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A tanglegram is a pair of binary trees with the same set of 
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counting several variations of unlabeled tanglegrams. We use 
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1. Introduction

A tanglegram is a diagram, used in biology to compare phylogenetic trees, consisting 
of two (usually binary) trees together with a matching of their leaves. Tanglegrams were 
recently counted by Billey, Konvalinka, and Matsen [3], and we refer to this paper (and 
their related paper [2]) for references to biological applications. We answer here several 
questions raised by Billey, Konvalinka, and Matsen, by giving formulas for counting three 
variations of tanglegrams.
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Fig. 1. A binary tree.

Fig. 2. A labeled tanglegram with three leaves.

Fig. 3. Another representation of the tanglegram of Fig. 2.

We define a binary tree to be a rooted tree in which every vertex has either zero or 
two children, and in which the leaves (vertices with no children) are labeled with distinct 
labels but the interior vertices are unlabeled. (See Fig. 1.) Note that the tree with only 
one (labeled) vertex is a binary tree. The children of an interior vertex are not ordered, 
so, for example, there is one binary tree with label set {1, 2}. It is not hard to show that 
the number of binary trees with label set [n] = {1, 2, . . . , n} is 1 · 3 · · · (2n − 3) for n > 1. 
(See, e.g., [15, Example 5.2.6].)

We define a labeled tanglegram to be an ordered pair of binary trees with the same 
set of leaf labels. Fig. 2 shows a labeled tanglegram with three leaves and Fig. 3 shows 
another way of drawing the same tanglegram. Labeled tanglegrams are easy to count: 
the number of labeled tanglegrams with n leaves is (1 · 3 · · · (2n − 3))2.

An unlabeled tanglegram is an isomorphism class of tanglegrams, where two tan-
glegrams are considered to be isomorphic if one can be obtained from the other by 
permutation of the labels. Billey, Konvalinka, and Matsen [3] proved a formula for the 
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Fig. 4. An unrooted tanglegram with five leaves.

number of unlabeled tanglegrams with n leaves. They left open the problem of counting 
several variations of unlabeled tanglegrams: unordered tanglegrams, unrooted tangle-
grams, and unordered unrooted tanglegrams. An unordered tanglegram is an unordered
pair of binary trees (not necessarily distinct) with the same set of leaf labels and an un-
rooted tanglegram is an ordered pair of unrooted trees with the same set of leaf labels in 
which every vertex of each tree has degree one or three, and only the leaves are labeled. 
(For unrooted trees, leaves are vertices of degree one.) An unrooted tanglegram is shown 
in Fig. 4.

In this paper we count these three variations of tanglegrams using the theory of 
combinatorial species, which is an effective tool for counting unlabeled graphs of various 
kinds. In Section 2 we briefly review the theory of combinatorial species; in particular we 
discuss the operations of Cartesian product and composition of species, and introduce 
two important generating functions associated to a species: the cycle index series and the 
unlabeled generating function. In Section 3 we describe the species of rooted trees and the 
species of tanglegrams, which is the Cartesian product the species of rooted trees with 
itself. In Section 4 we review the little-known operation of inner plethysm for species 
and symmetric functions, and apply it to the enumeration of unordered tanglegrams. 
Unrooted tanglegrams, both ordered and unordered, can easily be counted once we know 
the cycle index series for “unrooted binary trees,” which is computed in Section 5 using 
Leroux’s dissymmetry theorem. Finally in Section 6 we discuss the remarkable explicit 
formula found by Billey, Konvalinka, and Matsen [3, Proposition 4] for the cycle index 
series for binary trees, and we show how it can be derived by iterative application of the 
binomial theorem.

2. Species

The theory of combinatorial species, initiated by André Joyal [9,10], allows us to 
construct combinatorial objects in ways that enable us to count them. We give here a 
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very brief account of part of the theory; we refer the reader to Bergeron, Labelle, and 
Leroux [1] for a comprehensive exposition. A concise introduction to the theory of species 
can be found in [8].

A species is a functor from the category of finite sets with bijections to itself. A species 
F associates to each finite set A a finite set F [A], called the set of F -structures on A, 
and associates to each bijection of finite sets σ : A → B a bijection F [σ] : F [A] → F [B]. 
In particular, any bijection π : [n] → [n] yields a bijection F [π] : F [n] → F [n], where 
F [n] = F [{1, 2, . . . , n}], so the symmetric group Sn acts on the set F [n]. The Sn-orbits 
under this action are called unlabeled F -structures of order n. To any species F we may 
associate its cycle index series ZF , a symmetric function defined by

ZF = ZF (p1, p2, . . . ) =
∞∑

n=0

1
n!

