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Abstract

In this article, we introduce certain flow polynomials associated with digraphs and use them to
study nowhere-zero flows from a commutative algebraic perspective. Using Hilbert’s Nullstellensatz,
we establish a relation between nowhere-zero flows and dual flows. For planar graphs this gives a
relation between nowhere-zero flows and flows of their planar duals. It also yields an appealing proof
that every bridgeless triangulated graph has a nowhere-zero four-flow.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Flow; Nowhere zero flow; Coloring; Tait coloring; Planar graph; Four color theorem; Five flow
conjecture; Grobner basis; Nullstellensatz; Algebraic combinatorics; Graph polynomial; Tutte polynomial;
Chordal graph

1. Introduction

The theory of nowhere-zero flows (sfge8] for recent surveys) was introduced by Tutte
[7] as an extension of Tait's earlier wof&] on the four-color problem for planar graphs.
Let G = (V, E) be a digraph and legb > 2 be an integer. A-flow on G is a mapping
¢ : E— Z, from arcs to the additive group, = {0, 1, ..., p — 1} of integers modul@
such that preservation holds at each verteat isy {p(e) : e € 67 (v)) = Y {¢(e) s e €
0~ (n}inZ,, whered™ (v), 5~ (v) are the sets of arcs with headand tailv, respectively.
Itis anowhere-zero p-flowW ¢(E) C Z’; ={1,..., p—1}. If ¢ is aflow then the (signed)
sum of arc values on each cocircuit@fis 0 in Z,,. With matroid duality in mind, we call
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¢ adual p-flowif the sum of arc values on each circuit @fis zero, and call ihowhere-
zero dual p-flowif it is nowhere-zero. An undirected graghwill be calledp-flowingif
some orientation & admits a nowhere-zemflow (and hence so does every orientation—
just flip the sign of¢(e) whenevere is flipped). Likewise G is dually p-flowingif some
(and hence every) orientation &f admits a dual nowhere-zemflow. The first fact that
motivates flow theory is the following relation between dual flow and coloring, implicit in
the aforementioned work of TdB]. We outline the simple proof.

Proposition 1.1. A graph is dually p-flowing if and only if it is p-colorahle

Proof. We may assume th&tis connected and oriented. First, supp¢sea dual nowhere-
zerop-flow. Pick a spanning treBand a vertex. Setw(v) := 0 and for each other vertex
setw(u) to be the (signed) sum il,, of the valuesp(e) on arcs on the unique pathTrfrom
vtou. Sincep sums to zero on each circuit, for every are ab we getw(b) —w(a) = ¢(e)
and sincep is nowhere-zero it follows that the resulting: V. — 7, is ap-coloring.
Conversely, ifw : V. — Z, is ap-coloring of G, then settingp(e) := w(b) — w(a) for
every arce = ab, the resulting map is dual nowhere-zerp-flow. [

Note from the proof that the (not necessarily nowhere-zero)mftlalvs ¢ are in bijection
with the (not necessarily coloringg),-labelingsw of vertices with a fixed vertex having
w() =0.

A graph can be flowing only if it has no coloop (also called cut-edge, isthmus, or bridge);
and it can be dually flowing only if it has no loop. Two gems of flow theory are the following.
First, Tutte conjecture@7] that every bridgeless graph is five-flowing; while this is still
open, JaegdB] has shown that every bridgeless graph is eight-flowing and Seymour later
tightened it and showed that every bridgeless graph is six-flowingbs$e®econd, ifG is
a plane digraph (a planar digraph embedded in the plane, for which the dual is uniquely
defined even if5 is not three-connected) then a maps a dual flow precisely when it is
a flow of the plane duati*; the four-color theorem is thus equivalent to the statement that
every bridgeless planar graph is four-flowing. In this article, we introduce a célidan
polynomialassociated with a digraph and use it to study flows from a commutative algebraic
perspective. While, the general approach follows the line taken by Lovasz in studying stable
sets[4] and Alon—Tarsi in studying colorind.], here, inspired by our recent wofX], we
take a closer look at a suitalbh®rmal formof the polynomials that arise. Using Hilbert's

Nullstellensatz, we establish a relation between nowhere-zero flows and dual flows. For

planar graphs this gives a relation between nowhere-zero flows and flows of their planar
duals. To state it, we need some more notation. A phagf — Z, is evenif the number
|¢fl(p — 1)| of arcs labeled by the maximal labgl— 1 is even; otherwise it iedd Let
Y:E — Zg :=1{0,..., p — 2} be a nowhereg-1) map. We say thap : E — Z, is
y-conformalif ¢(e) € {y(e), p — 1} for every are. We establish the following theorem.

