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Abstract

In this article, we introduce certain flow polynomials associated with digraphs and use them to
study nowhere-zero flows from a commutative algebraic perspective. Using Hilbert’s Nullstellensatz,
we establish a relation between nowhere-zero flows and dual flows. For planar graphs this gives a
relation between nowhere-zero flows and flows of their planar duals. It also yields an appealing proof
that every bridgeless triangulated graph has a nowhere-zero four-flow.
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1. Introduction

The theory of nowhere-zero flows (see[5,8] for recent surveys) was introduced by Tutte
[7] as an extension of Tait’s earlier work[6] on the four-color problem for planar graphs.

Let G = (V ,E) be a digraph and letp�2 be an integer. Ap-flow onG is a mapping
� : E −→ Zp from arcs to the additive groupZp = {0,1, . . . , p−1} of integers modulop
such that preservation holds at each vertexv, that is

∑{�(e) : e ∈ �+(v)} = ∑{�(e) : e ∈
�−(v)} in Zp, where�+(v), �−(v) are the sets of arcs with headv and tailv, respectively.
It is anowhere-zero p-flowif �(E) ⊆ Z∗

p := {1, . . . , p−1}. If � is a flow then the (signed)
sum of arc values on each cocircuit ofG is 0 in Zp. With matroid duality in mind, we call
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� a dual p-flowif the sum of arc values on each circuit ofG is zero, and call itnowhere-
zero dual p-flowif it is nowhere-zero. An undirected graphG will be calledp-flowing if
some orientation ofGadmits a nowhere-zerop-flow (and hence so does every orientation—
just flip the sign of�(e) whenevere is flipped). Likewise,G is dually p-flowingif some
(and hence every) orientation ofG admits a dual nowhere-zerop-flow. The first fact that
motivates flow theory is the following relation between dual flow and coloring, implicit in
the aforementioned work of Tait[6]. We outline the simple proof.

Proposition 1.1. A graph is dually p-flowing if and only if it is p-colorable.

Proof. We may assume thatG is connected and oriented. First, suppose� is a dual nowhere-
zerop-flow. Pick a spanning treeTand a vertexv. Set�(v) := 0 and for each other vertexu
set�(u) to be the (signed) sum inZp of the values�(e) on arcs on the unique path inT from
v tou. Since� sums to zero on each circuit, for every arce = abwe get�(b)−�(a) = �(e)
and since� is nowhere-zero it follows that the resulting� : V −→ Zp is ap-coloring.
Conversely, if� : V −→ Zp is ap-coloring ofG, then setting�(e) := �(b) − �(a) for
every arce = ab, the resulting map� is dual nowhere-zerop-flow. �

Note from the proof that the (not necessarily nowhere-zero) dualp-flows� are in bijection
with the (not necessarily colorings)Zp-labelings� of vertices with a fixed vertexv having
�(v) = 0.

A graph can be flowing only if it has no coloop (also called cut-edge, isthmus, or bridge);
and it can be dually flowing only if it has no loop. Two gems of flow theory are the following.
First, Tutte conjectured[7] that every bridgeless graph is five-flowing; while this is still
open, Jaeger[3] has shown that every bridgeless graph is eight-flowing and Seymour later
tightened it and showed that every bridgeless graph is six-flowing, see[5]. Second, ifG is
a plane digraph (a planar digraph embedded in the plane, for which the dual is uniquely
defined even ifG is not three-connected) then a map� is a dual flow precisely when it is
a flow of the plane dualG∗; the four-color theorem is thus equivalent to the statement that
every bridgeless planar graph is four-flowing. In this article, we introduce a certainflow
polynomialassociated with a digraph and use it to study flows from a commutative algebraic
perspective. While, the general approach follows the line taken by Lovász in studying stable
sets[4] and Alon–Tarsi in studying coloring[1], here, inspired by our recent work[2], we
take a closer look at a suitablenormal formof the polynomials that arise. Using Hilbert’s
Nullstellensatz, we establish a relation between nowhere-zero flows and dual flows. For
planar graphs this gives a relation between nowhere-zero flows and flows of their planar
duals. To state it, we need some more notation. A map� : E −→ Zp is evenif the number
|�−1(p − 1)| of arcs labeled by the maximal labelp − 1 is even; otherwise it isodd. Let
� : E −→ Z0

p := {0, . . . , p − 2} be a nowhere-(p-1) map. We say that� : E −→ Zp is
�-conformalif �(e) ∈ {�(e), p − 1} for every arce. We establish the following theorem.

