
Journal of Combinatorial Theory, Series A 142 (2016) 77–112
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

A Topological Representation Theorem for tropical 
oriented matroids

Silke Horn
TU Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2013
Available online xxxx

Keywords:
Tropical geometry
Tropical oriented matroids
Tropical hyperplanes
Tropical pseudohyperplanes
Mixed subdivisions
Topological Representation Theorem
Oriented matroids

Tropical oriented matroids were defined by Ardila and Develin 
in 2007. They are a tropical analogue of classical oriented ma-
troids in the sense that they encode the properties of the types 
of points in an arrangement of tropical hyperplanes — in much 
the same way as the covectors of “classical” oriented matroids 
describe the types in arrangements of linear hyperplanes.
Ardila and Develin proved that tropical oriented matroids can 
be represented as mixed subdivisions of dilated simplices. In 
this paper we show that this correspondence is a bijection. 
Moreover, tropical analogues for the Topological Representa-
tion Theorem for “classical” oriented matroids by Folkman 
and Lawrence are presented.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Oriented matroids abstract the combinatorial properties of arrangements of real 
hyperplanes and are ubiquitous in combinatorics. In fact, an arrangement of n (oriented) 
real hyperplanes in Rd induces a regular cell decomposition of Rd. Then the covectors of 
the associated oriented matroid encode the position of the points of Rd (respectively, the 
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cells in the subdivision) relative to each of the hyperplanes in the arrangement. It turns 
out though that there are oriented matroids which cannot be realised by any arrange-
ment of hyperplanes. The famous Topological Representation Theorem by Folkman and 
Lawrence [7] (see also [4]), however, states that every oriented matroid can be realised 
as an arrangement of PL-pseudohyperplanes.

In this paper, we will study tropical analogues of oriented matroids.
Tropical geometry is a by now well established subject, see e.g. [1,3,6,13]. It is con-

cerned with the algebraic geometry over the tropical semiring (R := R ∪ {∞}, ⊕, ⊗), 
where ⊕ : R × R → R : a ⊕ b := min{a, b} and ⊗ : R × R → R : a ⊗ b := a + b are 
the tropical addition and multiplication. It can be thought of as the image of a field of 
formal Puiseux series under the valuation map which takes a power series to its smallest 
exponent.

A tropical hyperplane is the vanishing locus of a linear tropical polynomial, i.e., the 
set of points x where the minimum p(x) =

⊕
(ai ⊗ xi) is attained at least twice.

The vanishing locus of a tropical polynomial p is closed under tropical scalar mul-
tiplication, i.e., if a point x = (x1, . . . , xd) ∈ Rd is contained in it, then so is 
c ⊗ x = x + c · 1 = (x1 + c, . . . , xd + c) for any constant c ∈ R. This motivates the 
definition of the tropical torus as Td−1 := Rd/R1. Note that by virtue of the map

Td−1 = Rd/R1 → Rd−1

(x1, . . . , xd) + R1 �→ (x1 − xd, . . . , xd−1 − xd),

Td−1 is isomorphic to Rd−1. Moreover, the tropical projective space is defined as

TPd−1 :=
(
R

d \ {∞}d
)
/R1.

The tropical projective space TPd−1 is a compactification of the tropical torus Td−1. In 
fact, one may view Td−1 as an open (d − 1)-simplex of infinite size; then TPd−1 ∼= 
d−1

is the natural compactification of this.
From the combinatorial point of view, a tropical hyperplane in Td−1 is just the 

(codimension-1 skeleton of the) polar fan of the (d − 1)-dimensional simplex 
d−1. For 
a (d − 2)-dimensional tropical hyperplane H, the d connected components of TPd−1 \H
are called the (open) sectors of H.

An arrangement of n tropical hyperplanes in Td−1 induces a cell decomposition of 
Td−1 and each cell can be assigned a type that describes its position relative to each of 
the tropical hyperplanes. To be precise, the point p is assigned the type A = (A1, . . . , An)
where Ai denotes the set of closed sectors of the i-th tropical hyperplane in which p is 
contained. See Fig. 1(c) for an illustration in dimension 2.

It turns out that tropical hypersurfaces — and as such in particular arrangements of 
tropical hyperplanes — have relationships to other interesting objects. Triangulations 
of products of two simplices are ubiquitous and useful objects in discrete geometry due 
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Fig. 1. The correspondence between mixed subdivisions and tropical pseudohyperplane arrangements.

to their connection with toric Hilbert schemes [17] and Schubert calculus [1] among 
others.

By Develin and Sturmfels [6] regular subdivisions of 
n−1 × 
d−1 are dual to ar-
rangements of n tropical hyperplanes in Td−1. See Fig. 1 for an illustration.

A central concept in this paper is that of an (n, d)-type.

Definition 1.1. For n, d ≥ 1 an (n, d)-type is an n-tuple (A1, . . . , An) of non-empty subsets 
of [d] := {1, . . . , d}.

For convenience we will write sets like {1, 2, 4} as 124 throughout this article.
An (n, d)-type A can be represented as a subgraph KA of the complete bipartite graph 

Kn,d: Denote the vertices of Kn,d by N1, . . . , Nn, D1, . . . , Dd. Then the edges of KA are 
{{Ni, Dj} | j ∈ Ai}.

Besides tropical hyperplane arrangements there are other objects that have a natural 
interpretation as sets of (n, d)-types:

• If we label the vertices of 
n−1 by 1, . . . , n, the vertices of the polytope 
n−1×
d−1

are in canonical bijection with the edges of the complete bipartite graph Kn,d. Then 
a cell C in a subdivision of 
n−1 ×
d−1 is assigned the type corresponding to the 
subgraph of Kn,d containing all edges that mark vertices of C. See e.g. [5] for a 
thorough treatment of this matter.

• Given a mixed subdivision of n
d−1, every cell is a Minkowski sum of n faces of 

d−1. By identifying the faces of 
d−1 with the subsets of [d], this again yields 
an (n, d)-type. See Fig. 1(a) for an example. We introduce mixed subdivisions in 
Section 3.

• Tropical oriented matroids as defined by Ardila and Develin [2] via a set of covector 
axioms generalise tropical hyperplane arrangements. We define them in Section 2.

Let us briefly point out what is known about the relations between the above objects. 
By the Cayley Trick, cf. [12], subdivisions of 
n−1 ×
d−1 are in bijection with mixed 
subdivisions of n
d−1.
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By [2, Theorem 6.3], the types of a tropical oriented matroid with parameters (n, d)
yield a subdivision of 
n−1 ×
d−1. They also conjecture this to be a bijection. By [2, 
Proposition 6.4], these types satisfy all but one of the tropical oriented matroid axioms.

In [14] it is proven that fine mixed subdivisions satisfy the elimination axiom.
In this paper we introduce arrangements of tropical pseudohyperplanes in two differ-

ent ways (see Definitions 4.3 and 6.4) and prove tropical analogues to the Topological 
Representation Theorem for (classical) oriented matroids by Folkman and Lawrence [7]
(see Theorems 4.4 and 6.12).

A tropical pseudohyperplane is basically a set which is PL-homeomorphic to a tropical 
hyperplane (see also Definition 4.1). The challenging part is the definition of arrange-
ments of these: We have to impose restrictions on the intersections of the pseudo-
hyperplanes in the arrangement. In the classical framework, the intersections of the 
hyperplanes in the arrangement have to be homeomorphic to linear hyperplanes (of 
smaller dimension). In the tropical world, however, this approach is not feasible, since 
intersections of tropical hyperplanes are no longer homeomorphic to tropical hyper-
planes (but may have a rather complicated geometry). In Section 4 we instead impose 
restrictions on the cell decomposition induced by the tropical pseudohyperplanes in the 
arrangement.

In Section 6 we choose yet another approach that is conceptually closer to the classical 
case. A family of tropical pseudohyperplanes is an arrangement if any set of tropical 
halfspace boundaries forms an arrangement of affine pseudohyperplanes.

With both definitions we prove a Topological Representation Theorem, except in the 
second definition a general position assumption is needed.

Theorem 1.2 (Topological Representation Theorem). Every tropical oriented matroid (in 
general position) can be realised by an arrangement of tropical pseudohyperplanes.

We also introduce a theory of combinatorial tropical convexity that is closely related to 
the elimination property of tropical oriented matroids. In fact, it turns out that a mixed 
subdivision of n
d−1 satisfies the elimination property if and only if the combinatorial 
convex hull of any two cells is path-connected. Since any intersection of affine halfspaces 
is path-connected, we obtain the following application of Theorem 1.2.

We show that all mixed subdivisions of n
d−1 satisfy the elimination property and 
hence prove the conjecture of Ardila and Develin:

Theorem 1.3. (Cf. [2, Conjecture 5.1].) Tropical oriented matroids with parameters (n, d)
are in bijection with subdivisions of 
n−1 ×
d−1 and mixed subdivisions of n
d−1.

For quick reference, the overall situation is depicted in Fig. 2.
This paper is organised as follows: In Section 2 we briefly review the definition of trop-

ical oriented matroids. In Section 3 we discuss mixed subdivisions of dilated simplices. 
Section 4 is dedicated to the first definition of tropical pseudohyperplane arrangements 
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Fig. 2. The correspondences between tropical oriented matroids, mixed subdivisions of n�d−1, subdivisions 
of a product of two simplices, and tropical pseudohyperplane arrangements. As shown by Ardila and De-
velin [2, Thm. 6.5], tropical oriented matroids always yield subdivisions of a product of two simplices. In 
the present paper we prove their conjecture [2, Conj. 5.1] that this is, in fact, an equivalence, and to this 
end take a detour via mixed subdivisions of simplices and tropical pseudohyperplane arrangements. First, 
by the Cayley Trick [12], subdivisions of �n−1 × �d−1 are equivalent to mixed subdivisions of n�d−1

(vertical arrow on the right). The top horizontal arrow from mixed subdivisions of n�d−1 to tropical ori-
ented matroids is equivalent to [2, Conj. 5.1] and has been partially shown in [2] (boundary, comparability 
and surrounding axioms and elimination for d = 3) and in [14] (elimination for fine case); this corresponds 
to the diagonal arrow. It is proven to hold true in general in Theorem 7.11 via the path through tropical 
pseudohyperplane arrangements. The “Topological Representation Theorem” corresponds to the lower hor-
izontal arrow from mixed subdivisions of n�d−1 to tropical pseudohyperplane arrangements. In the case 
of regular subdivisions or, equivalently, realisable tropical oriented matroids this follows from Develin and 
Sturmfels [6] and has been conjectured in general by Ardila and Develin [2, Conj. 5.7]. The last vertical 
arrow on the left from tropical pseudohyperplane arrangements to tropical oriented matroids is provided 
in Theorem 7.9, where we show that tropical pseudohyperplane arrangements do satisfy the elimination 
property.

and the first Topological Representation Theorem. In Section 5 we have a closer look at 
the elimination property and define a notion of convexity in tropical oriented matroids. 
In Section 6 we introduce a second notion of arrangements of tropical pseudohyperplanes 
in analogy to (classical) pseudohyperplane arrangements (see Definition 6.4) and prove 
a Topological Representation Theorem (Theorem 6.12). Finally, in Section 7 we apply 
our results to prove Theorem 1.3.

