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The Stanley lattice, Tamari lattice and Kreweras lattice are three
remarkable orders defined on the set of Catalan objects of a given
size. These lattices are ordered by inclusion: the Stanley lattice
is an extension of the Tamari lattice which is an extension
of the Kreweras lattice. The Stanley order can be defined on
the set of Dyck paths of size n as the relation of being above.
Hence, intervals in the Stanley lattice are pairs of non-crossing
Dyck paths. In a previous article, the second author defined
a bijection Φ between pairs of non-crossing Dyck paths and the
realizers of triangulations (or Schnyder woods). We give a simpler
description of the bijection Φ . Then, we study the restriction
of Φ to Tamari and Kreweras intervals. We prove that Φ induces
a bijection between Tamari intervals and minimal realizers. This
gives a bijection between Tamari intervals and triangulations. We
also prove that Φ induces a bijection between Kreweras intervals
and the (unique) realizers of stack triangulations. Thus, Φ induces
a bijection between Kreweras intervals and stack triangulations
which are known to be in bijection with ternary trees.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A Dyck path is a lattice path made of +1 and −1 steps that starts from 0, remains non-negative
and ends at 0. It is often convenient to represent a Dyck path by a sequence of North–East and South–
East steps as is done in Fig. 1(a). The set Dn of Dyck paths of length 2n can be ordered by the relation
P �S Q if P stays below Q . This partial order is in fact a distributive lattice on Dn known as the
Stanley lattice. The Hasse diagram of the Stanley lattice on D3 is represented in Fig. 2(a).

E-mail address: olivier.bernardi@math.u-psud.fr (O. Bernardi).
1 Partially supported by the Centre de Recerca Matemàtica and the Agence Nationale de la Recherche, project SADA.
2 Partially supported by the Action Concertée Incitative Geocomp.
0097-3165/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2008.05.005

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:olivier.bernardi@math.u-psud.fr
http://dx.doi.org/10.1016/j.jcta.2008.05.005


56 O. Bernardi, N. Bonichon / Journal of Combinatorial Theory, Series A 116 (2009) 55–75
(a) (b) (c)

Fig. 1. (a) A Dyck path. (b) A binary tree. (c) A non-crossing partition.

Fig. 2. Hasse diagrams of the Catalan lattices on the set D3 of Dyck paths: (a) Stanley lattice, (b) Tamari lattice, (c) Kreweras
lattice.

It is well known that the Dyck paths of length 2n are counted by the nth Catalan number Cn =
1

n+1

(2n
n

)
. The Catalan sequence is a pervasive guest in enumerative combinatorics. Indeed, beside Dyck

paths, this sequence enumerates the binary trees, the plane trees, the non-crossing partitions and
over 60 other fundamental combinatorial structures [19, Exercise 6.19]. These different incarnations
of the Catalan family gave rise to several lattices beside Stanley’s. The Tamari lattice appears naturally
in the study of binary trees where the covering relation corresponds to right rotation. This lattice is
actively studied due to its link with the associahedron (alias Stasheff polytope). In particular, the Hasse
diagram of the Tamari lattice is the 1-skeleton of the associahedron [12]. The Kreweras lattice appears
naturally in the setting of non-crossing partitions. In the seminal paper [11], Kreweras proved that the
refinement order on non-crossing partitions defines a lattice. The Kreweras lattice appears to support
a great deal of mathematics that reach far beyond enumerative combinatorics [13,18]. Using suitable
bijections between Dyck paths, binary trees, non-crossing partitions and plane trees, the three Catalan
lattices can be defined on the set of plane trees of size n in such way that the Stanley lattice L S

n is an
extension of the Tamari lattice LT

n which in turn is an extension of the Kreweras lattice L K
n (see [10,

Exercises 7.2.1.6–26, 27 and 28]). In this paper, we shall find convenient to embed the three Catalan
lattices on the set Dn of Dyck paths. The Hasse diagram of the Catalan lattices on D3 is represented
in Fig. 2.

There are closed formulas for the number of intervals (i.e. pairs of comparable elements) in each
of the Catalan lattices. The intervals of the Stanley lattice are the pairs of non-crossing Dyck paths
and the number |L S

n | of such pairs can be calculated using the lattice path determinant formula of
Lindström–Gessel–Viennot [8]. It is shown in [6] that

∣∣L S
n

∣∣ = Cn+2Cn − C2
n+1 = 6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)! . (1)

The intervals of the Tamari lattice were recently enumerated by Chapoton [4] using a generating
function approach. It was proved that the number of intervals in the Tamari lattice is

∣∣LT
n

∣∣ = 2(4n + 1)!
(n + 1)!(3n + 2)! . (2)

Chapoton also noticed that (2) is the number of triangulations (i.e. maximal planar graphs) and asked
for an explanation. The number |L K

n | of intervals of the Kreweras lattice has an even simpler formula.
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Fig. 3. (a) Exceedance of a Dyck path. (b) Differences between two Dyck paths.

In [11], Kreweras proved by a recursive method that

∣∣L K
n

∣∣ = 1

2n + 1

(
3n

n

)
. (3)

This is also the number of ternary trees and a bijection was exhibited in [7].
In [1], the second author defined a bijection Φ between the pairs of non-crossing Dyck paths

(equivalently, Stanley intervals) and the realizers (or Schnyder woods) of triangulations. The main pur-
pose of this article is to study the restriction of the bijection Φ to the Tamari intervals and to the
Kreweras intervals. We first give an alternative, simpler, description of the bijection Φ . Then, we prove
that the bijection Φ induces a bijection between the intervals of the Tamari lattice and the realizers
which are minimal. Since every triangulation has a unique minimal realizer, we obtain a bijection be-
tween Tamari intervals and triangulations. As a corollary, we obtain a bijective proof of formula (2)
thereby answering the question of Chapoton. Turning to the Kreweras lattice, we prove that the map-
ping Φ induces a bijection between Kreweras intervals and the realizers which are both minimal and
maximal. We then characterize the triangulations having a realizer which is both minimal and maxi-
mal and prove that these triangulations are in bijection with ternary trees. This gives a new bijective
proof of formula (3).

The outline of this paper is as follows. In Section 2, we review our notations about Dyck paths
and characterize the covering relations for the Stanley, Tamari and Kreweras lattices in terms of Dyck
paths. In Section 3, we recall the definitions about triangulations and realizers. We then give an
alternative description of the bijection Φ defined in [1] between pairs of non-crossing Dyck paths and
the realizers. In Section 4, we study the restriction of Φ to the Tamari intervals. Lastly, in Section 5
we study the restriction of Φ to the Kreweras intervals.

2. Catalan lattices

Dyck paths. A Dyck path is a lattice path made of steps N = +1 and S = −1 that starts from 0,
remains non-negative and ends at 0. A Dyck path is said to be prime if it remains positive between
its start and end. The size of a path is half its length and the set of Dyck paths of size n is denoted
by Dn .

Let P be a Dyck path of size n. Since P begins by an N step and has n N steps, it can be written
as P = N Sα1 N Sα2 . . . N Sαn . We call ith descent the subsequence Sαi of P . For i = 0,1, . . . ,n we call
ith exceedance and denote by ei(P ) the height of the path P after the ith descent, that is, ei(P ) =
i − ∑

j�i α j . For instance, the Dyck path represented in Fig. 3(a) is P = N S1N S0N S1N S2 N S0N S0 N S3

and e0(P ) = 0, e1(P ) = 0, e2(P ) = 1, e3(P ) = 1, e4(P ) = 0, e5(P ) = 1, e6(P ) = 2 and e7(P ) = 0. If P , Q
are two Dyck paths of size n, we denote δi(P , Q ) = ei(Q ) − ei(P ) and Δ(P , Q ) = ∑n

i=1 δi(P , Q ). For
instance, if P and Q are respectively the lower and upper paths in Fig. 3(b), the values δi(P , Q ) are
zero except for δ1(P , Q ) = 1, δ4(P , Q ) = 2 and δ5(P , Q ) = 1.

For 0 � i � j � n, we write i ∧P j (respectively i ∧
P j) if ei(P ) � e j(P ) and ei(P ) � ek(P ) (respec-

tively ei(P ) < ek(P )) for all i < k < j. In other words, i ∧P j (respectively i ∧
P j) means that the sub-

path N Sαi+1 N Sαi+2 . . . N Sα j is a Dyck path (respectively prime Dyck path) followed by ei(P ) − e j(P )

S steps. For instance, for the Dyck path P of Fig. 3(a), we have 0 ∧P 4, 1 ∧
P 4 and 2 ∧P 4 (and many

other relations).
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Fig. 4. Covering relations in (a) Stanley lattice, (b) Tamari lattice.

Fig. 5. The binary tree (((◦,◦), ((◦,◦),◦)), (◦, (◦,◦))) and its image by the bijection σ .

We will now define the Stanley, Tamari and Kreweras lattices in terms of Dyck paths. More pre-
cisely, we will characterize the covering relation of each lattice in terms of Dyck paths and show that
our definitions respect the refinement hierarchy between the three lattices.