Theorem 1.2. A digraph has a nowhere-zero p-flow if and only if it has a nowhere-(p-1)
map� such that the number of even�-conformal dual p-flows is not equal to the number
of odd ones.
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Since planar duality interchanges circuits and cocircuits, this gives at once the following
corollary.

Corollary 1.3. A plane digraph has a nowhere-zero p-flow if and only if its plane dual has
a nowhere-(p-1)map� with number of even�-conformal p-flows different than that of odd
ones.

As noted above, dualp-flows � are in bijection withZp-labelings� of vertices with
�(v) = 0 for a fixed vertexv. Therefore, both Theorem1.2 and Corollary1.3 can be
interpreted also in terms of such labelings, by saying that� : V −→ Zp is �-conformalif
for every arce = ab either�(b) − �(a) = �(e) or �(b) − �(a) = p − 1.

Another corollary concerns triangulated graphs; the proof below gives, in fact, a stronger
statement on conformal maps of the zero map.

Corollary 1.4. Any bridgeless triangulated(chordal) graph is four-flowing.

Proof. We prove by induction on the number of edges the following claim: any undirected
bridgeless triangulatedG = (V ,E) has an orientationD such that, for the identically zero
map� ≡ 0, the map� = � ≡ 0 is the only�-conformal dual four-flow. IfE is empty
then the claim is trivially true. Otherwise, pick any circuitC ⊆ E of size �3 in G. By
induction, the contractionG′ := G/C has an orientationD′ satisfying the claim. Extend
D′ to an orientationD of G by makingC a directed cycle. Consider any zero-conformal
dual four-flow� on D. Then�(e) ∈ {0,3} for all e,

∑
e∈C �(e) = 0 in Z4, and|C|�3

imply that�(e) = 0 for all e ∈ C. Now, let�′ be the restriction of� to D′. Then�′ is a
zero-conformal dual four-flow onD′ and hence, by induction,�′(e) = 0 for all e ∈ E \C.
Thus, as claimed,� ≡ 0, and we are done by Theorem1.2. �

2. A flow polynomial associated with a digraph

Fix a digraphG = (V ,E) and an integerp�2. Let x = (xe : e ∈ E) be a tuple
of variables indexed by the arcs ofG, and letC[x] = C[xe : e ∈ E] be the algebra
of polynomials with complex coefficients in these variables. We consider the following
polynomial ideal:

I
p
E := ideal



p−1∑
i=0

xie : e ∈ E


 ,

determined byp and the number of arcs, and we introduce the followingflow polynomial
of G:

f
p
G :=

∏
v∈V

p−1∑
i=0


 ∏
e∈�+

(v)

xe
∏

e∈�−
(v)

x
p−1
e



i

.

In this section, we establish the following statement.
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Theorem 2.1. A digraphG = (V ,E) has a nowhere-zero p-flow if and only iff p
G is not

in IpE .

The proof will follow from two properties of the ideal and polynomial which we establish
next. A tuplea = (ae : e ∈ E) of complex numbers is azeroof IpE if f (a) = 0 for all poly-

nomialsf ∈ I
p
E . Throughout, let� := exp(2�

√−1
p

) denote the primitivepth root of unity.

Proposition 2.2. A tuple a is a zero ofIpE if and only ifae ∈ {�1, . . . ,�p−1} for all e ∈ E.
Moreover, IpE is radical and hence consists precisely of all polynomials vanishing on its
zero set.

