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Let O denote a nonempty finite set. Let SðOÞ denote the symmetric group on O and

let PðOÞ denote the power set of O: Let r : SðOÞ ! UðL2ðPðOÞÞÞ be the left unitary

representation of SðOÞ associated with its natural action on PðOÞ: We consider the

algebra consisting of those endomorphisms of L2ðPðOÞÞ which commute with the

action of r: We find an attractive basis B for this algebra. We obtain an expression,

as a linear combination of B; for the product of any two elements of B: We obtain an

expression, as a linear combination of B; for the adjoint of each element of B: It

turns out that the Fourier transform on PðOÞ is an element of our algebra; we give

the matrix which represents this transform with respect to B: # 2002 Elsevier Science

(USA)
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1. INTRODUCTION

Let O be a finite set of n elements. If we denote by G the symmetric group
SðOÞ of permutations of O and by X the power set PðOÞ of O; then the
natural action of G on X leads to the associated left representation r : G !
UðL2ðX ÞÞ given by ðrðgÞcÞðxÞ ¼ cðg�1ðxÞÞ: The aim of this paper is to
study the $-algebra EndGðL2ðXÞÞ of intertwining operators for r: That is,
the algebra of endomorphisms of the Hilbert space L2ðXÞ which commute
with the action of r:

The partition of X into orbits of G; Xr ¼ fx 2 X : jxj ¼ rg ð04r4nÞ;
gives rise to a family of subspaces L2ðXrÞ of L2ðXÞ invariant under the
action of r: Each Xr is a finite symmetric space with respect to G and there
exists a family of inequivalent irreducible representations ps : G ! UðVsÞ
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ð04s4½n=2�Þ; such that the following holds:

L2ðXrÞ ¼ �
r^ðn�rÞ

s¼0
L2ðXrÞs:

This is a consequence of the so-called Young’s rule, see [1, p. 212, Theorem
2.5] or [3, pp. 138, 139]. Here ^ stands for min and L2ðXrÞs stands for the G-
invariant subspace of L2ðXrÞ equivalent to Vs: Applying Schur’s lemma, we
express the algebra as a direct sum of one-dimensional subspaces as follows.
Writing Nðr1; r2Þ ¼ r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ; we have

EndGðL2ðX ÞÞ ¼ �
04r1;r24n

�
Nðr1;r2Þ

s¼0
HomGðL2ðXr1

Þs;L2ðXr2
ÞsÞ:

Taking nonzero elements Lr1;r2
s 2 HomGðL2ðXr1

Þs;L2ðXr2
ÞsÞ we obtain a

basis

B ¼ fLr1;r2
s : 04r1; r24n; 04s4Nðr1; r2Þg

of EndGðL2ðX ÞÞ which is orthogonal with respect to the Hilbert–Schmidt
inner product. Since each operator Lr1;r2

s commutes with the action of r; it is
obvious that its kernel lr1;r2

s ðx2; x1Þ is constant on yr1;r2

k ¼ fðx2; x1Þ 2 Xr2
�

Xr1
: jx2=x1j ¼ kg; where 0 _ ðr2 � r1Þ4k4ðn � r1Þ ^ r2 and _ stands for

max. We will see that the common value lr1;r2

s ðkÞ (the evaluation at
k ¼ jx2=x1j of the kernel lr1;r2

s ðx2; x1Þ) at yr1;r2

k is given by a Hahn
polynomial. In this paper, we provide three expressions for these
polynomials. One of them seems to be new and requires the use of the
Radon transforms, which are operators from L2ðXr1

Þ to L2ðXr2
Þ that

commute with the action of r: The other expressions for the Hahn
polynomials arise from the use of a discrete Laplacian operator and the
theory of orthogonal polynomials of hypergeometric type. These last ones
can be reduced to well-known expressions in the range r25r1 (see [7]) and
can be regarded as a symmetrization of those. These last two are included in
our paper in order to facilitate our computations.

In Theorem 3.6 we write the products Lr2;r3
s 8L

r1;r2
s in terms of the basis B:

This is the main result of the paper. Its proof uses the Radon transforms and
a characterization of spherical functions on symmetric spaces which we
enunciate at the end of Section 2.

Finally, using the well-known abelian group structure on the power set X

given by the symmetric difference operator, we study the associated Fourier
transform FX on X : We show that it can be considered as a member of the
algebra EndGðL2ðX ÞÞ: Then we apply our results to this particular case
writing the Fourier transform FX as a linear combination of the operators
Lr1;r2

s : We show that the coefficients of FX with respect to B can be
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expressed in terms of the Krawtchouk polynomials, see Theorem 5.1. This
analysis of FX was one of the motivations of this paper.

The results we present here can be analyzed in terms of distance-regular
graphs, see [1] or [2]. Given a connected distance-regular graph Y ; with
distance @; there are two associated algebras. First, the Bose–Mesner algebra
of operators on L2ðY Þ whose kernel is a function of @ðx; yÞ: Second, the
Terwilliger algebra, which is defined by fixing a point x0 2 Y and taking the
algebra generated by the operators on L2ðY Þ whose kernel is a function of
ð@ðx; x0Þ; @ðx; yÞ; @ðy; x0ÞÞ: The reader is referred to [9–11] for more details
on this topic. In our particular case X is a distance-regular graph with
@ðx; yÞ ¼ jx 4 yj (where 4 stands for symmetric difference) and Xr is a
distance-regular graph with @rðx; yÞ ¼ jx=yj (Hamming and Johnson
graphs). When Y ¼ X and x0 ¼ |; the corresponding Terwilliger algebra
is EndGðL2ðXÞÞ; the algebra we are interested in. The algebra EndGðL2ðXÞÞ
connects the Bose–Mesner algebras of Johnson graphs for different values of
the parameter r:

We would like to point out that, after this paper was submitted for
publication, the referee communicated to us the existence of Go’s article [5],
which is related to the present paper. The central topic of Go’s paper is the
Terwilliger algebra of the hypercube, X above. That is, in [5] the algebra
EndGðL2ðX ÞÞ is studied from a different point of view. She regards this
algebra as a homomorphic image of the universal enveloping algebra of
slð2;CÞ; and then she works with operators defined in terms of two natural
generators A;A$ with kernels

aðx; yÞ ¼
1 if jx 4 yj ¼ 1;

0 otherwise;

(
; a$ðx; yÞ ¼

n � 2jxj if x ¼ y;

0 otherwise:

(

She studies the irreducible submodules and obtains expressions for the
central primitive idempotents of the algebra. We consider this as an
interesting approach, but it is not easy (unless one introduces further
arguments) to obtain our results using the information contained in Go’s
paper.