Stanley lattice. Let P = N Sα1 . . . N Sαn and Q = N Sβ1 . . . N Sβn be two Dyck paths of size n. We write
P �S Q if the path P stays below the path Q . Equivalently, ei(P ) � ei(Q ) for all 1 � i � n. The
relation �S defines the Stanley lattice L S

n on the set Dn . Clearly the path P is covered by the path Q
in the Stanley lattice if Q is obtained from P by replacing a subpath SN by N S . Equivalently, there is
an index 1 � i � n such that βi = αi − 1, βi+1 = αi+1 + 1 and βk = αk for all k �= i, i + 1. A covering
relation of the Stanley lattice is represented in Fig. 4(a) and the Hasse diagram of L S

3 is represented
in Fig. 2(a).

Tamari lattice. The Tamari lattice has a simple interpretation in terms of binary trees. The set of
binary trees can be defined recursively by the following grammar. A binary tree B is either a leaf
denoted by ◦ or is an ordered pair of binary trees, denoted B = (B1, B2). It is often convenient
to draw a binary tree by representing the leaf by a white vertex and the tree B = (B1, B2) by a
black vertex at the bottom joined to the subtrees B1 (on the left) and B2 (on the right). The tree
(((◦,◦), ((◦,◦),◦)), (◦, (◦,◦))) is represented in Fig. 5.

The set Bn of binary trees with n internal nodes has cardinality Cn = 1
n+1

(2n
n

)
and there are well-

known bijections between the set Bn and the set Dn . We call σ the bijection defined as follows: the
image of the binary tree consisting of a leaf is the empty word and the image of the binary tree
B = (B1, B2) is the Dyck path σ(B) = σ(B1)Nσ(B2)S . An example is given in Fig. 5.

In [9], Tamari defined a partial order on the set Bn of binary trees and proved it to be a lattice.
The covering relations for the Tamari lattice are defined as follows: a binary tree B containing a
subtree of type X = ((B1, B2), B3) is covered by the binary tree B ′ obtained from B by replacing X
by (B1, (B2, B3)). The Hasse diagram of the Tamari lattice on the set of binary trees with 4 nodes is
represented in Fig. 6 (left).

The bijection σ allows one to transfer the Tamari lattice to the set of Dn Dyck paths. We denote
by LT

n the image of the Tamari lattice on Dn and write P �T Q if the path P is less than or equal
to the path Q for this order. The Hasse diagram of LT

4 is represented in Fig. 6 (right). The following
proposition expresses the covering relations of the Tamari lattice LT

n in terms of Dyck paths. An
example of such a covering relation is illustrated in Fig. 4(b).

Proposition 2.1. Let P = N Sα1 . . . N Sαn and Q = N Sβ1 . . . N Sβn be two Dyck paths. The path P is covered
by the path Q in the Tamari lattice LT

n if Q is obtained from P by swapping an S step and the prime Dyck
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Fig. 6. Hasse diagram of the Tamari lattice LT
4 .

Fig. 7. A non-crossing partition and its image by the bijection θ .

subpath following it, that is, there are indices 1 � i < j � n with αi > 0 and i ∧
P j such that βi = αi − 1,

β j = α j + 1 and βk = αk for all k �= i, j.

Corollary 2.2. The Stanley lattice L S
n is a refinement of the Tamari lattice LT

n . That is, for any pair of Dyck
paths P , Q , P �T Q implies P �S Q .

Proof of Proposition 2.1. Let B be a binary tree and let P = σ(B).
• We use the well-known fact that there is a one-to-one correspondence between the subtrees of B and

the Dyck subpaths of P which are either a prefix of P or are preceded by an N step. (This classical property
is easily shown by induction on the size of P .)

• If the binary tree B ′ is obtained from B by replacing a subtree X = ((B1, B2), B3) by X ′ =
(B1, (B2, B3)), then the Dyck path Q = σ(B ′) is obtained from P by replacing a subpath σ(X) =
σ(B1)Nσ(B2)SNσ(B3)S by σ(X ′) = σ(B1)Nσ(B2)Nσ(B3)S S; hence by swapping an S step and the
prime Dyck subpath following it.

• Suppose conversely that the Dyck path Q is obtained from P by swapping an S step with a
prime Dyck subpath N P3 S following it. Then, there are two Dyck paths P1 and P2 (possibly empty)
such that W = P1N P2 SN P3 S is a Dyck subpath of P which is either a prefix of P or is preceded
by an N step. Hence, the binary tree B contains the subtree X = σ−1(W ) = ((B1, B2), B3), where
Bi = σ−1(Pi), i = 1,2,3. Moreover, the binary tree B ′ = σ−1(Q ) is obtained from B by replacing the
subtree X = ((B1, B2), B3) by X ′ = (B1, (B2, B3)) = σ−1(P1N P2N P3 S S). �
Kreweras lattice. A partition of {1, . . . ,n} is non-crossing if whenever four elements 1 � i < j < k <

l � n are such that i,k are in the same class and j, l are in the same class, then the two classes
coincide. The non-crossing partition whose classes are {1}, {2,4}, {3}, and {5,6,7} is represented in
Fig. 7. In this figure, each class is represented by a connected cell incident to the integers it contains.

The set NCn of non-crossing partitions on {1, . . . ,n} has cardinality Cn = 1
n+1

(2n
n

)
and there are

well-known bijections between non-crossing partitions and Dyck paths. We consider the bijection θ

defined as follows. The image of a non-crossing partition π of size n by the mapping θ is the Dyck
path θ(π) = N Sα1 N Sα2 . . . N Sαn , where αi is the size of the class containing i if i is maximal in its
class and αi = 0 otherwise. An example is given in Fig. 7.
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Fig. 8. Hasse diagram of the Kreweras lattice L K
4 .

Fig. 9. Two examples of covering relations in the Kreweras lattice.

In [11], Kreweras showed that the partial order of refinement defines a lattice on the set NCn of
non-crossing partitions. The covering relations of this lattice correspond to the merging of two parts
when this operation does not break the non-crossing condition. The Hasse diagram of the Kreweras
lattice on the set NC4 is represented in Fig. 8 (left).

The bijection θ allows one to transfer the Kreweras lattice on the set Dn of Dyck paths. We denote
by L K

n the lattice structure obtained on Dn and denote by P �K Q if the path P is less than or
equal to the path Q for this order. The Hasse diagram of L K

4 is represented in Fig. 8 (right). The
following proposition expresses the covering relation of the Kreweras lattice L K

n in terms of Dyck
paths. Examples of these covering relations are represented in Fig. 9.

Proposition 2.3. Let P = N Sα1 . . . N Sαn and Q = N Sβ1 . . . N Sβn be two Dyck paths of size n. The path P is
covered by the path Q in the Kreweras lattice L K

n if Q is obtained from P by swapping a (non-empty) descent
with a Dyck subpath following it, that is, there are indices 1 � i < j � n with αi > 0 and i ∧P j such that
βi = 0, β j = αi + α j and βk = αk for all k �= i, j.

Corollary 2.4. The Tamari lattice LT
n is a refinement of the Kreweras lattice L K

n . That is, for any pair P , Q of
Dyck paths, P �K Q implies P �T Q .

Proposition 2.3 is a immediate consequence of the following lemma.

Lemma 2.5. Let π be a non-crossing partition and let P = θ(π). Let c and c′ be two classes of π with the
convention that i = max(c) < j = max(c′). Then, the classes c and c′ can be merged without breaking the
non-crossing condition if and only if i ∧P j.

Proof. For any k = 1, . . . ,n, we denote by ck the class of π containing k. Observe that the classes c
and c′ can be merged without breaking the non-crossing condition if and only if there are no integers
r, s with cr = cs �= c j such that r < i < s < j or i < r < j < s. Observe also from the definition of the
mapping θ that for all l = 1, . . . ,n, the exceedance el(P ) is equal to the number of indices k � l such
that max(ck) > l.

• We suppose that i ∧P j and we want to prove that merging the classes c and c′ does not break
the non-crossing condition. We first prove that there are no integers r, s such that i < r < j < s
and cr = cs . Suppose the contrary. In this case, there is no integer k � r − 1 such that r − 1 <

max(ck) � j (otherwise, ck = cr = cs by the non-crossing condition, hence max(ck) = max(cs) > j).
Thus, {k � r − 1/max(ck) > r − 1} = {k � r − 1/max(ck) > j} � {k � j/max(ck) > j}. This implies
er−1(P ) < e j(P ) and contradicts the assumption i ∧P j. It remains to prove that there are no integers
r, s such that r < i < s < j and cr = cs �= c j . Suppose the contrary and let s′ = max(cr). The case s′ > j
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Fig. 10. A rooted triangulation (left) and one of its realizers (right). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

has been treated in the preceding point so we can assume that s′ < j. In this case, there is no integer
k such that i < k � s′ and max(ck) > s′ (otherwise, ck = cr = cs′ by the non-crossing condition, hence
max(ck) = max(cr) = s′). Thus, {k � s′/max(ck) > s′} = {k � i/max(ck) > s′} � {k � i/max(ck) > i}.
This implies es′(P ) < ei(P ) and contradicts the assumption i ∧P j.