Proof. The univariate polynomialf := ∑p−1
i=0 zi satisfiesf (z−1) = zp −1 = ∏p−1

i=0 (z−
�i ) and hence its roots are allpth roots of unity but�0 = 1. SinceIpE is generated by copies
of f, one for each variablexe, the first part of the proposition follows. Since each such
generator has no multiple roots, the ideal is radical. Therefore, by Hilbert’s Nullstellensatz,
I
p
E consists precisely of all polynomials vanishing on its zero set, completing the proof of

the proposition. �

Alternatively, the second part of the proposition can be established by showing thatI
p
E

equals the intersection
⋂

a ideal{xe − ae : e ∈ E} of all maximal ideals corresponding to
its zerosa.

The proposition establishes a bijection between nowhere-zero maps� : E −→ Z∗
p and

zerosa = (��(e) : e ∈ E) of IpE . The nowhere-zero flows are characterized among such
maps� by the evaluation of the flow polynomial on the corresponding zerosa, as follows.

Proposition 2.3. Consider any map� : E −→ Z∗
p and leta = (��(e) : e ∈ E) be the

corresponding zero ofIpE . If � is a nowhere-zero p-flow onG thenf p
G(a) = p|V |; otherwise

f
p
G(a) = 0.

Proof. Let s(v) := ∑
e∈�+

(v) �(e) − ∑
e∈�−

(v) �(e) ∈ Zp be the flow surplus at vertexv.
Then

f
p
G(a) =

∏
v∈V

p−1∑
i=0


 ∏
e∈�+

(v)

��(e)
∏

e∈�−
(v)

(��(e))p−1



i

=
∏
v∈V

p−1∑
i=0

(�s(v))i .

Now, if s(v) ∈ Z∗
p then

∑p−1
i=0 (�

s(v))i = 0 (see proof of Proposition2.2), whereas is

s(v) = 0 then
∑p−1

i=0 (�
s(v))i = p. Since� is a flow if and only ifs(v) = 0 for all v ∈ V ,

the proof is complete. �

Proof of Theorem 2.1.By Proposition2.2, the polynomialf p
G is in I

p
E if and only if it

vanishes on every zero ofIpE , which, by Proposition2.3, holds if and only ifG has no
nowhere-zerop-flow. �
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Remark 2.4. Note that the flow polynomialf p
G has the following very special appealing

property: its evaluations on the zero set ofI
p
E assumeonly two distinct values, either 0

or p|V |.

Example 2.5. LetG = (V ,E) be a digraph consisting of two verticesv1, v2 and three arcs
e1 = e3 = v1v2, e2 = v2v1, and letp = 3. The flow polynomial is

f 3
G =

2∑
i=0

(x2
1x2x

2
3)

i
2∑

i=0

(x1x
2
2x3)

i

= x6
1x

6
2x

6
3 + x5

1x
4
2x

5
3 + x4

1x
5
2x

4
3 + x4

1x
2
2x

4
3

+x3
1x

3
2x

3
3 + x2

1x
4
2x

2
3 + x2

1x2x
2
3 + x1x

2
2x3 + 1;

the zeros of the idealI3
E = ideal{x2

1 + x1 + 1, x2
2 + x2 + 1, x2

3 + x3 + 1} are all eight tuples

a = (a1, a2, a3) with eachai ∈ {�,�2} where� = exp(2�
√−1
3 ); the evaluation off 3

G on a
zero ofI3

E corresponding to a nowhere-zero map� = (�1,�2,�3) is 32 = 9 if � is either
(1,2,1) or (2,1,2), and is 0 otherwise, distinguishing(1,2,1) and(2,1,2) as the only
two nowhere-zero three-flows ofG.

Remark 2.6. As pointed out by one of the referees, Proposition2.3implies that the number
of nowhere-zerop-flows onG is equal to(p− 1)|E| minus the number of zeros of the ideal
I
p
E + f

p
G . Since, the number of zeros of a zero-dimensional idealI is equal to the vector

space dimension of the quotientC[x]/I if I is radical, the following questions raised by the
referee are of interest: for which graphs is the idealI

p
E + f

p
G radical? Is this ideal always

radical for large enoughp?