An extended abstract [9] has been presented at FPSAC 2012. Moreover, the results 
are also contained in [10].

2. Tropical oriented matroids

The following definitions are analogous to those in [2].
A refinement of an (n, d)-type A with respect to an ordered partition P = (P1, . . . , Pk)

of [d] is the (n, d)-type B = A|P where Bi = Ai ∩ Pm(i) and m(i) is the smallest index 
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where Ai ∩ Pm(i) is non-empty for each i ∈ [n]. A refinement is total if all Bi are 
singletons.

Given (n, d)-types A and B, the comparability graph CGA,B is a multigraph with node 
set [d]. For each i ∈ [n] and for every j ∈ Ai, k ∈ Bi there is an edge between j and k. 
This edge is undirected if j, k ∈ Ai ∩ Bi and directed j → k otherwise. We consider the 
comparability graph as a graph without self-loops. Note that there may be up to three 
edges (one undirected and two with different directions) between two nodes.

A directed path in the comparability graph is a sequence e1, e2, . . . , ek of incident edges 
at least one of which is directed and all directed edges of which are directed in the “right” 
direction. A directed cycle is a directed path whose starting and ending point agree. The 
graph is acyclic if it contains no directed cycle.

Definition 2.1. (Cf. [2, Definition 3.5].) A tropical oriented matroid M with parameters 
(n, d) is a collection of (n, d)-types which satisfies the following four axioms:

• Boundary: For each j ∈ [d], the type (j, j, . . . , j) is in M .
• Comparability: The comparability graph CGA,B of any two types A, B ∈ M is acyclic.
• Elimination: If we fix two types A, B ∈ M and a position j ∈ [n], then there exists 

a type C in M with Cj = Aj ∪Bj and Ck ∈ {Ak, Bk, Ak ∪Bk} for k ∈ [n].
• Surrounding: If A is a type in M , then any refinement of A is also in M .

We call d the rank and n the size of M .

Example 2.2. By [2, Theorem 3.6] the set of types of an arrangement of n tropical 
hyperplanes in Td−1 is a tropical oriented matroid with parameters (n, d).

We call tropical oriented matroids coming from an arrangement of tropical hyperplanes 
realisable. Recall that by Develin and Sturmfels [6] realisable tropical oriented matroids 
are in bijection with regular mixed subdivisions of n
d−1.

The axiom system was built to capture the features of the set of types in tropical 
hyperplane arrangements and thus the axioms have geometric interpretations:

The boundary axiom ensures that all tropical hyperplanes in the arrangement are 
embedded correctly into TPd−1 ∼= 
d−1. The surrounding axiom describes the neigh-
bourhood of a point of type A (or equivalently, the star of the cell A in the cell complex). 
The elimination axiom describes the intersection of a tropical line segment from A to B
with the j-th tropical hyperplane. Finally, the comparability axiom ensures that we can 
declare a “direction from A to B”. Each position of the types puts certain constraints on 
the direction vector and these constraints may not contradict one another.

Definition 2.3. The dimension of an (n, d)-type A is the number of connected components 
of KA minus 1. A vertex is a type of dimension 0, an edge a type of dimension 1 and a 
tope a type of full dimension d − 1, i.e., each tope is an n-tuple of singletons.
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A tropical oriented matroid M is in general position if for every type A ∈ M the 
graph KA is acyclic.

For two types A, B we write A ⊇ B if Ai ⊇ Bi for each i ∈ [n]. Moreover, we define the 
intersection A ∩B := (A1∩B1, . . . , An∩Bn) and union A ∪B := (A1∪B1, . . . , An∪Bn). 
A type A in a tropical oriented matroid M is bounded if all elements of [d] appear in A
and unbounded otherwise.

Note that for a realisable tropical oriented matroid, the bounded types correspond to 
the bounded cells in the cell decomposition of Td−1.

Definition 2.4. (Cf. [2, Propositions 4.7 and 4.8].) Let M be a tropical oriented matroid 
with parameters (n, d).

1. For i ∈ [n] the deletion M\i, consisting of all (n −1, d)-types which arise from types of 
M by deleting coordinate i, is a tropical oriented matroid with parameters (n −1, d).

2. For j ∈ [d] the contraction M/j , consisting of all types of M that do not contain j
in any coordinate, is a tropical oriented matroid with parameters (n, d − 1).

There is also a notion of duality for (n, d)-types:

Definition 2.5. (Cf. [2, Definitions 5.3 and 5.4].) If A is a bounded (n, d)-type then we 
get a (d, n)-type AT, the dual type of A, by interchanging the roles of n and d in the 
type graph KA; i.e., AT is defined by

i ∈ Aj ⇔ j ∈ AT
i .

If M is a tropical oriented matroid with parameters (n, d) then we define the dual MT

by

MT := {AT|P | A vertex of M,P ordered partition of [n]}.

We will see in Corollary 7.13 that if M is a tropical oriented matroid with parameters 
(n, d), then its dual MT is a tropical oriented matroid with parameters (d, n).

3. Mixed subdivisions

Given two sets X, Y ⊆ Rd, their Minkowski sum is given by X +Y := {x + y | x ∈ X,

y ∈ Y }.

Definition 3.1. Let P1, . . . , Pk ⊂ Rn be (full-dimensional) convex polytopes. Then a 
polytopal subdivision {Q1, . . . , Qs} of P :=

∑
Pi is a mixed subdivision if it satisfies the 

following conditions:
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1. Each Qi is a Minkowski sum Qi =
k∑

j=1
Fi,j , where Fi,j is a face of Pj .

2. For i, j ∈ [s] we have that Qi ∩Qj = (Fi,1 ∩ Fj,1) + . . . + (Fi,k ∩ Fj,k).

3.1. Mixed subdivisions of n
d−1

We are interested in the case of mixed subdivisions where Pi = 
d−1 for each i. Then ∑
Pi = n
d−1 is a dilated simplex. By Santos [16] a subdivision of n
d−1 is mixed if 

and only if each cell is a Minkowski sum of n faces of 
d−1.

Remark 3.2. Throughout this paper, we will always assume that a mixed subdivision of 
n
d−1 comes with a fixed labelling of its cells. I.e., we assume that a fixed order on the 
summands of each cell is given.

By identifying the faces of 
d−1 with the subsets of [d], a cell P = P1 +P2 + . . .+Pn, 
Pi ⊆ [d] of a mixed subdivision of n
d−1 corresponds to an (n, d)-type TP := (P1, P2,

. . . , Pn).
Conversely, any (n, d)-type A = (A1, A2, . . . , An) defines a polytope CA := A1 +A2 +

. . . + An if we interpret the Ai as faces of 
d−1.
We will thus sometimes identify a cell in a mixed subdivision of n
d−1 with the 

corresponding type.

Let S, S′ be mixed subdivisions of n
d−1. Then we say that S′ is a refinement of S
if for every cell C ′ ∈ S′ there is a cell C ∈ S such that C ′ ⊆ C. This defines a partial 
order on the set of mixed subdivisions of n
d−1. A mixed subdivision is fine if there 
is no mixed subdivision refining it. By Santos [16, Proposition 2.3] this is equivalent to 
the condition that for every cell B =

∑
Bi all the Bi lie in mutually independent affine 

subspaces (and this is satisfied if and only if dimB =
∑

dimBi).
By Ardila and Develin [2, Theorem 6.3] the types of a tropical oriented matroid with 

parameters (n, d) yield a mixed subdivision of n
d−1. A tropical oriented matroid is in 
general position if and only if its mixed subdivision is fine.

To avoid confusion with the vertices of tropical oriented matroids, we speak of the 
0-dimensional cells of a mixed subdivision as topes.

We show in Proposition 3.9 that a mixed subdivision of n
d−1 is uniquely determined 
by its topes.

We now establish some properties of mixed subdivisions of n
d−1 — or more generally 
about (n, d)-types. Note that since we can describe the Minkowski cells in a mixed sub-
division of n
d−1 in terms of (n, d)-types, we can transfer properties of tropical oriented 
matroids (such as the boundary, surrounding, comparability or elimination property) as 
defined in Section 2 to mixed subdivisions of n
d−1.

Lemma 3.3. Let A, B be two (n, d)-types with A ⊆ B. Then A is a refinement of B if 
and only if CGA,B is acyclic.
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Fig. 3. Assume that in the proof of Lemma 3.3 we have A = (123, 1, 3, 4, 56) and B = (123, 16, 34, 456, 56). 
Then A ⊆ B and CGA,B is the graph on the left. Then by contracting all undirected edges we obtain the 
graph G drawn in the centre. By fixing a linear extension of this (in fact, there is only one in this example) 
we get the ordered partition of the set [6] on the right hand side. Moreover, one easily verifies that indeed 
A = B|P .

We do not assume that the types in this lemma are contained in a tropical oriented 
matroid. In particular, there is a tropical oriented matroid containing both A and B if 
and only if CGA,B is acyclic.

Proof of Lemma 3.3. First assume that CGA,B is acyclic. Let G be the directed graph 
obtained from CGA,B by contracting all undirected edges. This is well-defined and acyclic 
since CGA,B is acyclic. We label the vertices of G by the corresponding subsets of [d]. 
Let P = (P1, . . . , P�) be a linear extension of the partial order on the vertices of G that 
is defined by the edges. This process is illustrated in Fig. 3. We now argue that B|P = A. 
Indeed by the definition of refinements, (B|P )i contains all elements of Bi which come 
first in P . Since Ai ⊆ Bi, in CGA,B every element of Ai has an outgoing edge to each 
element of Bi −Ai. Hence in P the elements of Ai come before the elements of Bi −Ai. 
Moreover, the elements of Ai form a clique in CGA,B and are thus contained in the same 
Pk. This shows that (B|P )i = Ai for each i ∈ [n].