The organization of our paper is as follows. In Section 2, we define the
notions of finite symmetric space and spherical function, and then we recall
some basic results that are used all throughout the paper. In Section 3, we
give the decomposition of r into irreducible components and we analyze the
kernels lr1;r2

s via the Radon transforms. In Section 4, we introduce a discrete
Laplacian operator and then we show how the kernels lr1;r2

s can be viewed as
solutions of a hypergeometric equation. We study that equation in detail.
Finally, in Section 5, we deal with the mentioned analysis of the Fourier
transform FX :
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2. FINITE SYMMETRIC SPACES

We begin with a summary of some basic results about finite symmetric
spaces and spherical functions that will be used in the sequel. For
further information on these topics see [8] and the references cited
there. Let G be a finite group acting on a finite set X ; this action leads us
to the associated unitary representation r : G ! UðL2ðX ÞÞ given by
ðrðgÞcÞðxÞ ¼ cðg�1xÞ: Assume the action is transitive, then X is said to
be a finite symmetric space with respect to G if the algebra EndGðL2ðXÞÞ of
the endomorphisms on L2ðXÞ which commute with the action of r is
abelian.

Remark. We recall that EndGðL2ðXÞÞ is an abelian algebra if and only if
the representation r is multiplicity-free. So we can invoke this classical result
of representation theory to give another characterization of finite symmetric
spaces.

Now assume that we are given a couple of finite symmetric spaces X1 and
X2 with respect to G: Let us denote by r1 and r2 the respective associated
representations. We assign to each operator T 2 HomðL2ðX1Þ;L2ðX2ÞÞ
the matrix x of T with respect to the natural bases of L2ðX1Þ and L2ðX2Þ:
This mapping is clearly a linear isomorphism from HomðL2ðX1Þ;L2ðX2ÞÞ
onto L2ðX2 � X1Þ; we denote it by C: Thus T and x are related by the
expression

ðTcÞðx2Þ ¼
X

x12X1

xðx2; x1Þcðx1Þ:

If we compare the operators T8r1ðgÞ and r2ðgÞ8T written in this way, it is
obvious that T 2 HomGðL2ðX1Þ;L2ðX2ÞÞ if and only if the relation xðgx2;
gx1Þ ¼ xðx2; x1Þ holds for all ðx2; x1Þ 2 X2 � X1 and all g 2 G: Here HomG

ðL2ðX1Þ;L2ðX2ÞÞ denotes the algebra of intertwining operators for r1 and
r2: That is, T is an intertwining operator for r1 and r2 if and only if the
associated matrix is constant at the orbits of the action

G � X2 � X1 ! X2 � X1;

ðg; ðx2;x1ÞÞ/ðgx2; gx1Þ:

An action of G on a finite set X is called symmetric if for all x; x0 2 X there
exists g 2 G such that gx ¼ x0 and gx0 ¼ x: A finite set X endowed with a
symmetric action of G is automatically a finite symmetric space with respect
to G: To justify this we observe that if the action of G on X is symmetric
then CðEndGðL2ðXÞÞ is a subalgebra of L2ðX � XÞ made up of symmetric



ON THE NATURAL REPRESENTATION OF S (O) INTO L2(P(O)) 157
matrices, hence abelian. Now, taking into account that C is an algebra
isomorphism when X1 ¼ X2; the result follows.

Let us consider the set ĜX ¼ fp 2 Ĝ : MultpðrÞ=0g; where Ĝ stands for
the dual object, the set of irreducible unitary representations of G: Note that
if X is symmetric with respect to G; then every p 2 ĜX satisfies MultpðrÞ ¼
1; since r is multiplicity-free. Then we use the set ĜX to decompose the space
L2ðXÞ into irreducible components

L2ðXÞ ¼ �
p2ĜX

L2ðXÞp:

We write Pp for the orthogonal projection onto L2ðXÞp; and the matrix of
Pp will be denoted by pp: The spherical functions on X are defined by

xX ;p ¼ jX j
dðpÞ pp 2 CðEndGðL2ðXÞÞÞ;

where p 2 ĜX and dðpÞ denotes the degree of p: We also write SX ;p for the
associated operator in EndGðL2ðXÞÞ with matrix xX ;p: The proof of the
following theorem can be found in [8].

Theorem 2.1. Let X be a finite symmetric space with respect to the finite

group G and let x 2 CðEndGðL2ðXÞÞÞ; then the following are equivalent:

(a) There exists p 2 ĜX such that x ¼ xX ;p:

(b) xðx0; x0Þ ¼ 1 for all x0 2 X and for every x1; x2 2 X

1

jGx0
j
X

g2Gx0

xðgx1; x2Þ ¼ xðx1; x0Þxðx0; x2Þ;

where Gx0
denotes the isotropy subgroup of x0:

3. THE ALGEBRA EndSðOÞðL2ðPðOÞÞÞ

As we pointed out in the Introduction, the symmetric group SðOÞ acts
naturally on the power set PðOÞ providing the associated unitary
representation r: We recall that G stands for SðOÞ and X for PðOÞ: X is
not a symmetric space with respect to G; in fact the mentioned action is not
even transitive. Nevertheless the orbits of such action are given by the family
of sets Xr ¼ fx 2 X : jxj ¼ rg; 04r4n: This action is symmetric on each
orbit, so we know that the sets Xr are symmetric spaces with respect to G for
04r4n: If we denote by rr : G ! UðL2ðXrÞÞ the associated representations
and we identify the space L2ðXrÞ with the subspace of L2ðX Þ of functions
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supported on Xr; then it is very easy to check that

r ¼ �
04r4n

rr:

We recall that the matrix of an operator T 2 HomGðL2ðXr1
Þ;L2ðXr2

ÞÞ is
constant at the orbits yk ¼ fðx2; x1Þ 2 Xr2

� Xr1
: jx2=x1j ¼ kg of the natural

action of G on Xr2
� Xr1

: Here 0 _ ðr2 � r1Þ4k4ðn � r1Þ ^ r2 and k 2 N: So
we can write these operators in the form

ðTcÞðx2Þ ¼
X

x12Xr1

xðjx2=x1jÞcðx1Þ;

where x depends on the variable k: The function x is called the kernel of T :
We also know that the dimension of HomGðL2ðXr1

Þ;L2ðXr2
ÞÞ coincides with

the number of orbits yk: That is

dimðHomGðL2ðXr1
Þ;L2ðXr2

ÞÞÞ ¼ r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ þ 1:

Now, taking into account that Xr is a finite symmetric space with respect to
G; we deduce that the spaces L2ðXrÞ are multiplicity-free. Therefore,
according to Schur’s lemma, the dimension of HomGðL2ðXr1

Þ;L2ðXr2
ÞÞ gives

the number of irreducible components that L2ðXr1
Þ and L2ðXr2

Þ have in
common. In particular, if ½n=2� denotes the integer part of n=2:

1. For 04r4½n=2�; the space L2ðXrÞ has r þ 1 irreducible components.

2. For 04r5½n=2�; the spaces L2ðXrÞ and L2ðXrþ1Þ have r þ 1
irreducible components in common.

Hence, by a simple induction argument, there exist a family of inequivalent
irreducible representations ps : G ! UðVsÞ where 04s4½n=2� and such that

rr ’ �
04s4r

ps

for 04r4½n=2�: On the other hand, the representations rr and rn�r are
equivalent. Namely, the operator Cr : L2ðXrÞ ! L2ðXn�rÞ defined by
ðCrcÞðxcÞ ¼ cðxÞ is an intertwining unitary operator. Thus, for 04r4n;
we have

L2ðXrÞ ’ �
r^ðn�rÞ

s¼0
Vs:

We shall denote by L2ðXrÞs the G-invariant subspace of L2ðXrÞ equivalent to
Vs: Finally, we note that

dimðVsÞ ¼ dimðL2ðXsÞÞ � dimðL2ðXs�1ÞÞ ¼
n

s

 !
�

n

s � 1

 !
: ð1Þ
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Remark. The study of representations of the symmetric group provides
techniques, such as Young’s rule, that can be used to determine how are the
representations ps for 04s4½n=2�: The result is that ps coincides with the
irreducible representation pðn�s;sÞ associated to the arithmetic partition ðn �
s; sÞ of n: See [4] for the details.

Once we know the irreducible components of r; we have the following
decomposition for the algebra EndGðL2ðX ÞÞ:

EndGðL2ðX ÞÞ ¼ �
04r1;r24n

HomGðL2ðXr1
Þ;L2ðXr2

ÞÞ

¼ �
04r1;r24n

�
Nðr1;r2Þ

s¼0
HomGðL2ðXr1

Þs;L2ðXr2
ÞsÞ

with Nðr1; r2Þ ¼ r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ: Now, by Schur’s lemma, all the
spaces HomGðL2ðXr1

Þs;L2ðXr2
ÞsÞ are one-dimensional.

Definition 3.1. Let 04r1; r24n and 04s4Nðr1; r2Þ: We define the
operator Lr1;r2

s as a nonzero element of HomGðL2ðXr1
Þs;L2ðXr2

ÞsÞ:

Remark. The definition of the operators Lr1;r2
s is ambiguous, we will

normalize these operators after Lemma 3.4. Note that, defining Lr1;r2
s by 0

on the subspace orthogonal to L2ðXr1
Þs; these operators are elements of the

algebra EndGðL2ðX ÞÞ: We also note that Lr1;r2
s 8L

r3;r4

s0 ¼ 0 unless s ¼ s0 and
r1 ¼ r4:

Proposition 3.2. The family of operators Lr1;r2
s is an orthogonal basis of

EndGðL2ðX ÞÞ with respect to the Hilbert–Schmidt inner product.

Proof. This family is obviously a basis of EndGðL2ðX ÞÞ: To see the
orthogonality we observe that, since the adjoint of an intertwining operator
is also an intertwining operator, there exist a nonzero constant csðr1; r2Þ such
that ðLr1;r2

s Þ$ ¼ csðr1; r2ÞLr2;r1
s : Hence we can write

trðLr1;r2
s 8ðL

r3;r4

s0 Þ$Þ ¼ cs0 ðr3; r4Þ trðLr1;r2
s 8L

r4;r3

s0 Þ;

which is 0 unless s ¼ s0; r1 ¼ r3 and r2 ¼ r4: This completes the proof. ]

We now define the Radon transforms Rr1;r2
� 2 HomGðL2ðXr1

Þ;L2ðXr2
ÞÞ for

r14r2 and their adjoints ðRr1;r2
� Þ$ 2 HomGðL2ðXr2

Þ;L2ðXr1
ÞÞ by

ðRr1;r2
� cÞðx2Þ ¼

X
x1�x2

cðx1Þ; ðRr2;r1
* cÞðx1Þ ¼

X
x2*x1

cðx2Þ:
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We know that Lr1;r2
s is an intertwining operator, thus we can write its kernel

lr1;r2

s as a function of the integer variable k; where we recall that 0 _ ðr2 �
r1Þ4k4ðn � r1Þ ^ r2: The Radon transforms will be very useful in the study
of the kernels lr1;r2

s : Given a 2 R and k 2 N we recall the classical notation
½a�k ¼ aða� 1Þ � � � ða� k þ 1Þ ð½a�0 ¼ 1Þ and ðaÞk ¼ aðaþ 1Þ � � � ðaþ k � 1Þ
ððaÞ0 ¼ 1Þ:

Lemma 3.3. Given 04r4n; 04s4r ^ ðn � rÞ and 04k4s; we have

lr;s
s ðkÞ ¼ ð�1Þk ðr � s þ 1Þk

½n � r�k
lr;s

s ð0Þ:

Proof. The relation is obvious for s ¼ 0: Otherwise we observe that
ImðLr;s

s Þ ¼ L2ðXsÞs � KerðRs;s�1
* Þ: In particular Rs;s�1

* 8L
r;s
s ¼ 0: Then,

if we define dx 2 L2ðXrÞ to be 1 at x 2 Xr and 0 otherwise we take y 2
Xs�1 to get

ððRs;s�1
* 8L

r;s
s ÞdxÞðyÞ ¼

X
z*y

ðLr;s
s dxÞðzÞ ¼

X
z*y

lr;s
s ðjz=xjÞ

¼ jx=yj lr;s
s ðjy=xjÞ þ jðO=xÞ=yj lr;s

s ðjy=xj þ 1Þ:

Therefore, we have the following recurrence equation for 14k4s

ðr � s þ kÞlr;s
s ðk � 1Þ þ ðn � r � k þ 1Þlr;s

s ðkÞ ¼ 0:

Solving the recurrence equation we get the desired relation. ]

Now we want to show that there exists a constant Csðr1; r2Þ such that the
following relation holds:

lr1;r2

s ðkÞ ¼ Csðr1; r2Þ
Xs

j¼0

k

j

 !
r2 � k

s � j

 !
lr1;s

s ð jÞ ð2Þ

in the usual rank 04r1; r24n; 04s4r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ and 0 _
ðr2 � r1Þ4k4ðn � r1Þ ^ r2: To prove this we observe that, since the Radon
transforms are intertwining operators, there exists a constant cr1;r2

s such
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that Rs;r2
� 8L

r1;s
s ¼ cr1;r2

s Lr1;r2
s : Now, if x1 2 Xr1

and x2 2 Xr2
; then

cr1;r2
s lr1;r2

s ðjx2=x1jÞ ¼ ððRs;r2
� 8L

r1;s
s Þdx1

Þðx2Þ ¼
X
z�x2

lr1;s
s ðjz=x1jÞ

¼
Xs

j¼0

jfz 2 Xs: z � x2; jz=x1j ¼ jgj lr1;s
s ð jÞ

¼
Xs

j¼0

jx2=x1j
j

 !
r2 � jx2=x1j

s � j

 !
lr1;s

s ð jÞ:

Taking k ¼ jx2=x1j the relation in (2) arises.