3. The normal form of the flow polynomial

We proceed to take a close look at thenormal formof the flow polynomial with respect
to a natural monomial basis of the quotientC[x]/IpE . Consider the following set ofbasic
monomials,

B :=
{∏
e∈E

x
�(e)
e : � : E −→ Z0

p = {0, . . . , p − 2}
}
.

Proposition 3.1. The (congruence classes of) basic monomials form aC-basis
of C[x]/IpE .

Proof. First, it is clear thatIpE contains no nonzero polynomial which is a linear combination
of monomials inB, so B is linearly independent moduloIpE . Second,IpE is radical by
Proposition2.2, and hence, by Hilbert’s Nullstellensatz, the vector space dimension of
C[x]/IpE equals the number of zeros ofIpE . By Proposition2.2 this number is(p − 1)|E|,
which is precisely the number of basic monomials, and so it follows thatBspans the quotient
space and hence provides a basis.�

It follows that for every polynomialf ∈ C[x] there is a unique polynomial[f ], called
thenormal formof f, which satisfiesf − [f ] ∈ I

p
E and is aC-linear combination of basic
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monomials

[f ] =
∑

�:E→Z0
p

c�

∏
e∈E

x
�(e)
e .

In particular,f ∈ I
p
E if and only if [f ] = 0. By characterizing the normal form of the

flow polynomial we will be able, via Theorem2.1, to establish the promised criterion of
Theorem1.2 for a graph to be flowing. We proceed to study normal forms, starting with
powers of variables.

Proposition 3.2. The normal form ofxqp+r
e with q any nonnegative integer andr ∈ Zp is

[xqp+r
e ] =

{
xre if r ∈ Z0

p

− ∑p−2
i=0 xie if r = p − 1.

Proof. First, we havexpe − 1 = (xe − 1)
∑p−1

i=0 xie ∈ I
p
E and 1 is a basic monomial, which

shows that[xpe ] = 1. Thus, the normal form of an arbitrary power ofxe is determined by
the normal form of powersxre with r ∈ Zp. If r ∈ Z0

p then the monomialxre is basic and

hence satisfies[xre ] = xre . If r = p − 1 thenxp−1
e − (− ∑p−2

i=0 xie) = ∑p−1
i=0 xie ∈ I

p
E and

− ∑p−2
i=0 xie is a linear combination of basic monomials, so[xp−1

e ] = − ∑p−2
i=0 xie. This

completes the proof. �

Now, for any two polynomialsf, g and scalarss, t ∈ C we have[sf + tg] = s[f ]+ t[g]
and [fg] = [[f ][g]]. The first identity implies that the normal form of any polynomial
is determined by the normal forms of its monomials. The second identity implies that
for any monomial

∏
e∈E xme we have[∏e∈E xme ] = [∏e∈E[xme ]]; but Proposition3.2

implies that the polynomial
∏

e∈E[xme ] is in theC-linear span of basic monomials and
hence[∏e∈E xme ] = ∏

e∈E[xme ]. This completely determines the normal form of any
polynomial.

Example 2.5(continued). Consider again the digraphGwith three arcs, and let againp = 3.
Using Proposition3.2we find that the normal form of the flow polynomial is

[f 3
G] = 1 + (−x1 − 1)x2(−x3 − 1) + x1(−x2 − 1)x3 + x1(−x2 − 1)x3 + 1

+(−x1 − 1)x2(−x3 − 1) + (−x1 − 1)x2(−x3 − 1) + x1(−x2 − 1)x3 + 1

= 3(x1x2 − x1x3 + x2x3 + x2 + 1).

Since[f 3
G] �= 0, we find thatf 3

G /∈ I3
E and hence, by Theorem2.1,Gadmits a nowhere-zero

three-flow.