• We suppose now that merging the classes c and c′ does not break the non-crossing parti-
tion and we want to prove that i ∧P j. Observe that there is no integer k such that i < k � j
and max(ck) > j (otherwise, merging the classes c and c′ would break the non-crossing condition).
Thus, {k � j/max(ck) > j} = {k � i/max(ck) > j} ⊆ {k � i/max(ck) > i}. This implies e j(P ) � ei(P ).
It remains to prove that there is no index s such that i < s < j and es(P ) < ei(P ). Suppose
the contrary and consider the minimal such s. Observe that s is maximal in its class, otherwise
es−1(P ) = es(P ) − 1 < ei(P ) contradicts the minimality of s. Observe also that i < r = min(cs) oth-
erwise merging the classes c and c′ would break the non-crossing condition. By the non-crossing
condition, there is no integer k < r such that r � max(ck) � s. Thus, {k � r − 1/max(ck) > r − 1} =
{k � r − 1/max(ck) > s} ⊆ {k � s/max(ck) > s}. This implies er−1(P ) � es(P ) < ei(P ) and contradicts
the minimality of s. �
3. A bijection between Stanley intervals and realizers

In this section, we recall some definitions about triangulations and realizers. Then, we define a
bijection between pairs of non-crossing Dyck paths and realizers.

3.1. Triangulations and realizers

Maps. A planar map, or map for short, is an embedding of a connected finite planar graph in the
sphere considered up to continuous deformation. In this paper, maps have neither loops nor multiple
edges. The faces are the connected components of the complement of the graph. By removing the
midpoint of an edge we get two half-edges, that is, one-dimensional cells incident to one vertex. Two
consecutive half-edges around a vertex define a corner. If an edge is oriented we call tail (respectively
head) the half-edge incident to the origin (respectively end).

A rooted map is a map together with a special half-edge which is not part of a complete edge and
is called the root. (Equivalently, a rooting is defined by the choice of a corner.) The root is incident to
one vertex called the root-vertex and one face (containing it) called the root-face. When drawing maps
in the plane the root is represented by an arrow pointing to the root-vertex and the root-face is the
infinite one. See Fig. 10 for an example. The vertices and edges incident to the root-face are called
external while the others are called internal. From now on, all maps are rooted.

Triangulations. A triangulation is a map in which any face has degree 3 (has 3 corners). A triangulation
has size n if it has n internal vertices. The incidence relation between faces and edges together with
Euler formula show that a triangulation of size n has 3n internal edges and 2n + 1 internal triangles.
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Fig. 11. Edges coloration and orientation around a vertex in a realizer (Schnyder condition). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

In one of his famous census papers, Tutte proved by a generating function approach that the num-
ber of triangulations of size n is tn = 2(4n+1)!

(n+1)!(3n+2)! [20]. A bijective proof of this result was given
in [14].

Realizers. We now recall the notion of realizer (or Schnyder wood) defined by Schnyder [16,17]. Given
an edge coloring of a map, we shall call i-edge (respectively i-tail, i-head) an edge (respectively tail,
head) of color i.

Definition 3.1. (See [16].) Let M be a triangulation and let U be the set of its internal vertices. Let v0
be the root-vertex and let v1, v2 be the other external vertices with the convention that v0, v1, v2
appear in counterclockwise order around the root-face.

A realizer of M is a coloring of the internal edges in three colors {0,1,2} such that:

1. Tree condition: for i = 0,1,2, the i-edges form a tree Ti with vertex set U ∪ {vi}. The vertex vi is
considered to be the root-vertex of Ti and the i-edges are oriented toward vi .

2. Schnyder condition: in clockwise order around any internal vertex there is: one 0-tail, some 1-
heads, one 2-tail, some 0-heads, one 1-tail, some 2-heads. This situation is represented in Fig. 11.

We denote this realizer by R = (T0, T1, T2).

A realizer is represented in Fig. 10 (right). We denote by T0 the tree made of T0 together with
the edge (v0, v1). For any internal vertex u, we denote by pi(u) the parent of u in the tree Ti . A cw-
triangle (respectively ccw-triangle) is a triple of vertices (u, v, w) such that p0(u) = v , p2(v) = w and
p1(w) = u (respectively p0(u) = v , p1(v) = w and p2(w) = u). A realizer is called minimal (respec-
tively maximal) if it has no cw-triangle (respectively ccw-triangle). It was proved in [5,15] that every
triangulation has a unique minimal (respectively maximal) realizer. (The appellations minimal and
maximal refer to a classical lattice which is defined on the set of realizers of any given triangulation
[3,5,15].)

3.2. A bijection between pairs of non-crossing Dyck paths and realizers

In this subsection, we give an alternative (and simpler) description of the bijection defined in [1]
between realizers and pairs of non-crossing Dyck paths. Though there is no major difficulty proving
that the bijection defined below (Definition 3.2) is the same as the bijection described in [1], we shall
not give a proof of this equivalence here because this would take us too far from our main purpose.

We first recall a classical bijection between plane trees and Dyck paths. A plane tree is a rooted
map whose underlying graph is a tree. Let T be a plane tree. We make the tour of the tree T by
following its border in clockwise direction starting and ending at the root (see Fig. 14(a)). We denote
by ω(T ) the word obtained by making the tour of the tree T and writing N the first time we follow
an edge and S the second time we follow this edge. For instance, w(T ) = N N S SN N SN N SN S SN N S S S
for the tree in Fig. 14(a). It is well known that the mapping ω is a bijection between plane trees with
n edges and Dyck paths of size n [10].

Let T be a plane tree. Consider the order in which the vertices are encountered while making
the tour of T . This defines the clockwise order around T (or preorder). For the tree in Fig. 14(a), the
clockwise order is v0 < u0 < u1 < · · · < u8. The tour of the tree also defines an order on the set of
corners around each vertex v . We shall talk about the first (respectively last) corner of v around T .
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Fig. 12. The bijections Ψ and Φ .

We are now ready to define a mapping Ψ which associates an ordered pair of Dyck paths to each
realizer.

Definition 3.2. Let M be a rooted triangulation of size n and let R = (T0, T1, T2) be a realizer of M .
Let u0, u1, . . . , un−1 be the internal vertices of M in clockwise order around T0. Let βi , i = 1, . . . ,n−1,
be the number of 1-heads incident to ui and let βn be the number of 1-heads incident to v1. Then
Ψ (R) = (P , Q ), where P = ω−1(T0) and Q = N Sβ1 . . . N Sβn .

The image of a realizer by the mapping Ψ is represented in Fig. 12.

Theorem 3.3. The mapping Ψ is a bijection between realizers of size n and pairs of non-crossing Dyck paths
of size n.

The rest of this section is devoted to the proof of Theorem 3.3. We first prove that the image of a
realizer is indeed a pair of non-crossing Dyck paths.

Proposition 3.4. Let R = (T0, T1, T2) be a realizer of size n and let (P , Q ) = Ψ (R). Then, P and Q are both
Dyck paths and moreover the path P stays below the path Q .

Proposition 3.4 is closely related to the Lemma 3.6 below which, in turn, relies on the following
technical lemma.

Lemma 3.5. Let M be a map in which every face has degree three and let C be a simple cycle made of c edges.
We consider an orientation of the internal edges of M such that every internal vertex has outdegree 3 (i.e. is
incident to exactly 3 tails). By the Jordan Lemma, the cycle C separates the sphere into two connected regions.
We call inside the region not containing the root. Then, the number of tails incident with C and lying strictly
inside C is c − 3.

Proof. Let v (respectively f , e) be the number of vertices (respectively faces, edges) lying strictly in-
side C . Note that the edges strictly inside C are internal hence are oriented. The number i of tails
incident with C and lying strictly inside C satisfies e = 3v + i. Moreover, the incidence relation be-
tween edges and faces implies 3 f = 2e+c and the Euler relation implies ( f +1)+(v +c) = (e+c)+2.
Solving for i gives i = c − 3. �
Lemma 3.6. Let R = (T0, T1, T2) be a realizer. Then, for any 1-edge e the tail of e is encountered before its
head around the tree T0 .

Proof. Suppose a 1-edge e breaks this rule and consider the cycle C made of e and the 0-path joining
its endpoints. Using the Schnyder condition it is easy to show that the number of tails incident with
C and lying strictly inside C is equal to the number of edges of C (the different possibilities are
represented in Fig. 13). This contradicts Lemma 3.5. �
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Fig. 13. Case analysis for a 1-edge e whose head appears before its tail around the tree T0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Lemma 3.7. Let P = N Sα1 . . . N Sαn be a Dyck path and let T = ω−1(P ). Let v0 be the root-vertex of the tree T
and let u0, u1, . . . , un−1 be its other vertices in clockwise order around T . Then, the word obtained by making
the tour of T and writing Sβi when arriving at the first corner of ui and N when arriving at the last corner of ui
is W = Sβ0 Nα1 Sβ1 . . . Sβn−1 Nαn .

