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We introduce mutation along infinite admissible sequences 
for infinitely marked surfaces, that is surfaces with infinitely 
many marked points on the boundary. We show that mutation 
along such admissible sequences produces a preorder on the 
set of triangulations of a fixed infinitely marked surface. 
We provide a complete classification of the strong mutation 
equivalence classes of triangulations of the infinity-gon and the 
completed infinity-gon respectively, where strong mutation 
equivalence is the equivalence relation induced by this 
preorder. Finally, we introduce the notion of transfinite 
mutations in the completed infinity-gon and show that 
all its triangulations are transfinitely mutation equivalent, 
that is we can reach any triangulation of the completed 
infinity-gon from any other triangulation via a transfinite 
mutation.
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0. Introduction

Triangulations of surfaces with marked points give rise to an interesting class of clus-
ter algebras, which are tractable but sufficiently complicated to display a rich array of 
cluster combinatorics. The fact that they come together with a natural topological model 
means they play a key role in advancing our understanding of cluster theory, serving as 
important examples to test theories about general cluster algebras and categories (cf. 
for example [3] [5], [9] [12] and [13]). Traditionally, only triangulations of surfaces with 
finitely many marked points have been studied in the context of cluster theory. With the 
rising interest in cluster algebras and categories of infinite rank (cf. for example [6], [7], 
[8] [9], [11]), it is natural to extend the theory to a setting with infinitely many marked 
points, and consider what we call infinitely marked surfaces.

The idea to consider triangulations and mutations of infinitely marked surfaces is 
not new and has been executed in the context of cluster categories for example in [9]
and [11] and in the context of cluster algebras in [6] and [7]. By introducing infinitely 
many marked points, interesting phenomena occur which do not appear in the finite 
setting. One notable feature of infinitely marked surfaces, as opposed to finitely marked 
surfaces, is that two different triangulations are in general not connected by finitely 
many mutations. In particular, two distinct triangulations of the same infinitely marked 
surface will in general give rise to two distinct cluster algebras of infinite rank in the 
sense of [6].

In the present paper we study infinite mutations for infinitely marked surfaces, mo-
tivated by overcoming the finiteness constraints of the classical theory. We introduce 
the notion of mutation along infinite admissible sequences, and show such mutations 
connect previously disconnected components of the exchange graph. In fact, examples 
of mutations in cluster algebras along infinite admissible sequences have previously been 
used in [8], and we formalize the idea here in the context of infinitely marked surfaces. 
We consider two important examples in more detail: the ∞-gon, which can be pictured 
as the line of integers, and the completed ∞-gon, which we obtain from the ∞-gon by 
completing with points at ±∞. Our main reason for studying these examples is that 
they provide combinatorial models for relatively well-studied examples in cluster theory 
of infinite rank: the ∞-gon relates to the cluster category studied in [9], and in more gen-
erality in [11], and to the cluster algebras studied in [6], whereas the completed ∞-gon 
relates to the representation theory of a polynomial ring in one variable.

Single mutations are involutive, and therefore, if we can mutate from a triangulation T

to a triangulation T ′ in finitely many steps, there is a way to mutate back from T ′

to T . This is not the case anymore if we consider mutation along infinite admissible 
sequences. In this sense, we can think of mutations along infinite admissible sequences as 
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being directed. We write T ≤s T
′ whenever we can mutate T to T ′ along an admissible 

sequence. Our first main result is the following theorem.

Theorem (Theorem 3.13). The relation ≤s defines a preorder on the set of triangulations 
of a fixed infinitely marked surface.

The main focus of our article is on the ∞-gon and on the completed ∞-gon, two 
surfaces that have been at the centre of interest in cluster theory because of their relation 
to Dynkin type A combinatorics. We call two triangulations T and T ′ strongly mutation 
equivalent, if we have T ≤s T ′ as well as T ′ ≤s T , that is, if they are equivalent under 
the equivalence relation induced by the above preorder.

Theorem (Theorems 4.8 and 4.10). Two triangulations of the ∞-gon are strongly muta-
tion equivalent if and only if they are both locally finite or they both have a left fountain 
at a ∈ Z and a right fountain at b ∈ Z with a ≤ b.

Two triangulations of the completed ∞-gon are strongly mutation equivalent if and 
only if they are both locally finite or they both have a left fountain at a ∈ Z ∪ {±∞}
and a right fountain at b ∈ Z ∪ {±∞}, where a ≤ b or a = ∞ and b ∈ Z or a ∈ Z and 
b = −∞.

Mutating a triangulation along an infinite admissible sequence does not in general 
yield a triangulation. As a next step, we introduce completed mutations in the completed 
∞-gon. In general, there are many ways to complete what one obtains from such a 
mutation to a triangulation. In the setting of the completed ∞-gon, there is however a 
natural way to complete with strictly asymptotic arcs, that is, with arcs connecting to 
the limit points at ±∞.

Finally, we introduce transfinite mutations in the completed ∞-gon. They are muta-
tions along possibly infinite sequences of completed mutations. We call two triangula-
tions T and T ′ transfinitely mutation equivalent, if there exists a transfinite mutation 
from T to T ′ as well as one from T ′ to T .

Theorem (Theorem 6.9). Any two triangulations of the completed ∞-gon are transfinitely 
mutation equivalent.

During the completion of this paper we learned that I. Canakci and A. Felikson are 
independently studying infinite sequences of mutations for cluster algebras coming from 
infinitely marked surfaces. Their results are now available as a preprint [4].

1. Triangulations of infinitely marked surfaces

Throughout this paper we only consider surfaces with boundary with marking such 
that all the marked points lie on the boundary. We are however convinced that the theory 
presented in this manuscript can be naturally extended to allow punctures, i.e. internal 
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marked points. Throughout, when we speak of an infinitely marked surface (S, M), we 
mean the following setup.

Definition 1.1. An infinitely marked surface is a pair (S, M) where

• S is a connected oriented 2-dimensional Riemann surface with a non-trivial bound-
ary δS;

• M ⊆ δS is an infinite set of marked points such that each connected component 
of δS contains at least one marked point in M .

Throughout the paper we denote by (S, M) an infinitely marked surface. We define 
arcs in an infinitely marked surface analogously to [5, Definition 2.2].

Definition 1.2. An arc θ in (S, M) is a curve such that

(1) the curve θ connects two marked points in M ,
(2) the curve θ does not intersect itself, except possibly at its endpoints,
(3) except for the endpoints, the curve θ is distinct from δS,
(4) the curve θ is not contractible and not isotopic to a connected component of δS \M .

Arcs are considered up to isotopy inside the class of such curves. On the other hand, if 
a curve satisfies (1), (2) and (3), but it is isotopic to a connected component of δS \M , 
we call it an edge of (S, M). We set

A(S,M) = {arcs of (S,M)} and E(S,M) = {edges of (S,M)}.

We say that two arcs α �= β ∈ A(S, M) are compatible, if they do not intersect in S \M .

We are interested in triangulations of (S, M), which traditionally correspond to clus-
ters in the theory of cluster algebras and cluster categories.

Definition 1.3. A triangulation of (S, M) is a maximal set of compatible arcs of (S, M).

Remark 1.4. The term “triangulation” can in some instances be seen as an abuse of 
language. In fact, a triangulation in the sense of Definition 1.3 does not in general 
partition the surface (S, M) into triangles. In the case where M is not discrete we might 
even get rather unintuitive triangulations, for example if we consider the unit disc where 
every point on its boundary S1 is a marked point. Picking a point a ∈ S1, the set

{(a, b) | b ∈ S1 \ {a}}

is a triangulation of this infinitely marked surface in the sense of Definition 1.3 (cf. first 
paragraph in Section 1.1 for the notation).



K. Baur, S. Gratz / Journal of Combinatorial Theory, Series A 155 (2018) 321–359 325
Fig. 1. An arc (a, b) in the ∞-gon C∞.

In this paper, we are interested in two particular marked surfaces, which are closely 
related to Dynkin type A combinatorics. In many ways they form the simplest cases of 
infinitely marked surfaces. The first is the ∞-gon C∞, which has a discrete set of marked 
points, and the second is the completed ∞-gon C∞, which we get from C∞ by adding 
limit points.

1.1. Triangulations of the infinity-gon

Consider the infinitely marked surface C∞ = (S, M), where S = D1 is the unit disc 
and M ⊆ S1 is a discrete set of marked points with one two-sided limit point. We call 
C∞ the ∞-gon and cut open the circle at the limit point to picture the boundary δS
as the line of integers, cf. Fig. 1. An arc in C∞ is an ordered pair of integers (i, j) with 
i ≤ j − 2. Two arcs (i, j) and (k, l) in C∞ are not compatible if and only if we have 
i < k < j < l or k < i < l < j.

Definition 1.5. We call a triangulation of C∞ locally finite if for any vertex l ∈ Z there 
are only finitely many arcs of the form (k, l) or (l, m).

Let n ∈ Z. A left fountain at n is a family {(p, n) | p ∈ P} in A(C∞) such that 
P ⊆ ]−∞, n − 2] is infinite. Dually, a right fountain at n is a family {(n, p) | p ∈ P}
in A(C∞) such that P ⊆ [n + 2, +∞[ is infinite. A split fountain is the union of a left 
fountain at some n ∈ Z and of a right fountain at some m ∈ Z, with m > n.

Lemma 1.6 ([10, Lemma 3.3]). A triangulation T of C∞ is either locally finite or has 
precisely one left fountain and one right fountain.

1.2. Triangulations of the completed infinity-gon

We complete the ∞-gon with a point at ∞ and a point at −∞. This yields the 
completed ∞-gon C∞. Formally speaking, it is the unit disc with countably many marked 
points on the boundary, which converge to a limit point a in a clockwise direction and 
to a limit point b in an anti-clockwise direction, and where there are no marked points 
between a and b when going in a clockwise direction. Cutting open the circle at a point 
between a and b (in a clockwise direction), we obtain the line of integers with two added 
limit points at ±∞, cf. Fig. 2.

Remark 1.7. In some ways it might be more natural to consider the completion where 
we only add in one point at ∞ (and consider the unit disc with countably many marked 
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Fig. 2. Arcs in the completed ∞-gon C∞.

points that converge to precisely one limit point from both a clockwise and an anti-
clockwise direction). However, we are particularly interested in the combinatorial model 
with both points at ∞ and −∞ as it fits well with the combinatorics of modules over 
polynomial rings, cf. Section 1.3.

Arcs in C∞ come in two different forms. They can be of the form (i, j) where i, j are 
integers with i ≤ j − 2. Such an arc (i, j) is called a peripheral arc. Furthermore, we get 
the following strictly asymptotic arcs involving the points at ±∞:

• For each m ∈ Z the adic curve at i is the arc αm = (−∞, m).
• For each m ∈ Z the Prüfer curve at m is the arc πm = (m, ∞).
• The generic curve is the arc z = (−∞, ∞).

Fig. 2 provides a picture of some strictly asymptotic arcs. Two arcs (i, j) and (k, l) in 
C∞ are not compatible if and only if we have i < k < j < l or k < i < l < j.

Remark 1.8. The generic curve z is compatible with any arc in C∞. Therefore, any 
triangulation of C∞ contains z. When we explicitly write down triangulations of C∞, 
for brevity we will usually omit the generic curve.

The notions of local finiteness, right, left and split fountains naturally carry over from 
triangulations of C∞. However, we can also have fountains in C∞ at ±∞.

Definition 1.9. A left fountain at ∞ (respectively at −∞) is a family {(p,∞) | p ∈ P}
(respectively a family {(−∞, p) | p ∈ P}) in A(C∞) where P ∩]−∞, 0] is infinite. Dually, 
a right fountain at ∞ (respectively at −∞) is a family {(p,∞) | p ∈ P} (respectively a 
family {(−∞, p) | p ∈ P}) in A(C∞) where P ∩ [0, ∞[ is infinite.

Lemma 1.10. Let T be a triangulation of C∞ and n ∈ Z. If T contains a right fountain 
at n, then πn ∈ T and if T contains a left fountain at n, then αn ∈ T .