We next show that the coefficients of the monomials in the normal form of the flow
polynomial can be nicely interpreted in terms of certain dual flows. Recall that a map
� : E −→ Zp is evenif the number|�−1(p − 1)| of arcs labeled by the maximal label
p − 1 is even; otherwise it isodd. Recall also that� is �-conformalfor a nowhere-(p-1)
map� : E −→ Z0

p = {0, . . . , p − 2} if �(e) ∈ {�(e), p − 1} for every arce. We have the
following theorem.
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Theorem 3.3. LetG = (V ,E) be an orientation of a connected graph, and letp�2 be
an integer. Then the normal form of the flow polynomial of G is given by

[f p
G] = p

∑
�:E−→Z0

p

c(�)
∏
e∈E

x
�(e)
e ,

wherec(�) denotes the number of even�-conformal dual p-flows minus the number of odd
ones.

Proof. The flow polynomial can be expanded as

f
p
G :=

∑
�:V−→Zp

∏
v∈V


 ∏
e∈�+

(v)

xe
∏

e∈�−
(v)

x
p−1
e




�(v)

,

the sum extending over all labelings� of vertices by{0, . . . , p−1}. Since each arce = uv

satisfiese ∈ �−(u) ande ∈ �+(v) we can rewrite this as

f
p
G :=

∑
�:V−→Zp

∏
e=uv∈E

x�(v)
e x

(p−1)�(u)
e .

Consider any� : V −→ Zp and let� : E −→ Zp be the map that labels each arce = uv by

�(e) := �(v)−�(u) in Zp. By Proposition3.2, we then have[x�(v)
e x

(p−1)�(u)
e ] = [x�(e)

e ]
and hence the normal form of the summand in the above expression off

p
G corresponding

to � satisfies[ ∏
e=uv∈E

x�(v)
e x

(p−1)�(u)
e

]
=

∏
e∈E

[
x

�(e)
e

]
.

Now, since the arc labeling� is induced from a vertex labeling�, the (signed) sum of the
� values of arcs on each circuit ofG is 0 in Zp and hence� is a dualp-flow. Since the
undirected graph underlyingG is connected,� is uniquely determined by� and the value
�(v) on an arbitrary vertexv (see proof of Proposition1.1), so� arises from preciselyp
distinct maps�, and we get

[f p
G] = p

∑ {∏
e∈E

[
x

�(e)
e

]
: � dualp-flow

}

= p
∑ 


∏

e:�(e)∈Z0
p

x
�(e)
e

∏
e:�(e)=p−1


−

∑
i∈Z0

p

xie


 : � dualp-flow


 .

Now, consider the basic monomial
∏

e∈E x
�(e)
e corresponding to� : E −→ Z0

p. Then,
in the right-hand side sum in the above expression of[f p

G], every even�-conformal dual

p-flow map� contributes a term
∏

e∈E x
�(e)
e , whereas every odd one contributes a term

− ∏
e∈E x

�(e)
e . This shows that, as claimed, the coefficientc(�) of

∏
e∈E x

�(e)
e in [f p

G] is
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equal to the number of even�-conformal dualp-flows minus the number of odd ones,
completing the proof of the theorem.�

Remark 3.4. More generally, ifG is an orientation of a graph with� connected components
then a suitable adjustment of the analysis above shows that the normal form of the flow
polynomial is

[f p
G] = p�

∑
�:E−→Z0

p

c(�)
∏
e∈E

x
�(e)
e .

Example 2.5(continued). Consider once again the digraph with three arcs and letp =
3. Let us examine some of the monomialsx

�1
1 x

�2
2 x

�3
3 of the normal form of the flow

polynomial described explicitly before and see how they can be computed using Theorem
3.3. For instance, for� = (1,1,0), the only�-conformal dual three-flow is the even
� = (2,1,2), so the coefficient ofx1x2 in [f 3

G] is 3× 1 = 3; for � = (1,0,1), the only
conformal dual flow is the odd(2,1,2), so the coefficient ofx1x3 in [f 3

G] is 3(−1) = −3;
for � = (1,0,0) there is no conformal dual flow so the coefficient ofx1 in [f 3

G] is 0; for
� = (0,0,0), the only conformal dual flow is the even(0,0,0) so the coefficient of 1 in
[f 3