Proof. We consider the word W obtained by making the tour of T and writing NSβi when arriving at
the first corner of ui and NS when arriving at the last corner of ui for i = 0, . . . ,n −1. By definition of
the mapping ω, the restriction of W to the letters N, S is W = ω(T ) = P = N Sα1 . . . N Sαn . Therefore,
W = NSβ0 (NS)α1 NSβ1 (NS)α2 . . . NSβn−1 (NS)αn . Hence, the restriction of W to the letters N, S is W =
Sβ0 Nα1 Sβ1 Nα2 . . . Sβn−1 Nαn . �
Proof of Proposition 3.4. We denote P = N Sα1 . . . N Sαn and Q = N Sβ1 . . . N Sβn .

• The mapping ω is known to be a bijection between trees and Dyck paths, hence P = ω(T0) is a
Dyck path.

• We want to prove that Q is a Dyck path staying above P . Consider the word W obtained
by making the tour of T0 and writing N (respectively S) when we encounter a 1-tail (respectively
1-head). By Lemma 3.7, the word W is Sβ0 Nα1 Sβ1 Nα2 . . . Sβn−1 Nαn Sβn . By Lemma 3.6, the word W
is a Dyck path. In particular, β0 = 0 and

∑n
i=1 βi = ∑n

i=1 αi = n, hence the path Q returns to the
origin. Moreover, for all i = 1, . . . ,n, δi(P , Q ) = ∑n

j=1 αi − βi � 0. Thus, the path Q stays above P . In
particular, Q is a Dyck path. �

In order to prove Theorem 3.3, we shall now define a mapping Φ from pairs of non-crossing Dyck
paths to realizers and prove it to be the inverse of Ψ . We first define prerealizers.

Definition 3.8. Let M be a map. Let v0 be the root-vertex, let v1 be another external vertex and let U
be the set of the other vertices. A prerealizer of M is a coloring of the edges in two colors {0,1} such
that:

1. Tree condition: for i = 0,1, the i-edges form a tree Ti with vertex set U ∪ {vi}. The vertex vi is
considered to be the root-vertex of Ti and the i-edges are oriented toward vi .

2. Corner condition: in clockwise order around any vertex u ∈ U there is: one 0-tail, some 1-heads,
some 0-heads, one 1-tail.

3. Order condition: for any 1-edge e, the tail of e is encountered before its head around the tree T0,
where T0 is the tree obtained from T0 by adding the 0-edge (v1, v0) counter-clockwise from the
root.

We denote by PR = (T0, T1) this prerealizer.

An example of a prerealizer is given in Fig. 14(c).

Lemma 3.9. (See [2, Property 3].) Let PR = (T0, T1) be a prerealizer. Then, there exists a unique tree T2 such
that R = (T0, T1, T2) is a realizer.

In order to prove Lemma 3.9, we need to study the sequences of corners around the faces of pre-
realizers. If h and h′ are two consecutive half-edges in clockwise order around a vertex u we denote
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by c = (h,h′) the corner delimited by h and h′ . For 0 � i, j � 2, we call (hi,h j)-corner (respectively
(hi, t j)-corner, (ti,h j)-corner, (ti, t j)-corner) a corner c = (h,h′) where h and h′ are respectively an
i-head (respectively i-head, i-tail, i-tail) and a j-head (respectively j-tail, j-head, j-tail).

Proof of Lemma 3.9. Let PR = (T0, T1) be a prerealizer and let N = T0 ∪ T1 be the underlying map.
Let v0 (respectively v1) be the root-vertex of T0 (respectively T1) and let U be the set of vertices
distinct from v0, v1. Let T 0 (respectively N) be the tree (respectively map) obtained from T0 (respec-
tively N) by adding the edge (v0, v1) counter-clockwise from the root (respectively in the root-face).
We first prove that there is at most one tree T2 such that R = (T0, T1, T2) is a realizer.

• Let f be an internal face of N and let c1, c2, . . . , ck be the corners of f encountered in clockwise
order around T 0. Note that c1, c2, . . . , ck also correspond to the counter-clockwise order of the corners
around the face f . We want to prove the following properties:

– the corner c1 is a (t1, t0)-corner,
– the corner c2 is either a (h0,h0)- or a (h0, t1)-corner,
– the corners c3, . . . , ck−1 are (h1,h0)-, (h1, t1)-, (t0,h0)- or (t0, t1)-corners,
– the corner ck is either a (h1,h1)- or a (t0,h1)-corner.

First note that by the corner condition of the prerealizers the possible corners are of type (h0,h0),
(h0, t1), (h1,h0), (h1,h1), (h1, t1), (t0,h0), (t0,h1), (t0, t1) and (t1, t0). By the order condition, one
enters a face for the first time (during a tour of T0) when crossing a 1-tail. Hence, the first corner
c1 of f is a (t1, t0)-corner while the corners ci , i = 2, . . . ,k, are not (t1, t0)-corners. Since c1 is a
(t1, t0)-corner, the corner c2 is either a (h0,h0)- or a (h0, t1)-corner. Similarly, since c1 is a (t1, t0)-
corner, the corner ck is either a (h1,h1)- or a (t0,h1)-corner. Moreover, for i = 2, . . . ,k − 1, the corner
ci is neither a (h1,h1)- nor a (t0,h1)-corner or ci+1 would be a (t1, t0)-corner. Therefore, it is easily
seen by induction on i that the corners ci , i = 3, . . . ,k − 1, are either (h1,h0)-, (h1, t1)-, (t0,h0)- or
(t0, t1)-corners.

• By a similar argument we prove that the corners of the external face of N are (h1,h0)-, (h1, t1)-,
(t0,h0)- or (t0, t1)-corners except for the corner incident to v0 which is a (h0,h0)-corner and the
corner incident to v1 which is a (h1, t0)-corner.

• Let v2 be an isolated vertex in the external face of N . If a tree T2 with vertex set U ∪ {v2} is
such that R = (T0, T1, T2) is a realizer, then there is one 2-tail in each (h1,h0)-, (h1, t1)-, (t0,h0)- or
(t0, t1)-corner of N while the 2-heads are only incident to the (t0, t1)-corners and to the vertex v2. By
the preceding points, there is exactly one (t1, t0)-corner in each internal face and none in the external
face. Moreover, there is at most one way of connecting the 2-tails and the 2-heads in each face of N .
Thus, there is at most one tree T2 such that R = (T0, T1, T2) is a realizer.

We now prove that there exists a tree T2 such that R = (T0, T1, T2) is a realizer. Consider the
colored map (T0, T1, T2) obtained by

– adding an isolated vertex v2 in the external face of N ,
– adding a 2-tail in each (h1,h0)-, (h1, t1)-, (t0,h0)- and (t0, t1)-corner of N ,
– joining each 2-tail in an internal face f (respectively the external face) to the unique (t0, t1)-

corner of f (respectively to v2).

We denote by M = T0 ∪ T1 ∪ T2 ∪ {(v0, v1), (v0, v2), (v1, v2)} the underlying map.
• We first prove that the map M = T0 ∪ T1 ∪ T2 ∪ {(v0, v1), (v0, v2), (v1, v2)} is a triangulation.

Let f be an internal face. By a preceding point, f has exactly one (t1, t0) corner c and the (h1,h0)-,
(h1, t1)-, (t0,h0)- or (t0, t1)-corners are precisely the ones that are not consecutive with c around
f . Thus, the internal faces of N are triangulated (split into sub-faces of degree 3) by the 2-edges.
Moreover, the only corners of the external face of N which are not of type (h1,h0), (h1, t1), (t0,h0)

or (t0, t1) are the (unique) corner around v0 and the (unique) corner around v1. Hence the external
face of N is triangulated by the 2-edges together with the edges (v0, v2) and (v1, v2). Thus, every
face of M has degree 3. It only remains to prove that M has no multiple edge. Since the faces of M
are of degree 3 and every internal vertex has outdegree 3, the hypothesis of Lemma 3.5 are satisfied.
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Fig. 14. Steps of the mapping Φ : (P , Q ) 	→ (T0, T1, T2). (a) Step 1: build the tree T0. (b) Step 2: add the 1-tails and 1-heads.
(c) Step 3: join the 1-tails and 1-heads together. (d) Step 4: determine the third tree T2.

By this lemma, there can be no multiple edge (this would create a cycle of length 2 incident to −1
tails!). Thus, the map M has no multiple edge and is a triangulation.