Conversely, assume that A = B|P for some ordered partition P of [d]. Consider the 
graph H = ([d], E) with an undirected edge {i, j} for each i, j ∈ Pa and a directed edge 
i → j whenever i ∈ Pa, j ∈ Pb with a < b. Then clearly H is acyclic. We now show that 
CGA,B is a subgraph of H, which completes the claim. Indeed let i, j ∈ [d]. If CGA,B

has an undirected edge {i, j} then there is k ∈ [n] such that i, j ∈ Ak ∩ Bk and hence 
there is P� such that i, j ∈ P�. On the other hand, if CGA,B has a directed edge i → j

then there is k ∈ [n] such that i ∈ Ak ∩Bk but j ∈ Bk −Ak. If we choose a, b such that 
i ∈ Pa and j ∈ Pb then we must have a < b. �
Lemma 3.4. Let A, B be the types of two cells CA, CB in a mixed subdivision S of n
d−1. 
Then either their intersection A ∩B has an empty position or CA∩B is also a cell in S.

Proof. Let A, B be two types that intersect non-trivially in every position. One can 
easily verify that CGA,A∩B is a subgraph of CGA,B . Hence CGA,A∩B is acyclic since 
CGA,B is so. By Lemma 3.3 this implies that A ∩B is the type of a cell in S. �
Lemma 3.5. Given a Minkowski cell Q =

∑k
i=1 Fi in a mixed subdivision of n
d−1, the 

faces of Q are exactly the CR where R is a refinement of TQ.

Proof. This follows directly from [2, Proposition 6.4]. �
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Lemma 3.6. Let A, B be (n, d)-types such that CGA,B is acyclic. Then CA ∩ CB = CA∩B.

Proof. It is easy to see that the intersection of the cells CA and CB is always the convex 
hull of integral points (in the standard embedding into Rd) in n
d−1. Moreover, it is 
clear that CA∩B ⊆ CA ∩ CB .

Conversely, let p be an integral point in CA ∩ CB. Denote by pA ⊆ A a possible type 
of p (which need not be a refinement of A), i.e., pA is an (n, d)-type with p = CpA

. We 
now claim that then also pA ⊆ B. So suppose this is not true. Define pB similarly to pA. 
Then pB is a permutation of pA. Hence CGpA,pB

contains a directed cycle C.
But then C is also contained in CGA,B (where some directed edges in CGpA,pB

may 
be undirected in CGA,B). But since pA � B there is at least one directed edge. This 
contradicts the hypothesis that CGA,B is acyclic. �

We can define the concepts of deletion and contraction for mixed subdivisions analo-
gous to Definition 2.4. The following observations are immediate:

Lemma 3.7. Let S be a mixed subdivision of n
d−1.

1. For any i ∈ [n] the deletion S\i is a mixed subdivision of (n− 1)
d−1.
2. For any j ∈ [d] the contraction S/j is a mixed subdivision of n
d−2.

Proof.

1. This follows immediately from [16, Lemma 2.1].
2. The contraction S/j is the subdivision of the j-th facet of n
d−1 (i.e., the facet 

opposite to the vertex (j, . . . , j)) induced by S. Hence S/j is a mixed subdivision. �
There is a standard embedding of a mixed subdivision of n
d−1 into Rd (by mapping 

a tope v to (x1, . . . , xd) where xi is the number of occurrences of i in v). We thus regard 
a mixed subdivision — or any subset of its (open) cells — as a metric space with the 
Euclidean metric inherited from Rd. The following is immediate:

Lemma 3.8. Let S be a mixed subdivision of n
d−1, i ∈ [n], j ∈ [d]. Let X be the 
subcomplex of S of all cells A such that Ai = j. Then X is embedded isometrically into 
the deletion S\i.

3.2. Reconstructing mixed subdivisions

In this section we prove the following:

Proposition 3.9. Let S be a mixed subdivision of n
d−1. Then S can be reconstructed 
from its topes. More precisely, the cells of S are the (componentwise) unions of topes all 
of whose total refinements are topes and which do not contain any other tope.
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We call types satisfying the conditions above the topal types of S. I.e., an (n, d)-type 
A is topal if

• A is a (componentwise) union of topes of S,
• all total refinements of A are topes of S, and
• if T is a tope of S such that T ⊆ A then T is a refinement of A.

If A is a topal type, we call the Minkowski cell CA corresponding to A a topal cell.
Note that it is crucial to consider the topes of S as types rather than as mere coordi-

nates; i.e., the order of the summands does matter.
Also note that the equivalent result for tropical oriented matroids, namely that a 

tropical oriented matroid is uniquely determined by its topes, is proven in [2]. Their 
proof, however, uses the elimination property.

Proof of Proposition 3.9. Let S be a mixed subdivision of n
d−1. It is clear that all 
cells of S are topal. So it remains to prove that every topal type does indeed yield a cell 
of S.

The general strategy is the following: Assume that a Minkowski cell A corresponds 
to a topal type of S. We then need to show that A is contained in S. We proceed via 
induction over dimA. If dimA = 0 then it is clear that A is a cell of S (namely a vertex). 
Thus, we may assume that dimA ≥ 1 and that every proper refinement of A is a cell 
of S.

We will argue that A intersects every cell B of S either not at all or in a common face 
of A and B, proving that A is in fact a cell in S.

We may without loss of generality assume that A contains all elements of [d]. Otherwise 
form contractions of S for each element of [d] that is not contained in A. Moreover, 
we may assume that A does not contain any singleton position. Otherwise form the 
deletion of S for every singleton position. By Lemma 3.8, A embeds isometrically into 
this deletion. In particular, any cell in this deletion is also a cell in A.

Now let B be a cell in S. By Lemma 3.6 it suffices to prove that A and B are 
comparable. So suppose on the contrary that CGB,A has a directed cycle.

Assume without loss of generality that a shortest cycle is C = (1, 2, . . . , k, 1), directed 
in this order. Let P = ([k], k+ 1, . . . , d) be an ordered partition of [d]. Define A′ := A|P . 
Since A does not have any singleton positions, dimA′ < dimA if k < d and hence 
A′ is a proper refinement of A. Moreover, CGB,A′ also contains the cycle C. This is a 
contradiction.

Thus, k = d. Assume without loss of generality that Bi � i and Ai � (i + 1) mod d

for each i. Since A does not have any singleton positions this implies that Ai = {i,
i + 1 mod d} for each i. Moreover, Bi = {i} if there is a directed edge i → (i + 1 mod d)
and Bi = {i, i +1 mod d} if the edge is undirected. Thus, we have completely determined 
A and B.
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Fig. 4. A (hexagonal) Minkowski cell A of type (12, 23, 13) and a cell B of type (12, 2, 13) as in the proof of 
Proposition 3.9. Then A ⊃ B and there is a tope T = (1, 2, 3) of B that lies in the interior of A.

Fig. 5. The two edges A and B are mapped to the same cell under the deletion map that deletes the shaded 
cells.

Since the cycle is directed, there is a singleton in B. Assume without loss of generality 
that Bd = {d}. Let P = (1, 2, . . . , d) be an ordered partition of [d] into singletons. Then 
T := B|P = (1, 2, . . . , d). Hence T is a tope in S. But T is contained in A and not a 
refinement of A. This contradicts the choice of A. See Fig. 4 for an illustration. �

Since in a fine mixed subdivision the type graph of every type is acyclic, we get the 
following:

Corollary 3.10. Let S be a fine mixed subdivision of n
d−1. Then the type graphs of the 
cells of S are exactly the acyclic unions of the type graphs of topes all of whose total 
refinements are again topes.

For i ∈ [n] consider the deletion map

· \i : S → S\i : C �→ C\i = (C1, . . . , Ĉi, . . . , Cn)

mapping each cell C of S to the cell obtained by omitting the i-th entry of C.

Lemma 3.11. Let S be a mixed subdivision of n
d−1, i ∈ [n] and A �= B the types of 
cells CA, CB ∈ S cells such that A\i = B\i. Then A ∪B is the type of a cell in S.

Proof. Let C := A ∪B, i.e., Ci := Ai ∪Bi and Cj = Aj(= Bj) for j �= i. The situation 
is sketched in Fig. 5. The intuition is that A and B are Cartesian products of a common 
polytope P with some simplices, and C is the Cartesian product of P with the join of 
the two simplices.
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We need to show that C is indeed a cell in S. To this end, we verify that C satisfies the 
conditions from Proposition 3.9. This means we have to show that the total refinements 
of C are exactly the total refinements of A and B.

Indeed let v = C|P be a total refinement of C and assume without loss of generality 
that vi ∈ Ai. Then v = A|P is also a total refinement of A. Conversely, let v = A|P be 
a total refinement of A. We may assume that in P the element {vi} comes before all 
elements of Bi \ Ai. Otherwise we may change this order since CGA,B is acyclic. But 
then C|P = v. Thus, every total refinement of A or B is also one of C. Hence C is a type 
in S. �
3.3. Placing in mixed subdivisions

Recall that triangulations of 
n−1 ×
d−1 are in bijection with the fine mixed subdi-
visions of n
d−1 via the Cayley Trick. There is a well-known construction that produces 
a triangulation of 
n′ ×
d′ (called the placing triangulations) from one of 
n×
d for 
n′ ≥ n, d′ ≥ d. See [5, Section 4.3.1] for more details.

Since we will need this construction in Section 7, we now examine how placing works 
in the mixed subdivision point of view:

Suppose we are given a mixed subdivision S of n
d−1. Let T be the corresponding 
subdivision of 
n−1 ×
d−1. There are two possible ways to extend this by placing:

• We can embed T into 
n × 
d−1. I.e., we extend S to a mixed subdivision of 
(n + 1)
d−1.

• We can embed T into 
n−1 ×
d. I.e., we extend S to a mixed subdivision of n
d.

We will call the operations n-placing, respectively d-placing, referring to whether we 
increase n or d. The two operations are dual to each other.

n-Placing There are d vertices to be placed, namely the vertices (n +1, 1), . . . , (n +1, d). 
We denote both the mixed subdivision of n
d−1 and the corresponding subdivision of 

n−1 ×
d−1 by S. Moreover, we apply operations as defined for tropical oriented ma-
troids to the types of both mixed subdivisions and triangulations of products of simplices.

Let σ = (σ1, . . . , σd) be some permutation of [d]. First we place the vertex (n +1, σ1). 
From this vertex every maximal (i.e., (n + d − 2)-dimensional) simplex of S is visible. 
Thus, for every maximal simplex B we add the simplex B ∪ {σ1} and all its faces to S
to get S1. In the mixed subdivision this corresponds to adding a new entry {σ1} at the 
end of every type in S. Thus, S1 is just a copy of S in the σ1-th corner of (n + 1)
d−1.