Proof. Assume that T contains a right fountain at n and consider the Prüfer curve πn. 
It is compatible with any arc in C∞ except:

• the arcs of the form (m, l) with m < n and l > n,
• the adic curves of the form αl with l > n.
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Let l > n. Since T contains a right fountain, it contains an arc of the form (n, p) with 
p > l. Therefore, (n, p) intersects any arc of the above form. Thus, T only contains arcs 
which are compatible with πn. By maximality of T , we have πn ∈ T .

The fact that if T contains a left fountain at n then αn ∈ T follows by symmetry. �
Lemma 1.11. Let T be a triangulation of C∞ and n ∈ Z.

(1) Assume that πn ∈ T . Then T contains a right fountain at n or there exists an m > n

such that πm ∈ T . Dually, if αn ∈ T , then T contains a left fountain at n or there 
exists m < n such that αm ∈ T .

(2) Assume that πn ∈ T . If T contains a right fountain at n and there is no k < n with 
πk ∈ T , then αn ∈ T . Dually, if αn ∈ T and T contains a left fountain at n, such 
that there is no l > n with αl ∈ T , then πn ∈ T .

Proof. We only prove the statements for the Prüfer curves, the ones for the adic curves 
being dual.

(1) Assume that T contains the Prüfer curve πn and assume that there are at most 
finitely many arcs of the form (n, p) with p ≥ n + 2. Let

p0 = max
{
p ≥ n + 1 | (n, p) ∈ T ∪ E(C∞)

}
.

If T contains a right fountain at p0, then it follows from Lemma 1.10 that πp0 ∈ T and 
we are done. Assume therefore that T does not contain a right fountain at p0 and let

p1 = max
{
p ≥ p0 + 1 | (p0, p) ∈ T ∪ E(C∞)

}
.

Then (n, p1) is compatible with any arc in T , so it belongs to T . However, p1 > p0, a 
contradiction. (2) is clear: the adic curve αn is compatible with πn and every arc to the 
right of n as well as every arc to the left of n. �

We obtain the following classification of triangulations of C∞.

Theorem 1.12. Let T be a triangulation of C∞. Then exactly one of the following holds.

• T is locally finite and consists exclusively of peripheral arcs and the generic curve.
• T has a left fountain at a unique a ∈ Z ∪ {±∞} and a right fountain at a unique 

b ∈ Z ∪ {±∞} with a ≤ b.
• T has a left fountain at a unique a ∈ Z ∪ {±∞} and a right fountain at a unique 

b ∈ Z ∪ {±∞} with a = ∞ and b ∈ Z or a ∈ Z and b = −∞.

Proof. Assume T is locally finite and assume as a contradiction that T contains a strictly 
asymptotic arc (that is not the generic curve). Without loss of generality assume πm ∈ T , 
for some m ∈ Z. By Lemma 1.11(1) this implies that it contains a right fountain at 
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an integer n ≥ m or infinitely many Prüfer curves, contradicting the assumption of local 
finiteness.

Assume now that T is not locally finite, thus it contains at least one left or right 
fountain. It is clear that T cannot contain two right (respectively left) fountains at 
b �= b′ since they would intersect at infinitely many arcs close to ∞ (respectively close 
to −∞). Thus T has a left fountain at at most one a ∈ Z ∪ {±∞} and a right fountain 
at at most one b ∈ Z ∪ {±∞}.

Assume T has a right fountain at b ∈ Z ∪{±∞}. If b �= −∞ this means that T contains 
a Prüfer πm at some m ≤ b. By Lemma 1.11(2) this implies that it has a left fountain 
at ∞ or it contains an adic αn for some n ≤ m. In the latter case, Lemma 1.11(1) implies 
that it contains a left fountain at some a ≤ n. On the other hand, if b = −∞, then T
contains infinitely many adics of the form αn for n ≥ 0. By Lemma 1.11(1), T contains 
a left fountain.

It follows by symmetry that if T contains a left fountain, then it contains a right 
fountain. Therefore, every triangulation of C∞ is either purely peripheral or it contains 
a left fountain at a unique a ∈ Z ∪{±∞} and a right fountain at a unique b ∈ Z ∪{±∞}. 
If a �= ∞ it follows that b ≥ a or b = −∞ since otherwise infinitely many arcs in the right 
fountain at b would intersect infinitely many arcs in the left fountain at a. If a = ∞, 
then with the same argument we must have b �= −∞. �
Remark 1.13. It is straightforward to construct representatives for each of the classes of 
triangulations of C∞ listed in Theorem 1.12. In fact, we do so in Remark 4.11.

1.3. On the combinatorics of modules over a polynomial ring

The reason we are particularly interested in triangulations of C∞ is the connection 
between the combinatorial structure of C∞ and the combinatorial structure of the inde-
composable objects of the category Rep(∞A∞) of representations over an algebraically 
closed field k of the quiver

←−
Z =∞ A∞ : · · ·←− − 2←− − 1←− 0←− 1←− 2←− · · ·

whose vertices are labelled by the integers and where there are arrows i − 1←− i for any 
i ∈ Z.

We denote by rep(∞A∞) the full subcategory of Rep(∞A∞) formed by the finite-
dimensional representations. An indecomposable object in rep(∞A∞) is isomorphic to a 
representation of the form Mij with i, j ∈ Z and i ≤ j − 2 where Mij is one-dimensional 
at each of the vertices i + 1, . . . , j − 1 and where all the maps between non-zero vector 
spaces are the identity.

For any i ∈ Z, we have injections

Mi,i+2 ↪→ Mi,i+3 ↪→ Mi,i+4 ↪→ . . .



K. Baur, S. Gratz / Journal of Combinatorial Theory, Series A 155 (2018) 321–359 329
The colimit of this system is the indecomposable representation Πi ∈ Rep(∞A∞) which 
is one-dimensional at each of the vertices in [i +1, +∞[ and where all the maps between 
non-zero vector spaces are identities. The representation Πi is called the Prüfer module
at vertex i.

Dually, for any i ∈ Z, we have surjections

. . . � Mi−4,i � Mi−3,i � Mi−2,i.

The limit of this system is the indecomposable representation Ai ∈ Rep(∞A∞) which is 
one-dimensional at each of the vertices in ] −∞, i − 1] and where all the maps between 
non-zero vector spaces are identities. The representation Ai is called the adic module at 
vertex n.

We also have surjections

· · · � Πi−1 � Πi � Πi+1 � · · ·

The limit of this system is the indecomposable representation G ∈ Rep(∞A∞) which 
is one-dimensional at each vertex in Z and where all the maps between non-zero vector 
spaces are identities. The representation G is called the generic module.

We denote by Ind the set of (isomorphism classes of) indecomposable finite-
dimensional representations of ∞A∞ together with the indecomposable Prüfer, adic and 
generic modules. Then there is a natural bijection

Φ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(C∞) −→ Ind
(i, j) �→ Mij for any i ≤ j − 2 ∈ Z ;

πi �→ Πi for any i ∈ Z ;
αi �→ Ai for any i ∈ Z ;
z �→ G.

Remark 1.14. Under the bijection Φ, triangulations of C∞ correspond to maximal rigid 
subcategories of Rep(∞A∞). This follows from [1, Section 5] and the observation that 
the generic curve z is compatible with any other curve.

2. Mutations of triangulations

At the heart of cluster combinatorics arising from triangulations of the ∞-gon C∞
lies the concept of mutation.

Definition 2.1. Let T be a triangulation of an infinitely marked surface (S, M). We say 
that an arc θ ∈ T is mutable if and only if there exists an arc θ′ �= θ in A(S, M) such 
that

μT
θ (T ) = (T \ {θ}) ∪ {θ′}
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is a triangulation of (S, M). We call μT
θ (T ) the mutation of T at θ. We will use the 

following notation: For γ ∈ T we set

μT
θ (γ) =

{
γ if γ �= θ

θ′ if γ = θ.

Usually, the triangulation in which we mutate will be clear from context and we will 
omit the superscript and just write μθ(T ) and μθ(γ) for μT

θ (T ) and μT
θ (γ) respectively.

Remark 2.2. Let T be a triangulation of (S, M). It is straightforward to check that an 
arc γ ∈ T is mutable if and only if γ is a diagonal in a quadrilateral with edges in 
T ∪E(S, M) (cf. also [5, Section 3]), and that its mutation is given by the other diagonal 
γ′ �= γ in the quadrilateral. We call the set

S(γ) = {sides of the quadrilateral with diagonal γ} ∩ A(S,M) ⊆ T

the quadrilateral in T with diagonal γ.
By abuse of notation we will more generally call an arc γ in a set N of compatible 

arcs of (S, M) mutable, if S(γ) ⊆ N . With the notations as above we write μγ(N) =
(N \ {γ}) ∪ γ′.

Note that if α and β are mutable arcs in a triangulation T of (S, M) then α /∈
{β} ∪S(β) if and only if β /∈ {α} ∪S(α). The following lemma will be useful throughout 
the paper.

Lemma 2.3. Let T be a triangulation of (S, M). Let α, β ∈ T be mutable and assume 
α /∈ {β} ∪ S(β). Then α is mutable in μβ(T ) and β is mutable in μα(T ) and for all 
γ ∈ T we have

μβ ◦ μα(γ) = μα ◦ μβ(γ).

Proof. Since α ∈ T and S(α) ⊆ T and β /∈ {α} ∪S(α) we have γ = μT
β (γ) ∈ μβ(T ) for all 

γ ∈ {α} ∪S(α). In particular, α ∈ μT
β (T ) is mutable. Analogously, β ∈ μT

α(T ) is mutable. 
Let α′ �= α be the other diagonal in S(α) and let β′ �= β be the other diagonal in S(β). 
Because S(α) ⊆ μT

β (T ) we have μ
μT
β (T )

α (α) = α′ = μT
α(α) and since S(β) ⊆ μT

α(T ) we 

have μμT
α (T )

β (β) = β′ = μT
β (β). Since β and β′ intersect, but α and β do not, we have 

α �= β′ and analogously β �= α′. Therefore we obtain

μα ◦ μβ(α) = μ
μT
β (T )

α (α) = α′ = μ
μT
α (T )

β (α′) = μβ ◦ μα(α)

and symmetrically

μα ◦ μβ(β) = μβ ◦ μα(β).
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Clearly, for all γ ∈ T \ {α, β} we have μα ◦ μβ(γ) = γ = μβ ◦ μα(γ), which proves the 
claim. �
Lemma 2.4. Assume T is a triangulation of (S, M) and α ∈ T is mutable. Then γ is 
mutable in T if and only if μα(γ) is mutable in μα(T ).

Proof. The statement is clear if γ = α. Assume thus γ �= α and let S(γ) be the quadri-
lateral in T with diagonal γ. If α /∈ S(γ) ⊆ T , then we still have {γ} ∪ S(γ) ⊆ T ′, and γ
is mutable. Otherwise, if α ∈ S(γ), then α and γ are the sides of a common triangle with 
sides α, β, γ in T ∪E(S, M) and S(γ) = {α, β, δ, ε} ∩A(S, M) for some δ, ε ∈ T ∪E(S, M). 
Since α′ is still a diagonal in S(α) ⊆ μα(T ) and γ = μα(γ) ∈ S(α), the arcs α′ and μα(γ)
are sides of a common triangle with sides α′, β′, γ in μα(T ) ∪ E(S, M) and we have a 
quadrilateral S(μα(γ)) = {α′, β′, δ, ε} ∩A(S, M) in μα(T ) with diagonal μα(γ). �
2.1. Mutations in the infinity-gon

In this section we show that if T is a triangulation of C∞ either all arcs or all arcs 
but one are mutable.

Definition 2.5. Let T be a triangulation of C∞. We say that an arc (a, b) ∈ T connects a 
split fountain if there is a left fountain at a and a right fountain at b in T .

Proposition 2.6. Let T be a triangulation of C∞ and let θ ∈ T . Then θ is mutable if and 
only if does not connect a split fountain.

Proof. If T is locally finite or if it has a right and a left fountain at some a ∈ Z, then by 
[10, Lemmas 3.4 and 3.6], every arc is mutable.