• We now prove that the coloring R = (T0, T1, T2) is a realizer of M . By construction, R satisfies
the Schnyder condition. Hence it only remains to prove that T2 is a tree. Suppose there is a cycle C
of 2-edges. Since each vertex in C is incident to at most one 2-tail, the cycle C is directed. Therefore,
the Schnyder condition proves that there are c = |C | tails incident with C and lying strictly inside C .
This contradicts Lemma 3.5. Thus, T2 has no cycle. Since T2 has |U | edges and |U | + 1 vertices it is a
tree. �

We are now ready to define a mapping Φ from pairs of non-crossing Dyck paths to realizers.
This mapping is illustrated by Fig. 14. Consider a pair of Dyck paths P = N Sα1 . . . N Sαn and Q =
N Sβ1 . . . N Sβn such that P stays below Q . The image of (P , Q ) by the mapping Φ is the realizer
R = (T0, T1, T2) obtained as follows.

Step 1. The tree T0 is ω−1(P ). We denote by v0 its root-vertex and by u0, . . . , un the other vertices
in clockwise order around T0. We denote by T0 the tree obtained from T0 by adding a new vertex v1
and an edge (v0, v1) counter-clockwise from the root.

Step 2. We glue a 1-tail in the last corner of each vertex ui, i = 0, . . . ,n −1, and we glue βi 1-heads in
the first corner of each vertex ui, i = 1, . . . ,n − 1 (if ui is a leaf we glue the 1-heads before the 1-tail
in clockwise order around ui ). We also glue βn 1-heads in the (unique) corner of v1. This operation
is illustrated by Fig. 14(b).

Step 3. We consider the sequence of 1-tails and 1-heads around T0. By Lemma 3.7, the word obtained
by making the tour of T0 and writing N (respectively S) when we cross a 1-tail (respectively 1-head)
is W = Nα1 Sβ1 . . . Nαn Sβn . Since the path P stays below the path Q , we have δi(P , Q ) = ∑

j�i α j −
β j � 0 for all i = 1, . . . ,n, hence W is a Dyck path. Thus, there exists a unique way of joining each
1-tail to a 1-head that appears after it around the tree T0 so that the 1-edges do not intersect (this
statement is equivalent to the well-known fact that there is a unique way of matching parenthesis in
a well-parenthesized word); we denote by T1 the set of 1-edges obtained in this way. This operation
is illustrated in Fig. 14(c).

Step 4. The set T1 of 1-edges is a tree directed toward v1; see Lemma 3.10 below. Hence, by construc-
tion, PR = (T0, T1) is a prerealizer. By Lemma 3.9, there is a unique tree T2 such that R = (T0, T1, T2)

is a realizer and we define Φ(P , Q ) = R .

In order to prove that step 4 of the bijection Φ is well defined, we need the following lemma.

Lemma 3.10. The set T1 of 1-edges obtained at step 3 in the definition of Φ is a tree directed toward v1 and
spanning the vertices in U1 = {u0, . . . , un−1, v1}.
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(a) (b)

Fig. 15. (a) Characterization of minimality: p0(p1(u)) is an ancestor of u in T0. (b) A minimal realizer and its image by Ψ .

Proof. • Every vertex in U1 is incident to an edge in T1 since there is a 1-tail incident to each
vertex ui , i = 1, . . . ,n − 1 and at least one 1-head incident to v1 since βn > 0.

• We now prove that T1 has no cycle. Since every vertex in U1 is incident to at most one 1-tail,
any 1-cycle is directed. Moreover, if e is a 1-edge directed from ui to u j then i < j since the last
corner of ui appears before the first corner of u j around T0. Therefore, there is no directed cycle.

• Since T1 is a set of n edges incident to n + 1 vertices and having no cycle, it is a tree. Since
the only sink is v1, the tree T1 is directed toward v1 (make an induction on the size of the oriented
tree T1 by removing a leaf). �

The mapping Φ is well defined and the image of any pair of non-crossing Dyck paths is a realizer.
Conversely, by Proposition 3.4, the image of any realizer by Ψ is a pair of non-crossing Dyck paths. It
is clear from the definitions that Ψ ◦ Φ (respectively Φ ◦ Ψ ) is the identity mapping on pairs of non-
crossing Dyck paths (respectively realizers). Thus, Φ and Ψ are inverse bijections between realizers of
size n and pairs of non-crossing Dyck paths of size n. This concludes the proof of Theorem 3.3.

4. Intervals of the Tamari lattice

In the previous section, we defined a bijection Φ between pairs of non-crossing Dyck paths and
realizers. Recall that the pairs of non-crossing Dyck paths correspond to the intervals of the Stanley
lattice. In this section, we study the restriction of the bijection Φ to the intervals of the Tamari lattice.

Theorem 4.1. The bijection Φ induces a bijection between the intervals of the Tamari lattice LT
n and minimal

realizers of size n.

Since every triangulation has a unique minimal realizer, Theorem 4.1 implies that the mapping Φ ′
which associates with a Tamari interval (P , Q ) the triangulation underlying Φ(P , Q ) is a bijection.
This gives a bijective explanation to the relation between the number of Tamari intervals enumerated
in [4] and the number of triangulations enumerated in [14,20].

Corollary 4.2. The number of intervals in the Tamari lattice LT
n is equal to the number 2(4n+1)!

(n+1)!(3n+2)! of trian-
gulations of size n.

The rest of this section is devoted to the proof of Theorem 4.1. We first recall a characterization
of minimality given in [2, Property 2] and illustrated in Fig. 15. For completeness, we also include a
proof of this characterization.

Proposition 4.3. A realizer R = (T0, T1, T2) is minimal if and only if for any internal vertex u, the vertex
p0(p1(u)) is an ancestor of u in the tree T0 .

Proof. • We suppose that the realizer R has a cw-triangle made of the vertices u, v, w such that
u = p2(w), v = p1(u) and w = p0(u). We want to prove that the vertex w = p0(p1(u)) is not an
ancestor of u in the tree T0. Suppose the contrary and consider the cycle C made of the edge (u, w)
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Fig. 16. Notations for the proof of Proposition 4.3.

and the 0-path P from u to w . Let p be the number of edges in the path P . By the Schnyder condition,
there are p − 1 tails incident to P and lying in the interior region of the cycle C . Thus, C is a cycle of
length p +1 incident to at least p −1 tails lying in its interior region. This is impossible by Lemma 3.5.

• We suppose now that a vertex u of the realizer R is such that the vertex w = p0(p1(u)) is not
an ancestor of u in the tree T0. We want to prove that the realizer R contains a cw-triangle. Let
r �= w be the nearest common ancestor of u and v = p1(u) in the tree T0. Let C be the cycle made
of the 1-edge e = (u, v) and the 0-paths from u to r and from v to r. Note that by Lemma 3.6 the
vertex u appears before the vertex v in clockwise order around the tree T0, hence the interior of C
lies at the right of the directed 0-path from v to r. This situation is represented in Fig. 16(b). By the
Schnyder condition, the 2-tail incident to the vertex w lies in the interior of C . Hence, the 2-path
going from w to v2 crosses the cycle C at a vertex s. By the Schnyder condition, the vertex s is on
the 0-path from u to r. By the Schnyder condition, the 1-tail incident to the vertex s lies inside the
cycle C ′ made of the edge e = (u, v), the edge (v, w), the 2-path between w and s and the 0-path
between s and u. Hence, the 1-path going from s to v1 crosses the cycle C ′ at a given vertex, which
can only be v by the Schnyder condition. At this point, we have exhibited a directed cycle C0 made of
the edge (v, w), the 2-path between w and s and the 1-path between s and v . In order to conclude, it
only remains to show that a realizer containing a cw-cycle C0 (a directed cycle whose interior region
lies at the right of the edges) also contains a cw-triangle. This property is proved in [5] and can be
shown by induction on the number of vertices lying inside C . Indeed, suppose that C0 is a cw-cycle
of length greater than 3. If C0 has a chord, there is a cw-cycle C1 containing fewer vertices than C0.
Otherwise, there is a vertex x adjacent to a vertex of C0 and lying in its interior region by Lemma 3.5.
By considering the 0-path going from x to v0, one finds a cw-cycle C1 containing fewer vertices than
C0 in its interior region. Repeating the process, one finds a cw-cycle Ck of length 3. Observe that
by Lemma 3.5, there is no tail incident to the cycle Ck and lying in its interior region. Hence, the
Schnyder condition implies that Ck is a cw-triangle. �

Using Proposition 4.3, we obtain the following characterization of the pairs of non-crossing Dyck
paths (P , Q ) whose image by the bijection Φ is a minimal realizer.

Proposition 4.4. Let (P , Q ) be a pair of non-crossing Dyck paths and let R = (T0, T1, T2) = Φ(P , Q ). Let
u0, . . . , un−1 be the non-root vertices of T0 in clockwise order. Then, the realizer R is minimal if and only if
δi(P , Q ) � δ j(P , Q ) whenever ui is the parent of u j in T0 = ω−1(P ).