Theorem 1.2. A digraph has a nowhere-zero p-flow if and only if it has a nowA{pr#)
mapys such that the number of evenconformal dual p-flows is not equal to the number
of odd ones
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Since planar duality interchanges circuits and cocircuits, this gives at once the following
corollary.

Corollary 1.3. A plane digraph has a nowhere-zero p-flow if and only if its plane dual has
a nowhere(p-1) mapy with number of evetf-conformal p-flows different than that of odd
ones

As noted above, dugl-flows ¢ are in bijection withZ ,-labelingse of vertices with
w(v) = 0 for a fixed vertexv. Therefore, both Theorerh.2 and Corollaryl.3 can be
interpreted also in terms of such labelings, by sayingéhaV — Z,, is yy-conformalif
for every arce = ab eitherw(b) — w(a) = Y(e) or w(b) — w(a) = p — 1.

Another corollary concerns triangulated graphs; the proof below gives, in fact, a stronger
statement on conformal maps of the zero map.

Corollary 1.4. Any bridgeless triangulate@thordal) graph is four-flowing

Proof. We prove by induction on the number of edges the following claim: any undirected
bridgeless triangulate@ = (V, E) has an orientatioD such that, for the identically zero
mapy = 0, the mapp = = 0 is the onlyy-conformal dual four-flow. IfE is empty
then the claim is trivially true. Otherwise, pick any circaltC E of size <3 in G. By
induction, the contractiod’ := G/C has an orientatiol’ satisfying the claim. Extend

D’ to an orientatiorD of G by makingC a directed cycle. Consider any zero-conformal
dual four-flow¢ onD. Then¢(e) € {0, 3} forall e, ", - ¢(e) = 0in Z4, and|C| <3
imply that¢(e) = O for all e € C. Now, let¢’ be the restriction ofy to D’. Then¢' is a
zero-conformal dual four-flow o®’ and hence, by induction'(e) = O foralle € E \ C.
Thus, as claimedp = 0, and we are done by Theoren. [

2. A flow polynomial associated with a digraph

Fix a digraphG = (V, E) and an integep>2. Letx = (x, : e € E) be a tuple
of variables indexed by the arcs & and letC[x] = C[x. : e € E] be the algebra
of polynomials with complex coefficients in these variables. We consider the following
polynomial ideal:

p—1
I} :=ideal} Y " xi:ecE ¢,
i=0

determined by and the number of arcs, and we introduce the followflogr polynomial
of G:

f£3=nl§( H Xe H xfl).

veV i=0 \eest(v) ecd (v)

In this section, we establish the following statement.



208 S. Onn/ Journal of Combinatorial Theory, Series A 108 (2004) 205-215

Theorem 2.1. A digraphG = (V, E) has a nowhere-zero p-flow if and onlyﬁg is not
inIy.

The proof will follow from two properties of the ideal and polynomial which we establish
next. Atuplea = (a, : e € E) of complex numbers is zeroof Ig if f(a) = 0 for all poly-

nomialsf € Ig. Throughout, lep := exp(Z“T*{jl) denote the primitiveth root of unity.

Proposition 2.2. A tuple a is a zero offg if and only ifa, € {p*,..., pP 1} foralle € E.
Moreover Ig is radical and hence consists precisely of all polynomials vanishing on its
zero set

Proof. The univariate polynomiaf := 7" 2 satisfiesf (z —1) = 7 —1 = [[" g (z —

p') and hence its roots are ath roots of unity bup® = 1. Sincel,’i7 is generated by copies

of f, one for each variable,, the first part of the proposition follows. Since each such
generator has no multiple roots, the ideal is radical. Therefore, by Hilbert's Nullstellensatz,
If; consists precisely of all polynomials vanishing on its zero set, completing the proof of

the proposition. [J

Alternatively, the second part of the proposition can be established by showin(fthat
equals the intersectign), ideakx, — a. : e € E} of all maximal ideals corresponding to
its zerosa.

The proposition establishes a bijection between nowhere-zero gnaps — Z; and

zerosa = (p?© : e € E) of IL. The nowhere-zero flows are characterized among such
maps¢ by the evaluation of the flow polynomial on the corresponding zaras follows.