On the other hand assume that T has a split fountain, with a left fountain at a ∈ Z

and a right fountain at b ∈ Z. We show that the arc (a, b) is the only non-mutable arc. 
Indeed, it is not mutable since every arc that intersects (a, b) intersects infinitely many 
arcs in the right fountain at b or the left fountain at a, therefore we cannot replace (a, b)
by another arc to obtain again a triangulation. We now show that every other arc is 
mutable: every arc in T \ {(a, b)} is of the form (i, j) �= (a, b) with i < j ≤ a or b ≤ i < j

or a ≤ i < j ≤ b. If i < j ≤ a, then there is an arc (l, a) ∈ T with l < i < j ≤ a, if 
b ≤ i < j then there is an arc (b, k) ∈ T with b ≤ i < j < k and in the final case we 
have a < i < j ≤ b or a ≤ i < j < b with (a, b) ∈ T . In either case, it follows by [10, 
Lemma 3.6] that the arc (i, j) is mutable. �
2.2. Mutations in the completed infinity-gon

We will see that it is always possible to mutate triangulations of C∞ at peripheral 
arcs. However, for strictly asymptotic arcs, the situation is slightly more complicated.
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Definition 2.7 (Arcs wrapping a fountain). Let T be a triangulation of C∞. We say that 
an arc γ in T is wrapping a fountain in T if T contains a left (or right, respectively) 
fountain at m and γ = αm (or γ = πm respectively).

Proposition 2.8. Let T be a triangulation of C∞ and let θ ∈ T . Then θ is mutable if and 
only if θ is neither the generic curve nor wrapping a fountain in T .

Proof. Let T be a triangulation of C∞ and let θ ∈ T . By Remark 1.8 and Lemma 1.10
if θ is generic or wrapping a fountain then it is not mutable.

On the other hand assume θ ∈ T is not generic nor wrapping a fountain. Assume first 
that θ is strictly asymptotic. Without loss of generality, we assume that θ = αm for some 
vertex m ∈ Z where there is no left fountain, the statement for a Prüfer curve follows by 
symmetry. Then, it follows from Lemma 1.11 that there is an adic arc αn with n < m. 
We let

n0 = max {n < m | αn ∈ T} .

There are two possibilities. Either there is some l > m such that αl ∈ T , in which case 
we set

n1 = min {l > m | αl ∈ T} .

Then as in the proof of [2, Proposition 1.6], θ′ = (n0, n1) is the unique arc distinct from θ

such that T \ {θ} � {θ′} is a triangulation of C∞. If there is no adic arc αl with l > m, 
then πm does not intersect any arc in T and thus πm ∈ T . Therefore αm is a diagonal 
in the quadrilateral S(αm) = {αn0 , πm, (n0, m), z} ∩ A(C∞) in T and by Remark 2.2 it 
is mutable.

Assume now that θ = (i, j) is a peripheral arc, thus −∞ < i < j < ∞. If there is an 
arc (a, b) ∈ T with a ≤ i < j < b or a < i < j ≤ b, then it follows analogously to [10, 
Lemma 3.6] that (i, j) is mutable.

On the other hand, assume there is no such arc. Then the arcs πi, πj , αi, αj do not 
intersect any peripheral arcs in T . If πi ∈ T , then there cannot be an adic αk ∈ T

with k ≥ i and therefore we also have πj ∈ T . If, on the other hand, we have πi /∈ T , 
then there must exist an l > i with αl ∈ T , and since (i, j) ∈ T must not intersect 
αl ∈ T we even have l ≥ j. It follows that we cannot have any πk ∈ T with k ≤ l and 
therefore αi and αj do not intersect any strictly asymptotic arcs in T either and thus 
αi, αj ∈ T .

Therefore we have πi, πj ∈ T or αi, αj ∈ T , without loss of generality assume the 
former is the case (the latter case follows by symmetry). There exists a k ∈ Z with 
i < k < j and (i, k), (k, j) ∈ T∪E(C∞) and the arc (i, j) is a diagonal in the quadrilateral 
S((i, j)) = {(i, k), (k, j), πi, πj} ∩ A(C∞) in T . It follows by Remark 2.2 that (i, j) ∈ T

is mutable. �
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3. Mutations along infinite admissible sequences

Classically, the exchange graph of a marked surface (with finitely many marked points) 
is defined as the graph which has as vertices triangulations of the marked surface and as 
edges diagonal flips. In the finite setting, this exchange graph is connected, in the sense 
that for any two of its vertices there exists a finite path connecting them. However, if 
we extend this definition naively to infinitely marked surface, the resulting graph will 
not be connected anymore. In particular, triangulations that have very similar structure 
are not necessarily connected by finite sequences of mutations. Consider for example the 
two locally finite triangulations

tlf = {(−k, k) | k ∈ Z>0} ∪ {(−k, k + 1) | k ∈ Z>0}

and

t−lf = {(−k, k) | k ∈ Z>0} ∪ {(−(k + 1), k) | k ∈ Z>0}

of C∞. They are both locally finite, thus seem to have very similar behaviour under 
mutation, however there exists no finite sequence of mutations from tlf to t−lf . We are 
however able to connect (these particular) triangulations via mutations, if we consider 
mutations along possibly infinite admissible sequences.

3.1. Admissible sequences

In this section, we introduce the notion of (possibly infinite) admissible sequences and 
mutation along admissible sequences.

Definition 3.1. Let T be a triangulation of an infinitely marked surface (S, M) and let 
I be a countable indexing set, for notational simplicity throughout this paper we take 
I = {1, . . . , n} if it is finite and I = Z>0 if it is infinite. A sequence of arcs θ = (θi)i∈I

is called T -admissible if it satisfies the following:

(1) θ1 is mutable in T
(2) For all 1 �= i ∈ I, the arc θi is mutable in μθi−1 ◦ . . . ◦ μθ1(T ).
(3) For all γ ∈ T there exists an lγ ∈ I such that for all k ≥ lγ we have

μθk ◦ . . . ◦ μθ1(γ) = μθlγ
◦ . . . ◦ μθ1(γ).

For each arc γ ∈ T we define the mutation of γ along θ to be μT
θ (γ) = μθlγ

◦ . . . ◦μθ1(γ), 
where lγ is as in (3). We set

μθ(T ) = {μT
θ (γ) | γ ∈ T}

and call it the mutation of T along θ.
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If it is clear from context, we will usually omit the superscript and simply write μθ(γ)
for μT

θ (γ).

Example 3.2. The mutation of a triangulation T along a T -admissible sequence is not 
necessarily a triangulation. Consider for example the triangulation

t(0, 0) = {(0, k) | k ∈ Z≥2} ∪ {(−k, 0) | k ∈ Z≥2} ∪ {α0} ∪ {π0}

of C∞ and the t(0, 0)-admissible sequence θ = ((0, i))i≥2. We have

μθ(t(0, 0)) = {(1, k) | k ∈ Z≥3} ∪ {(−k, 0) | k ∈ Z≥2} ∪ {α0} ∪ {π0}

which is not a triangulation of C∞: the arc π1 does not intersect any arc in μθ(t(0, 0)), 
yet it is not contained in μθ(t(0, 0)).

Remark 3.3. However, the mutation of a triangulation along a T -admissible sequence 
consists of mutually non-intersecting arcs: for any pair of arcs β1, β2 ∈ T there exists 
a k ∈ Z such that μθ(βi) = μθk ◦ . . . ◦ μθ1(βi) for i = 1, 2. Since μθk ◦ . . . ◦ μθ1(T ) is a 
triangulation, β1 and β2 do not intersect.

Moreover, μθ(T ) always remains infinite: it follows directly from Definition 3.1 that 
μθ(γ) �= μθ(γ′) for all γ �= γ′ ∈ T .

Remark 3.4. If T and T ′ are triangulations of (S, M) and if there is an arc γ ∈ T ′ that 
intersects infinitely many arcs in T , then there is no T -admissible sequence θ = (θi)i∈I

with μθ(T ) = T ′.
Indeed, if there were such a T -admissible sequence, then we would have an i ∈ I such 

that γ ∈ μθi ◦ . . . ◦ μθ1(T ) = Ti. However, since T and Ti only differ in finitely many 
arcs, and since γ intersects infinitely many arcs in the triangulation Ti this leads to a 
contradiction.

Example 3.5. Consider the triangulations

t(−∞,∞) = {πk | k ≥ 0} ∪ {αk | k ≤ 0} and t(∞,∞) = {πk | k ∈ Z}

of C∞. The t(−∞, ∞)-admissible sequence θ = (α−i)i≥0 takes t(−∞, ∞) to t(∞, ∞), 
that is we have μθ(t(−∞, ∞)) = t(∞, ∞). However, by Remark 3.4 there is no 
t(∞, ∞)-admissible sequence of arcs along which we can mutate to take t(∞, ∞) to 
t(−∞, ∞); the arc α0 ∈ t(−∞, ∞) for example intersects the infinitely many arcs 
πk ∈ t(∞, ∞) with k ≤ −1.

3.2. A preorder on triangulations of an infinitely marked surface

Evidently, as we have seen in Example 3.5, mutation along T -admissible sequences 
is “directed” in the sense that we might have a T -admissible sequence from a tri-
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angulation T to a triangulation T ′, but no way of mutating back from T ′ to T
along a T ′-admissible sequence. This naturally leads one to wonder if mutation along 
T -admissible sequences induces some sort of order on the set of triangulations of (S, M).

Notation 3.6. Let T and T ′ be triangulations of (S, M). We write T ≤s T ′ if there is a 
T -admissible sequence θ with μθ(T ) = T ′.

In this section we will show that ≤s induces a preorder on the set of triangulations 
of (S, M). The tricky part is showing transitivity. In the following, we introduce some 
notion and prove some results which will be very useful for this, and in fact will be used 
throughout the rest of this paper.

Definition 3.7. Let T be a triangulation of (S, M) and let θ = (θi)i∈I be a T -admissible 
sequence. We say that θ leaves γ ∈ T untouched if μθl ◦ . . . ◦ μθ1(γ) = γ for all l ∈ I.

Lemma 3.8. Let T be a triangulation of (S, M). A T -admissible sequence θ = (θi)i∈I

leaves γ ∈ T untouched if and only if θi �= γ for all i ∈ I.

Proof. Assume first that θj �= γ for all j ∈ I. Then we have μθ1(γ) = γ and inductively 
assuming that μθi ◦ . . . ◦ μθ1(γ) = γ for some i ≥ 1, we obtain

μθi+1 ◦ . . . ◦ μθ1(γ) = μ
μθi

◦...◦μθ1 (T )
θi+1

(γ) = γ.

To show the converse, assume that θ does not leave γ ∈ T untouched. Then there 
exists a k ∈ I such that

μθk ◦ . . . ◦ μθ1(γ) �= γ and μθi ◦ . . . ◦ μθ1(γ) = γ for all i ≤ k.

It follows that

μθk ◦ . . . ◦ μT
θ1(γ) = μ

μθk−1◦...◦μ
T
θ1 (γ)

θk
(γ) �= γ

and therefore θk = γ. This proves the claim. �
Lemma 3.9. Let T be a triangulation of (S, M) and let θ be a T -admissible sequence. 
Assume that δ ∈ T is mutable, and that θ leaves all arcs in S(δ) ∪ {δ} untouched. Then 
θ is a μδ(T )-admissible sequence with μθ(μδ(T )) = μδ(μθ(T )).

Proof. Let θ = (θi)i∈I . Inductively applying Lemma 2.3 implies that for all k ∈ I the 
finite sequence (δ, θ1, . . . , θk) is T -admissible and for all γ ∈ T we have

μδ ◦ μθk ◦ . . . ◦ μT
θ (γ) = μθk ◦ . . . ◦ μθ1 ◦ μT

δ (γ).

1
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Therefore, for all k ∈ I the sequence θk = (θ1, . . . , θk) is μδ(T )-admissible. Assume that 
δ′ = μT

δ (δ). The sequence θk leaves δ′ ∈ μδ(T ) untouched: since δ ∈ T and δ intersects δ′, 
we have δ′ �= θ1 ∈ T . Furthermore, since for all k ≥ 1 the sequence θk leaves δ untouched, 
we have δ ∈ μT

θk
(T ) and therefore δ′ �= θk+1 ∈ μT

θk
(T ). It follows from Lemma 3.8 that 

θk as a μδ(T )-admissible sequence leaves δ′ untouched. Therefore for all k ∈ I we have

μθk ◦ . . . ◦ μμδ(T )
θ1

(δ′) = δ′. (3.1)

Consider now γ ∈ μδ(T ) with γ �= δ′. Then we have γ ∈ T \{δ}. Since θ is T -admissible, 
there exists an l ∈ I such that for all k ≥ l we have

μθk ◦ . . . ◦ μT
θ1(γ) = μθl ◦ . . . ◦ μT

θ1(γ).