As for placing the vertex (n + 1, σ2), the only visible simplices are those whose type 
does not contain σ1 except in the last entry (where we just added it). In the mixed 
subdivision, placing (n + 1, σ2) corresponds to appending a new entry {σ1, σ2} to the 
end of every vertex in the contraction S/σ1 and then adding all refinements of those to 
obtain S2.



90 S. Horn / Journal of Combinatorial Theory, Series A 142 (2016) 77–112
Fig. 6. A mixed subdivision S of 3�2 (black) in its n-placing extension with respect to the permutation 
(1, 2, 3).

Placing the remaining vertices works similarly: When placing (n + 1, σi), we cre-
ate the set Si containing all vertices in the contraction S/{σ1,...,σi−1} with a new entry 
{σ1, . . . , σi} appended and all refinements of those.

Fig. 6 shows an example of an n-placing extension.

d-Placing There are n vertices to be placed, namely the vertices (1, d +1), . . . , (n, d +1).
Let τ be some permutation of [n]. Recall that for the construction of the n-placing 

extension the contractions S/σ1 , S/{σ1,σ2}, . . . , S/{σ1,σ2,...,σd} for some permutation σ of 
[d] played an important role.

In the same way, the deletions S\τ1 , S\{τ1,τ2}, . . . , S\{τ1,τ2,...,τn} will be important in 
the construction of the d-placing extension of S.

We only consider the maximal simplices in S. First place the vertex (τ1, d + 1). From 
this vertex every maximal simplex in S is visible. Hence for every maximal simplex B
we add the simplex B∪{(τ1, d +1)} to get S1. In the mixed subdivision this corresponds 
to adding d + 1 to Bτ1 .

When we then place (τ2, d + 1), the visible simplices are the simplices in S with the 
τi-th entry replaced by {d + 1}. In general, when placing the i-th vertex (τi, d + 1), 
the visible simplices correspond to the cells in the deletion S\{τ1,...,τi−1} with additional 
entries {d + 1} at the positions τ1, . . . , τi−1.

See Fig. 7 for an illustration.
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Fig. 7. A 3-dimensional d-placing extension of a mixed subdivision of 3�2. The mixed subdivision of 3�2

is drawn on the bottom. Then the cells of the d-placing extension are stacked upon this in three layers 
(corresponding to the three vertices being placed). These layers are drawn hovering above one another.

4. The first Topological Representation Theorem

In this section we formally introduce tropical pseudohyperplanes and prove a first 
version of the Topological Representation Theorem.

Definition 4.1. A tropical pseudohyperplane is the image of a tropical hyperplane under 
a PL-homeomorphism of TPd−1 that fixes the boundary.

The following theorem is a crucial ingredient to the proof of both Topological Rep-
resentation Theorems. In an arrangement of tropical hyperplanes, the i-th tropical 
hyperplane consists exactly of those points A with #Ai ≥ 2. We show that the ana-
logue holds for the Poincaré dual of a mixed subdivision of n
d−1. We denote the dual 
cell of a cell C ∈ S by C∗. See again Fig. 1(b) for an example.

Theorem 4.2. Let S be a mixed subdivision of n
d−1 and i ∈ [n]. Then Hi := {C∗ |
C ∈ S,#Ci ≥ 2} is a tropical pseudohyperplane.

Proof. We prove the claim by induction over n. For n = 1 this is true since then S =

d−1 is the trivial subdivision, whose dual is the cell complex of one (d −2)-dimensional 
tropical hyperplane in Td−1.

Now assume n ≥ 2. Choose i �= j ∈ [n] and consider the deletion S\j. By Lemma 3.7
this is a mixed subdivision of (n− 1)
d−1 and by induction the image of Hi in S\j is a 
tropical pseudohyperplane h.

But Hi is the preimage of h under the deletion map. By Lemma 3.11 this preimage 
is PL-homeomorphic to h and hence a tropical pseudohyperplane. �

Next we suggest one definition for tropical pseudohyperplane arrangements. Another 
definition is given in Section 6.
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Definition 4.3. An arrangement of tropical pseudohyperplanes is a finite family of tropical 
pseudohyperplanes such that

• in the cell decomposition induced by the tropical pseudohyperplanes the points of 
equal type form a PL-ball (in particular, there are no two cells with the same type),

• the types satisfy the surrounding and comparability properties and
• the bounded cells are exactly those which correspond to bounded types.

The following theorem is a first version of the Topological Representation Theorem 
for tropical oriented matroids.

Theorem 4.4 (Topological Representation Theorem, version I). Let n, d ≥ 1. The 
Poincaré dual of a mixed subdivision of n
d−1 is a tropical pseudohyperplane arrange-
ment as defined in Definition 4.3. Conversely, the dual of the cell decomposition of an 
arrangement of n tropical pseudohyperplanes in TPd−1 is a mixed subdivision of n
d−1.

Proof. Let S be a mixed subdivision of n
d−1. By Theorem 4.2 and [2, Proposition 6.4], 
it is clear that S satisfies the axioms in Definition 4.3 above.

Conversely, let A be an arrangement of tropical pseudohyperplanes in Td−1 as in Def-
inition 4.3. We have to show that the types of the cells in the induced cell decomposition 
yield a mixed subdivision of n
d−1. So let S := {CA | A type in the cell complex of A}. 
Then S is a set of Minkowski cells in n
d−1.

By Lemmas 3.5 and 3.6, S is a polytopal complex whose realisation is contained in 
n
d−1. It remains to show that S covers n
d−1. We exploit that the 1-skeleton of A is 
path-connected.

Let CA be a maximal cell in S and let CB be a facet of CA. Then A corresponds to a 
vertex in A and B corresponds to an edge containing A. The cell CB is contained in the 
boundary of n
d−1 if and only if B is unbounded. In this case B is an unbounded edge 
in A. If CB is not on the boundary then there is a unique other maximal cell CA′ “on the 
other side” of CB, the other endpoint of B. Thus, S covers the whole of n
d−1. �
5. Convexity in tropical oriented matroids and the elimination property

Recall that by Ardila and Develin [2, Theorem 6.3] the types of a tropical oriented 
matroid with parameters (n, d) yield a subdivision of 
n−1 × 
d−1. Conversely, by 
[2, Proposition 6.4] the types of the cells in a mixed subdivision of n
d−1 satisfy the 
boundary, comparability and surrounding axioms. Hence the only thing left open is the 
elimination axiom.

By Oh and Yoo [14, Proposition 4.12], fine mixed subdivisions of n
d−1 (and hence 
by virtue of the Cayley Trick, triangulations of 
n−1 × 
d−1) satisfy the elimination 
property.
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In the realisable case, the elimination axiom describes the intersection of a tropical 
line segment from A to B with the j-th tropical hyperplane. In other words, in the cor-
responding arrangement of tropical pseudohyperplanes (dual to the mixed subdivision) 
all eliminations of A and B (for all j) describe the line segment from A to B.

One can exploit the elimination property of tropical oriented matroids to obtain topo-
logical properties of the according mixed subdivisions.

Definition 5.1. Let M be a tropical oriented matroid and A, B ∈ M two types. Then the 
set

MAB := {C ∈ M | Ci ∈ {Ai, Bi, Ai ∪Bi} for all i ∈ [n]}

is the (combinatorial) convex hull of A and B. Analogously we define the (combinatorial) 
convex hull SAB of two cells in a mixed subdivision S of n
d−1.

We say that a subset C of a tropical oriented matroid M (or equivalently, a subcomplex 
of a mixed subdivision of n
d−1) is convex if for any A, B ∈ C we have that MAB ⊆ C.

Develin and Sturmfels [6] defined a notion of convexity in tropical geometry: Given 
two points x, y ∈ Td−1, the tropical line segment connecting them is the set

[x, y]trop := {(λ⊗ x) ⊕ (μ⊗ y) | λ, μ ∈ R}.

The above notion for convexity in tropical oriented matroids generalises this in a 
natural way: In the realisable case the convex hull MAB of two types contains all cells 
that intersect a tropical line segment between two points in open cells of types A and B
in some realisation of M . See Fig. 8 for an illustration.

The following proposition establishes a connection between the combinatorial convex 
hull and the elimination property.

Proposition 5.2. The types of the cells in a mixed subdivision S of n
d−1 satisfy the 
elimination property if and only if SAB is path-connected (as a subcomplex of S) for 
every A, B ∈ S.

Proof. The convex hull SAB clearly contains each elimination of A and B for any j ∈ [n]. 
If SAB is path-connected then there is a path from A to B in SAB . For any given j ∈ [n]
this path must contain a cell C with Cj = Aj ∪Bj . In fact, if Aj ⊆ Bj or Aj ⊇ Bj , this 
is clear. Otherwise let A = C0, C1, . . . , Ck = B be the sequence of cells crossed by the 
path. Then for each 1 ≤ i ≤ k either Ci−1 < Ci or Ci−1 > Ci. Now choose � such that 
C� is the last cell crossed by the path with C�

j = Aj and �′ be the next cell after C� with 
C�′

j = Bj . Since none of C�, C�′ is a face of the other there must another cell C = C�′′

with � < �′′ < �′ in between. This C has Cj �= Aj , Bj and hence Cj = Aj ∪ Bj . Then C
works as elimination for A and B with respect to j.

Conversely, assume that S satisfies the elimination property and fix A, B ∈ S. We 
have to show that there exists a path from A to B in SAB .
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Fig. 8. The convex hull of two types A = (2, 2, 3), B = (1, 1, 1) in a realisable tropical oriented matroid with 
parameters (3, 3). In this realisation every cell in the convex hull intersects a tropical line segment between 
points in A and points in B. Note though that there are other realisations of the same tropical oriented 
matroid where this does not hold: Imagine shifting the apex of the second tropical hyperplane further to 
the right until it is no longer possible to draw a line segment from A to B through the cell (1, 1, 3).

Denote dist(A, B) := {i | Ai � Bi, Bi � Ai}. If #dist(A,B) = 0 then A ∩ B ∈ SAB

and we are done. Otherwise choose some position i ∈ dist(A, B) and let C denote the 
elimination of A and B with respect to i. Then C ∈ SAB and we will now show that 
#dist(A,C), #dist(B,C) ≤ #dist(A, B) − 1.

Indeed consider j /∈ dist(A, B). Then j /∈ dist(A, C) follows immediately. More-
over, i ∈ dist(A, B) \ dist(A, C). Thus #dist(A, C) ≤ #dist(A, B) − 1 and similarly 
for dist(B, C).