Proposition 2.3. Consider any mag : £ —> 7}, and leta = (p?© : ¢ € E) be the
corresponding zero af. . If ¢ is a nowhere-zero p-flow on G th¢f (a) = p!"!; otherwise
fé@ =o0.

Proof. Lets(v) := 3,5+ P(€) — X5 Ple) € Z), be the flow surplus at vertex
Then

i

p—1 p—1
fé’(a) = 1_[ Z 1_[ p¢(e) 1_[ (p¢(e))p—l _ 1_[ Z(P‘Y(v))i.

veV i=0 \¢est(v) ecd™ (v) veV i=0

Now, if s(v) € Z; then Zf’;ol(p““))i = 0 (see proof of Propositio.2), whereas is

s(v) =0 thenzf:ol(ps(”)" = p. Since¢ is a flow if and only ifs(v) = O forallv € V,
the proof is complete. I

Proof of Theorem 2.1.By Proposition2.2, the polynomialf(’;7 is in Ig if and only if it
vanishes on every zero dg, which, by Propositior2.3, holds if and only ifG has no
nowhere-zer@-flow. [J
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Remark 2.4. Note that the flow polynomia}fé7 has the following very special appealing
property: its evaluations on the zero setlggf assumeonly two distinct valueseither O
or plVl,

Example 2.5. LetG = (V, E) be a digraph consisting of two vertices v, and three arcs
e1 = e3 = v1v2, e2 = vov1, and letp = 3. The flow polynomial is

2 2
fE= (Fxaxd)" Y (xax5x3)’
i=0 i=0
= x?xgxg + x?xgxg’ + xfxgxg + xfx%xé‘

+x§’x§x§ + x%xgxg + x%xzxg + xlxgxg +1;
the zeros of the idedf = ideakx? + x1 -+ 1, x2 + x2 + 1, x4 + x3 + 1} are all eight tuples
a = (a1, az, az) with eacha; € {p, p?} wherep = exp(Z”T*/jl); the evaluation off on a
zero oflg corresponding to a nowhere-zero map= (¢1, ¢,, ¢3) is ¥ = 9if ¢ is either
(1,2,1) or (2,1, 2), and is 0 otherwise, distinguishing, 2, 1) and (2, 1, 2) as the only
two nowhere-zero three-flows .

Remark 2.6. As pointed out by one of the referees, Proposid@implies that the number
of nowhere-zer@-flows onG is equal to(p — 1)'E! minus the number of zeros of the ideal
I,{;’ + f(’;’. Since, the number of zeros of a zero-dimensional itiéalequal to the vector
space dimension of the quotiebtx]/1 if | is radical, the following questions raised by the
referee are of interest: for which graphs is the id€ak f/ radical? Is this ideal always
radical for large enougp?

3. The normal form of the flow polynomial

We proceed to take a close look at th@rmal formof the flow polynomial with respect
to a natural monomial basis of the quoti@[tx]/lg. Consider the following set diasic
monomials

Bﬁ!rlw@H%E—ﬁZgzwwwp—a}

ecE

Proposition 3.1. The (congruence classes )ofbasic monomials form aC-basis
of Clx1/1E.

Proof. First, itis clear thal,g’ contains no nonzero polynomial which is a linear combination
of monomials inB, soB is linearly independent moduld;,. Second,/% is radical by
Proposition2.2, and hence, by Hilbert's Nullstellensatz, the vector space dimension of
Clx1/1Z equals the number of zeros Bf. By Propositior2.2this number is(p — 1)!£!,
which is precisely the number of basic monomials, and so it followdtkptns the quotient
space and hence provides a basisl

It follows that for every polynomialf € C[x] there is a unique polynomidl ], called
thenormal formof f, which satisfiesf — [f] € I,{:’ and is aC-linear combination of basic
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monomials

[fl1= > cwl_[xgl(e)-

l//:E—)Z(I), e€E

In particular, f € 1{5’ if and only if [ /] = 0. By characterizing the normal form of the
flow polynomial we will be able, via Theore 1, to establish the promised criterion of
Theoreml.2 for a graph to be flowing. We proceed to study normal forms, starting with
powers of variables.

Proposition 3.2. The normal form ok¢”*" with q any nonnegative integer ands 7, is

; 0
L] = x, , it rez,
¢ =Y Pyxiif r=p—1.