Because we have γ ∈ T \ {δ} and since θ leaves δ ∈ T untouched, for all k ∈ I we have 
μθk

(γ) ∈ μT
θk

(T ) \ {δ}. It follows that for all k ≥ l we have

μθk ◦ . . . ◦ μμδ(T )
θ1

(γ) = μθk ◦ . . . ◦ μθ1(μT
δ (γ)) = μδ ◦ μθk ◦ . . . ◦ μT

θ1(γ)

= μθk ◦ . . . ◦ μT
θ1(γ) = μθl ◦ . . . ◦ μT

θ1(γ) = μT
θ (γ).

Therefore θ is μδ(T )-admissible with

μ
μδ(T )
θ (γ) =

{
δ′ if γ = δ′

μT
θ (γ) otherwise,

and we have

μθ(μδ(T )) = (μθ(T ) \ {δ}) ∪ {δ′} = μδ(μθ(T )). �
Lemma 3.10. Let T be a triangulation of (S, M) and let θ = (θi)i∈I be a T -admissible 
sequence. If δ is a mutable arc in μθ(T ) then there exists an r ∈ I such that for all l ≥ r

the sequence

θ ∪l (δ) = (θ1, . . . , θl, δ, θl+1, θl+2, . . .)

is a T -admissible sequence with μθ∪l(δ)(γ) = μδ(μθ(γ)) for all γ ∈ T .

Proof. Set T ′ = μθ(T ). Since δ ∈ T ′ is mutable, we can consider the quadrilateral S(δ)
in T ′ with diagonal δ. Furthermore, because θ is T -admissible with μθ(T ) = T ′, there 
exists an r ∈ I such that

{δ} ∪ S(δ) ⊆ μθr ◦ . . . ◦ μθ1(T ) = Tr (3.2)

and such that
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μθk ◦ . . . ◦ μTr

θr+1
(γ) = γ (3.3)

for all γ ∈ S(δ) ∪ {δ} and r ≤ k ∈ I. Fix now an l ∈ I with l ≥ r and set

θ ∪l (δ) = (θ1, . . . , θl, δ, θl+1, θl+2, . . .).

This sequence is T -admissible: it is clear that θ1 is mutable in T and that θi ∈ μθi−1 ◦
. . . ◦ μθ1(T ) is mutable for 2 ≤ i ≤ l. Furthermore, by (3.2), we have that δ is mutable 
in μθl ◦ . . . ◦ μθ1(T̃ ). Finally, setting Tl = μθl ◦ . . . ◦ μθ1(T ), it follows from (3.3) that the 
Tl-admissible sequence

θl+1 = (θi)i∈I\{1,...,l}

leaves all arcs in {δ} ∪ S(δ) untouched. By Lemma 3.9 we obtain that θl+1 is a 
μδ(Tl)-admissible sequence, and therefore the sequence θ ∪l (δ) is T -admissible. Fur-
thermore, again by Lemma 3.9, for all γ ∈ T we obtain

μθ∪l(δ)(γ) = μθl+1(μ
Tl

δ (μθl ◦ . . . ◦ μθ1(γ)))

= μδ(μTl

θl+1
(μθl ◦ . . . ◦ μθ1(γ))) = μδ(μθ(γ)),

which proves the claim. �
Remark 3.11. With the notation as in Lemma 3.10, assume that S(δ) is the quadrilateral 
in μθ(T ) with diagonal δ. In the proof of Lemma 3.10, we picked r ∈ I big enough so that 
not only the desired property is satisfied but so that we furthermore have {δ} ∪ S(δ) ⊆
μθr ◦ . . . ◦ μθ1(T ) and (θi)i>r leaves every arc in {δ} ∪ S(δ) untouched. We will use this 
aspect of the construction in the proof of Proposition 3.12.

Proposition 3.12. Let T , T ′ and T ′′ be triangulations of (S, M). Assume there exists a 
T -admissible sequence α such that μα(T ) = T ′ and a T ′-admissible sequence β such that 
μβ(T ′) = T ′′. Then there exists a T -admissible sequence γ such that μγ(T ) = T ′′.

Proof. If α is a finite sequence, i.e. α = (α1, . . . , αn) for some n ∈ Z>0 the statement is 
trivial – we can just set γ = (α1, . . . , αn, β). Furthermore, if β is a finite sequence then the 
statement follows by iteratively applying Lemma 3.10. Assume thus that α = (αi)i∈Z>0

and β = (βi)i∈Z>0 . We build a T -admissible sequence γ with μγ(T ) = T ′′ by interlacing 
the sequences α and β in the following way: since β1 ∈ T ′ is mutable, by Lemma 3.10
there exists an l1 ∈ Iα such that

α ∪l1 (β1) = (α1, . . . , αl1 , β1, αl1+1, . . .)

is T -admissible with μα∪l1 (β1)(γ) = μβ1(μα(γ)) for all γ ∈ T . By Remark 3.11 we 
may assume that l1 is big enough such that, if S(β1) is the quadrilateral in μα(T ) with 
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diagonal β1, we have {β1} ∪S(β1) ⊆ μαl1
◦. . .◦μα1(T ) and the μαl1

◦. . .◦μα1(T )-admissible 
sequence (αj)j>l1 leaves all arcs in {β1} ∪ S(β1) untouched. By iteratively applying 
Lemma 3.10 for all i ≥ 2 we can pick li ∈ Z>0 with li > li−1 and set l0 = 0, such that

α ∪ (β1, . . . , βi) = α ∪ (β1, . . . , βi−1) ∪li (βi)

= (α1, . . . , αl1 , β1, αl1+1, . . . , αli , βi, αli+1, . . .)

= ((αlk−1+1, . . . , αlk , βk)1≤k≤i, (αj)j≥li+1)

is T -admissible with

μα∪(β1,...,βi)(γ) = μβi
◦ . . . ◦ μβ1(μα(γ)).

For i ≥ 2 assume that S(βi) is the quadrilateral in μα∪(β1,...,βi−1)(T ) with diagonal βi. 
By Remark 3.11 we can assume without loss of generality that for each i ∈ Z>0 we picked 
li ∈ Z>0 big enough such that (αj)j>li leaves all arcs in S(βi) ∪ {βi} untouched. Set

γ = (γi)i∈Z>0 = ((αli−1+1, . . . , αli))i∈Iβ .

In the following we prove that this is the desired T -admissible sequence with μγ(T ) = T ′′.
Notice that if we consider finite length sequences of the form (γ1, . . . , γk) for k ≥ 1 then 

as sets we have {γ1, . . . , γk} = {α1, . . . , αm, β1, . . . , βn} for some m, n ∈ Z>0. Iteratively 
applying Lemma 2.3, and using the fact that (αj)j>li leaves all arcs in {βi} ∪ S(βi)
untouched, we can push the βi towards the end of the sequence and obtain a T -admissible 
sequence

(α1, . . . , αm, β1, . . . , βn)

and for all δ ∈ T we have

μβn
◦ . . . μβ1 ◦ μαm

◦ . . . ◦ μα1(δ) = μγk
◦ . . . ◦ μγ1(δ).

We now show that γ is a T -admissible sequence. Clearly γ1 = α1 is mutable in T . For 
i ≥ 2, there exists a j ∈ Z>0 such that the first i entries of the sequence α∪{β1, . . . , βj}
coincide with the sequence (γ1, . . . , γi). Since α∪ {β1, . . . , βj} is T -admissible, it follows 
that γi ∈ μγi−1 ◦ . . . ◦ μγ1(T ) is mutable. To show that the sequence is T -admissible, it 
thus remains to show that for each δ ∈ T there exists an l > 0 such that for all k ≥ l we 
have

μγk
◦ . . . ◦ μγ1(δ) = μγl

◦ . . . ◦ μγ1(δ).

Let μα(δ) = δ′ ∈ T ′. Assume first that δ′ is not mutable in T ′. Then it is not mutable 
in μβl

◦ . . . ◦ μβ1(T ′) for any l ≥ 1 by Lemma 2.4. It follows that βi �= δ′ for all i ≥ 1. 
Since α is T -admissible there exists an l ∈ Z>0 such that for all k ≥ l we have
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μαk
◦ . . . ◦ μα1(δ) = μα(δ) = δ′.

Pick m ∈ Z>0 such that {γ1, . . . , γm} = {α1, . . . , αl, β1, . . . , βp} for some p ∈ Z>0. For 
all k ≥ m we have {γ1, . . . , γk} = {α1, . . . , αs, β1, . . . , βt} for some s ≥ l and t ≥ p and 
we obtain

μγk
◦ . . . ◦ μγ1(δ) = μβt

◦ . . . ◦ μβ1 ◦ μαs
◦ . . . ◦ μα1(δ) (3.4)

= μβt
◦ . . . ◦ μβ1(δ′) = δ′,

where the last equality holds since δ′ /∈ {β1, . . . , βt}. This proves the claim in this case.
On the other hand, if δ′ is mutable in T ′ then we can consider the quadrilateral S(δ′)

in T ′ with diagonal δ′. There exists an l ∈ Z>0 such that

{δ′} ∪ S(δ′) ⊆ μαl
◦ . . . ◦ μα1(T ) = Tl

and for all k ≥ l

μαk
◦ . . . ◦ μTl

αl+1
(x) = x

for all x ∈ {δ′} ∪ S(δ′). If δ′′ �= δ′ is the other diagonal of S(δ′) then it follows from the 

definition of mutation that μμαk
◦...◦μα1 (T )

δ′ (δ′) = δ′′ for all k ≥ l. Since β is T ′-admissible 
there exists a r ∈ Z>0 such that μβk

◦ . . . ◦μβ1(δ′) = δ′′ for all k ≥ r. Pick m ∈ Z>0 such 
that {γ1, . . . , γm} = {α1, . . . , αq, β1, . . . , βp} for some p ≥ r and q ≥ l. Let k ≥ m with 
{γ1, . . . , γk} = {α1, . . . , αs, β1, . . . , βt} for some s ≥ l and t ≥ p. We obtain

μγk
◦ . . . ◦ μγ1(δ) = μβt

◦ . . . ◦ μβ1 ◦ μαs
◦ . . . ◦ μα1(δ) (3.5)

= μβt
◦ . . . ◦ μμαs◦...◦μα1 (δ)

β1
(δ′) = δ′′.

This proves that the sequence γ is T -admissible. Furthermore, (3.4) and (3.5) ensure 
that

μγ(δ) = μβ(μα(δ)) for all δ ∈ T . �
Theorem 3.13. The relation ≤s defines a preorder on the set of triangulations of (S, M).

Proof. Reflexivity is clear and transitivity follows from Proposition 3.12. �
4. Strong mutation equivalence

The preorder ≤s induces an equivalence relation on the set of triangulations of a fixed 
infinitely marked surface.
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Definition 4.1. Let T and T ′ be triangulations of (S, M). We say that T and T ′ are 
strongly mutation equivalent if T ≤s T

′ and T ′ ≤s T .

This section is dedicated to understanding when two triangulations of C∞, respectively 
of C∞, are strongly mutation equivalent. Before we provide a complete classification of 
strong mutation equivalence classes in both cases, we introduce useful notation and make 
some observations.

Definition 4.2. Let T be a triangulation of C∞ (respectively of C∞) and set E = E(C∞)
(respectively E = E(C∞)). A finite subpolygon of T is a finite set of vertices P =
{x1, . . . , xk} ⊆ Z ∪ {±∞} with k ≥ 3 that can be ordered such that x1 < x2 < . . . < xk

and with (x1, xk) ∈ T ∪ E and for all 1 ≤ i < k we have (xi, xi+1) ∈ T ∪ E.
If P is a finite subpolygon of T as above, we denote by S(P ) the set S(P ) = {(xi, xj) |

1 ≤ i < j ≤ k}. We call

E(P ) = {(xi, xi+1) | 1 ≤ i < k − 1} ∪ {(x1, xk)}

the edges of P and

A(P ) = S(P ) \ E(P )

the arcs of P .