In order to prove Proposition 4.4, we need to interpret the value of δi(P , Q ) is terms of the realizer
R = Φ(P , Q ). Let u be an internal vertex of the triangulation underlying the realizer R = (T0, T1, T2).
We say that a 1-tail is available at u if this tail appears before the first corner of u in clockwise order
around T0 while the corresponding 1-head appears strictly after the first corner of u. Observe that
the 1-heads incident to u always lie in the first corner of u, hence the corresponding 1-tails are not
available at u.

Lemma 4.5. Let (P , Q ) be a pair of non-crossing Dyck paths and let R = (T0, T1, T2) = Φ(P , Q ). Let
u0, . . . , un−1 be the non-root vertices of T0 in clockwise order. The number of 1-tails available at ui is δi(P , Q ).

Proof. We denote P = N Sα1 . . . N Sαn and Q = N Sβ1 . . . N Sβn . Let W be the word obtained by mak-
ing the tour of T0 and writing NSβi when arriving at the first corner of ui and NS when arriving
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Fig. 17. The Dyck paths P �T Q ′ �T Q . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

at the last corner of ui for i = 0, . . . ,n − 1 (with the convention that β0 = 0). By definition of
the mapping ω, the restriction of W to the letters N, S is ω(T0) = P = N Sα1 . . . N Sαn . Therefore,
W = NSβ0(NS)α1 NSβ1 (NS)α2 . . . NSβn−1(NS)αn . The prefix of W already written after having arrived at
the first corner of ui is NSβ0(NS)α1 NSβ1 . . . (NS)αi NSβi . The sub-word Sβ0 Nα1 Sβ1 . . . Nαi Sβi corresponds
to the sequence of 1-tails and 1-heads encountered so far (N for a 1-tail, S for a 1-head). Thus, the
number of 1-tails available at ui is

∑
j�i α j − β j = δi(P , Q ). �

Proof of Proposition 4.4.
• We suppose that a vertex ui is the parent of a vertex u j in T0 and that δi(P , Q ) > δ j(P , Q ),

and we want to prove that the realizer R = Φ(P , Q ) is not minimal. Since ui is the parent of u j we
have i < j and all the vertices ur , i < r � j are descendants of ui . By Lemma 4.5, δi(P , Q ) > δ j(P , Q )

implies that there is a 1-tail t available at ui which is not available at u j , hence the corresponding
1-head is incident to a vertex ul with i < l � j. Let uk be the vertex incident to the 1-tail t . Since t
is available at ui , the vertex uk is not a descendant of ui . But p0(p1(uk)) = p0(ul) is either ui or a
descendant of ui in T0. Thus, the vertex uk contradicts the minimality condition given by Proposi-
tion 4.3. Hence, the realizer R is not minimal.

• We suppose that the realizer R is not minimal and we want to prove that there exists a vertex ui
parent of a vertex u j in T0 such that δi(P , Q ) > δ j(P , Q ). By Proposition 4.3, there exists a vertex u
such that p0(p1(u)) is not an ancestor of u in T0. In this case, the 1-tail t incident to u is available
at ui = p0(p1(u)) but not at u j = p1(u) (since t cannot appear between the first corner of ui and
the first corner of u j around T0, otherwise u would be a descendant of ui ). Moreover, any 1-tail t′
available at u j appears before the 1-tail t around T0 (otherwise, the 1-edge corresponding to t′ would
cross the 1-edge (u, u j)). Hence, any 1-tail t′ available at u j is also available at ui . Thus, there are
more 1-tails available at ui than at u j . By Lemma 4.5, this implies δi(P , Q ) > δ j(P , Q ). �
Proposition 4.6. Let (P , Q ) be a pair of non-crossing Dyck paths. Let T = ω−1(P ), let v0 be the root-vertex of
the tree T and let u0, . . . , un−1 be its other vertices in clockwise order. Then, P �T Q if and only if δi(P , Q ) �
δ j(P , Q ) whenever ui is the parent of u j .

Propositions 4.4 and 4.6 clearly imply Theorem 4.1. Hence, it only remains to prove Proposition 4.6.

Proof of Proposition 4.6. We denote Q = N Sβ1 . . . N Sβn .
• We suppose that P �T Q and want to prove that δk(P , Q ) � δl(P , Q ) whenever uk is the parent

of ul . We make an induction on Δ(P , Q ). If Δ(P , Q ) = 0, then P = Q and the property holds. If
Δ(P , Q ) > 0 there is a path Q ′ = N Sβ ′

1 . . . N Sβ ′
n such that P �T Q ′ and Q ′ is covered by Q in the

Tamari lattice. The three paths P , Q ′, Q are represented in Fig. 17. By definition, there are two indices
1 � i < j � n such that i ∧

Q ′ j and βi = β ′
i +1, β j = β j −1 and βk = β ′

k for all k �= i, j. Thus, δk(P , Q ) =
δk(P , Q ′) + 1 if i � k < j and δk(P , Q ) = δk(P , Q ′) otherwise. By the induction hypothesis we can
assume that δk(P , Q ′) � δl(P , Q ′) whenever uk is the parent of ul . Suppose there exists uk parent
of ul such that δk(P , Q ) > δl(P , Q ). Note that if uk is the parent of ul then k < l and for all k < r � l,
the vertex ur is a proper descendant of uk . Since δk(P , Q ) > δl(P , Q ) and δk(P , Q ′) � δl(P , Q ′) we
have k < j � l, hence u j is a proper descendant of uk . Note that for all r = 0, . . . ,n − 1, er(P ) + 1
is equal to the height of the vertex ur in the tree T (i.e. the distance between v0 and ur ). Thus,
ek(P ) < e j(P ). Moreover, by the induction hypothesis, δk(P , Q ′) � δ j(P , Q ′). Hence, ek(Q ′) = ek(P ) +



70 O. Bernardi, N. Bonichon / Journal of Combinatorial Theory, Series A 116 (2009) 55–75
Fig. 18. A stack triangulation is obtained by recursively inserting a vertex of degree 3.

δk(P , Q ′) < e j(Q ′) = e j(P ) + δ j(P , Q ′). But since i � k < j this contradicts the hypothesis i ∧
Q ′ j. We

reach a contradiction, hence δk(P , Q ) � δl(P , Q ) whenever uk is the parent of ul .
• We suppose that δk(P , Q ) � δl(P , Q ) whenever uk is the parent of ul and want to prove that

P �T Q . We make an induction on Δ(P , Q ). If Δ(P , Q ) = 0, then P = Q and the property holds.
Suppose Δ(P , Q ) > 0 and let δ = max{δk(P , Q ), k = 0, . . . ,n}, let e = min{ek(P )/δk(P , Q ) = δ} and
let i = max{k/ek(P ) = e and δk(P , Q ) = δ}. Let j be the first index such that i < j � n and u j is not

a descendant of ui ( j = n if ui+1, . . . , un−1 are all descendants of ui ). Let Q ′ = N Sβ ′
1 . . . N Sβ ′

n with
β ′

i = βi + 1, β ′
j = β j − 1 and β ′

k = βk for all k �= i, j. The paths P , Q and Q ′ are represented in Fig. 17.
We want to prove that Q ′ is a Dyck path covered by Q in the Tamari lattice and P �T Q ′ .

– We first prove that Q ′ is a Dyck path that stays above P . First note that δk(P , Q ′) = δk(P , Q ) − 1
if i � k < j and δk(P , Q ′) = δk(P , Q ) otherwise. If δk(P , Q ′) < 0, then i � k < j, hence uk is
a descendant of ui . Since (by assumption) the value of δr(P , Q ) is weakly increasing along the
branches of T , we have δk(P , Q ) � δi(P , Q ) = δ > 0, hence δk(P , Q ′) � 0. Thus for all k = 0, . . . ,n,
δk(P , Q ′) � 0, that is, Q ′ stays above P .

– We now prove that P �T Q ′ . Suppose there exist k, l, such that δk(P , Q ′) > δl(P , Q ′) with uk
parent of ul . Since δk(P , Q ) � δl(P , Q ), we have k < i � l < j. Since a vertex ur is a descendant
of ui if and only if i < r < j, the only possibility is l = i. Moreover, since uk is the parent of ui
we have ek(P ) < ei(P ) = e, hence by the choice of e, δk(P , Q ) < δ = δi(P , Q ). Hence, δk(P , Q ′) =
δk(P , Q ) � δi(P , Q ) − 1 = δi(P , Q ′). We reach a contradiction. Thus δk(P , Q ′) � δl(P , Q ′) when-
ever uk is the parent of ul . By the induction hypothesis, this implies P �T Q ′ .