The claim then follows by iterating this process. �
Corollary 5.3. A convex set in a tropical oriented matroid is path-connected.

Proof. Since tropical oriented matroids satisfy the elimination property, Proposition 5.2
implies that the convex hull of any two types is path-connected. �
6. The second Topological Representation Theorem

This section comprises the long and winding road towards the second Topological 
Representation Theorem for tropical oriented matroids.

By Theorem 4.2 the Poincaré dual of a mixed subdivision of n
d−1 is a family of 
tropical pseudohyperplanes.

6.1. Linear and affine pseudohyperplanes

Locally (i.e., in the parallelepiped cells of their mixed subdivisions) we want tropical 
pseudohyperplanes to intersect as “ordinary” hyperplanes. We thus introduce arrange-
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ments of linear pseudohyperplanes on the basis of arrangements of pseudospheres as 
defined in Björner, Las Vergnas, Sturmfels, White and Ziegler [4, Definition 5.1.3].

Definition 6.1. (Cf. [4, Definition 5.1.3].) A pseudohyperplane is a set that is PL-
homeomorphic to a linear hyperplane. A finite collection A = (He)e∈E of pseudohyper-
planes is called an arrangement of pseudohyperplanes if the following conditions hold:

1. HA :=
⋂

e∈A He is a pseudohyperplane of smaller dimension for all A ⊆ E.
2. If HA � He for A ⊆ E, e ∈ E and H+

e and H−
e are the two sides of He, then HA∩He

is a pseudohyperplane in HA with sides HA ∩H+
e and HA ∩H−

e .
3. The intersection of an arbitrary collection of closed sides is a ball.

We now define arrangements of affine pseudohyperplanes as a generalisation of the 
above:

Definition 6.2. An arrangement of affine pseudohyperplanes is a collection A of pseudo-
hyperplanes such that for any A′ ⊆ A either 

⋂
a∈A′ Ha = ∅ or A′ is an arrangement of 

linear pseudohyperplanes as defined in Definition 6.1.

Proposition 6.3. The intersection of any number of closed pseudohalfspaces in an ar-
rangement of affine pseudohyperplanes in Rd is path-connected.

Proof. Let Hi, 1 ≤ i ≤ n be affine pseudohyperplanes in Rd and denote by H+
i the 

corresponding closed pseudohalfspaces.
We proceed by induction on the number n of pseudohyperplanes, the case n = 1 being 

clear.
Assume n ≥ 2 and choose two points x, y in 

⋂n
i=1 H

+
i . By induction there is a path p

from x to y in 
⋂n−1

i=1 H+
i . Assume without loss of generality that p has no self-intersections 

and that whenever p intersects Hn, it crosses it. (Otherwise we can modify p to achieve 
this.)

Moreover, we can assume p to be PL-path and hence that it intersects Hn only a finite 
number of times.

If Hn does not intersect p, we are done since then p ⊆
⋂n

i=1 H
+
i . If Hn intersects p, 

then it does so an even number of times. (Walking along p, at each intersection point we 
switch between H+

n and H−
n .) Let q, q′ be the first two intersection points.

We have to find a path p′ from q to q′ in 
⋂n

i=1 H
+
i . We prove the existence of p′ by 

induction on the dimension d.
Assume d = 2. I.e., the Hi are 1-dimensional. Define p′ to be the segment of Hn

between q and q′. We claim that p′ lies in 
⋂n−1

i=1 H+
i . Indeed, assume that there is 1 ≤

i ≤ n − 1 such that Hi ∩ p′ �= ∅. Then p′ and the segment of p between q and q′ form a 
PL-1-sphere S. Since the intersection of Hi and Hn is a crossing, Hi enters the interior 
of S and hence has to intersect S a second time by the Jordan curve theorem. Since 
Hi ∩ p = ∅, there is a second intersection point of Hi with p′. This is a contradiction.
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Fig. 9. The 2-dimensional situation in the proof of Proposition 6.3.

See Fig. 9 for an illustration.
Now assume d ≥ 3.
Denote H ′

i := Hi ∩Hn and (H ′
i)+ := H+

i ∩Hn for 1 ≤ i ≤ n − 1. Then (H ′
i)i∈[n−1] is 

an arrangement of affine pseudohyperplanes in Hn
PL� Rd−1 and q, q′ ∈

⋂n−1
i=1 (H ′

i)+. By 
induction this set is path-connected. Hence there is a path p′ from q to q′ in 

⋂n−1
i=1 (H ′

i)+ ⊂⋂n
i=1 H

+
i . Replace the segment of p between q and q′ by p′ and continue in the same way 

for the other intersection points.
Thus, we constructed a path from x to y in 

⋂n
i=1 H

+
i . Since x and y were arbitrary, 

this proves that 
⋂n

i=1 H
+
i is path-connected. �

6.2. Arrangements of tropical pseudohyperplanes II

We now define arrangements of tropical pseudohyperplanes. From Theorem 6.12 we 
will see that it is equivalent to the first definition of tropical pseudohyperplane arrange-
ments (Definition 4.3).

Let H be a (d − 2)-dimensional tropical pseudohyperplane in Td−1. Then H divides 
Td−1 \H into d connected components S1, . . . , Sd, the open sectors of H. The closure of 
any union 

⋃
i∈I Si with ∅ �= I ⊂ [d] will be called a (tropical) pseudohalfspace of H. We 

denote by

HI := ∂
⋃
i∈I

Si = ∂
⋃
i/∈I

Si

the boundary of the pseudohalfspace and by

H+
I :=

⋃
i∈I

Si \HI , respectively H−
I :=

⋃
i/∈I

Si \HI

the two open pseudohalfspaces. Note that the boundary HI of a tropical pseudohalfspace 
is a (linear) pseudohyperplane with sides H+

I and H−
I .
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Fig. 10. Arrangements of 2-dimensional tropical pseudohyperplanes that are dual to mixed subdivisions of 
dilated simplices. The arrangement on the right is non-realisable. The pictures were produced with the
polymake [15] extension tropmat [11].

An (n, d)-halfspace system is a tuple I = (I1, . . . , In) with ∅ �= Ii ⊂ [d] for each 
1 ≤ i ≤ n. Given a halfspace system I and a collection A = (Hi)i∈[n] of n tropical 
pseudohyperplanes we write

AI := {Hi,Ii | 1 ≤ i ≤ n}.

The following definition of tropical pseudohyperplane arrangements is motivated by 
Propositions 5.2 and 6.3, i.e., by the fact that we would like to show that the combina-
torial convex hull of two types is path-connected and already know that the intersection 
of affine pseudohalfspaces is so.

Definition 6.4. An arrangement of tropical pseudohyperplanes (in weakly general position) 
is a collection A of n tropical pseudohyperplanes in Td−1 such that AI forms an arrange-
ment of affine pseudohyperplanes as defined in Definition 6.2 for every (n, d)-halfspace 
system I.

See Fig. 10 for examples of arrangements of tropical pseudohyperplanes in T3.
For a set I ⊆ [d] we denote its complement by I := [d] \I. For a tropical pseudohyper-

plane H in Td−1 we denote by C(H) the induced cell decomposition of Td−1, i.e., C(H)
is in one-to-one correspondence with the subsets of [d].

For a halfspace ∅ �= I ⊂ [d] we define the map

TI : C(H) → {+,−, 0}

C �→

⎧⎪⎪⎨⎪⎪⎩
+ if C ⊆ I,

− if C ⊆ I = [d] \ I,
0 otherwise.

Now let A be a tropical pseudohyperplane arrangement and C(A) the induced cell de-
composition of Td−1. For A′ ⊆ A we define

TI : C(A′) → {+,−, 0}A′
: C �→ (TIi(Ci))i
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and

L(A′, I) := {TI(C) | C ∈ C(A′)}.

Proposition 6.5. Let M be a tropical oriented matroid in general position and S its 
corresponding fine mixed subdivision of n
d−1. Moreover, fix a halfspace system I. Then

• either 0 = (0, . . . , 0) /∈ L(A′, I) or
• (L(A′, I), A′) is an oriented matroid with covectors L(A′, I) = {0, +, −}#A′ .

Proof. Let L := L(A′, I) and assume 0 ∈ L. (Otherwise there is nothing to prove.)
We show that L = {+, −, 0}A′ . Choose A ∈ T −1

I (0). Then one can for any X ∈
{+, −, 0}A′ construct a type B ⊆ A with TI(B) = X. So define B by

Bi =

⎧⎪⎪⎨⎪⎪⎩
Ai if Xi = 0,
Ai ∩ Ii if Xi = +,

Ai ∩ Ii if Xi = −.

Then B ⊆ A and since M is in general position, B is a refinement of A. Moreover, 
TI(B) = X. �

If Ji ⊆ [d] for each i ∈ [n] and the Ji are pairwise disjoint then we denote by
J1 ·∪ . . . ·∪Jn the partition of 

⋃
i Ji into the Ji.

Now let J = (J1, . . . , Jn) be an n-tuple of partitions of [d]. I.e., Ji = (Ji,1 ·∪ . . . ·∪Ji,ki
)

is a partition of [d] for each i ∈ [n]. For a tropical oriented matroid M denote by

MJ := {A ∈ M | Ai ∩ Ji,k �= ∅, i ∈ [n], k ∈ [ki]}

the set containing all types in M all of whose entries intersect each element in the 
according partition. As before, let I = (I1, . . . , In) be an n-tuple of non-empty subsets 
of [d]. Then we denote

MI := {A ∈ M | Ai ⊆ Ii, i ∈ [n]}.

Finally, we define

M(I,J ) := MI ∩MJ .

See Fig. 11 for an illustration of M(I, J ).

Lemma 6.6. Let M be a tropical oriented matroid in general position. Then M(I, J ), if 
non-empty, is connected and pure of dimension d + n − 1 −

∑
#Ji.
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Proof. We first show that M(I, J ) is connected: Let A, B ∈ M(I, J ). Then Ai, Bi ⊆ Ii
and Ai ∩ Ji,k, Bi ∩ Ji,k �= ∅ for each i ∈ [n] and k ∈ [ki]. But this implies Ai ∪ Bi ⊆ Ii
and (Ai∪Bi) ∩Ji,k �= ∅. Hence M(I, J ) is convex in the sense of Definition 5.1 and thus 
connected by Proposition 5.2.

It remains to show that M(I, J ) is pure of the correct dimension. Let A ∈ M(I, J ). 
Since Ai∩Ji,k �= ∅, it follows that #Ai ≥ #Ji for each i. Hence dimA ≤ d +n −1 −

∑
#Ji.