Notation 4.3. Let T be a triangulation of C∞ (respectively of C∞) and let P ⊆ Z ∪{±∞}
be a set of vertices. Then we denote by T |P the set of arcs

T |P= {(a, b) ∈ T | a, b ∈ P}.

Remark 4.4. Locally, triangulations of C∞ and C∞ behave like triangulations of finite 
polygons: if P is a finite subpolygon of T , then T |P is a triangulation of the polygon 
with vertices P , i.e. a maximal set of non-intersecting arcs with endpoints in P , and we 
call it a finite subtriangulation of T .

Remark 4.5. Assume T and T ′ are both triangulations of C∞, respectively of C∞, with 
finite subtriangulation T |P and T ′ |P ′ for some finite subpolygons P of T and P ′ of T ′

such that P ′ ⊆ P . Then – via mutations in the finite subpolygon with vertices P – there 
exists a finite T -admissible sequence θ such that μθ(T ) |P ′= T ′ |P ′ and θ leaves all arcs 
in T \ A(P ) untouched.

The following results will be useful to describe strong mutation equivalence classes.

Lemma 4.6. Let T be a triangulation of C∞, respectively of C∞ with finite subpolygons Pi

of T for i ∈ Z>0 such that A(Pi) ∩S(Pj) = ∅ for i �= j. Let T ′ be a triangulation of C∞, 
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respectively of C∞, with finite subpolygons P ′
i of T ′ for i ∈ Z>0 such that P ′

i ⊆ Pi for all 
i ∈ Z>0. Then there exists a T -admissible sequence θ such that

μθ(T ) |⋃
i∈Z>0

P ′
i
= T ′ |⋃

i∈Z>0
P ′

i

and such that θ leaves all arcs in T \
⋃

i∈Z>0
A(Pi) untouched.

Proof. By Remark 4.5 for all i ∈ Z>0 there exists a finite length T -admissible sequence θi

with μθi(T ) |P ′
i
= T ′ |P ′

i
and such that θi leaves all arcs in T \A(Pi) untouched. We label 

the arcs in the sequence θi by θi = (θj)li−1<j≤li where we set l0 = 0 and for i ≥ 1 we 
pick li ∈ Z>0 such that (li − li−1) is the length of the admissible sequence θi. We make 
the following observation:

(*) Let γ ∈ T . Then we have γ ∈ A(Pi) if and only if μθk ◦ . . . ◦ μθli−1+1(γ) ∈ A(Pi) for 
all li−1 < k ≤ li.

We now prove the observation for a fixed i ∈ Z>0. It is clear that if γ /∈ A(Pi), then, since 
θi leaves γ untouched, we also have μθk◦. . .◦μθli−1+1(γ) = γ /∈ A(Pi) for all li−1 < k ≤ li. 
On the other hand, assume that γ ∈ T ∩ A(Pi). Set Tli−1 = T and γli−1 = γ and for 
li−1 < k ≤ li set Tk = μθk ◦ . . . ◦ μθli−1+1(T ) and γk = μTk

θk
(γk−1). We show by induction 

that then γk ∈ A(Pi) for all li−1 < k ≤ li. The base case γli−1 = γ ∈ A(Pi) is clear by 
assumption. For the induction step assume now that γk ∈ A(Pi) for a li−1 ≤ k ≤ li − 1. 
Then we also have γk+1 ∈ A(Pi): since θi leaves all arcs in E(Pi) untouched, the finite 
subpolygon Pi of T is also a finite subpolygon of Tk for all li−1 < k ≤ li. Consider the 
quadrilateral S(γk) in Tk with diagonal γk. We have S(γk) ⊆ S(Pi) and therefore the 
other diagonal γ′

k �= γk in S(γk) also lies in A(Pi). It follows that γk = μTk

θk+1
(γk) ∈ {γ, γ′}

lies in A(Pi). This proves the above observation.
Set θ = (θi)i≥1. Clearly the sequence (θ1) of length one is T -admissible and for all 

γ ∈ T we have

μθ1(γ) =
{
μθ1(γ) if γ ∈ A(P1)
γ otherwise.

We show that for all m ≥ 1 the sequence (θi)1≤i≤m is T -admissible and, setting j ≥ 1
such that lj−1 < m ≤ lj , for all γ ∈ T we have

μθm ◦ . . . ◦ μθ1(γ) =

⎧⎪⎪⎨
⎪⎪⎩
μθm ◦ . . . ◦ μθlj−1+1(γ) if γ ∈ A(Pj)
μθli

◦ . . . ◦ μθli−1+1(γ) if γ ∈ A(Pi) for 1 ≤ i < j

γ otherwise.
(4.6)
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Assume this condition holds for m ≥ 1, and let j ≥ 1 be such that lj−1 < m ≤ lj . We 
show that it also holds for m +1. Consider thus the sequence (θi)1≤i≤m+1. We distinguish 
two cases.

Case 1: Assume that lj−1 < m < m + 1 ≤ lj . Then θm+1 is mutable in μθm ◦
. . . ◦ μθlj−1+1(T ). Consider the quadrilateral S(θm+1) in μθm ◦ . . . ◦ μθlj−1+1(T ) with 
diagonal θm+1. We show that in fact we have {θm+1} ∪ S(θm+1) ⊆ μθm ◦ . . . ◦ μθ1(T ).

Assume thus that α ∈ {θm+1} ∪ S(θm+1). There exists a β ∈ T with α = μθm ◦ . . . ◦
μθlj−1+1(β). If α ∈ A(Pi) then by (*) we have β ∈ A(Pi) and therefore

α = μθm ◦ . . . ◦ μθlj−1+1(β) = μθm ◦ . . . ◦ μθ1(β) ∈ μθm ◦ . . . ◦ μθ1(T ).

Assume on the other hand that α ∈ E(Pi). Then, since Pi is a subpolygon of T , we 
have α ∈ T . Furthermore, we have E(Pi) ∩ A(Pj) = ∅ for all j ≥ 1: this is clear for 
j = i and follows from the assumption S(Pi) ∩ A(Pj) = ∅ for i �= j. It follows that 
α /∈ {θi | i ≥ 1} and therefore the sequence (θi)1≤i≤m leaves α untouched and we have 
α ∈ μθm ◦ . . .◦μθ1(T ). It follows that {θm+1} ∪S(θm+1) ⊆ μθm ◦ . . .◦μθ1(T ) and therefore 
the sequence (θi)1≤i≤m+1 is T -admissible. Furthermore, since θm+1 ∈ A(Pj) it leaves all 
arcs that are not in A(Pj) untouched. By (*) and since A(Pi) ∩ A(Pj) = ∅ for i �= j, 
we have μθli

◦ . . . ◦ μθli−1+1(γ) /∈ A(Pj) if γ ∈ A(Pi) with i �= j. It follows that

μθm+1 ◦ . . . ◦ μθ1(γ) =

⎧⎪⎪⎨
⎪⎪⎩
μθm+1 ◦ . . . ◦ μθlj−1+1(γ) if γ ∈ A(Pj)
μθli

◦ . . . ◦ μθli−1+1(γ) if γ ∈ A(Pi) for 1 ≤ i < j

γ otherwise.

Case 2: Assume that m +1 = lj +1. Then θm+1 ∈ A(Pj+1) is mutable in T . Consider 
the quadrilateral S(θm+1) in T with diagonal θm+1. We have S(θm+1) ⊆ S(Pj+1). Since 
S(Pj+1) ∩ A(Pi) = ∅ for all 1 ≤ i ≤ j, the sequence (θi)1≤i≤m leaves θm+1 ∈ T un-
touched. By iteratively applying Lemma 2.3 we obtain that (θi)1≤i≤m+1 is T -admissible 
with

μθm+1 ◦ . . . ◦ μθ1(γ) =

⎧⎪⎪⎨
⎪⎪⎩
μθm+1(γ) if γ ∈ A(Pj+1)
μθli

◦ . . . ◦ μθli−1+1(γ) if γ ∈ A(Pi) for 1 ≤ i ≤ j

γ otherwise.

Therefore, for every m ∈ Z>0 the sequence (θi)1≤i≤m is T -admissible and satisfies 
condition (4.6). Consider now the sequence θ = (θi)i∈Z>0 . Pick γ ∈ T . Then, if γ ∈ A(Pi)
for some i ∈ Z>0 for all k ≥ li we have

μθk ◦ . . . ◦ μθ1(γ) = μθli
◦ . . . ◦ μθ1(γ) = μθli

◦ . . . ◦ μθli−1+1(γ)

and if γ /∈
⋃

i∈Z>)
A(Pi), for all k ≥ 1 we have μθk ◦ . . . ◦ μθ1(γ) = γ. It follows that θ is 

T -admissible with
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μθ(T ) |⋃
i∈Z>0

P ′
i
= T ′ |⋃

i∈Z>0
P ′

i

and that θ leaves all arcs in T \
⋃

i∈Z>0
A(Pi) untouched. �

Lemma 4.7. Let T and T ′ be triangulations of C∞, respectively of C∞.

(1) If T and T ′ both have a right fountain at b ∈ Z, then there exists a T -admissible 
sequence θ with

μθ(T ) |[b,∞)= T ′ |[b,∞)

and such that θ leaves all arcs in T \ T |[b,∞) untouched.
(2) If T and T ′ both have a left fountain at a ∈ Z, then there exists a T -admissible 

sequence θ with

μθ(T ) |(−∞,a]= T ′ |(−∞,a]

and such that θ leaves all arcs in T \ T |(−∞,a] untouched.
(3) If T and T ′ are locally finite, then there exists a T -admissible sequence θ with

μθ(T ) = T ′.

(4) If T and T ′ are triangulations of C∞ and both have a right fountain at b = ∞
(respectively at b = −∞), then there exists a T -admissible sequence θ and a k ∈ Z

such that πk ∈ T ′ (respectively αk ∈ T ′) with

μθ(T ) |{b}∪[k,∞)= T ′ |{b}∪[k,∞)

and such that θ leaves all arcs in T \ T |{b}∪[k,∞) untouched.
(5) If T and T ′ are triangulations of C∞ and both have a left fountain at a = ∞ (re-

spectively at a = −∞), then there exists a T -admissible sequence θ and a k ∈ Z such 
that πk ∈ T ′ (respectively αk ∈ T ′) with

μθ(T ) |{a}∪(−∞,k]= T ′ |{a}∪(−∞,k]

and such that θ leaves all arcs in T \ T |{a}∪(−∞,k] untouched.

Proof. We start by showing (1). Let T be any triangulation with a right fountain at 
b ∈ Z and consider the strictly increasing sequence (ki)i≥1, where

{ki | i ≥ 1} = {m | (b,m) ∈ T}.

Let further T ′ be a triangulation such that T ′ |[b,∞[= {(b, k) | k ≥ b + 2}. Then, setting 
k0 = b, the sets Pi = {b} ∪ [ki−1, ki] are finite subpolygons of both T and T ′ and 
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A(Pi) ∩ S(Pj) = ∅ if i �= j. Furthermore, we have 
⋃

i∈Z>0
Pi = [b, ∞). It follows from 

Lemma 4.6 that there exists both a T -admissible sequence θ with μθ(T ) |[b,∞)= T ′ |[b,∞)
that leaves all arcs in T \T |[b,∞)⊆ T \

⋃
i∈Z>)

A(Pi) untouched and symmetrically there 

exists a T ′-admissible sequence θ′ with μθ′(T ′) |[b,∞)= T |[b,∞) that leaves all arcs in 
T ′ \ T ′ |[b,∞)⊆ T ′ \

⋃
i∈Z>)

A(Pi) untouched. It follows from Proposition 3.12 that the 
statement (1) holds for any other triangulation T ′ with a right fountain at b.

Item (2) follows from (1) by symmetry.
We now show (3): we can pick a sequence ((ai, bi))i≥0 in T and a sequence ((a′i, b′i))i≥0

in T ′ such that

a′i+1 < ai < a′i < b′i < bi < b′i+1

for all i ≥ 1. Observe that this is indeed always possible: If T̃ is a locally finite trian-
gulation, then for any peripheral arc (x, y) there exists an arc (u, v) ∈ T̃ passing over 
it, i.e. an arc (u, v) ∈ T̃ such that u < x < y < v. Picking an arc (a′0, b′0) ∈ T ′ arbi-
trarily, we can find an arc (a0, b0) ∈ T passing over it, i.e. an arc (a0, b0) ∈ T such that 
a0 < a′0 < b′0 < b0. Analogously, we can find an arc (a′1, b′1) ∈ T ′ passing over (a0, b0) and 
we get a′1 < a0 < a′0 < b′0 < b0 < b′1. Iteratively repeating this process yields a sequence 
as desired. For i ∈ Z>0 odd, we set

Pi = [ai+1, ai−1] ∪ [bi−1, bi+1].

