(i) is either the smallest or the second smallest among 
π(i), π(i + 1), . . . , π(n). This condition, together with the fact that π is an involution, 
implies that π is a direct sum π = σ1 ⊕σ2 ⊕· · ·⊕σt, where each σj equals 1 or 21 (recall 
that this means that π is a juxtaposition of words order-isomorphic to either 1 or 21, 
where the entries in each word are smaller than the entries in the next word). These 
are called Fibonacci permutations in [12]. It follows that the generating function with 
respect to the number of descents is

∑
n≥0

∑
π∈In(321,312)

tdes(π)xn = 1
1 − x− tx2 ,

which gives the triangle of coefficients of Fibonacci polynomials (see [30, seq. A011973]).
The above observation also yields a recurrence for the polynomials pn(q) :=∑
π∈In(321,312) q

maj(π), since every π ∈ In(321, 312) can be obtained by appending n
or n(n − 1) to an involution of length n − 1 or n − 2, respectively. We get that

pn(q) = pn−1(q) + qn−1pn−2(q)

for n ≥ 2, with initial conditions p0(q) = p1(q) = 1 (see [30, seq. A127836]).
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5. Descent sets on 321-avoiding permutations

Some of the ideas used above to study descent sets on 321-avoiding involutions can 
be applied to 321-avoiding permutations, even though we do not obtain nice formulas 
analogous to Theorems 3.3 and 3.4.

The distribution of the major index on 321-avoiding permutations has been studied 
by Cheng et al., who in [10, Thm. 6.2] give a recurrence for the generating polynomial 
for the statistic maj on Sn(321). Here we are interested in the distribution of the whole 
descent set. The following result gives a simple description. In the rest of this section we 
denote the m-th Catalan number by Cm = 1

m+1
(2m
m

)
.

Theorem 5.1. Let S ⊆ [n − 1]. Then

∣∣{π ∈ Sn(321) : Des(π) ⊇ S
}∣∣ =

{
Cn−|S| if S contains no two consecutive elements,
0 otherwise.

Proof. We apply the following bijection between Sn(321) and Dn from [19, Section 3], 
which is an extension of the bijection ρ used above for involutions. First, the Robinson–
Schensted correspondence gives a bijection between Sn(321) and pairs (P, Q) of standard 
Young tableaux of the same shape having n boxes and at most two rows. We can in-
terpret P and Q as Dyck path prefixes ending at the same height, where the entries 
on the first row determine the positions of the N steps, and the entries on the second 
row determine the positions of the E steps. These two prefixes can be combined into a 
Dyck path by taking the prefix corresponding to the recording tableau Q followed by 
the reversal of the prefix corresponding to the insertion tableau P .

Recall from the proof of Lemma 3.1 that the Robinson–Schensted algorithm maps 
the descent set of the permutation to the descent set of the recording tableau Q, which 
in turn becomes the peak set of the Dyck path prefix associated with Q. Thus, if our 
bijection maps π ∈ Sn(321) to D ∈ Dn, then Des(π) is the set of peak positions in the 
first half of D, that is, Des(π) = Peak(D) ∩ [n − 1].

It follows that, for any S ⊆ [n − 1], the number of permutations in Sn(321) with 
descent set containing S equals the number of paths in Dn with peak set containing S. 
If S contains two consecutive elements, this set is clearly empty. Otherwise, there is a 
simple bijection between {D ∈ Dn : Peak(D) ⊇ S} and Dn−|S|: given a path in the first 
set, remove the peaks NE in positions given by S. This construction gives a Dyck path 
with 2n −2|S| steps, and it is clearly invertible, since S keeps track of the positions from 
where peaks were removed. �

Next we use Theorem 5.1 to obtain a summation formula and a recurrence for the 
generating polynomial for 321-avoiding permutations with respect to the descent set. If 
S is a set of positive integers, we use the notation xS =

∏
j∈S xj .
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Corollary 5.2. We have that

∑
π∈Sn(321)

xDes(π) =
∑
T

(
Cn−|T |

∏
j∈T

(xj − 1)
)
, (4)

where T ranges over all subsets of [n − 1] with no two consecutive elements.

Proof. For any set S, it is clear that 
∏

j∈S(1 + yj) =
∑

T⊆S

∏
j∈T yj . Making the sub-

stitution yj = xj − 1 yields

xS =
∑
T⊆S

∏
j∈T

(xj − 1).