Remark. Relation (2) gives that lr1;r2

s is a polynomial of degree 4s: But
its highest coefficient is a nonzero factor of

Xs

j¼0

ð�1Þs�j

j!ðs � jÞ! l
r1;s
s ð jÞ ¼ lr1;s

s ð0Þ
Xs

j¼0

ð�1Þs

j!ðs � jÞ!
ðr1 � s þ 1Þj

½n � r1�j
=0

and so we deduce that @lr1;r2

s ¼ s and lr1;r2

s ð0Þ=0: On the other hand, the
polynomial lr1;r2

s is defined at r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ þ 1 points and this
number is always greater than s: Thus we know that there exists a unique
polynomial p 2 C½t� of degree s which extends lr1;r2

s : In what follows we shall
denote that polynomial with the same expression lr1;r2

s :

Using the remark above we can evaluate Eq. (2) at t ¼ 0 to obtain the
following result.

Lemma 3.4. Given r1; r2 and s in the usual rank of parameters and t 2 C;
we have

lr1;r2

s ðtÞ
lr1;r2

s ð0Þ ¼
r2

s

 !�1Xs

j¼0

t

j

 !
r2 � t

s � j

 !
lr1;s

s ð jÞ
lr1;s

s ð0Þ:

We are now in a position to normalize the operators Lr1;r2
s : Just take

lr1;r2

s ð0Þ to be 1 for all possible values of r1; r2 and s:

Remark. We shall write Lr
s and lr

s for Lr;r
s and lr;r

s : With this
normalization, the mappings

ðx; x0Þ 2 Xr � Xr/lr
sðjx=x0jÞ 2 R

with 04r4n and 04s4r ^ ðn � rÞ; are the spherical functions on Xr:
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We now want to find the value of the kernels lr1;r2

s at t ¼ r2: For that we
just need to evaluate the expression given in Lemma 3.4 at t ¼ r2

lr1;r2

s ðr2Þ ¼ lr1;s
s ðsÞ ¼ ð�1Þs ½r1�s

½n � r1�s
: ð3Þ

In the following result we use identity (3) to relate the operator Lr1;r2
s with

some other operators of the same basis.

Proposition 3.5. Given r1; r2 and s in the usual rank of parameters, we

have

Lr1;r2
s 8C

n�r1 ¼ð�1Þs ½r1�s
½n � r1�s

Ln�r1;r2
s ;

Cr2

8L
r1;r2
s ¼ð�1Þs ½n � r2�s

½r2�s
Lr1;n�r2

s ;

ðLr1;r2
s Þ$ ¼ ½r1�s½n � r2�s

½n � r1�s½r2�s
Lr2;r1

s :

Proof. The operators Cr belong to the algebra EndGðL2ðX ÞÞ; so there
exist constants c1

s ðr1; r2Þ; c2
s ðr1; r2Þ and c3

s ðr1; r2Þ such that

Lr1;r2
s 8C

n�r1 ¼ c1
s ðr1; r2ÞLn�r1;r2

s ;

Cr2

8L
r1;r2
s ¼ c2

s ðr1; r2ÞLr1;n�r2
s ;

Lr1;r2
s ¼ c3

s ðr1; r2ÞðLr2;r1
s Þ$:

If we express these equalities in terms of the kernels we get

lr1;r2

s ðtÞ ¼ c1
s ðr1; r2Þln�r1;r2

s ðr2 � tÞ;
lr1;r2

s ðtÞ ¼ c2
s ðr1; r2Þlr1;n�r2

s ðn � r1 � tÞ;
lr1;r2

s ðtÞ ¼ c3
s ðr1; r2Þlr2;r1

s ðr1 � r2 þ tÞ:

Taking t ¼ r2 in the first equation and using (3) we obtain the value of
c1

s ðr1; r2Þ: The same occurs in the third equation. Finally, if we evaluate the
third equation at t ¼ r2 � r1 we get

lr1;r2

s ðr2 � r1Þ ¼
½r1�s½n � r2�s
½n � r1�s½r2�s

:

We conclude by evaluating the second equation at t ¼ r2 � r1: ]
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The definition of Lr1;r2
s gives Lr2;r3

s 8L
r1;r2
s ¼ Csðr1; r2; r3ÞLr1;r3

s in the usual
rank of parameters. In the following theorem we investigate the value of the
cocycle Csðr1; r2; r3Þ; obtaining in such a way a multiplication table for the
operators Lr1;r2

s :

Theorem 3.6. The operators Lr1;r2
s satisfy, in the usual rank of

parameters, the following relation:

Lr2;r3
s 8L

r1;r2
s ¼

ð n
r2
Þ

ðn
s
Þ � ð n

s�1
ÞL

r1;r3
s :

Proof. We recall that dimðL2ðXrÞsÞ ¼ dimðVsÞ ¼ n
s

� �
� n

s�1

� �
; see

Eq. (1). We also note that

trðLr
sÞ ¼

X
x2Xr

lr
sðjx=xjÞ ¼

n

r

 !
:

These calculations give us an explicit form of the orthogonal projection of
L2ðXÞ onto L2ðXrÞs

Pr
s ¼

ðn
s
Þ � ð n

s�1
Þ

ðn
r
Þ Lr

s:

Hence, we can write

Lr1;r2
s 8L

r1
s ¼

ð n
r1
Þ

ðn
s
Þ � ð n

s�1Þ
Lr1;r2

s ; Lr2
s 8L

r1;r2
s ¼

ð n
r2
Þ

ðn
s
Þ � ð n

s�1Þ
Lr1;r2

s : ð4Þ

We then have, in terms of the kernels, the relations

X
y2Xr1

lr1;r2

s ðjx2=yjÞlr1

s ðjy=x1jÞ ¼
ð n

r1
Þ

ðn
s
Þ � ð n

s�1
Þ l

r1;r2

s ðjx2=x1jÞ;

X
y2Xr2

lr2

s ðjx2=yjÞlr1;r2

s ðjy=x1jÞ ¼
ð n

r2
Þ

ðn
s
Þ � ð n

s�1
Þ l

r1;r2

s ðjx2=x1jÞ: ð5Þ

We recall that the mappings ðx; x0Þ 2 Xr � Xr/lr
sðjx=x0jÞ 2 R are the

spherical functions associated to the symmetric spaces Xr: Thus we
invoke Theorem 2.1 and (5) to get the following relations where x0 2 Xr1

and x0
0 2 Xr2

:

1

jGx0
j
X

g2Gx0

lr1;r2

s ðjx2=gx1jÞ ¼ lr1;r2

s ðjx2=x0jÞlr1

s ðjx0=x1jÞ;
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1

jGx0
0
j
X

g2Gx0
0

lr1;r2

s ðjgx2=x1jÞ ¼ lr2

s ðjx2=x
0
0jÞl

r1;r2

s ðjx0
0=x1jÞ: ð6Þ

We now fix xj 2 Xrj
with j ¼ 1; 2; 3: Let us assume for the moment that

r15r25r3 and x3 � x2 � x1; then

Csðr1; r2; r3Þ ¼
Csðr1; r2; r3Þ

jGx2
j

X
g2Gx2

lr1;r3

s ðjgx3=x1jÞ

¼ 1

jGx2
j
X

g2Gx2

X
y2Xr2

lr2;r3

s ðjgx3=yjÞlr1;r2

s ðjy=x1jÞ

¼
X

y2Xr2

1

jGx2
j
X

g2Gx2

lr2;r3

s ðjx3=gyjÞ

0
@

1
Alr1;r2

s ðjy=x1jÞ

and using (5) and (6) we obtain

Csðr1; r2; r3Þ ¼ lr2;r3

s ðjx3=x2jÞ
X

y2Xr2

lr2

s ðjx2=yjÞlr1;r2

s ðjy=x1jÞ

¼
n

r2

 !
lr2;r3

s ðjx3=x2jÞlr1;r2

s ðjx2=x1jÞ
ðn

s
Þ � ð n

s�1
Þ ¼

ð n
r2
Þ

ðn
s
Þ � ð n

s�1
Þ:

Therefore, we have proved the desired relation when r15r25r3 and by (4)
also for r1 ¼ r2 and r2 ¼ r3: But we want to know the value of Csðr1; r2; r3Þ
for all possible values of r1; r2 and r3 in

Lr2;r3
s 8L

r1;r2
s ¼ Csðr1; r2; r3ÞLr1;r3

s : ð7Þ

Taking adjoints in (7) and applying Proposition 3.5 we get

Csðr1; r2; r3Þ ¼ Csðr3; r2; r1Þ: ð8Þ

Now we compose with the suitable Cr operators

Lr2;r3
s 8L

r1;r2
s 8C

n�r1 ¼Csðr1; r2; r3ÞLr1;r3
s 8C

n�r1 ;

Cr3

8L
r2;r3
s 8L

r1;r2
s ¼Csðr1; r2; r3ÞCr3

8L
r1;r3
s ;

Lr2;r3
s 8C

n�r2

8C
r2

8L
r1;r2
s ¼Csðr1; r2; r3Þ Lr1;r3

s
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and then Proposition 3.5 gives rise to

Csðr1; r2; r3Þ ¼Csðn � r1; r2; r3Þ
¼Csðr1; n � r2; r3Þ
¼Csðr1; r2; n � r3Þ: ð9Þ

Equation (8) reduces the possibilities to the case r15r3: But we know the
value of Csðr1; r2; r3Þ for r15r25r3; thus we only consider the cases
r15r35r2 and r25r15r3: In the first case we know that Csðn; r1; r2Þ ¼
Csðn; r1; r3Þ; so right multiplication by Ln;r1

s in (7) implies that Lr2;r3
s 8L

n;r2
s ¼

Csðr1; r2; r3ÞLn;r3
s : Equalities (9) give the relation Ln�r2;n�r3

s 8L
n;n�r2
s ¼

Csðr1; r2; r3ÞLn;n�r3
s : Therefore,

Csðr1; r2; r3Þ ¼ Csðn; n � r2; n � r3Þ ¼
ð n

n�r2
Þ

ðn
s
Þ � ð n

s�1
Þ ¼

ð n
r2
Þ

ðn
s
Þ � ð n

s�1
Þ:

In the second case Csðr2; r3; 0Þ ¼ Csðr1; r3; 0Þ; hence left multiplication by
Lr3;0

s in (7) gives Lr2;0
s 8L

r1;r2
s ¼ Csðr1; r2; r3ÞLr1;0

s : Now by (9) we get Ln�r2;0
s 8

Ln�r1;n�r2
s ¼ Csðr1; r2; r3ÞLn�r1;0

s : So we have

Csðr1; r2; r3Þ ¼ Csðn � r1; n � r2; 0Þ ¼
ð n

n�r2
Þ

ðn
s
Þ � ð n

s�1
Þ ¼

ð n
r2
Þ

ðn
s
Þ � ð n

s�1
Þ:

This concludes the proof. ]

Making use of Theorem 3.6 we can compute the Hilbert–Schmidt norm of
the operators Lr1;r2

s :

Corollary 3.7. Given r1; r2 and s in the usual rank of parameters, we have

trðLr1;r2
s 8ðLr1;r2

s Þ$Þ ¼ ½r1�s½n � r2�s
½n � r1�s½r2�s

ð n
r1
Þð n

r2
Þ

ðn
s
Þ � ð n

s�1
Þ:

Proof. We just apply Proposition 3.5 and Theorem 3.6 consecutively

trðLr1;r2
s 8ðL

r1;r2
s Þ$Þ ¼ ½r1�s½n � r2�s

½n � r1�s½r2�s
trðLr1;r2

s 8L
r2;r1
s Þ

¼ ½r1�s½n � r2�s
½n � r1�s½r2�s

ð n
r1
Þ

ðn
s
Þ � ð n

s�1
Þ trðLr2

s Þ

¼ ½r1�s½n � r2�s
½n � r1�s½r2�s

ð n
r1
Þð n

r2
Þ

ðn
s
Þ � ð n

s�1
Þ:

This concludes the proof. ]
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Remark. The normalization we have chosen for the operators Lr1;r2
s is

very natural since we have obtained from it the spherical functions on the
symmetric spaces Xr: Anyway there are other ways to normalize the
operators Lr1;r2

s which are also very significant, for instance the normal-
ization

*LL
r1;r2

s ¼ ½n � r1�s½r2�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�2s

r1�s
Þðn�2s

r2�s
Þ

q
s!½n � s þ 1�s

Lr1;r2
s ð10Þ

provides the simpler relations

*LL
r1;r2

s 8C
n�r1 ¼ð�1Þs *LL

n�r1;r2

s ; ð *LLr1;r2

s Þ$ ¼ *LL
r2;r1

s ;

Cr2

8 *LL
r1;r2

s ¼ð�1Þs *LL
r1;n�r2

s ; *LL
r2;r3

s 8 *LL
r1;r2

s ¼ *LL
r1;r2

s :

Moreover, the operators *LL
r1;r2

s are unitary isomorphisms from L2ðXr1
Þs onto

L2ðXr2
Þs: We shall denote the normalization constant by ar1;r2

s : Also the
normalization

%LL
r1;r2

s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn

s
Þ � ð n

s�1
Þ

p *LL
r1;r2

s

gives an orthonormal basis with respect to the Hilbert–Schmidt inner
product. With this normalization we have the relations