These are all finite subpolygons of T and we have A(Pi) ∩S(Pj) = ∅ for odd i and odd j

with i �= j. Furthermore, for i ∈ Z>0 odd consider the finite subpolygons

P ′
i = [a′i+1, a

′
i] ∪ [b′i, b′i+1] ⊆ Pi

of T ′. By Lemma 4.6, there exists a T -admissible sequence θ such that

μθ(T ) |⋃
i∈Z>0 odd P ′

i
= T ′ |⋃

i∈Z>0 odd P ′
i
.

Set T̃ = μθ(T ). Set Q0 = [a′0, b′0] and for i ∈ Z>0 consider the sets

Qi = [a′i, a′i−1] ∪ [b′i−1, b
′
i].

Clearly they are finite subpolygons of T ′. However, they are finite subpolygons of T̃ as 
well: indeed, we have E(Qi) ⊆ E(C∞) ∪ {(a′i, b′i), (a′i−1, b

′
i−1)} and (a′i, b′i), (a′i−1, b

′
i−1) ∈

T ′ |P ′
i−1∪P ′

i
= T̃ |P ′

i−1∪P ′
i
. Furthermore, we have A(Qi) ∩ S(Qj) = ∅ for all i �= j and ⋃

i∈Z≥0
Qi = Z ∪ {±∞}. By Lemma 4.6 we obtain a T̃ -admissible sequence θ̃ with 

μθ̃(T̃ ) = T ′. By Proposition 3.12 we can precompose the sequence θ̃ with θ to obtain a 
T -admissible sequence γ with μγ(T ) = T ′. This shows the claim.

We now show (4). Assume that both T and T ′ have a right fountain at ∞, the 
statement can be proved analogously if they have a right fountain at −∞. We can pick a 
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sequence (πki
)i∈Z≥0 from T and a sequence (πk′

i
)i∈Z≥0 from T ′ such that for all i ≥ 0 we 

have πki
< πk′

i
< πki+1 . For i ∈ Z>0 odd consider the sets Pi = [ki−1, ki+1] ∪{∞}. These 

are finite subpolygons of T and we have A(Pi) ∩S(Pj) = ∅ for i �= j. Moreover, for i ≥ 0
odd, the sets P ′

i = [k′i−1, k
′
i] ∪ {∞} ⊆ Pi are finite subpolygons of T ′. By Lemma 4.6

there exists a T -admissible sequence θ, with μθ(T ) |⋃
i∈Z>0 odd Pi

= T ′ |⋃
i∈Z>0 odd Pi

. Set 
T̃ = μθ(T ). The sets Qi = [k′i, k′i+1] ∪ {∞} for i ≥ 0 are finite subpolygons of both T̃
and T ′. Furthermore, we have A(Pi) ∩ S(Pj) = ∅ for i �= j and 

⋃
i∈Z≥0

Qi = [k′0, ∞]. 
By Lemma 4.6 there exists a T̃ -admissible sequence θ̃ with μθ̃(T̃ ) |[k′

0,∞]= T ′ |[k′
0,∞]

and applying 3.12 we can precompose the sequence θ̃ with θ to obtain a T -admissible 
sequence γ with μγ(T ) =|[k0,∞]= T ′ |[k0,∞]. This shows the claim.

Item (5) follows from (4) by symmetry. �

4.1. Strong mutation equivalence in the infinity-gon

Theorem 4.8. Under strong mutation equivalence, every triangulation of the ∞-gon C∞
belongs to exactly one of the following equivalence classes.

• The class [Tlf ] of locally finite triangulations.
• The class [T (a, b)] of triangulations with a left fountain at a and a right fountain at 

b for a unique pair a, b ∈ Z with a ≤ b.

Proof. By Theorem 1.12 each triangulation belongs to one of the listed classes. It follows 
directly from Lemma 4.7, Remark 4.5 and Proposition 3.12 that if T and T ′ are in the 
same class [Tlf ] or [T (a, b)] for some fixed pair (a, b), then they are strongly mutation 
equivalent.

Assume now that T ∈ [T (a, b)] and T ′ does not have a right fountain at b. We use 
Remark 3.4 in each of the following cases.

• The triangulation T ′ is locally finite. Then there exists an arc (i, j) ∈ T ′ with i <
b < j, which intersects the infinitely many arcs in the right fountain at b in T , so we 
cannot have T ≤s T

′.
• The triangulation T ′ has a right fountain at b′ < b. Then there is an arc (b′, k) ∈ T ′

with b < k, which intersects the infinitely many arcs in the right fountain at b in T , 
so we cannot have T ≤s T

′.
• The triangulation T ′ has a right fountain at b′ > b. Then by the previous bullet point 

we cannot have T ′ ≤s T .

By symmetry it follows that T and T ′ are not strongly mutation equivalent if T ′ does 
not have a left fountain at a. Therefore, T and T ′ are not mutation equivalent if they do 
not belong to the same class [Tlf ] or [T (a, b)] for some fixed pair (a, b). �
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Fig. 3. The triangulation tlf of C∞.

Fig. 4. The triangulation t(a, b) of C∞.

Remark 4.9. We can pick representatives of each of the strong equivalence classes of C∞
as follows:

• In [Tlf ] (cf. Fig. 3):

tlf = {(−k, k) | k ∈ Z>0} ∪ {(−k, k + 1) | k ∈ Z>0}.

• In [T (a, b)] (cf. Fig. 4):

t(a, b) = {(k, a) | k ∈ Z≤a−2} ∪ {(b, k) | k ∈ Z≥b+2} ∪ {(a, k) | a + 2 ≤ k ≤ b}.

4.2. Strong mutation equivalence in the completed infinity-gon

We first provide a classification of the strong mutation equivalence classes of triangu-
lations of the completed infinity-gon. The preorder ≤s induces a partial order on the set 
of strong mutation equivalence classes of triangulations of the completed infinity-gon. 
At the end of this section we describe the structure of the Hasse diagram of this poset.

Theorem 4.10. Under strong mutation equivalence, every triangulation of C∞ belongs to 
exactly one of the following equivalence classes.

• The class [Tlf ] of locally finite triangulations.
• The class [T (a, b)] of triangulations with a left fountain at a and a right fountain 

at b for a unique pair (a, b) with a, b ∈ Z ∪ {±∞} and a ≤ b or a = ∞, b ∈ Z or 
a ∈ Z, b = −∞.

Proof. If T, T ′ ∈ [Tlf ] they are mutation equivalent by Lemma 4.7(3).
If T, T ′ ∈ [T (a, b)] for a, b ∈ Z, then we have πb, αa ∈ T∩T ′. By Lemma 4.7 (1) and (2), 

using Proposition 3.12 we have a T -admissible sequence θ with μθ(T ) |(−∞,a]∪[b,∞)=
T ′ |(−∞,a]∪[b,∞) that leaves all other arcs in T untouched. If a = b then we are done, and 
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Fig. 5. The triangulation t(−∞, b) of C∞.

otherwise the set P = [a, b] ∪ {±∞} is a finite subpolygon of both μθ(T ) and T ′ and 
there exists a μθ(T )-admissible sequence θ′ with μθ′ ◦μθ(T ) = T ′. The statement follows 
by Proposition 3.12.

Assume now that T, T ′ ∈ [T (a, b)] for a ∈ Z and b = ∞ (respectively b = −∞). 
By Lemma 4.7 (1) and (4), using Proposition 3.12 we have a T -admissible sequence θ
and a k ∈ Z, such that πk ∈ T ′ (respectively αk ∈ T ′) with μθ(T ) |(−∞,a]∪[k,∞)∪{b}=
T ′ |(−∞,a]∪[k,∞)∪{b} that leaves all other arcs in T untouched. If k = a then we are done, 
since if two triangulations agree on the set (−∞, ∞] then they must on all of [−∞, ∞]. 
Otherwise, we have a < k and the set [a, k] ∪ {−∞} ∪ {b} is a finite subpolygon of both 
μθ(T ) and T ′ and it follows as above that T and T ′ are mutation equivalent.

With an analogous argument we can show that if T, T ′ ∈ [T (a, b)] with a ∈ {±∞}
and b ∈ Z, respectively with a, b ∈ {±∞}, then they are mutation equivalent.

The rest of the proof follows similarly to the proof of Theorem 4.8 by applying Re-
mark 3.4. �
Remark 4.11. We can pick representatives of each of the strong equivalence classes of C∞
as follows. Recall that we omit the generic curve for brevity.

• For [Tlf ]: tlf = {(−k, k) | k ∈ Z>0} ∪ {(−k, k + 1) | k ∈ Z>0}.
• For [T (a, b)] with a, b ∈ Z and a ≤ b:

t(a, b) = {(k, a) | k ∈ Z≤a−2} ∪ {αa} ∪

{(b, k) | k ∈ Z≥b+2} ∪ {πk | a ≤ k ≤ b}.

• For [T (−∞, b)] with b ∈ Z (cf. Fig. 5):

t(−∞, b) = {αk | k ≤ b} ∪ {(b, k) | k ∈ Z≥b+2} ∪ {πb}.

• For [T (∞, b)] with b ∈ Z (cf. Fig. 6):

t(∞, b) = {πk | k ≤ b} ∪ {(b, k) | k ∈ Z≥b+2}.

• For [T (a, ∞)] with a ∈ Z:

t(a,∞) = {(k, a) | k ∈ Z≤a−2} ∪ {αa} ∪ {πk | k ≥ a}.
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Fig. 6. The triangulation t(∞, b) of C∞.

Fig. 7. The triangulation t(−∞,∞) of C∞.

Fig. 8. For a ≤ b with a, b ∈ Z this forms a subdiagram of the Hasse diagram of strong mutation equivalence 
classes of triangulations of C∞ with respect to the preorder ≤s.

• For [T (a, −∞)] with a ∈ Z:

t(a,−∞) = {(k, a) | k ∈ Z≤a−2} ∪ {αk | k ≥ a}.

• For [T (−∞, ∞)] (cf. Fig. 7):

t(−∞,∞) = {αk | k ≤ 0} ∪ {πk | k ≥ 0}.

• For [T (−∞, −∞)], respectively [T (∞, ∞)]:

t(−∞,−∞) = {αk | k ∈ Z}, respectively t(∞,∞) = {πk | k ∈ Z}.

Proposition 4.12. The preorder ≤s induces a partial order on the set of strong mutation 
equivalence classes of triangulations of the completed infinity-gon. The graph from Fig. 8
is, for each a, b ∈ Z with a ≤ b, a subdiagram of the Hasse diagram of this poset.
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Proof. Clearly the relation ≤s describes a partial order on the set of strong mutation 
equivalence classes. To show that our diagram is a subgraph of the Hasse diagram of this 
poset, using the notation from 4.11 we pick representatives and explicitly write down 
admissible sequences along which we can mutate one into another.

Setting θ1 = (α−i)i≥0 and θ2 = (πi)i≥0 we have

μθ1(t(−∞,∞)) = t(∞,∞) and μθ2(t(−∞,∞)) = t(−∞,−∞).

Let ta = {αk | k ≤ a} ∪ {πk | k ≥ a} and tb = {αk | k ≤ b} ∪ {πk | k ≥ b}. We have 
ta, tb ∈ [T (−∞, ∞)]. Setting θ3 = (α−i)i≥a−1 and θ4 = (πi)i≥b+1 we have

μθ3(ta) = t(a,∞) and μθ4(tb) = t(−∞, b).

Setting θ5 = (π0, (πi, π−i)i≥1) and θ6 = (α0, (αi, α−i)i≥0) we have

μθ5(t(∞,∞)) = tlf and μθ6(t(−∞,−∞)) = tlf .