– It remains to prove that Q ′ is covered by Q in the Tamari lattice. It suffices to prove that
i ∧

Q ′ j. Recall that for all r = 0, . . . ,n − 1, er(P ) + 1 is the height of the vertex ur in the tree
T . For all i < r < j, the vertex ur is a descendant of ui hence er(P ) > ei(P ). Moreover, since
the value of δx(P , Q ) is weakly increasing along the branches of T , δr(P , Q ) � δi(P , Q ) for
all i < r < j. Thus, for all i < r < j, er(Q ) = er(P ) + δr(P , Q ) > ei(Q ) = ei(P ) + δi(P , Q ) and
er(Q ′) = er(Q ) − 1 > ei(Q ′) = ei(Q ) − 1. It only remains to show that e j(Q ′) � ei(Q ′). The
vertex u j is the first vertex not descendant of ui around T , hence e j(P ) � ei(P ). Moreover
δ j(P , Q ) � δ = δi(P , Q ). Furthermore, the equalities ei(P ) = e j(P ) and δ j(P ) = δ cannot hold
simultaneously by the choice of i. Thus, e j(Q ) = e j(P )+ δ j(P , Q ) < ei(Q ) = ei(P )+ δi(P , Q ) and
e j(Q ′) = e j(Q ) � ei(Q ′) = ei(Q ) − 1. �

5. Intervals of the Kreweras lattice

In this section, we study the restriction of the bijection Φ to the Kreweras intervals.

Theorem 5.1. The mapping Φ induces a bijection between the intervals of the Kreweras lattice L K
n and realizers

of size n which are both minimal and maximal.

Before commenting on Theorem 5.1, we recall a classical result about realizers which are both
minimal and maximal. Recall that a triangulation is stack if it is obtained from the map consisting
of a triangle by recursively inserting a vertex of degree 3 in one of the (triangular) internal faces. An
example is given in Fig. 18.

Proposition 5.2 (Folklore). A realizer R is both minimal and maximal if and only if the underlying triangulation
M is stack. (In this case, R is the unique realizer of M.)
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For completeness we give a proof of Proposition 5.2 which uses the following lemma.

Lemma 5.3. Let M be a triangulation and let R = (T0, T1, T2) be one of its realizers. Suppose that M has an
internal vertex v of degree 3 and let M ′ be obtained from M by removing v (and the incident edges). Then, the
restriction of the realizer R to the triangulation M ′ is a realizer.

Proof. By the Schnyder condition, the vertex v is incident to three tails and no head, hence it is a leaf
in each of the trees T1, T2, T3. Thus, the tree condition is preserved by the deletion of v . Moreover,
deleting v does not deprive any other vertex of an i-tail, hence the Schnyder condition is preserved
by the deletion of v . �
Proof of Proposition 5.2.

• We first prove that any realizer R of a stack triangulation M is minimal and maximal, that is,
contains neither a cw- nor a ccw-triangle. We proceed by induction on the size of M . If M is the
map consisting of a triangle, the property is obvious. Let M be a stack triangulation not consisting
of a triangle. By definition, the triangulation M contains an internal vertex v of degree 3 such that
the triangulation M ′ obtained from M by removing v is stack. By Lemma 5.3, the restriction of the
realizer R to M ′ is a realizer. Hence, by the induction hypothesis, the triangulation M ′ contains neither
a cw- nor a ccw-triangle. Thus, if C is either a cw- or a ccw-triangle of M , then C contains v . But
this is impossible since v is incident to no head.

• We now prove that any realizer R of a non-stack triangulation M is not both minimal and
maximal. Let M ′ be the triangulation obtained from M by recursively deleting every internal vertex
of degree 3. Since the triangulation M is not stack, M ′ has some internal vertices. Any internal vertex
of M ′ has degree at least 4 and is incident to 3 tails, hence it is incident to at least one head. Since
the external vertices are incident to no tail, any backward walk starting from an internal vertex has
to close up. Hence, the realizer R ′ of M ′ contains a directed cycle and so does R . Moreover, a realizer
containing a directed cycle also contains either a cw-triangle or a ccw-triangle (this has been shown
in the proof of Proposition 4.3). Thus R is not both minimal and maximal. �

Given Theorem 5.1 and Proposition 5.2, the mapping Φ induces a bijection between the intervals
of the Kreweras lattice and the stack triangulations. Stack triangulations are known to be in bijection
with ternary trees (see for instance [21]), hence we obtain a new proof that the number of intervals
in L K

n is 1
2n+1

(3n
n

)
. The rest of this section is devoted to the proof of Theorem 5.1. We first give a

characterization of the realizers which are both minimal and maximal.

Proposition 5.4. A realizer R = (T0, T1, T2) is both minimal and maximal if and only if for any internal
vertex u, either p0(p1(u)) = p0(u) or p1(p0(u)) = p1(u).

Proposition 5.4 is illustrated in Fig. 19. Observe that the forward implication can readily be ob-
tained by induction on the size of the realizer using the fact that the underlying triangulation is
stack. Indeed, when a vertex u of degree 3 is inserted, the Schnyder condition implies that the edge
e = (p0(u),p1(u)) is either a 0-edge directed toward p0(u) (in which case p0(p1(u)) = p0(u)) or a 1-
edge directed toward p1(u) (in which case p1(p0(u)) = p1(u)). The backward implication is obtained
by using Proposition 4.3 for proving minimality and a symmetric statement for proving maximality:
a realizer is maximal if and only if for any internal vertex u, the vertex p1(p0(u)) is an ancestor of u in the
tree T1.

In order to prove Theorem 5.1, we will indicate how to read off from a realizer R = Φ(P , Q ),
the non-crossing partition θ−1(P ) (Lemma 5.6) and the non-crossing partition θ−1(Q ) in the case
where the realizer R is minimal and maximal (Lemma 5.7). For this purpose, we first characterize the
bijection θ−1 from Dyck paths to non-crossing partitions.

Lemma 5.5. For any Dyck path D = N Sδ1 . . . N Sδn of size n, the following procedure returns the non-crossing
partition θ−1(D).
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(a) (b)

Fig. 19. (a) Condition for a realizer to be both minimal and maximal: p0(p1(u)) = p0(u) or p1(p0(u)) = p1(u). (b) A minimal
and maximal realizer and its image by Ψ .

1. Initialize the set F of free integers and the set C of classes as empty.
2. For k = 1, . . . ,n do:

(a) Add the integer k to the set F .
(b) If δk > 0, then add to C a class ck made of the δk greatest integers in F and remove these integers

from F .
3. Return the partition π made of the classes in C .

Proof. The fact that D is a Dyck path ensures that the number of integers in F is always sufficient
to perform step 2(b) (since

∑k
i=1 δi � k for all k = 1, . . . ,n) and that the partition π returned by

the procedure contains all the integers 1, . . . ,n (since
∑n

i=1 δi = n). It is easy to see by induction
of k = 1, . . . ,n that the partition πk made of the classes in C together with the class c containing
all the integers not in C is non-crossing. Hence, the partition π returned by the procedure is non-
crossing. Moreover, δk > 0 if and only if k is the greatest integer in a class of π of size δk . Thus,
θ(π) = D . �
Lemma 5.6. Let T be a tree of size n and let u1, . . . , un be the non-root vertices of T in clockwise order
around T . Let π = θ−1 ◦ ω(T ) be the non-crossing partition corresponding to the tree T . Let i be any integer
in {1, . . . ,n} and let j be the greatest integer in the class of π containing i. Then, the vertex u j is the last
descendant of ui around the tree T (with the convention that the last descendant of a leaf is itself).

Proof. Let D = ω(T ) = N Sδ1 . . . N Sδn .
• We first prove that any class c of π is made of the integers l ∈ {1, . . . ,n} such that l − 1 ∧

D max(c).
The non-crossing partition π is obtained from the Dyck path D by the procedure described in

Lemma 5.5. It is easy to see by induction on k = 1, . . . ,n, that before the kth loop of step 2, the set
F is made of the integers i1 < i2 < · · · < is such that s = ek−1(D) and ir, r = 1, . . . , s is the greatest
integer less than k such that eir (D) = r (that is, el(D) > r for all ir < l < k). Thus, if k is the greatest
integer in its class (i.e. δk > 0), this class is made of the integers ir, ir+1, . . . , is and k, where r =
ek(D) + 1. By definition, these are precisely the integers l such that l − 1 ∧

D k.
• By the preceding point, i − 1 ∧

D j. By definition of the mapping ω, the height of any vertex uh
in the tree T = ω−1(D) is equal to eh−1(D)+ 1. Thus, the height of the vertices ui+1, . . . , u j is greater
than the height of ui , while the height of u j+1 is not (with the convention that un+1 is the root-vertex
of the tree T ). Therefore, the vertices ui+1, . . . , u j are descendants of ui while u j+1 is not. �

Lemma 5.7 below is the key ingredient in the proof of Theorem 5.1.

Lemma 5.7. Let R = (T0, T1, T2) be a realizer and let (P , Q ) = Ψ (R). Let u0 = v0 , u1, u2, . . . , un, un+1 = v1
be the vertices of T0 in clockwise order. Suppose that the realizer R is both minimal and maximal or that
P �K Q . Then, two integers i, j ∈ {1, . . . ,n} are in the same class of the non-crossing partition θ−1(Q ) if
and only if the vertices ui and u j are siblings in the tree T1 . Moreover, if k is the greatest integer in its class c
of θ−1(Q ), then the class c is made of the indices of the children of uk+1 in the tree T1 .
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Proof. Let π = θ−1(Q ) and let π ′ be the partition of {1, . . . ,n} which is such that i and j are in
the same class if and only if the vertices ui and u j are siblings in the tree T1. The non-crossing
partition π has been obtained from the Dyck path Q = N Sβ1 . . . N Sβn by the Procedure 1 described in
Lemma 5.5. We will now describe a similar procedure which returns the partition π ′ and then prove
that the partitions π and π ′ are the same.