%LL
r1;r2

s 8C
n�r1 ¼ð�1Þs %LL

n�r1;r2

s ; ð %LLr1;r2

s Þ$ ¼ %LL
r2;r1

s ;

Cr2

8 %LL
r1;r2

s ¼ð�1Þs %LL
r1;n�r2

s ; %LL
r2;r3

s 8 %LL
r1;r2

s ¼ bs
%LL

r1;r2

s ;

where bs denotes the normalization constant

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
s

� �
� n

s�1

� �q ��1

:

4. THE USE OF A LAPLACIAN OPERATOR

We now investigate some useful expressions for the kernels lr1;r2

s by
showing the associated operators Lr1;r2

s as eigenvectors of a Laplacian
operator. For that purpose it will be necessary to understand the cardinal of
O as another parameter of the problem. That is, the number n is no longer a
fixed value and so we will often explicit the dependence on n for clarity.
We start with the definition of a suitable Laplacian operator. Let T be the

set of transpositions of O; the Laplacian on X associated to T is defined by
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the operator LT 2 EndðL2ðXÞÞ given by

ðLTcÞðxÞ ¼
X
g2T

cðgxÞ � jTjcðxÞ:

The Laplacian LT belongs to the algebra EndGðL2ðXÞÞ; this is a simple
consequence of the conjugation-invariance of T in G: Now we recall that Vs

denotes the representation space of ps for 04s4½n=2�: Let r1; r2 and s in the
usual rank of parameters and take H : L2ðXr2

Þs ! Vs to be an intertwining
unitary isomorphism. Then we have for L0

T ¼ LT þ jTjId

L0
T8L

r1;r2
s ¼ H�1

8H8L
0
T8L

r1;r2
s ¼ H�1

8
X
g2T

psðg�1Þ
 !

8H8L
r1;r2
s :

But the operator
P

g2T psðg�1Þ commutes with the action of ps: Therefore,
by Schur’s lemma, it is a multiple of the identity 1Vs

: So we have shown that
the operators Lr1;r2

s are eigenvectors of the Laplacian. That is, for each s in
its usual rank there exists a constant msðnÞ such that

LT8L
r1;r2
s þ msðnÞLr1;r2

s ¼ 0: ð11Þ

We recall that the classical difference operators d;D and r are defined by the
relations

dhðkÞ ¼ hðkþ1Þ; DhðkÞ ¼ hðkþ1Þ�hðkÞ; rhðkÞ ¼ hðkÞ � hðk � 1Þ

for any function h of one integer variable. A combinatorial computation
shows that, if we write Eq. (11) in terms of the kernels, the following
difference equation is satisfied for hs ¼ lr1;r2

s ð�; nÞ:

sðkÞDrhsðkÞ þ tðkÞDhsðkÞ þ msðnÞhsðkÞ ¼ 0;

sðkÞ ¼ kðr1 � r2 þ kÞ; tðkÞ ¼ r2ðn � r1Þ � nk;

0 _ ðr2 � r1Þ4k4ðn � r1Þ ^ r2: ð12Þ

The difference equation (12) is of hypergeometric type and can be
analyzed following the classical theory. With the notation of [7], the
solutions of this equation are given in terms of the family of Hahn

polynomials h̃
ðm;nÞ
s ð�;NÞ of parameters N ¼ r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ þ 1;

m ¼ jr1 � r2j; n ¼ jn � r1 � r2j and 04s4r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ:

Remark. We observe that the left-hand side of the difference equation
(12) is a polynomial of degree 4s for hs ¼ lr1;r2

s ð�; nÞ: Then, since the
equation is satisfied at r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ þ 1 points, it holds in fact
for all t 2 C:
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Now we can compute the eigenvalues msðnÞ: Namely, we already know
that Eq. (12) can be written as ast

s þ as�1ts�1 þ � � � þ a1t þ a0 ¼ 0; hence the
identity as ¼ 0 gives for 04s4r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ

msðnÞ ¼ sðn � s þ 1Þ: ð13Þ

In fact, since the numbers msðnÞ are pairwise distinct for 04s4½n=2�; all the
eigenspaces of the linear operator

C
r1;r2 ½t� ! C

r1;r2 ½t�;
h/sDrh þ tDh

are one-dimensional. Here C
r1;r2 ½t� stands for the space of polyno-

mials with complex coefficients and degree bounded by r1 ^ ðn � r1Þ ^ r2 ^
ðn � r2Þ: Therefore (12) characterizes the kernel lr1;r2

s ð�; nÞ up to a constant
factor.

The following result uses the hypergeometric equation (12) to get some
useful expressions for the kernel lr1;r2

s ð�; nÞ: We also give the value of the
highest coefficient ar1;r2

s ðnÞ of lr1;r2

s ð�; nÞ: We shall use the Leibniz rule

Dðh1h2Þ ¼ Dh1dh2 þ h1Dh2:

Theorem 4.1. The kernels lr1;r2

s ð�; nÞ satisfy, in the usual rank of

parameters, the following relations:

lr1;r2

s ðt; nÞ ¼
Xs

j¼0

ð�1Þ j t

j

 !
½s�j½n � s þ 1�j
½n � r1�j ½r2�j

;

Dlr1;r2

s ðt; nÞ ¼ � sðn � s þ 1Þ
r2ðn � r1Þ

lr1�1;r2�1
s�1 ðt; n � 2Þ;

ar1;r2
s ðnÞ ¼ ð�1Þs ½n � s þ 1�s

½n � r1�s½r2�s
:

Proof. We start by taking t ¼ 0 in Eq. (12). Then, by means of (13) we
have

Dlr1;r2

s ð0; nÞ ¼ � sðn � s þ 1Þ
r2ðn � r1Þ

: ð14Þ

On the other hand, we consider the action of the operator D on Eq. (12). A
calculation with the Leibniz rule gives

sDrh̃s þ *ttDh̃s þ ms�1ðn � 2Þh̃s ¼ 0;
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where h̃s ¼ Dhs and *ttðtÞ ¼ ðr2 � 1Þðn � r1 � 1Þ � ðn � 2Þt: But this is the
hypergeometric equation associated to lr1�1;r2�1

s�1 ð�; n � 2Þ: By (14) we obtain

Dlr1;r2

s ðt; nÞ ¼ � sðn � s þ 1Þ
r2ðn � r1Þ

lr1�1;r2�1
s�1 ðt; n � 2Þ

as we wanted. Successive iterations of this equation give

Djlr1;r2

s ðt; nÞ ¼ ð�1Þ j
½s�j½n � s þ 1�j
½n � r1�j½r2�j

lr1�j;r2�j
s�j ðt; n � 2jÞ

for 04j4s: Then we apply the discrete Taylor formula

lr1;r2

s ðt; nÞ ¼
Xs

j¼0

t

j

 !
Djlr1;r2

s ð0; nÞ

to get the desired relation. Now, the value of ar1;r2
s ðnÞ arises trivially. ]

The solution of a hypergeometric equation is usually given by Rodrigues
formula, this will provide another expression for the kernels lr1;r2

s ð�; nÞ: The
first step is to obtain the associated weight which in the case of Hahn
polynomials, up to a constant factor, is given by

or1;r2ðk; nÞ ¼
n

k; r2 � k; r1 � r2 þ k; n � r1 � k

 !