Setting θ7 = (πb+i)i≥1 and θ8 = (αa−i)i≥1 we have

μθ7(t(∞,∞)) = t(∞, b) and μθ8(t(−∞,−∞)) = t(a,−∞).

Setting t = {αk | k ≤ a} ∪ {πk | a ≤ k ≤ b} | {(b, k) | k ≥ b + 2} ∈ [T (−∞, b)], we get

μθ7(t(a,∞)) = t(a, b) and μθ8(t) = t(a, b). �
In fact, it is straightforward to check that there are no other edges in the Hasse 

diagram, using Remark 3.4. As we will not need this in the rest of the paper, we leave 
this as an exercise to the interested reader.

5. Completed mutations

The restriction when solely considering mutations along admissible sequences is 
twofold: first, not all triangulations of C∞ are strongly mutation equivalent and sec-
ond, mutating a triangulation along an admissible sequence does not in general yield a 
triangulation. In this section we fix the latter issue by providing a method to complete the 
mutation μθ(T ) of a triangulation T along a T -admissible sequence θ to a triangulation.

Lemma 5.1. Let T be a triangulation of C∞ and let θ = (θi)i∈I be a T -admissible se-
quence. If (m, l) ∈ μθ(T ) is a peripheral arc, then the set of arcs

μθ(T ) |[m,l]= {(a, b) ∈ μθ(T ) | m ≤ a < b ≤ l}

with endpoints in [m, l] is a triangulation of the polygon with endpoints m, m + 1, . . . , l.
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Proof. For notational simplicity, for any k ∈ Z set Tk = μθk ◦ . . . ◦ μθ1(T ). There exists 
a k1 ∈ Z>0 such that (m, n) ∈ Tl for all l ≥ k1. There are finitely many arcs γ1, . . . γj in 
the subtriangulation Tk1 |[m,l] of Tk1 . Thus there exists a k2 ≥ k1 such that for all l ≥ k2

and all 1 ≤ i ≤ j we have

μθl ◦ . . . ◦ μθ1(γi) = μθk2
◦ . . . ◦ μθ1(γi).

Therefore μθ(T ) |[m,l]= Tk2 |[m,l], and since Tk2 is a triangulation with finite subpolygon 
[m, l] by Remark 4.4 this proves the claim. �

We now provide a method to complete a mutated triangulation by adding arcs until 
we obtain a triangulation. Such a completion is by no means unique and we could just 
complete by randomly adding arcs that do not intersect any of the arcs already contained 
in our mutated triangulation. However, the existence of strictly asymptotic arcs in C∞
lends itself to a somewhat natural completion via Prüfer curves and adic curves. We use 
the following auxiliary sets:

P(μθ(T )) = {πk Prüfer curve | πk intersects no arc in μθ(T )}

A(μθ(T )) = {αk adic curve | αk intersects no arc in μθ(T )}

P̃(μθ(T )) = {πk Prüfer curve | πk intersects no arc in μθ(T ) ∪ A(μθ(T ))}

Ã(μθ(T )) = {αk adic curve | αk intersects no arc in μθ(T ) ∪ P(μθ(T ))}.

Definition 5.2. We call the set of arcs

μθ(T )
P

= μθ(T ) ∪ P(μθ(T )) ∪ Ã(μθ(T ))

the Prüfer-completion of μθ(T ). Analogously, we call the set of arcs

μθ(T )
a

= μθ(T ) ∪ A(μθ(T )) ∪ P̃(μθ(T ))

the adic completion of μθ(T ).

Remark 5.3. In general the Prüfer and adic completion do not coincide.

From now on we only consider Prüfer completions. Adic completions are the dual 
concept and all of the following results hold for adic completions by symmetry. From 

now on we write μθ(T ) = μθ(T )
P

and call it the completed mutation of T along θ.

Theorem 5.4. Let T be a triangulation of C∞ and let θ be a T -admissible sequence. Then 
the completed mutation of T along θ is a triangulation of C∞.
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Proof. Assume that an arc γ intersects no arc in μθ(T ). We will show that then γ itself 
must lie in μθ(T ). If γ is a Prüfer curve, then γ ∈ P(μθ(T )) and if it is an adic curve, 
then γ ∈ Ã(μθ(T )), thus in particular γ lies in μθ(T ).

Assume thus that γ = (m, l) with m < l ∈ Z is a peripheral arc. If there exists a 
peripheral arc (m′, l′) ∈ μθ(T ) with m′ ≤ m < l ≤ l′, then by Lemma 5.1 we have 
γ = (m, l) ∈ μθ(T ) ⊆ μθ(T ) and we are done.

Otherwise, if there exists no such arc (m′, l′), it is straight–forward to check that we 
have πm, πl ∈ P(μθ(T )) or αm, αl ∈ Ã(μθ(T )). Without loss of generality assume the 
former is the case. Set

n = max{j | (m, j) ∈ μθ(T )}.

Observe that the set over which we take the maximum is not empty: because γ intersects 
no arc in μθ(T ), we have πm+1 /∈ P(μθ(T )), therefore there is an arc (a, b) ∈ μθ(T ) that 
intersects πm+1 but not (m, l) nor πm nor πl, so m ≤ a < m + 1 < b ≤ l, and thus 
(a, b) = (m, b) ∈ μθ(T ).

Assume as a contradiction that n �= l. By the same argument as above for n instead of 
m +1, there is an arc (a, b) ∈ μθ(T ) with m ≤ a < n < b ≤ l. However, if m < a then this 
would imply that (m, n) and (a, b) intersect, contradicting the assumption. Therefore we 
have a = m and (m, b) ∈ μθ(T ) contradicting the maximality of n. Thus in fact we must 
have n = l and (m, l) ∈ μθ(T ) ⊆ μθ(T ). �
Remark 5.5. In the combinatorial model of the ∞-gon with only one limit point at ∞
(cf. Remark 1.7) we can define a unique completion: assume that T is a triangulation of 
the ∞-gon with one added point at ∞ and let θ be a T -admissible sequence. Denoting 
the arc connecting a point a ∈ Z with ∞ by (a, ∞), we define the completed mutation 
of T along θ to be

μθ(T ) = μθ(T ) ∪ {(a,∞) | a ∈ Z and (a,∞) does not intersect any arc in μθ(T )}.

This is a triangulation of the ∞-gon with one point at ∞; this follows analogously to 
Theorem 5.4.

Because of its links with the representation theory of the polynomial ring, we are in 
particular interested in our example of the completed ∞-gon C∞ where we have two 
limit points at ±∞. Note however that, with minor adaptations, all statements in the 
rest of this paper hold for the ∞-gon with one limit point at ∞.

An important example of completed mutations is moving a right fountain one step to 
the right, and dually, moving a left fountain one step to the left.

Lemma 5.6. Let a, b ∈ Z and let T ∈ [T (a, b)] be a triangulation of C∞. Then there 
exist T -admissible sequences a− and b+ such that μa−(T ) ∈ [T (a − 1, b)] and μb+(T ) ∈
[T (a, b + 1)].
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Proof. The triangulation T is strongly mutation equivalent to the triangulation t(a, b)
from Remark 4.11. Assume that θ is a T -admissible sequence with μθ1(T ) = t(a, b). 
Consider now the t(a, b)-admissible sequence α = ((a − k, a))k≥2; we have μα(t(a, b)) =
t(a − 1, b). It follows by Proposition 3.12 that

μθ∪α(T ) = t(a− 1, b) ∈ [T (a− 1, b)].

Symmetrically, considering the t(a, b)-admissible sequence β = ((b, b + k))k≥2 we have

μθ∪β(T ) = t(a, b + 1) ∈ [T (a, b + 1)]. �
6. Transfinite mutations

Completed mutations along admissible sequences provide new connections between 
triangulations of C∞. However, we cannot pass freely between strong mutation equiva-
lence classes of triangulations of C∞ via completed mutations. This can be fixed if we 
consider admissible compositions of admissible sequences.

Definition 6.1. Let T be a triangulation of C∞. We call a sequence θ = (θi)i∈I of ad-
missible sequences (where throughout this paper we assume I = {1, . . . , n} or I = Z>0) 
a T -admissible composition of completed mutations, if, setting T1 = T , for all i ∈ I the 
sequence θi is Ti-admissible, where for i ≥ 1 we set

Ti+1 = μθi(Ti).

The transfinite mutation of T along θ is the set

μθ(T ) =
⋃
i∈I

{γ ∈ Ti | θk leaves γ untouched for all k ≥ i}.

Remark 6.2. A transfinite mutation of a triangulation of C∞ consists of mutually non-
intersecting arcs. Indeed, with the notation as above, if α, β ∈ μθ(T ) then there exists a 
k ∈ I such that α, β ∈ Tk, which is a triangulation.

However, a transfinite mutation of a triangulation is not necessarily a triangulation. 
Indeed, a T -admissible sequence can be interpreted as a T -admissible composition of 
completed mutations of length one, and we already know from Example 3.2, that the 
mutation of a triangulation along an admissible sequence is not necessarily a triangula-
tion.

Remark 6.3. Precomposing a transfinite mutation with finite sequences of completed mu-
tations gives rise to a transfinite mutation: let T and T ′ be triangulations of C∞ such that 
there exists a finite T -admissible composition of completed mutations α = (α1, . . . , αn)
with μα(T ) = T ′. If there is a T ′-admissible sequence of completed mutations β with 
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μβ(T ′) = T ′′ then the sequence γ = (α1, . . . , αn, β) is a T -admissible sequence of com-
pleted mutations with μγ(T ) = T ′′.

Similarly, postcomposing a transfinite mutation with finite sequences of completed 
mutations gives rise to a transfinite mutation. To show this, the following results are 
useful.

Lemma 6.4. Let T be a triangulation of C∞ and let δ ∈ T be mutable and S(δ) be the 
quadrilateral in T with diagonal δ. If θ is a T -admissible sequence which leaves all arcs 
in {δ} ∪ S(δ) untouched then θ is μδ(T )-admissible with μθ(μδ(T )) = μδ(μθ(T )).

Proof. By Lemma 3.9 the sequence θ is T -admissible with μθ(μδ(T )) = μδ(μθ(T )). Let 
δ′ �= δ be the other diagonal in the quadrilateral S(δ). We have

μθ(μδ(T )) = μθ(μδ(T )) ∪ P(μθ(μδ(T ))) ∪ Ã(μθ(μδ(T )))

= μδ(μθ(T )) ∪ P(μδ(μθ(T ))) ∪ Ã(μδ(μθ(T )))

= ((μθ(T ) ∪ {δ′}) \ {δ}) ∪ P(μθ(T )) ∪ Ã(μθ(T ))

= ((μθ(T ) ∪ {δ′}) \ {δ}) = μδ(μθ(T )). �
Proposition 6.5. Let T be a triangulation of C∞ and let θ = (θi)i∈I be a T -admissible 
composition of completed mutations such that μθ(T ) = T ′ is a triangulation. If δ ∈ T ′ is 
mutable, then there exists an r ∈ I such that for all l ≥ r the sequence

θ ∪l {δ} = (θ1, . . . , θl−1, (δ), θl, θl+1, . . .)

is a T -admissible composition of completed mutations with μθ∪l(δ)(T ) = μδ(T ′).

Proof. Set T1 = T and for i ∈ I set Ti+1 = μθi(Ti). Since δ ∈ T ′ is mutable, we have 
S(δ) ∪ {δ} ⊆ T ′ and thus there exists an r ∈ I such that S(δ) ∪ {δ} ⊆ Tr and for all 
k ≥ r the sequence θk leaves all arcs in S(δ) ∪ {δ} untouched. Pick l ≥ r and consider 
the sequence θ∪l {δ}. We first show that this is a T -admissible composition of admissible 
sequences. This is a direct consequence of the following three observations.

Observation 1: For all 1 ≤ i ≤ l − 1 the sequence θi is Ti-admissible.
Observation 2: Since we have S(δ) ∪ {δ} ⊆ Tl, the arc δ is mutable in Tl. Therefore 

the sequence (δ) is Tl-admissible.
Observation 3: For k ≥ l set T̃k = μδ(Tk). By Lemma 6.4 the sequence θk is 

T̃k-admissible and we have

μθk(T̃k) = μθk(μδ(Tk)) = μδ(μθk(Tk)) = μδ(Tk+1) = T̃k+1.