Proof. First, we haver! —1 = (x, — 1) Z;”:—ol xi € I7 and 1 is a basic monomial, which
shows thafx/] = 1. Thus, the normal form of an arbitrary powerxgfis determined by
the normal form of powers] withr € Z,. If r € Zg then the monomiat is basic and

hence satisfiebc/] = x!. If r = p — L thenx? ™" — (= Y2 xi) = """ xi € I? and
— Y 7" 2xi is a linear combination of basic monomials, [s§ 11 = — >"""Z x’. This

completes the proof. [J

Now, for any two polynomialy, g and scalars, t € C we havesf +tg] = s[f1+t[g]
and[ fg] = [[f1lg]]. The first identity implies that the normal form of any polynomial
is determined by the normal forms of its monomials. The second identity implies that
for any monomial[ [, ., x™ we have[[[,.; x"] = [[[,cg[x™]]; but Propositiors.2
implies that the polynomia] [,_[x"] is in the C-linear span of basic monomials and
hence[[ [,z x™] = [[,cg[x"]. This completely determines the normal form of any
polynomial.

Example 2.5(continued). Consider again the digrapkvith three arcs, and let again= 3.
Using Propositior8.2we find that the normal form of the flow polynomial is

[f31=1+ (—x1 — Dxa(—x3 — 1) + x1(—x2 — Dxg + x1(—x2 — Drg + 1
+(=x1— Dx2(—x3— 1D + (—x1 — Dxo(—x3— 1) +xa(—x2— Dxz+1
= 3(x1x2 — x1x3 + x2x3 + x2 + 1).

Since[ £3] # 0, we find thatf3 ¢ I3 and hence, by Theorethl, G admits a nowhere-zero
three-flow.

We next show that the coefficients of the monomials in the normal form of the flow
polynomial can be nicely interpreted in terms of certain dual flows. Recall that a map
¢ : E — Z, is evenif the number|qb_1(p — 1)| of arcs labeled by the maximal label
p — 1is even; otherwise it isdd Recall also that is y-conformalfor a nowhere+§-1)
mapy : E —> Z(,), ={0,...,p—2}if ¢(e) € {Y(e), p — 1} for every arce. We have the
following theorem.
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Theorem 3.3. Let G = (V, E) be an orientation of a connected grapnd letp >2 be
an integer Then the normal form of the flow polynomial of G is given by

U=p Y e ]

1//:E—>Zg =

wherec (i) denotes the number of evgrrconformal dual p-flows minus the number of odd
ones

Proof. The flow polynomial can be expanded as

w(v)
-1
fe=2 II( Il = Il # :
:V—12, veV ee(5+(u) e€d” (v)
the sum extending over all labelingsof vertices by{0, ..., p — 1}. Since each ar¢ = uv

satisfiesr € 9~ (1) ande € 5 (v) we can rewrite this as

0 -1
fCI}) — Z 1_[ xé)(v)xefp )w(u).

:V—72, e=uvek

Considerany : V. — Z,andletp : E — Z, be the map thatlabels each are: uv by

$(e) := w(v) — w(u) in Z,. By Propositior8.2, we then havéx?®) x P~ Dew) — [xj’(e)]
and hence the normal form of the summand in the above expressifﬁ‘n adrresponding
to w satisfies

|: l_[ xg)(v)xép—l)w(u)j| _ l—[ [x;b(e)]'

e=uvekE ecE

Now, since the arc labeling is induced from a vertex labeling, the (signed) sum of the
¢ values of arcs on each circuit & is 0 in Z, and hencep is a dualp-flow. Since the
undirected graph underlyin@ is connectedy is uniquely determined by and the value
w(v) on an arbitrary vertex (see proof of Propositioth.1), so ¢ arises from preciselp
distinct mapso, and we get

E1=r> {]] [xj’(”] . ¢ dual p—flow}

ecE

:pz 1_[ xj)(e) l_[ — Z x! | : ¢ dualp-flow

e:qﬁ(e)ezg e:p(e)=p—1 ieZg

Now, consider the basic monomip], .z x;/’(e) corresponding tay : E — Zg. Then,

in the right-hand side sum in the above expressiohféf], every evenj-conformal dual

p-flow map ¢ contributes a ternj [,z x}f © whereas every odd one contributes a term