G] is 3; and similarly for the four other remaining monomials. Now consider the plane
dualG∗ = (U,E∗) of G under some plane embedding ofG; it has three verticesu1, u2, u3
and three dual arcse∗

1 = u1u2, e
∗
2 = u1u3, e

∗
3 = u2u3. The normal form[f 3

G∗ ] of the
flow polynomial ofG∗ can be computed via Theorem3.3 by considering dual flows of
G∗, namely flows ofG. For instance, for� = (1,1,0), the�-conformal three-flows� of
G are(1,1,0), (2,2,0), (2,1,2), with all three even, so the coefficient ofx1x2 in [f 3

G∗ ]
is 3× 3 = 9; for � = (1,0,1), the conformal flows are(2,0,1), (1,2,1), (1,0,2) with
all three odd, so the coefficient ofx1x3 in [f 3

G∗ ] is 3(−3) = −9; for � = (1,0,0), the
conformal flows are(1,0,2), (2,2,0) with one odd and one even, so the coefficient ofx1
in [f 3

G∗ ] is 0; for� = (0,0,0), the conformal flows are(0,0,0), (2,2,0), (0,2,2) with all
three even, so the coefficient of 1 in[f 3

G∗ ] is 9; and similarly for the four other remaining
monomials, giving

[f 3
G∗ ] = 3(3x1x2 − 3x1x3 + 3x2x3 + 3x2 + 3) = 3[f 3

G].

We are finally in position to prove the following theorem stated in the introduction.

Theorem 1.2.A digraph has a nowhere-zero p-flow if and only if it has a nowhere-(p-1)
map� such that the number of even�-conformal dual p-flows is not equal to the number
of odd ones.

Proof. Let f p
G be the flow polynomial of a digraphG. By Theorem2.1, G has a nowhere-

zerop-flow if and only if f p
G /∈ I

p
E , which holds if and only if the normal form[f p

G] is
nonzero. By Theorem3.3, [f p

G] �= 0 if and only ifGadmits a nowhere-(p-1) map� such that
c(�) �= 0. Sincec(�) is the number of even�-conformal dualp-flows minus the number
of odd ones, we are done.�
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4. A four-flow polynomial associated with an undirected graph

In this section, we work out a variant of the flow polynomial for four-flows for an undi-
rected graphG = (V ,E). It is simpler and perhaps better suited for the study of four-flows
of planar graphs and the four-color theorem. The outline is similar to that of the previous two
sections; we therefore do not go through the proofs which are analogous to those provided
before.

LetG = (V ,E) be a graph. Afour-flowonG is a mapping

� = (�1,�2) : E −→ Z2 × Z2 = {(0,0), (0,1), (1,0), (1,1)}
such that

∑{�(e) : e ∈ �(v)} = (0,0) for each vertexv, where�(v) is the set of edges
incident onv. As before, if� is a flow then the sum of edge values on each cocircuit ofG
is (0,0). Again, we call� adual four-flowif the sum of edge values on each circuit ofG is
zero inZ2 × Z2. Letx = (xe : e ∈ E), y = (ye : e ∈ E) be two tuples of variables indexed
by edges and letC[x, y] be corresponding polynomial algebra. Consider the following ideal
and polynomial,

IE := ideal{x2
e − 1, y2

e − 1, (xe + 1)(ye + 1) : e ∈ E},

fG :=
∏
v∈V


 ∏
e∈�(v)

xe + 1





 ∏
e∈�(v)

ye + 1


 .

We have the following analog of Theorem2.1.

Theorem 4.1. A graphG = (V ,E) has a nowhere-zero four-flow if and only iffG is not
in IE .

As before, this is a consequence of the following two properties ofIE andfG. A pair
of tuplesa = (ae : e ∈ E), b = (be : e ∈ E) of complex numbers is azeroof IE if
f (a, b) = 0 for all f ∈ IE .

Proposition 4.2. The pair(a, b) is a zero ofIE if and only if(ae, be) ∈ {(1,−1), (−1,1),
(−1,−1)} for all e.Moreover, IE is radical and hence consists of all polynomials vanishing
on its zero set.