We notice that δ′ ∈ T̃l and for all i ≥ l the sequence θi leaves δ′ untouched (since it 
is Ti-admissible and it leaves S(δ) ∪ {δ} ⊆ Ti untouched). We obtain
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μθ∪l(δ)(T ) =
⋃
i≥l

{γ ∈ T̃i | θk leaves γ untouched for all k ≥ i}

=
⋃
i≥l

{γ ∈ T̃i \ {δ′} | θk leaves γ untouched for all k ≥ i} ∪ {δ′}

=
⋃
i≥l

{γ ∈ Ti \ {δ} | θk leaves γ untouched for all k ≥ i} ∪ {δ′}

= (T ′ \ {δ}) ∪ {δ′} = μδ(T ′),

which proves the claim. �
Proposition 6.6. Let T and T ′ be triangulations of C∞ such that there exists a T -ad-
missible composition of completed mutations α with μα(T ) = T ′. If β is a T ′-admissible 
sequence with μβ(T ′) = T ′′, then there exists a T -admissible composition of completed 
mutations γ with μγ(T ) = T ′′.

Proof. Let α = (αi)i∈Iα and let β = (βi)i∈Iβ . The statement is trivial if Iα is finite, 
and follows by iteratively applying Proposition 6.5 if Iβ is finite. We therefore assume 
that Iα = Iβ = Z>0. Iteratively applying Proposition 6.5 we obtain a strictly increasing 
sequence (li)i∈Z>0 such that α ∪l1 (β1) is a T -admissible composition, for all i ≥ 2 the 
sequence

α ∪ (β1, . . . , βi) = (α ∪ (β1, . . . , βi−1)) ∪li (βi)

is as well, and we have

μα∪(β1,...,βi)(T ) = μβi
◦ . . . ◦ μβ1(μα(T )).

We define a sequence γ = (γi) with

γi =
{
αi if i /∈ {lj | j ∈ Z>0}
(βj) ∪1 (αlj ) if i = lj .

Here, (βj) ∪1 (αlj ) is the sequence we obtain by precomposing the sequence αlj by (βj). 
Clearly, the sequence γ is a T -admissible composition of completed mutations.

Set now T1 = T̃1 = T and for i ≥ 1 set

Ti+1 = μαi(Ti) and T̃i+1 = μγi(T̃i).

Schematically we have the diagram
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T̃1

μγ1

. . .
μ
γl1−1

T̃l1

μ
γl1

T̃l1+1

μ
γl1+1

. . .
μ
γli−1

T̃li

μ
γli

T̃li+1

T1
μα1

. . .
μ
αl1−1

Tl1

μβ1

μ
αl1

Tl1+1

μβ1

μ
αl1+1

. . .
μ
αli−1

Tli

μβi
◦...◦μβ1

μ
αli

Tli+1

μβi
◦...◦μβ1

(6.7)

where each of the squares commutes. That is, for each i ∈ Z>0 there exists a j ∈ Z>0
with lj ≤ i < lj+1 and we have

μβj
◦ . . . ◦ μβ1(Ti) = T̃i.

We now show that T ′′ = μγ(T ), and we start by showing that T ′′ ⊆ μγ(T ). Let 
thus δ′′ ∈ T ′′ = μβ(μα(T )). There exists a δ′ ∈ T ′ = μα(T ) such that δ′′ = μT ′

β (δ′)
and an m ≥ 1 such that (βi)i>m leaves δ′′ untouched. Mutating T ′ along the sequence 
(βi)1≤i≤m only changes finitely many arcs of T ′ and thus there exists a finite union P of 
finite subpolygons of T ′ such that δ′ ∈ T ′ |P and such that (βi)1≤i≤m leaves all arcs in 
T ′ \ (T ′ |P ) untouched.

Since T ′ = μα(T ), there exists an n ≥ 1 such that T ′ |P⊆ Tn and such that for all 
k ≥ n the sequence αk leaves all arcs in T ′ |P untouched. For all k ≥ n we obtain

μTk

β (δ′) = μβm
◦ . . . ◦ μTk

β1
(δ′) = δ′′.

Set M = max{lm, n}. We have lj ≤ M < lj+1 for some j ≥ m and

δ′′ = μTM

β (δ′) = μβj
◦ . . . ◦ μTM

β1
(δ′),

which lies in μβj
◦ . . .◦μβ1(TM ) = T̃M . Furthermore, since for all k ≥ M the sequence αk

leaves δ′′ untouched and the sequence (βi)i>m leaves δ′′ untouched we also get that for 
all k ≥ M the sequence γ

k
leaves δ′′ untouched. It follows that δ′′ ∈ μγ(T ) and therefore 

T ′′ ⊆ μγ(T ).
Since by Remark 6.2 the set μγ(T ) consists of mutually non-crossing arcs, and since 

T ′′ is a triangulation, it follows that T ′′ = μγ(T ) which concludes the proof. �
Considering mutations along T -admissible compositions of completed mutations, we 

get a weaker form of mutation equivalence.

Definition 6.7. Two triangulations T and T ′ of C∞ are called transfinitely mutation 
equivalent if there exists a T -admissible composition of completed mutations θ and 
a T ′-admissible composition of completed mutations θ′ such that μθ(T ) = T ′ and 
μθ

′(T ′) = T .

In the following we will show that all triangulations of C∞ are transfinitely mutation 
equivalent. We start with a useful observation.
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Fig. 9. A subgraph of G.

Proposition 6.8. Consider the graph G which has as vertices strong mutation equivalence 
classes of triangulations of C∞ and whose arrows are given by the following data: assume 
[T ] and [T ′] are two distinct strong mutation equivalence classes.

• If for any t ∈ [T ] and any t′ ∈ [T ] there exists a t-admissible sequence θ with 
μθ(t) = t′ then we draw a solid arrow.

• If for any t ∈ [T ] and any t′ ∈ [T ] there exists a t-admissible composition of completed 
mutations θ = (θi)i∈I where I is finite, and we have μθ(t) = t′ then we draw a dashed 
arrow.

• If for any t ∈ [T ] and any t′ ∈ [T ] there exists a t-admissible composition of completed 
mutations θ = (θi)i∈I where I is infinite, and we have μθ(t) = t′ then we draw a 
dotted arrow.

Then for any a′ ≤ a ≤ b ≤ b′ with a, a′, b, b′ ∈ Z diagram in Fig. 9 is a subgraph of G.

Proof. Denote by G′ the graph drawn in Fig. 9. The existence of the solid arrows in G′

follows from Proposition 4.12.
To show the existence of the dashed arrows, we first note the following: assume for 

i = 1, 2 the triangulations Ti and T ′
i are strongly mutation equivalent and there exists a 

T1-admissible composition of completed mutations θ = (θi)i∈I such that μθ(T1) = T2 and 
such that I is finite. Then there exists a T ′

1-admissible sequence of completed mutations 
θ
′ = (θ′i)i∈I′ with μθ

′(T ′
1) = T ′

2 and such that I ′ is finite: indeed, since Ti is strongly 
mutation equivalent to T ′

i for i = 1, 2, there exists a T ′
1-admissible sequence α1 with 

μα1(T1) = T ′
1 and a T2-admissible sequence α2 with μα2(T

′
2) = T2. Setting θ

′ = (α1, θ, α2)
yields the desired sequence.
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To show the existence of a dashed arrow from [T ] to [T ′], it is thus enough to show 
that there exist triangulations t ∈ [T ] and t′ ∈ [T ] and a finite sequence of completed 
mutations from t to t′. We use the notation from Remark 4.11.

The arrows [T (∞, ∞)] → [T (a, ∞)], [T (−∞, −∞)] → T (−∞, b) and [T (∞, b)] →
[T (a, b)]: Setting θ1 = (πa−i)i≥1 and θ2 = (αb+i)i≥1 yields

μθ1(t(∞,∞)) = t(a,∞), μθ2(t(−∞,−∞)) = t(−∞, b) and μθ1(t(∞, b)) = t(a, b).

The arrow [T (a, −∞)] → [T (a, b)]: Note that we have

μθ2(t(a,−∞)) = {(k, a) | k ∈ Z≤a−2} ∪ {αk | a ≤ k ≤ b}
∪{(b, k) | k ∈ Z≥b+2} ∪ {πb},

which lies in [T (a, b)].
The arrow [Tlf ] → [T (a, b)]: Pick an l ∈ Z with a ≤ l ≤ b and consider the triangula-

tion

tlf (l) = {(l − k, l + k) | k ∈ Z>0} ∪ {(l − k, l + k + 1) | k ∈ Z>0} ∈ [Tlf ].

First consider the tlf (l)-admissible sequence α = ((l − 1, l + 1), (l − 2, l + 1), (l − 2, l +
2), (l − 3, l + 2), . . . , (l − i, l + i), (l − (i + 1), l + i), . . .). We have

μα(tlf (l)) = t(l, l).

Iteratively applying Lemma 5.6 and pushing the left fountain at l to the left and the 
right fountain at l to the right, we have a get a T -admissible composition of completed 
mutations

θ3 = (θi3)i∈{1,...,b−a+1} = (α, l−, (l − 1)−, . . . , (a + 1)−, l+, (l + 1)+, . . . , (b− 1)+)

with μi−(t(i, l)) = t(i − 1, l) for all l ≥ i ≥ a + 1 and μi+(t(a, i)) = t(a, i + 1) for all 
l ≤ i ≤ b − 1. We obtain μθ3

(tlf (l)) = t(a, b) ∈ [T (a, b)].
The arrow [T (a, b)] → [T (a′, b′)]: Similarly to the above considerations, this follows 

by iteratively pushing the left fountain at a to the left and the right fountain at b′ to 
the right.

Finally, we show the existence of the dotted arrows. By Remark 6.3 and Proposi-
tion 6.6, to show that there is a dotted arrow from [T ] to [T ′] it suffices to show that 
there exists a transfinite sequence of mutations from one representative of [T ] to one 
representative of [T ′].

The arrow [T (a, b)] → [T (−∞, ∞)] for any a ≤ b: Consider the t(a, b)-admissible 
composition of completed mutations

θ4 = ((a− i)−, (b + i)+)i≥0,
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where we pick (a− i)− and (b + i)+ according to Lemma 5.6 such that for k ≥ 0 we 
have μ(a−k)−(t(a − k, b + k)) = t(a − k − 1, b + k) and μ(b+k)−(t(a − k − 1, b + k)) =
t(a − k − 1, b + k + 1). We obtain

μθ4
(t(a, b)) = {αk | k ≤ a} ∪ {βk | k ≥ a} ∈ [T (−∞,∞)].

The arrows [T (a, ∞)] → T (−∞, ∞) and [T (−∞, b)] → T (−∞, ∞): With (a− i)− and 

(b + i)+ as above, we set θ5 = ((a− i)−)i≥0 and θ6 = ((b + i)+) and obtain

μθ5
(t(a,∞)) = {αk | k ≤ a} ∪ {βk | k ≥ a} ∈ [T (−∞,∞)]

and

μθ6
(t(−∞, b)) = {αk | k ≤ b} ∪ {βk | k ≥ b} ∈ [T (−∞,∞)]. �

Theorem 6.9. All triangulations of C∞ are transfinitely mutation equivalent.

Proof. Let T and T ′ be two triangulations of C∞ and consider their strong mutation 
equivalence classes [T ] and [T ′] respectively. Then there exists a path in the graph G′

from Proposition 6.8, and therefore in G, of the form

[T ]
α1 [T1]

α2
. . .

αl [Tl]
β

[T ′
1]

γ1
. . . [T ′

k]
γk [T ′],

with l, k ∈ Z≥0 and where the αi are solid or dashed arrows, the arrow β is dotted and the 
arrows γi are solid. That is, we have a T -admissible composition of completed mutations 
α = (αi)i=1,...,l with μα(T ) = Tl for some Tl ∈ [Tl], and therefore by Remark 6.3 a 
T -admissible composition of completed mutations β with μβ(T ) = T ′

1 for some T ′
1 ∈ [T ′

1]. 
By Proposition 3.12, there is a T ′

1-admissible sequence γ with μγ(T ′
1) = T ′ and therefore 

by Proposition 6.6 we get a T -admissible composition of completed mutations β∪γ with 
μβ∪γ(T ) = T ′. �
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