¼ jfðx2; x1Þ 2 Xr2
� Xr1

: jx2=x1j ¼ kgj

for 0 _ ðr2 � r1Þ4k4r2 ^ ðn � r1Þ: Also or1;r2ðk; nÞ is taken to be 0 at every
integer k outside that interval. The weight or1;r2ðk; nÞ is the value at t ¼ k of
the meromorphic function

or1;r2ðt; nÞ ¼ n!

Gðt þ 1ÞGðr2 � t þ 1ÞGðr1 � r2 þ t þ 1ÞGðn � r1 � t þ 1Þ

which satisfies the relations

Dðor1;r2ðt; nÞsðtÞÞ ¼ or1;r2ðt; nÞtðtÞ; ð15Þ

dðor1;r2ðt; nÞsðtÞÞ ¼ nðn � 1Þor1�1;r2�1ðt; n � 2Þ: ð16Þ

Leibniz rule and (15) give the self-adjoint form of the hypergeometric
equation (12)

Dðor1;r2ðt; nÞsðtÞrlr1;r2

s ðt; nÞÞ þ msðnÞor1;r2ðt; nÞlr1;r2

s ðt; nÞ ¼ 0:
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On the other hand, we can combine Leibniz rule, the recurrence given
in Theorem 4.1 and (16) to give, from the self-adjoint form of (12), the
relation

or1;r2ðt; nÞlr1;r2

s ðt; nÞ ¼ nðn � 1Þ
ðn � r1Þr2

rðor1�1;r2�1lr1�1;r2�1
s�1 Þðt; n � 2Þ:

By induction we get, for 04s4r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ and t 2 C; the
Rodrigues formula

or1;r2ðt; nÞlr1;r2

s ðt; nÞ ¼ ½n�2s

½n � r1�s½r2�s
rsor1�s;r2�sðt; n � 2sÞ: ð17Þ

Rodrigues formula provides some alternative expressions for the kernels
lr1;r2

s ð�; nÞ:

1. Taking into account Newton’s binomial formula

rs ¼ ð1 � d�1Þs ¼
Xs

j¼0

ð�1Þ j s

j

 !
d�j

we easily obtain from (17) the relation

lr1;r2

s ðt; nÞ ¼
Xs

j¼0

ð�1Þ j

½n � r1�s½r2�s
s

j

 !
½t�j½r2 � t�s�j½r1 � r2 þ t�j½n � r1 � t�s�j

for r1; r2 and s in the usual rank of parameters and t 2 C:

2. As a particular case, if we evaluate this relation at the integer
variable k; we get the classical expressions

lr1;r2

s ðk; nÞ ¼ ½r1�s
½r2�s

Xs

j¼0

ð�1Þ j
ðs

j
Þð r1�s

r1�r2þk�j
Þðn�r1�s

k�j
Þ

ð r1

r1�r2þk
Þðn�r1

k
Þ ;

lr1;r2

s ðk; nÞ ¼ ½n � r2�s
½n � r1�s

Xs

j¼0

ð�1Þ j
ðs

j
Þðr2�s

k�j
Þð n�r2�s

r1�r2þk�j
Þ

ðr2

k
Þð n�r2

r1�r2þk
Þ :

5. THE FOURIER TRANSFORM FX

Given x; x0 2 X we can consider the symmetric difference operator
xDx0 ¼ ðx [ x0Þ=ðx \ x0Þ which provides a structure of abelian group on X :
The dual group of X is given by the set X̂ ¼ fwxgx2X of characters of X ;
where wxðx0Þ ¼ ð�1Þjx\x0j: This group structure on X leads us to consider the
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Fourier transform FX : L2ðXÞ ! L2ðX̂Þ; which is given by the formula

ðFXcÞðwxÞ ¼
X
x02X

ð�1Þjx\x0jcðx0Þ:

Moreover, we can see the Fourier transform FX as an element of the
algebra EndðL2ðX ÞÞ: In fact it is not difficult to check that FX 2
EndGðL2ðX ÞÞ: Therefore FX can be written as a linear combination of
our basis. This time we shall make use of the unitary operators *LL

r1;r2

s ; this
will simplify some of the results in the sequel.

Before investigating the coefficients of this linear combination, we
introduce a family of orthogonal polynomials of hypergeometric type.
The Krawtchouk polynomials Pmðk; nÞ ð04m4nÞ are defined as the
solutions of the hypergeometric equation krDhðkÞ þ ðn � 2kÞDhðkÞþ
mmhðkÞ ¼ 0 for 04k4n; normalized by the condition Pmð0; nÞ ¼ n

m

� �
: The

Krawtchouk polynomials have the form

Pmðk; nÞ ¼
Xm

j¼0

ð�1Þ j k

j

 !
n � k

m � j

 !

and satisfy the following relation for 04k4n and 04m4n:

Pmðk; nÞ ¼ ð�1Þm
Pmðn � k; nÞ:

A more detailed exposition of these topics can be found in [6, 7].

Theorem 5.1. The Fourier transform on X satisfies the following

decomposition

FX ¼
X

04r1;r24n

XNðr1;r2Þ

s¼0

kr1;r2
s

*LL
r1;r2

s ;

where Nðr1; r2Þ ¼ r1 ^ ðn � r1Þ ^ r2 ^ ðn � r2Þ and

kr1;r2
s ¼ ð�2Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � 2s

r2 � s

 !
n � 2s

r1 � s

 !,vuut Pr1�sðr2 � s; n � 2sÞ:

Proof. Using the pairwise orthogonality of the operators *LL
r1;r2

s with
respect to the Hilbert–Schmidt product we obtain

kr1;r2
s ¼ trðFX 8ð *LL

r1;r2

s Þ$Þ
trð *LLr1;r2

s 8ð *LL
r1;r2

s Þ$Þ
¼ 1

ðn
s
Þ � ð n

s�1
Þ trðFX 8 *LL

r2;r1

s Þ;
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where we have used the relations for the operators *LL
r1;r2

s of Section 3. But,
recalling that or1;r2ðk; nÞ is the cardinal of the orbit yk for k in the usual
interval and zero otherwise, we can write

trðFX 8 *LL
r2;r1

s Þ ¼ ar2;r1
s

X
x12Xr1

X
x22Xr2

ð�1Þjx1\x2jlr2;r1

s ðjx1=x2j; nÞ

¼ ar2;r1
s

X
t2Z

ð�1Þr1�tor2;r1ðt; nÞlr2;r1

s ðt; nÞ;

where we recall that ar1;r2
s denotes the normalization constant of (10). Then

we apply Rodrigues formula (17) and summation by parts to get

trðFX 8 *LL
r2;r1

s Þ ¼ ar2;r1
s

ð�1Þr1 ½n�2s

½r1�s½n � r2�s

X
t2Z

ð�1Þtrsor2�s;r1�sðt; n � 2sÞ

¼ ar2;r1
s

ð�1Þr1 2s½n�2s

½r1�s½n � r2�s

X
t2Z

ð�1Þtor2�s;r1�sðt; n � 2sÞ:

Now, the relation given in Section 4 for the weight or1;r2ð�; nÞ in terms of
binomial numbers gives the following expression for trðFX 8 *LL

r2;r1

s Þ:

ð�1Þr12s½n�2sðn�2s
r2�s

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�2s

r1�s
Þðn�2s

r2�s
Þ

q
s!½n � s þ 1�s

X
t2Z

ð�1Þt

 
r2 � s

r2 � r1 þ t

! 
n � r2 � s

t

!
:

Then we use the properties of the Krawtchouk polynomials to obtain

trðFX 8 *LL
r2;r1

s Þ ¼ ð�2Þs½n�2s

s!½n � s þ 1�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � 2s

r2 � s

 !
n � 2s

r1 � s

 !,vuut Pr1�sðr2 � s; n � 2sÞ:

Dividing by n
s

� �
� n

s�1

� �
we obtain the desired relation. ]

Remark. The self-adjointness of the Fourier transform FX is now a
simple consequence of Theorem 5.1. The identity kr1;r2

s ¼ kr2;r1
s arises as one

of the relations that characterize the Krawtchouk polynomials, namely

n

k

 !
Pmðk; nÞ ¼

n

m

 !
Pkðm; nÞ:

Thus we just need to express FX in terms of the operators *LL
r1;r2

s as in
Theorem 5.1 and apply the relation ð *LLr1;r2

s Þ$ ¼ *LL
r2;r1

s to obtain the identity
FX ¼ F$

X :
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We close this section with an expression of the Fourier transform FX

which reflects the action of the representation r: For that purpose we start
by decomposing L2ðXÞ into irreducible subspaces as follows:

L2ðXÞ ¼ �
n

r¼0
�

r^ðn�rÞ

s¼0
L2ðXrÞs ¼ �

½n=2�

s¼0
�

n�s

r¼s
L2ðXrÞs:

But we know that the spaces L2ðXrÞs are G-equivalent to Vs; the
representation space of ps 2 Ĝ; for s4r4n � s: Therefore, if we declare
Vs ¼ L2ðXsÞs we have the following unitary intertwining isomorphism:

T : �½n=2�
s¼0 Vn�2sþ1

s ! L2ðXÞ;

ðvr
sÞ/

P½n=2�

s¼0

Pn�s

r¼s

*LL
s;r

s ðvr
sÞ:

Now we define FX ¼ T�1
8FX 8T : It is obvious that FX will give an

expression of FX very related to the action of the representation r: The
following theorem explains that relation.

Theorem 5.2. The operator FX has the form FX ðvr
sÞ ¼ ðwr

sÞ where

wr0
s0
¼
Xn�s0

r¼s0

kr;r0
s0

vr
s0

and the numbers kr;r0
s0

are the coefficients of FX given in Theorem 5.1.

Proof. Let us observe that

X½n=2�

s¼0

Xn�s

r¼s

*LL
s;r

s ðwr
sÞ ¼ T8FX ðvr

sÞ ¼ FX 8Tðvr
sÞ ¼

X½n=2�

s¼0

Xn�s

r¼s

FX 8 *LL
s;r

s ðvr
sÞ:

Hence, by projecting onto the isotopic component correspondent to s0; we
can fix the value of s obtaining

Xn�s0

r¼s0

*LL
s0;r

s0
ðwr

s0
Þ ¼

Xn�s0

r¼s0

FX 8 *LL
s0;r

s0
ðvr

s0
Þ:
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Let us fix r ¼ r0; then left multiplication by *LL
r0;s0

s0
and Theorem 5.1 imply

wr0
s0
¼
Xn�s0

r¼s0

*LL
r0;s0

s0 8FX 8 *LL
s0;r

s0
ðvr

s0
Þ ¼

Xn�s0

r¼s0

kr;r0
s0

vr
s0

as we wanted. This completes the proof. ]

Remark. If MðkÞ stands for the algebra of k � k matrices with complex
entries, then we can see the space EndGðL2ðXÞÞ as a matrix algebra via the
following algebra isomorphism:

F : �
½n=2�

s¼0
Mðn � 2s þ 1Þ ! EndGðL2ðXÞÞ;

ðasÞ04s4½n=2�/
X½n=2�

s¼0

X
s4r1;r24n�s

ar1;r2
s

*LL
r1;r2

s ;

where as ¼ ðar1;r2
s Þ with s4r1; r24n � s: Now we define

K ¼ ðksÞ 2 �
½n=2�

s¼0
Mðn � 2s þ 1Þ such that ks ¼ ðkr1;r2

s Þ;

where the numbers kr1;r2
s denote the coefficients of FX given in Theorem 5.1.

Then we have that

(a) Theorem 5.1 asserts that FX ¼ FðKÞ:
(b) Theorem 5.2 asserts that the matrix of FX is given by Kt:

ACKNOWLEDGMENT

We thank the referee for some valuable comments. In particular for having brought Go’s

paper [5] to our attention.

REFERENCES

1. E. Bannai and T. Ito, ‘‘Algebraic Combinatorics I: Association Schemes,’’ Benjamin/

Cummings, Menlo Park, CA, 1984.

2. P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, Trans. Inform.

Theory 44 (1998), 2477–2504.

3. P. Diaconis, ‘‘Group Representations in Probability and Statistics,’’ Institute of

Mathematical Statistics Lecture Notes}Monograph Series, 11. Institute of Mathematical

Statistics, Hayward, 1988.

4. W. Fulton and J. Harris, ‘‘Representation Theory: A First Course,’’ Graduate Texts in

Mathematics, Springer-Verlag, Berlin, 1991.



ON THE NATURAL REPRESENTATION OF S (O) INTO L2(P(O)) 175
5. J. T. Go, The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002),

399–429.

6. F. J. MacWilliams and N. J. A. Sloane, ‘‘The theory of Error Correcting Codes,’’ North-

Holland, Amsterdam, 1977.

7. A. F. Nikiforov and V. B. Uvarov, ‘‘Special Functions of Mathematical Physics,’’
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