The proposition establishes a bijection between nowhere-zero maps

� = (�1,�2) : E −→ (Z2 × Z2)
∗ = {(0,1), (1,0), (1,1)}

and zeros(a, b) of IE given byae = (−1)�1(e), be = (−1)�2(e) for all e ∈ E. The nowhere-
zero flows are characterized among such maps� by the evaluation of the flow polynomial
on the corresponding zeros(a, b), as follows.

Proposition 4.3. Consider any nowhere-zero map� = (�1,�2) and let (a, b) be the
corresponding zero ofIE . If � is a nowhere-zero four-flow on G thenfG(a, b) = 4|V |;
otherwisefG(a, b) = 0.



214 S. Onn / Journal of Combinatorial Theory, Series A 108 (2004) 205–215

Proof of Theorem 4.1.By Proposition4.2, fG lies inIE if and only if it vanishes on its set
of zeros, which, by Proposition4.3, holds if and only ifG has no nowhere-zero four-flow.

�
As before, we next consider the normal form of the flow polynomial with respect to a

natural monomial basis of the quotientC[x, y]/IE . Consider the following set of basic
monomials:

B :=
{∏
e∈E

x
�1(e)
e y

�2
e (e) : � = (�1,�2) : E −→ (Z2 × Z2)

0

:= {(0,0), (0,1), (1,0)}
}
.

Proposition 4.4. The (congruence classes of) basic monomials form aC-basis of
C[x, y]/IE .

Foreverypolynomialf ∈ C[x, y] letagain[f ] denote its normal form which is the unique
C-linear combination of basic monomials satisfyingf − [f ] ∈ IE . The normal form of
powers of pairs of variablesxe, ye is determined by the following analog of Proposition3.2.

Proposition 4.5. For any two nonnegative integersq1, q2 and anyr1, r2 ∈ Z2 we have

[x2q1+r1
e y

2q2+r2
e ] =

{
x
r1
e y

r2
e if (r1, r2) ∈ (Z2 × Z2)

0

−xe − ye − 1 if (r1, r2) = (1,1).

Now, for any monomial
∏

e∈E xmeyne we have[∏e∈E xmeyne ] = [∏e∈E[xmeyne ]]; but
Proposition4.5 implies that the polynomial

∏
e∈E[xmeyne ] is in theC-linear span of basic

monomials and hence[∏e∈E xmeyne ] = ∏
e∈E[xmeyne ]. This completely determines the

normal form of any monomial and hence, as explained before, of every polynomial.
We next show, in analogy with Theorem3.3, an interpretation of the coefficients of

the monomials in the normal form of the flow polynomial in terms of suitable conformal
dual flows. A map� : E −→ Zp is even if the number|�−1(1,1)| of edges labeled
by (1,1) is even; otherwise it is odd. The map� is �-conformal for a nowhere-(1,1) map
� = (�1,�2) : E −→ (Z2 × Z2)

0 if �(e) ∈ {�(e), (1,1)} for every edgee. We have the
following analog of Theorem3.3.

Theorem 4.6. LetG = (V ,E) be a graph with� connected components.Then the normal
form of the four-flow polynomial of G is given by

[fG] = 4� ·
∑

�=(�1,�2):E−→(Z2×Z2)0

c(�)
∏
e∈E

x
�1(e)
e y

�2(e)
e ,

wherec(�) is the number of even�-conformal dual four-flows minus the number of odd
ones.

We also conclude the following analog of Theorem1.2.
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Theorem 4.7. A graph has a nowhere-zero four-flow if and only if it has a nowhere-(1,1)
map� such that the number of even�-conformal dual four-flows is not equal to the number
of odd ones.

Proof. LetfG be the flow polynomial of a graphG. By Theorem4.1,G has a nowhere-zero
four-flow if and only iffG /∈ IE , which holds if and only if[fG] is nonzero. By Theorem
4.6, [fG] �= 0 if and only ifG admits a nowhere-(1,1) map� such thatc(�) �= 0. Since
c(�) is the number of even�-conformal dual four-flows minus the number of odd ones, we
are done. �
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