Since M is in general position we can construct a type B ⊆ A with #Bi ∩ Ji,k = 1
for every i, k by deleting sufficiently many elements from the entries of A. Then dimB =
d − 1 −

∑
(#Ji − 1) = d + n − 1 −

∑
#Ji. Since A was arbitrary this shows that any 

type in M(I, J ) is contained in one of dimension d + n − 1 −
∑

#Ji. �
For a cell complex C we denote by C its closure, i.e., C consists of all cells of C and 

their faces.

Lemma 6.7. Let M, I, J as before. Then M(I,J ) is a PL-manifold with boundary.

Proof. Denote M := M(I,J ) and M′ := MJ . Choose a cell T ∈ M. We first investigate 
the link lkM′ T . The cells in lkM′ T correspond to the cells in the star stM′ T = {C ∈
M′ | C ⊆ T} and hence to certain refinements of T . First assume that n = 1 = k1, 
i.e., J = (J1) and J1 = (J11). Then the cells in stM′ T are in bijection with the proper 
subsets of J11 ∩ T1 ordered by reverse inclusion. Hence lkM′ T is the boundary of a 
simplex of dimension #(J11 ∩ T1) − 1 (whose facets are labelled by J11 ∩ T1).

Since M is in general position we can consider the Jik (for i ∈ [n], k ∈ [ki]) indepen-
dently. I.e., in general, lkM T is the boundary of a product of simplices (one for each 
Jik) and hence a PL-sphere. Denote this sphere by S(T ). See Figs. 11(b) and (c) for an 
example.

If in each position i there is some Jik with Jik ∩ Ti ⊆ Ii then T is contained in 
the interior of M and lkM T = S(T ). Otherwise denote by B(T ) the set of all faces 
of S(T ) that do not belong to lkM T . Then define J ′ by replacing each Ji in J
by (Ii ·∪(Ji1 ∩ Ii) ·∪ . . . ·∪(Jiki

∩ Ii)). Then B(T ) ∩ lkM T = MJ ′ is a PL-sphere in 
S(T ) with sides B(T ) and lkM T . By [4, Lemma 5.1.1] this implies that lkM T is a 
PL-ball.

It remains to show that M has a boundary. If there is a cell T whose link is a ball we 
are done. Otherwise — unless M consists of a single point — we can always construct 
a cell in M whose dual (in the mixed subdivision corresponding to M) is contained in 
the boundary of n
d−1. (Note that we have to view M as a manifold in TPd−1 for it 
to be compact.) Indeed the cells in the boundary of n
d−1 are characterised by the fact 
that their types are unbounded, i.e., there is some i ∈ [n] not contained in any position 
of the type. The only situation, however, when i ∈ [n] is contained in any cell in M is 
when any Ji contains a singleton {i}. If this holds for every i then M consists of one 
point only. �
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6.3. Constructibility

In the proof of the Topological Representation Theorem for classical oriented matroids 
given in [4], the shellability of certain complexes plays a crucial role. In particular, the 
fact that a shellable PL-manifold is either a ball or a sphere, is used in order to show that 
the subcomplexes which one would like to be pseudospheres actually are pseudospheres.

In the proof of the tropical analogue, we are going to apply a related but weaker 
notion, namely that of constructibility.

The notion of constructibility of a polytopal complex goes back to Hochster [8].

Definition 6.8. A polyhedral d-complex C is constructible if

• C consists of only one cell or
• C = C1 ∪ C2, where C1, C2 are d-dimensional constructible complexes and C1 ∩ C2

is a (d − 1)-dimensional constructible complex.

Proposition 6.9. Let M , I, J as before. Then M(I, J ) is constructible.

Proof. We are done if M(I, J ) consists of one (maximal) cell only. Otherwise there are 
two maximal cells A and B. By Lemma 6.6 above (and the fact that A, B are maximal) 
we then have #Ai = #Bi and #Ai ∩ Ji,j = #Bi ∩ Ji,j = 1 for every i and j.

There is some position k where A and B differ. Moreover, there is some � with Jk,� ∩
Ak �= Jk,� ∩Bk. Let a ∈ Jk,� ∩Ak, b ∈ Jk,� ∩Bk. (Note that a and b are unique.)

Now form J0 by splitting Jk,� so that a and b are in different sets. Moreover, form 
I1, I2 by removing a, respectively b from Ik. Then M(I,J ) = M(I1,J ) ∪ M(I2,J )
and M(I1,J ) ∩ M(I2,J ) = M(I,J0). Moreover, A ∈ M(I1,J ), B ∈ M(I2,J ). By 
Lemma 6.6 above, M(I1, J ), M(I2, J ), M(I, J0) are connected and pure and of the 
right dimensions. By induction these three sets are constructible and hence M(I,J ) is 
constructible. �

See Fig. 11 for an illustration.
The above lemmas together with a theorem by Zeeman [18], stating that a con-

structible manifold with a boundary is a ball, yield:

Proposition 6.10. Let M be a tropical oriented matroid in general position. Then M(I, J )
is a PL-ball.

Proof. M(I,J ) is constructible and pure of dimension d +n −1 −
∑

#Ji by Lemma 6.6
and Proposition 6.9.

By Lemma 6.7, M(I,J ) is a PL-manifold with boundary and hence a PL-ball by 
Zeeman’s theorem. �
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Fig. 11. Assume in the proof of Proposition 6.9 we have n = 1, d = 4, i.e., we are dealing with a 2-dimensional 
tropical pseudohyperplane as depicted in figure (a). Moreover, assume we have M(I, J ) with I = [4], 
J = (14 ·∪23). The complex M(I, J ) is depicted in figure (b). Now let A = 13, B = 24. As in the proof we 
see that #A1 = #B1 and #A1 ∩ J1i = #B1 ∩ J1j = 1 for every i and j. We have k = 1 and we may choose 
� = 1. Then we get a = 1, b = 4 as the unique elements in A1 ∩ J11, B1 ∩ J11. We form J0 = (1 ·∪4 ·∪23) by 
splitting Jk� = 14. Moreover, we set I1 = 234 and I2 = 123. This situation is depicted in figure (c).

Corollary 6.11. Let M be a tropical oriented matroid in general position and S the cor-
responding fine mixed subdivision of n
d−1. Moreover, choose a halfspace system I and 
X ∈ {+, −, 0}n. Then T −1

I (X) is a PL-ball of dimension d − 1 − #z(X), where z(X)
denotes the zero set of X.

Proof. Define I ′ = (I ′1, . . . , I ′n) by

I ′i :=

⎧⎪⎪⎨⎪⎪⎩
Ii if Xi = +,

Ii if Xi = −,

[d] if Xi = 0

and J = (J1, . . . , Jn) by

Ji :=
{

[d] if Xi ∈ {+,−},
Ii ·∪Ii if Xi = 0.

Then T −1
I (X) = M(I ′, J ) and hence the claim follows from Proposition 6.10. �

We are now ready to prove the following version of the Topological Representation 
Theorem for tropical oriented matroids:

Theorem 6.12 (Topological Representation Theorem, version II). Every tropical oriented 
matroid in general position can be realised by an arrangement of tropical pseudohyper-
planes as in Definition 6.4.
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Proof. Let M be a tropical oriented matroid in general position, S the corresponding 
fine mixed subdivision of n
d−1 and A the family of tropical pseudohyperplanes induced 
by S. We have to show that A′

I is an arrangement of affine pseudohyperplanes for each 
A′ ⊆ A and halfspace system I = (I1, . . . , In).

So assume that 
⋂
A′

I �= ∅, i.e., 0 ∈ L(A′, I). Hence by Proposition 6.5 (L(A′, I), A′)
is an oriented matroid given by its covectors.

We have to show that A′
I satisfies the axioms in Definition 6.1.

1. Let A ⊆ A′
I . We have to show that HA :=

⋂
a∈A Ha is a PL-ball. So let I ′ =

(I ′1, . . . , I ′n) with I ′i = [d] for each i and J = (J1, . . . , Jn) with

Ji =
{
Ii ·∪Ii if i ∈ A,

[d] otherwise.

Then HA = M(I ′, J ), which is a PL-ball by Proposition 6.10.
2. Assume e /∈ A. Then HA � He. We have to show that HA∩He is a pseudohyperplane 

in HA with sides HA ∩H+
e and HA ∩H−

e .
To this end let I ′, J be as before. Moreover, define I ′

1, I ′
2 by

I ′1,i =
{
Ii if i = e,

[d] otherwise,

I ′2,i =
{
Ii if i = e,

[d] otherwise

and J0 by

J0,i =
{
Ii ·∪Ie if i = e,

Ji otherwise.

Then HA∩He = M(I ′, J0), HA∩H+
e = M(I1, J ) and HA∩H−

e = M(I2, J ). Since ⋂
A′

I �= ∅, each of HA∩He, HA∩H+
e and HA∩H−

e is non-empty by Proposition 6.5.
Hence HA ∩ He, HA ∩ H+

e and HA ∩ H−
e are PL-balls of the correct dimensions. 

Moreover, HA ∩H+
e ∩HA ∩H−

e = HA ∩He and hence HA ∩H+
e and HA ∩H−

e are 
the sides of HA ∩He.

3. We have to show that the intersection of an arbitrary collection of closed sides is a 
PL-ball. This follows directly from Corollary 6.11. �

7. The elimination property

This section is about the all-important elimination property. Recall that by Oh and 
Yoo [14, Proposition 4.12] the elimination property holds for fine mixed subdivisions of 
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Fig. 12. The blow-up of a mixed subdivision of 3�2 with respect to one of 2�2. The cells in the shaded 
hyperplane are subdivided according to the subdivision of the small simplex. The corresponding tropical 
pseudohyperplane arrangement is drawn on the left.

n
d−1. In this section we apply the Topological Representation Theorem 6.12 to extend 
this to all mixed subdivisions of n
d−1.

7.1. Blowing up hyperplanes in a mixed subdivision

Let S be a fine mixed subdivision of n
d−1 and fix i ∈ [n]. The following construction 
is an inverse of the deletion operation and yields a mixed subdivision of N
d−1 (N > n) 
by “blowing up” one tropical pseudohyperplane in the dual arrangement.

We fix some notation: Let S be a fine mixed subdivision of n
d−1. For ∅ �= I ⊂ [n]
denote by S|I the mixed subdivision of n
#I−1 induced by S on the I-face of n
d−1. 
I.e., S|I is the contraction S/I of S with the complement of I.