Using this identity, we get

∑
π∈Sn(321)

xDes(π) =
∑

π∈Sn(321)

∑
T⊆Des(π)

∏
j∈T

(xj − 1) =
∑

T⊆[n−1]

∑
π∈Sn(321)
Des(π)⊃T

∏
j∈T

(xj − 1),

which equals the right hand side of (4) by Theorem 5.1. �
Extracting the coefficient of xS in Corollary 5.2, it follows that for any S ⊆ [n − 1]

with no consecutive elements,

∣∣{π ∈ Sn(321) : Des(π) = S
}∣∣ =

∑
T

(−1)|T |−|S|Cn−|T |, (5)

where now T ranges over all subsets of [n −1] containing S and having no two consecutive 
elements. Eq. (5) can also be obtained directly from Theorem 5.1 using Möbius inversion.

For n, m ≥ 0, let

An,m(x) =
∑
T

(
Cm−|T |

∏
j∈T

(xj − 1)
)
,

where T ranges over all subsets of [n − 1] with no two consecutive elements. Note 
that An,n(x) is the right hand side of Eq. (4). Separating terms depending on whether 
n− 1 ∈ T or not, we obtain the following recurrence for An,m(x).

Corollary 5.3. For n ≥ 2 and m ≥ 1,

An,m(x) = (xn−1 − 1)An−2,m−1(x) + An−1,m(x),

with initial conditions A0,m(x) = A1,m(x) = Cm for m ≥ 0 and An,0(x) = 1 for n ≥ 2.
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Note that setting xj = qj for all j in Corollary 5.2 we have An,n(q, q2, q3, . . .) =∑
π∈Sn(321) q

maj π, and so the recurrence in Corollary 5.3 can be used to compute 
this polynomial. A different and arguably more complicated recurrence is given in [10, 
Thm. 6.2]. It would be interesting to find a simple formula enumerating permutations 
in Sn(321) with a given major index in the spirit of Theorem 3.3. A helpful tool might 
be the bijection between Sn(321) and Dn described in the proof of Theorem 5.1, which 
maps the statistic maj on Sn(321) to the sum of the peak positions of peaks in the first 
half of the corresponding Dyck path.

Acknowledgments

The first two authors were partially supported by University of Bologna, funds for 
selected research topics, and by PRIN of MIUR, Italy. The third author was partially 
supported by grant DMS-1001046 from the NSF, by grant #280575 from the Simons 
Foundation, and by grant H98230-14-1-0125 from the NSA. We are grateful to Richard 
Stanley for providing the non-bijective proof in Appendix A. Finally, we point out that, 
after submission of this paper, a different proof of Theorem 3.3 has been found by 
Dahlberg and Sagan [13].

Appendix A. A non-bijective proof of Theorem 3.3

In this appendix we discuss a non-bijective proof of Theorem 3.3 that was communi-
cated to us by Richard Stanley.

As discussed in Sections 3.1 and 4.1, the Robinson–Schensted correspondence gives 
a descent-set-preserving bijection between In(k . . . 21) and the set SYTk−1

n of standard 
Young tableaux with n boxes at most k−1 rows. Recall that the major index of a standard 
Young tableaux is defined as the sum of its descents. It follows from [31, Prop. 7.19.11]
that

∑
π∈In(k...21)

qmaj(π) =
∑

T∈SYTk−1
n

qmaj(T )

= (1 − q)
(
1 − q2) · · · (1 − qn

)∑
λ

sλ
(
1, q, q2, . . .

)
, (6)

where λ ranges over all partitions of n with at most k− 1 parts, and sλ denotes a Schur 
function. In the case k = 3, if follows from [31, Ex. 7.16a] (see also [6]) that

∑
λ

sλ = h
n
2 �h�n

2 
,

where now the sum is over partitions of n with at most 2 parts, and hm =∑
1≤i1≤i2≤···≤im

xi1xi2 . . . xim denotes a complete homogeneous symmetric function. 
Since
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hm

(
1, q, q2, . . .

)
= 1

(1 − q)(1 − q2) . . . (1 − qm) ,

Eq. (6) gives

∑
π∈In(321)

qmaj(π) = (1 − q)(1 − q2) . . . (1 − qn)
(1 − q)(1 − q2) . . . (1 − q


n
2 �)(1 − q)(1 − q2) . . . (1 − q�

n
2 
)

=
(

n

�n
2 �

)
q

,

recovering Theorem 3.3.
Although this non-bijective method cannot be used to prove the more general The-

orem 3.4, it can in principle be extended to enumerate k . . . 21-avoiding involutions for 
larger values of k.
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