~[Loeg x/©. This shows that, as claimed, the coefficieat) of [T, x2“ in [£2]is
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equal to the number of evap-conformal dualp-flows minus the number of odd ones,
completing the proof of the theorem[]

Remark 3.4. More generally, ilGis an orientation of a graph withconnected components
then a suitable adjustment of the analysis above shows that the normal form of the flow
polynomial is

or=p" 3 ean T+

lﬂ:E—>Z(I), eck

Example 2.5(continued). Consider once again the digraph with three arcs and et

3. Let us examine some of the monomiaxﬁé‘x’zl’zx;{'3 of the normal form of the flow

polynomial described explicitly before and see how they can be computed using Theorem
3.3 For instance, foy = (1, 1, 0), the only-conformal dual three-flow is the even

¢ = (2,1, 2), so the coefficient of1x2 in [f3]is 3x 1 = 3; fory = (1,0, 1), the only
conformal dual flow is the od¢®, 1, 2), so the coefficient af1x3 in [fg] is3(-1) = -3;

fory = (1, 0, 0) there is no conformal dual flow so the coefficientwfin [fg] is O; for

Y = (0,0, 0), the only conformal dual flow is the evéR, 0, 0) so the coefficient of 1 in
[fg] is 3; and similarly for the four other remaining monomials. Now consider the plane
dualG* = (U, E*) of G under some plane embedding@fit has three vertices;, uz, u3

and three dual arcs; = wujuz, e5 = ujus, e = uzuz. The normal forn{fg*] of the

flow polynomial of G* can be computed via TheoreBi3 by considering dual flows of
G*, namely flows ofG. For instance, fogy = (1, 1, 0), the-conformal three-flows) of
Gare(1,1,0), (2, 2, 0), (2,1, 2), with all three even, so the coefficient efx, in [fg*]
is3x 3 =29;fory = (1,0, 1), the conformal flows ar€2, 0, 1), (1, 2, 1), (1, 0, 2) with

all three odd, so the coefficient afx3 in [fg*] is 3(—3) = —9; fory = (1,0, 0), the
conformal flows ar€1, 0, 2), (2, 2, 0) with one odd and one even, so the coefficient pf

in [fg*] is 0; fory = (0, 0, 0), the conformal flows ar€d, 0, 0), (2, 2, 0), (0, 2, 2) with all
three even, so the coefficient of 1ﬂyﬁg*] is 9; and similarly for the four other remaining
monomials, giving

[f&+] = 3(3x1xz — Br1x3 + Braxz + 32+ 3) = 3[fZ].

We are finally in position to prove the following theorem stated in the introduction.

Theorem 1.2.A digraph has a nowhere-zero p-flow if and only if it has a nowA{pr&)
mapys such that the number of ev@nconformal dual p-flows is not equal to the number
of odd ones

Proof. Let f(’;’ be the flow polynomial of a digrapB. By Theorem?2.1, G has a nowhere-
zerop-flow if and only if £ ¢ 1%, which holds if and only if the normal forrif2] is
nonzero. By Theorer®.3 [ f/] # 0if and only ifG admits a nowherepf1) mapy) such that
c() # 0. Sincec(y) is the number of every-conformal duap-flows minus the number
of odd ones, we are donel]
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4. A four-flow polynomial associated with an undirected graph

In this section, we work out a variant of the flow polynomial for four-flows for an undi-
rected graplG = (V, E). Itis simpler and perhaps better suited for the study of four-flows
of planar graphs and the four-color theorem. The outline is similar to that of the previous two
sections; we therefore do not go through the proofs which are analogous to those provided
before.

Let G = (V, E) be a graph. Aour-flowon G is a mapping

¢ =(¢1.¢2) : E — Z2x 72 =1{(0,0),(0, 1), (1,0), (1, 1}

such that) {¢(e) : e € 6(v)} = (0, 0) for each vertexw, whered(v) is the set of edges
incident onv. As before, if¢ is a flow then the sum of edge values on each cocircu@ of
is (0, 0). Again, we callp adual four-flowif the sum of edge values on each circuii®fs
zeroinZy x 7. Letx = (x.:e € E),y = (ye : ¢ € E) be two tuples of variables indexed
by edges and l&E[x, y] be corresponding polynomial algebra. Consider the following ideal
and polynomial,

I =idealx? — 1, y2 — 1, (x + D(v. + 1) : ¢ € E},

fo =11 (]_[ xe+1)(]_[ ye—i—l).

veV \eed(v) ecd(v)

We have the following analog of Theorerl

Theorem 4.1. A graphG = (V, E) has a nowhere-zero four-flow if and onlyji§; is not
in Ig.