Definition 7.1. Let S, S′ be fine mixed subdivisions of n
d−1, respectively n′
d−1. Let 
C ∈ S be a cell. Then the blow-up of C with respect to S′ at position i is the set of 
(n + n′ − 1, d)-types

C ∨i S
′ := {(C\i, X) | X ∈ S′|Ci

}.

That is, we subdivide the Ci-face of C as S′|Ci
. Moreover, the blow-up of S with respect 

to S′ at position i is

S ∨i S
′ :=

⋃
C∈S

C ∨i S
′.

See Fig. 12 for an example.

Lemma 7.2. The types in the blow-up S ∨i S
′ yield a fine mixed subdivision of N
d−1

with N := n + n′ − 1.

Proof. It is clear that each type corresponds to a Minkowski cell inside N
d−1 and that 
the cells cover N
d−1. It remains to show the intersection property.
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Let A = AS ∨i AS′ , B = BS ∨i BS′ be two cells in S ∨i S
′. We have to show that A

and B are comparable. Since S is a mixed subdivision, AS and BS are comparable, i.e., 
CGAS ,BS

is acyclic. The same holds for CGAS′ ,BS′ .
Now consider the comparability graph CGA,B . This has the same vertex set [d] and 

all edges from CGAS ,BS
accounting for positions different from i and all edges from 

CGAS′ ,BS′ .
For position i, the graph CGAS ,BS

contains one edge (directed or undirected) between 
a and b for every a ∈ AS,i, b ∈ BS,i, a �= b. The edge set of CGAS′ ,BS′ is a subset of the set 
of these edges. An undirected edge in CGAS ,BS

might, however, correspond to a directed 
one in CGAS′ ,BS′ . Since S′ is a mixed subdivision, the graph CGAS′ ,BS′ is acyclic.

Hence it remains to exclude that an undirected cycle in CGAS ,BS
becomes a directed 

one in CGA,B . But since S is fine, for any undirected edge in CGAS ,BS
there is a unique 

position accounting for this edge. Moreover, any undirected cycle in CGAS ,BS
would 

yield a cycle in the type graphs of AS and BS which do not exist since S is fine. �
Now fix some permutation π of [d]. Let Sπ be the n-placing extension of 1
d−1 with 

respect to π. Then we define the blow-up Si,π of the i-th tropical pseudohyperplane in 
S with respect to π by

Si,π := S ∨i Sπ.

In the dual setting of an arrangement of tropical pseudohyperplanes this blow-up 
operation corresponds to adding a slightly shifted copy of the i-th tropical pseudohyper-
plane.

It is more difficult to define the blow-up of a tropical pseudohyperplane in a mixed 
subdivision of n
d−1 which is not fine. Let S be a mixed subdivision of n
d−1, i ∈ [n]
and π = (π1, . . . , πd) ∈ Symd. Note that we denote permutations as a list of the πi = π(i). 
We also denote by π := (πd, . . . , π1) the permutation obtained by reversing π.

Then the blow-up of the i-th tropical pseudohyperplane has the following full-
dimensional cells:

• If A = (A1, . . . , An) is a full-dimensional cell in S with #Ai = 1 (i.e., A is not 
contained in the i-th hyperplane), then (A, Ai) is a maximal cell in Si,π.

• If A = (A1, . . . , An) is a full-dimensional cell in S with #Ai ≥ 2 then (A, {πd}) is a 
maximal cell in Si,π.

• Finally, the maximal cells corresponding to the new hyperplane are constructed as 
follows: Let again Sπ denote the n-placing extension of 1
d−1 with respect to π. 
Let P be an ordered partition of [d] that has π as a refinement. (I.e., neighbouring 
entries of π may be combined into one set.) Moreover, let A be a full-dimensional cell 
in S with #Ai ≥ 2. Define B := A|P and let C = (C1, C2) be the unique maximal 
cell in Sπ with C1 = Bi. Then (B, C2) is a maximal cell in Si,π.

Fig. 18 shows a blow-up of a non-fine mixed subdivision of 2
2.
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Fig. 13. A 2-dimensional tropical hyperplane with its types (on the left) and the corresponding arrangement 
F of hyperplanes (on the right). Moreover, the bijection between the open sectors of F and the permutations 
of {1, 2, 3} is given.

7.2. Approximation by blow-ups

In this section we prove that tropical pseudohyperplane arrangements as defined in 
Definition 6.4 satisfy the elimination property and use this to show the same for all 
mixed subdivisions of n
d−1.

As already mentioned before, we are going to use Proposition 5.2. To this end, we are 
going to construct a set which is an intersection of tropical pseudohalfspaces and has the 
combinatorial convex hull (see Definition 5.1) as deformation retract.

We assume all arrangements of tropical pseudohyperplanes in this section to come from 
a (fine) mixed subdivision of n
d−1. I.e., we only consider tropical pseudohyperplane 
arrangements which are dual to a fine mixed subdivision of n
d−1.

Let H be a tropical hyperplane with apex 0. Recall that HI denotes the boundary of 
the tropical halfspace separating the points with types in I from those with types in the 
complement I. For p ∈ Td−1 and ∅ �= I ⊆ [d] denote HI,p := HI − p, i.e., we shift the 
apex of HI to p. For ∅ �= I ⊆ [d] denote by TI the set of all points of type I. Let

F := {aff TI | I ∈
([d]

2
)
},

i.e., F is an arrangement of linear hyperplanes in Td−1. In fact, F is the arrangement of 
reflection hyperplanes corresponding to the Coxeter group of type Ad−1. The connected 
components (sectors) of Td−1 \ (

⋃
F) correspond one-to-one to the permutations of [d]: 

Again, view F embedded in the simplex 
d−1. For v ∈ 
d−1 and i ∈ [d] denote by 
di(v) the distance of v to the i-th vertex of 
d−1. Then each sector is determined by 
the permutation of [d] induced by ordering the di(v) increasingly. The sectors are dual 
to the vertices of the d-dimensional permutahedron. See Fig. 13 for an illustration.

We are going to use halfspaces of tropical hyperplanes with apices in the different 
sectors to “approximate” certain subcomplexes of the cell decomposition induced by H. 
In fact, for a, b ⊂ [d] we will be interested in approximating the subcomplex TX for 
X = {a, b, a ∪ b} by a set homotopy equivalent to TX .
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Fig. 14. Approximating neighbourhoods from intersections of tropical halfspaces corresponding to a = 1, 
b = 23 and X = {a, b, a ∪ b} = {1, 23, 123} (on the left), respectively to a = 1, b = 123 and X = {1, 123}
(on the right).

Fig. 15. A tropical hyperplane with three shifted halfspaces. One for i = 3, π = 312, it yields Appi,p = {3}; 
one for i = 2, π = 132, it yields Appi,p = {2, 12, 23, 123}; and one for i = 1, π = 132, it yields Appi,p =
{1, 12}.

Intuitively, such an approximation is supposed to contain “almost everything” of TI

if I ∈ X and “almost nothing” of TI if I /∈ X. See Fig. 14 for an illustration.

Definition 7.3. For i ∈ [d] and p ∈ Td−1 the set of all types that are approximated by 
H+

i,p is defined as follows:

Appi,p := {J ⊆ [d] | i ∈ J, J ⊆ {i} ∪ {q | q comes before i in π}}.

Moreover, for ∅ �= I ⊂ [d] we define

AppI,p :=
⋃
i∈I

Appi,p .

See Fig. 15 for examples.
The following lemma shows that AppI,p is well-defined:

Lemma 7.4. Let H ⊂ Td−1 be a tropical hyperplane with apex 0 and π = (π1, . . . , πd) the 
permutation of [d] corresponding to a point p ∈ Td−1 \ (

⋃
F).

(1) Let ∅ �= J ⊂ [d]. Then TJ ∩H+
i,p �= ∅ if and only if each j ∈ J \ {i} comes before i

in π.
(2) AppI,p only depends on the open sector of F in which p lies, hence on the permutation 

corresponding to p.
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(3) The tropical halfspace H+
I,p “approximates” the cell complex TAppI,p

:=
⋃

J∈AppI,p
TJ

in the following sense:
• For each J ∈ AppI,p, there is εJ > 0 such that TJ is contained in H+

I,p except 
possibly for an εJ -neighbourhood of the (relative) boundary ∂TJ .

• For each J /∈ AppI,p there is εJ > 0 such that TJ ∩ H+
I,p is contained in an 

εJ -neighbourhood of ∂TJ .

Proof.

(1) Consider the tropical hyperplane as a set in Rd. Then the halfspace Ti = H+
i corre-

sponds to the set {x ∈ Rd | xi ≤ xj , j �= i}. For ∅ �= I ⊂ [d], the cell TI corresponds 
to {x ∈ Rd | xi = xi′ , i, i′ ∈ I, xi ≤ xj , i ∈ I, j /∈ I}.
The permutation corresponding to a point p = (p1, . . . , pd) ∈ Rd is obtained by 
sorting the coordinates of p in increasing order.
Finally, to see if H+

i,p has nonempty intersection with TJ , we have to determine 
whether we can obtain a point in TJ by adding a point of Ti to p. This is equivalent 
to increasing any coordinate of p except for pi by an arbitrary amount. Obviously, 
this is the case if and only if pi ≤ pj for each j ∈ J . This is equivalent to the fact 
that any j ∈ J \ {i} comes before i in π.

(2) This is clear.
(3) We first prove the claim for Appi,p, i.e., for #I = 1; assume without loss of generality 

that i = 1. We will prove the statement by induction over the length of π, i.e., the 
minimal number of transpositions needed to write π as a product of transpositions.
For π = id = (1, . . . , d), the claim holds since the halfspace H+

1,p lies completely in 
the 1-sector of H.
Now assume the statement is true for π = (π1, . . . , πd) and apply one transposition τ
that swaps πj and πj+1 with πj < πj+1 to obtain π′; i.e., τ swaps two neighbouring 
entries of π, increasing the length by one. Denote by p′ one point in the π′-sector 
of H. In particular, we can always choose p′ such that H+

i,p′ ⊃ H+
i,p.

This means we move p into a neighbouring sector of F . There are two cases:
• If both πj , πj+1 come before 1 or both come after 1 in π, then AppI,p = AppI,p′ . 

It follows from (1) that H+
1,p′ still approximates TAppI,p′ .