• Recall from the definition of the bijection Ψ , that the vertex uk+1, k = 0, . . . ,n, has βk children
in the tree T1. By Lemma 3.6, the last corner of these children is encountered before the first corner
of uk+1 around the tree T0. Moreover, the planarity of the realizer implies that the children of uk+1
are the βk vertices whose last corner appear last before the first corner of uk+1 among the vertices
which are not children of one of the vertices u1, . . . , uk . Therefore, the partition π ′ is the partition
returned by the Procedure 2 below:

1. Initialize the set F ′ of free integers and the set C ′ of classes as empty sets.
2. Make the tour of the tree T0 and

(a) when the last corner of a vertex ui is reached, then add the integer i to the set F ′ ,
(b) when the first corner of a vertex uk+1 such that βk > 0 is reached, then add to C ′ the class

c′
k made of βk integers in the set F ′ which were added last to this set during the procedure.

3. Return the partition π ′ made of the classes in C ′ .

• We will now prove that the for any integer k = 0, . . . ,n, the set of classes Ck obtained after k iterations
of step 2 in Procedure 1 is equal to the set of classes C ′

k obtained after reaching the first corner of vertex uk+1
in Procedure 2. This will prove Lemma 5.7.

We make an induction on k. For k = 0, the property holds. We suppose now that the property
holds for k − 1. If βk = 0, then the sets of classes C and C ′ are left unchanged by both procedures,
hence the property still holds for k. Suppose now that βk > 0. We denote by Fk (respectively F ′

k) the
set of integers in the set F (respectively F ′) just before the kth step 2(b) of Procedure 1 (respectively
just before reaching the first corner of uk+1 in Procedure 2). We also denote by ck (respectively c′

k)
the set made of the βk integers in Fk (respectively F ′

k) which are the greatest in this set (respectively
which were added last to the set F ′ during Procedure 2).

• We first prove that Fk = F ′
k � Ak, where Ak is the set of the indices of the ancestors of uk+1 in the

tree T0.
The integers which have been added to the set F ′ in the Procedure 2 before reaching the first

corner of uk+1 are the indices of the vertices whose last corner appear before uk+1. These are all the
integers less than k except those corresponding to vertices whose first corner appears before the first
corner of uk+1 and last corner appears after the last corner of uk+1, that is, all the integers less than k
except those corresponding to ancestors of uk+1. Thus, the set F ′

k is made of the integers not greater
than k which are neither in Ak nor in one of the classes of C ′

k−1, whereas the set Fk is made of all
the integers not greater than k which are not in one of the classes of Ck−1 = C ′

k−1.
• We now prove that the class ck is included in F ′

k.
Observe first that the realizer R is minimal (indeed, P �K Q implies that P �T Q , which implies

the minimality of R by Theorem 4.1). The class c′
k is made of the indices of the children of uk+1 in

the tree T1, while Ak is made of the indices of the ancestors of uk+1 in the tree T0. Since the realizer
R is minimal, Proposition 4.3 implies that the children of uk+1 in the tree T1 are descendants of the
parent of uk+1 in the tree T0. Hence, the integers in c′

k are greater than the integers in Ak . The class
c′

k ⊆ F ′
k contains βk integers, hence the βk greatest integers in Fk = F ′

k � Ak are all in F ′
k .

• We now prove that ck = c′
k (thereby implying that Ck = Ck−1 ∪ {ck} = C ′

k−1 ∪ {c′
k} = C ′

k).
By the preceding points, the class ck is made of the βk greatest integers in F ′

k . We will now
suppose that ck �= c′

k and prove that, under the hypothesis that the realizer R is minimal and maximal
or that P �K Q , one reaches a contradiction.

– Suppose first that the realizer R is minimal and maximal. Let i be in c′
k \ ck (the integer i exists

since the classes ck and c′
k have same size and are supposed to be different). Since the class ck is

made of the βk greatest integers in F ′
k there exists an integer j > i in F ′

k \ c′
k . Let us choose the

least such integer j. Observe that the vertex u j is a descendant of ui in the tree T0. Indeed, the
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first corner of ui appears before the first corner of u j around the tree T0 (since i < j) and the last
corner of ui appears after the last corner of u j (since i ∈ c′

k and j ∈ F ′
k \ c′

k). By Proposition 5.4,
either p0(p1(u j)) = p0(u j) or p1(p0(u j)) = p1(u j). Since j ∈ F ′

k \c′
k the vertex p1(u j) appears after

uk+1 around the tree T0, hence p1(u j) is not a descendant of ui and the relation p0(p1(u j)) =
p0(u j) does not hold. Therefore, p1(p0(u j)) = p1(u j). Since up = p0(u j) is a descendant of ui in
the tree T0, the last corner of the vertex up appears before the first corner of uk+1, while the
vertex p1(up) = p1(u j) appears after uk+1. Thus, the integer p is in F ′

k \ c′
k . This is impossible by

the choice of j, since i < p < j.
– We suppose now that P �K Q , that is, the non-crossing partition θ−1(P ) is a refinement

of θ−1(Q ). Let i be in c′
k \ ck and let j be in ck \ c′

k . Since the class ck is made of the βk greatest
integers in F ′

k , one gets i < j. Observe, as in the preceding point, that the vertex u j is a descen-
dant of ui in the tree T0. Let s be the index of the last descendant of the vertex ui around T0.
By Lemma 5.6, the integers i and s are in the same class of the partition θ−1(P ), hence they are
also in the same class of the partition θ−1(Q ). Therefore the integer s is not in any of the classes
of Ck−1 = C ′

k−1 (since these classes are classes of the partition θ−1(Q ) and i is not in them). Thus

the integer s is in F ′
k . Since s > j and j is in the class ck of the partition θ−1(Q ) (containing the

βk greatest integers of F ′
k), the integer s is also in the class ck . Since i and s are in the same class

of the partition θ−1(Q ), the integer i is also in ck . We reach a contradiction. �
We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let R = (T0, T1, T2) be a realizer of the triangulation M and let (P , Q ) = Ψ (R).
Let u1, . . . , un the internal vertices of M in clockwise order around the tree T0.

• Suppose first that the realizer R is minimal and maximal. We want to prove that the partition
θ−1(P ) is a refinement of the partition θ−1(Q ). It suffices to prove that for any i = 1, . . . ,n, the greatest
integer in the class of θ−1(P ) containing i is also in the class of θ−1(Q ) containing i.

Let i be an integer in {1, . . . ,n} and let j be the greatest integer in the class of θ−1(P ) containing i.
By Lemma 5.6, the vertex u j is the last descendant of ui around T0. Let ui0 = ui, ui1 , . . . , uis = u j
be the vertices on the 0-path from ui to u j (that is, p0(uir ) = uir−1 for all r = 1, . . . , s). Observe
that for r = 1, . . . , s, the vertex uir has no sibling appearing after itself around T0. Since the realizer
R is minimal and maximal, Proposition 5.4 implies that p1(uir ) = p1(uir−1 ) for r = 1, . . . , s. Thus,
p1(ui) = p1(u j). By Lemma 5.7, this implies that the integers i and j are in the same class of the
non-crossing partition θ−1(Q ).

• Suppose now that P �K Q , that is, the non-crossing partition θ−1(P ) is a refinement of θ−1(Q ).
We know that the realizer R is minimal since P �T Q . In order to prove that R is maximal, we have
to show that for any internal vertex u j , either p0(p1(u j)) = p0(u j) or p1(p0(u j)) = p1(u j).

Since the realizer R is minimal, Proposition 4.3 implies that the vertex p0(p1(u j)) is an ancestor
of u j in the tree T0. Therefore, if p0(u j) is an ancestor of p1(u j) in the tree T0, then p0(u j) =
p0(p1(u j)). We can now assume that the vertex ui = p0(u j) is an internal vertex which is not an
ancestor of p1(u j) in the tree T0. Let uk be the last descendant of ui around the tree T0. Since
p1(u j) is not an ancestor of ui , Lemma 5.7 implies that the greatest integer l in the class of θ−1(Q )

containing j is greater than or equal to k. Moreover, by Lemma 5.6, the integers i and k are in the
same class of the non-crossing partition θ−1(P ), hence they are also in same class of the partition
θ−1(Q ). Thus, the integers i < j < k � l are such that i and k are in the same class of θ−1(Q ) and j
and l are also in the same class of θ−1(Q ). By the non-crossing condition, the integers i, j,k, l are all
in the same class of θ−1(Q ). Thus, Lemma 5.7 implies p1(u j) = p1(ui) = p1(p0(u j)). �
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