As before, this is a consequence of the following two propertieszadnd f. A pair
of tuplesa = (a, : ¢ € E), b = (b, : e € E) of complex numbers is aeroof I if
f(a,b) =0forall f € Ig.

Proposition 4.2. The pair(a, b) is a zero ofig if and only if (a., b.) € {(1, —1), (=1, 1),
(=1, —1)} forall e. Moreover I is radical and hence consists of all polynomials vanishing
on its zero set

The proposition establishes a bijection between nowhere-zero maps

¢ = (d)l? d)Z) E— (ZZ X ZZ)* = {(Ov 1)7 (19 O)v (1» 1)}

and zerosa, b) of I given bya, = (—1)%1© b, = (=1)%2) foralle € E. The nowhere-
zero flows are characterized among such mapy the evaluation of the flow polynomial
on the corresponding zeros, b), as follows.

Proposition 4.3. Consider any nowhere-zero map = (¢4, ¢,) and let(a, b) be the
corresponding zero of. If ¢ is a nowhere-zero four-flow on G thefg (a, b) = 4!V/;
otherwisef;(a, b) = 0.
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Proof of Theorem 4.1.By Propositiord.2, f; lies in I if and only if it vanishes on its set
of zeros, which, by Propositiof 3, holds if and only ifG has no nowhere-zero four-flow.
O
As before, we next consider the normal form of the flow polynomial with respect to a
natural monomial basis of the quotietfx, y]/Ir. Consider the following set of basic
monomials:

Bi=1[T x5 : ¥ = Wy vhp) : E — (22 x 22)°

ecE

=1{0,0,(0,1), @, 0)}} :

Proposition 4.4. The (congruence classes )obasic monomials form aC-basis of
Clx, yl/1E.

Foreverypolynomiaf € Clx, y]letagair] f]denote its normal form which is the unique
C-linear combination of basic monomials satisfyifig— [ /] € Ig. The normal form of
powers of pairs of variables,, y. is determined by the following analog of Proposit@a.

Proposition 4.5. For any two nonnegative integeys, g2 and anyry, rp € Z, we have

[x201+71 202472y { xty i (r1,r2) € (Zo x Z)°
Xe Ve ]= ; _
—xe_}’e_l If (rj_’ }"2) - (17 1)

Now, for any monomia[ [, x™¢y" we have[[ [, . x"y"] = [[[,cg[x"y"]]; but
Proposition4.5implies that the polynomidl],_z[x™¢y"] is in theC-linear span of basic
monomials and hendg [, x™¢y"] = [[,cg[x™y"]. This completely determines the
normal form of any monomial and hence, as explained before, of every polynomial.

We next show, in analogy with Theore®3, an interpretation of the coefficients of
the monomials in the normal form of the flow polynomial in terms of suitable conformal
dual flows. A map¢ : E — Z, is even if the numbercf)‘l(l, 1)| of edges labeled
by (1,1) is even; otherwise it is odd. The megs y-conformal for a nowhere-(1,1) map
V=W, Yy E— (42 % 72)°if ¢(e) € {Y(e), (1, 1)} for every edge. We have the
following analog of Theorer.3.

Theorem 4.6. LetG = (V, E) be a graph withc connected componeni&hen the normal
form of the four-flow polynomial of G is given by

[fo] =4 > e [T« y0,
Y=, Yp): E—> (ZaxZ2)° eckE
wherec(y) is the number of evei-conformal dual four-flows minus the number of odd
ones

We also conclude the following analog of Theoré&rf
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Theorem 4.7. A graph has a nowhere-zero four-flow if and only if it has a nowA{éré)
mapy such that the number of evénconformal dual four-flows is not equal to the number
of odd ones

Proof. Let f¢ be the flow polynomial of a grapi. By Theoren4.1, G has a nowhere-zero
four-flow if and only if f ¢ Ig, which holds if and only if /] is nonzero. By Theorem
4.6, [fc] # 0 if and only if G admits a nowhere-(1,1) majp such thate(yy) # 0. Since
c(y) is the number of evetr-conformal dual four-flows minus the number of odd ones, we
are done. O
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