Hence we can decrease the length by one by swapping the labels of the sectors πj

and πj+1.
• Assume πj = 1. By passing from sector π to the sector π′ we cross the hyperplane 

linT{1,πj+1}. We get Appi,p′ = Appi,p ∪ {r ∪ {πj+1} | r ∈ Appi,p}.
In order to show that H+

i,p′ approximates TAppi,p′ , let r ∈ Appi,p and denote 
r′ := r ∪ {πj+1}. I.e., Tr is approximated by H+

i,p. But then clearly Tr is also 
approximated by H+

i,p′ ⊃ H+
i,p. Moreover, Tr′ is approximated by H+

i,p′ since it 
intersects Hi,p′ and is contained in the boundary of Tr.

For #I ≥ 2, the statement follows from H+
I,p =

⋃
i∈I

H+
i,p. �
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Lemma 7.5. Let H ⊂ Td−1 be a tropical hyperplane with apex 0. For 1 ≤ j ≤ k let 
πj = (πj

1, . . . , π
j
d) be the permutation of [d] corresponding to a point pj ∈ Td−1 \ (

⋃
F). 

Furthermore let ∅ �= Ij ⊂ [d]. Then⋂
1≤j≤k

TAppIj ,pj
is homotopy equivalent to

⋂
1≤j≤k

H+
Ij ,pj .

Proof. For each ε > 0, we can choose all the pj in an ε-neighbourhood of 0. The homotopy 
is given by letting ε tend to 0. �
Lemma 7.6. Let H be a tropical pseudohyperplane in Td−1 and ∅ �= I, J ⊂ [d]. Then we 
can represent an approximating neighbourhood of TI ∪ TJ ∪ TI∪J as an intersection of 
affine pseudohalfspaces.

Proof. It suffices to prove the statement for usual tropical hyperplanes since the PL-
homeomorphism taking a tropical hyperplane to a tropical pseudohyperplane also maps 
our affine pseudohalfspaces in an appropriate way. See Fig. 14 for an example.

By Lemma 7.5 it suffices to show that for each set K �= I, J, I ∪ J there are L ⊂ [d]
and p ∈ Td−1 such that AppL,p contains I, J, I ∪ J but not K. Then we only need to 
intersect all of these affine pseudohalfspaces for each K �= I, J, I ∪ J .

Note that the open sectors of the arrangement F of linear hyperplanes and hence the 
points p ∈ Td−1 \ (

⋃
F) correspond to permutations π ∈ Symd. See again Fig. 13.

• First assume that there is x ∈ K \ (I ∪J). Then we can choose π to end in x to make 
sure x will never occur in any element of AppL,p. In detail, let I = {i1, . . . , ik}, 
J = {j1, . . . , jk′}. Let L = {ik, jk′} and let p be such that π = (i1, . . . , ik,
j1, . . . , jk′ , . . . , x). Then I, J, I ∪ J ∈ AppL,p but K /∈ AppL,p.

• Otherwise there is i ∈ (I ∪ J) \K. Let L = {i} and let π begin with the elements of 
(I ∪ J) − {i}. Then every element of AppL,p contains i. Hence K /∈ AppL,p. Again, 
it is easy to see that I, J, I ∪ J ∈ AppL,p. �

See Fig. 17 for an example.

Lemma 7.7. Let H be a tropical hyperplane with apex 0 in Td−1. For each (I, π) with 
∅ �= I ⊂ [d] and π ∈ Symd fix one point pIπ in the π-sector of H in such a way that 
the arrangement of tropical hyperplanes with apices in {0} ∪{pIπ} is in general position. 
Then

H := {HI,pIπ
| ∅ �= I ⊂ [d], π ∈ Symd}

is an arrangement of affine pseudohyperplanes.

Proof. This follows by applying the Topological Representation Theorem 6.12 to realis-
able tropical oriented matroids. �
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Fig. 16. The blow-up of the black tropical pseudohyperplane with respect to π = (2, 3, 1) yields a new tropical 
pseudohyperplane with apex in the (1, 3, 2)-sector of the first tropical pseudohyperplane.

We can extend the above construction to tropical pseudohyperplanes as follows: Let 
H be a tropical pseudohyperplane. Then H is the image of a tropical hyperplane H ′

under a PL-homeomorphism φ of Td−1. Then we define HI,p := φ(H ′
I,p).

Note that by continuity of φ and the fact that φ fixes the boundary of Td−1 we can 
always choose the point p so that HI,p lies very close to HI . Now consider an arrangement 
A = (Hi)i∈[n] of tropical pseudohyperplanes. We can do the above construction for each 
of them individually.

If H is a tropical pseudohyperplane in such an arrangement, then we can consider 
HI,p as H ′

I for the new hyperplane H ′ that arises by blowing up H with respect to the 
permutation p. The following is immediate:

Lemma 7.8. Let S = 
d−1 be the mixed subdivision dual to a tropical hyperplane H and 
fix π ∈ Symd. Then the blow-up of H with respect to π corresponds to adding a second 
tropical hyperplane with apex in the π-sector of H.

See Fig. 16 for an illustration.
We can use blow-ups to construct an affine pseudohyperplane arrangement H for a 

given tropical pseudohyperplane H. For each (I, π) with π ∈ Symd and ∅ �= I ⊂ [d]
perform one blow-up of H with respect to π and denote the tropical pseudohyperplane 
emerging from this blow-up by HI,π.

We then obtain (2d − 2)d! new tropical pseudohyperplanes, one for each (I, π), and 
hence a mixed subdivision of ((2d − 2)d! + 1)
d−1. With this we can, in the dual arrange-
ment of tropical pseudohyperplanes, define H = HI,π

I . See Fig. 17 for an illustration.

Theorem 7.9. The types in a tropical pseudohyperplane arrangement as in Definition 6.4
satisfy the elimination axiom of a tropical oriented matroid.

Proof. Let S be a mixed subdivision of n
d−1 dual to the arrangement of tropical 
pseudohyperplanes. Let A, B be cells in S. By Proposition 5.2 it suffices to show that 
SAB is path connected.

By Lemma 7.6 we can approximate the set SAB = {C | Ci ∈ {Ai, Bi, Ai ∪Bi}} as an 
intersection X =

⋂
H+

i of pseudohalfspaces in an arrangement of affine pseudohyper-
planes obtained by suitable blow-ups of S.



110 S. Horn / Journal of Combinatorial Theory, Series A 142 (2016) 77–112
Fig. 17. An approximating neighbourhood for a = 1, b = 23 as an intersection of affine pseudohalfspaces in 
a blow-up of the black tropical pseudohyperplane.

By Proposition 6.3, X is path connected.
Moreover, SAB is homotopic to X. To see this, we shrink the new tropical pseudo-

hyperplanes that were added during the blow-ups. Denote by S′ the blow-up of S and 
assume without loss of generality that the original n tropical pseudohyperplanes have 
indices 1, . . . , n. Moreover, assume that S′ is a mixed subdivision of N
d−1.

We can embed 
d−1 into Rd in a natural way, namely as the convex hull of the 
standard unit vectors: 
d−1 = conv{ei | 1 ≤ i ≤ d}. This also yields embeddings of S, 
respectively S′ into Rd. Every point in S (respectively S′) is then of the form 

∑n
i=1 Ci

(respectively 
∑N

i=1 Ci) where Ci ∈ 
d−1.
Consider the following homotopy:

H : [0, 1] × S′ → S :
(
λ,

N∑
i=1

Ci

)
�→

n∑
i=1

Ci + (1 − λ)
N∑

i=n+1
Ci.

It is clear that H is continuous. Moreover, H(0, X) = X and H(1, X) = SAB and 
hence SAB is homotopic to X. �
7.3. Non-fine mixed subdivisions

In this section we prove that arbitrary mixed subdivisions of n
d−1 satisfy the elim-
ination property.

We can still construct approximating neighbourhoods in a similar way, even if the 
mixed subdivision is not fine.

For a (not necessarily fine) mixed subdivision of n
d−1 we can as above blow up every 
tropical pseudohyperplane to obtain for each 1 ≤ i ≤ d an arrangement Hi = (Hi)I,πI of 
affine pseudohyperplanes.

The following is clear from the above:

Lemma 7.10. Let S be a (not necessarily fine) mixed subdivision of n
d−1. Then 
⋃
{Hi}

is an arrangement of affine pseudohyperplanes.

With this we are now ready to prove the main result of this chapter:



S. Horn / Journal of Combinatorial Theory, Series A 142 (2016) 77–112 111
Fig. 18. A non-fine mixed subdivision S of 2�2 with the dual arrangement of tropical pseudohyperplanes 
(on the right). If we choose the types A = (3, 2), B = (13, 13), their convex hull SAB (drawn in grey) 
consists of the types {A = (3, 2), B = (13, 13), (13, 2), (13, 123)}. It can be approximated by the affine 
pseudohalfspaces whose boundaries are drawn with dashed lines. The corresponding blow-up of S with the 
approximation of the convex hull SAB is drawn on the right. The two original tropical pseudohyperplanes 
are drawn in black.

Theorem 7.11. Every mixed subdivision of n
d−1 satisfies the elimination property.

See Fig. 18 for an example.

Proof of Theorem 7.11. Let S be a mixed subdivision of n
d−1 and A, B two cells 
in S. If we repeatedly blow up S with respect to any (i, π, I) we obtain n(2d − 2)d!
new tropical pseudohyperplanes (one for each (i, π, I)) and hence a mixed subdivision of 
(n + n(2d − 2)d!)
d−1. From this we choose our HI,ps to approximate the convex hull 
SAB . It remains to show that these again form an arrangement of affine pseudohyper-
planes. But this follows since if we delete the n original tropical pseudohyperplanes we 
obtain a tropical pseudohyperplane arrangement in general position.

From here on the proof works as for Theorem 7.9. �
Corollary 7.12. (See [2, Conjecture 5.1].) Tropical oriented matroids with parameters 
(n, d) are in one-to-one correspondence with mixed subdivisions of n
d−1 and subdivi-
sions of 
n−1 ×
d−1.

This completes the proof of the equivalence of the concepts of tropical oriented 
matroids, tropical pseudohyperplane arrangements of type I (Definition 4.3), mixed sub-
divisions of n
d−1 and subdivisions of 
n−1×
d−1 depicted in Fig. 2. Moreover, tropical 
oriented matroids in general position (as well as fine mixed subdivisions of n
d−1 and 
triangulations of 
n−1 × 
d−1) are also equivalent to tropical pseudohyperplane ar-
rangements of type II (Definition 6.4).

Moreover, the duality relation between mixed subdivisions of n
d−1 and d
n−1 im-
plies that the dual of a tropical oriented matroid is itself a tropical oriented matroid.

Corollary 7.13. (See [2, Conjecture 5.5].) The dual of a tropical oriented matroid with 
parameters (n, d) is a tropical oriented matroid with parameters (d, n).
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