( ∑
σ∈Sn

fixF [σ] pσ
)
. (1)

Here pk is the power sum symmetric function2 ∑∞
j=1 x

k
j , fixF [σ] = |{s ∈ F [n] : F [σ](s) =

s}|, and pσ = pσ1
1 pσ2

2 . . . , where σi is the number of i-cycles of σ.
The inner sum in (1) contains n! terms, many of which are equal. It is much more 

efficient to replace this sum with a sum over partitions of n. To do this, we associate to 
each σ ∈ Sn a partition of n, called its cycle type, by listing the lengths of its cycles in 
weakly decreasing order. Thus the cycle type of the permutation (142)(5)(3) is (3, 1, 1). 
Two permutations in Sn are conjugate if and only if they have the same cycle type. 
It is not hard to show that fixF [σ] depends only on the conjugacy class of σ, so for 
each partition λ of n we may define fixF [λ] to be fixF [σ] where σ is a permutation of 
[n] with cycle type λ. We define the power sum symmetric functions pλ similarly, so if 
λ = (λ1, λ2, . . . , λk) then pλ = pλ1pλ2 · · · pλk

. If the partition λ has mi parts equal to i, 
for each i, then we define zλ to be zλ = 1m1m1! 2m2m2! · · · , so the number of partitions 
in Sn of cycle type λ is n!/zλ. Thus a more compact formula for the cycle index Zλ is

ZF =
∞∑

n=0

(∑
λ�n

fixF [λ] pλ
zλ

)
,

where λ � n means that the sum is over all partitions λ of n.
For any species F , we denote by F̃ (x) the ordinary generating function for unlabeled 

F -structures; that is,

F̃ (x) =
∞∑

n=0
fnx

n,

2 In many accounts of cycle indices our power sums pi are replaced with indeterminates. In particular, 
our pi is written as xi in [1].
The sum of the terms of degree n in ZF forms the “characteristic” or “Frobenius image” of the representation 
of Sn associated with the action of Sn on F [n] (see, e.g., [15, pp. 351–352 and 395–396]) and all of the 
operations on species that we discuss have analogues for representations of symmetric groups. This is one 
of the reasons why we consider cycle indices to be symmetric functions.
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where fn is the number of unlabeled F -structures of order n. Then by [1, p. 18, Theorem 
8b] we have

F̃ (x) = ZF (x, x2, x3, . . . ) (2)

=
∞∑

n=0
xn

(∑
λ�n

fixF [λ]
zλ

)
.

That the number of unlabeled F -structures of order n is 
∑

λ�n fixF [λ]/zλ can also be 
seen directly by Burnside’s lemma (see Section 3).

Among the most important species are the species En of n-element sets, defined for 
n ∈ N by

En[A] =
{
{A}, if |A| = n

∅, otherwise.

The cycle index of En is the complete symmetric function hn, defined by

hn =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin ,

and also given by the formula

hn =
∑
λ�n

pλ
zλ

, (3)

which follows from
∞∑

n=0
hn =

∞∏
j=1

1
1 − xj

= exp
( ∞∑

k=1

pk
k

)
.

The special case E1, the species of singleton sets, is denoted by X. It has cycle index 
ZX = p1.

Given species F and G, we can combine them to get the sum F +G, the product FG, 
the composition F (G) (also denoted F ◦G), and the Cartesian product F ×G, and these 
operations on species translate into operations on cycle indices. We refer the reader to 
[1, pp. 1–58] for details about these operations.

The sum (F +G)[A] is the disjoint union of F [A] and G[A]. An FG-structure on the 
set A is obtained by partitioning A into disjoint subsets B and C (possibly empty) and 
taking an F -structure on B and a G-structure on C.

Suppose that3 G[∅] = ∅. Then an F (G)-structure on the set A is an F -structure of G-
structures; more precisely, F (G)[A] is the set of triples (π, α, β), where π is a partition of 

3 The composition F (G) can be defined without this condition, but we will not need the more general 
definition.
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the set A, α is an F -structure on (the set of blocks of) π, and β is a set of G-structures 
on the blocks of π. In particular, an En(G)-structure on A is a partition of A into n
blocks, together with a G-structure on each block.

The Cartesian product is defined by (F×G)[A] = F [A] ×G[A]; thus an F×G-structure 
is a pair of structures on the same set.

The corresponding operations for cycle indices are simple for the sum and product: 
ZF+G = ZF + ZG and ZFG = ZFZG. The cycle index operation for composition of 
species is an operation on symmetric functions called composition or plethysm (see, e.g., 
[15, p. 447]). The composition of symmetric functions f and g, denoted by f [g] or f ◦ g, 
may be defined by

f [g] = f(g(p1, p2, p3, . . . , ), g(p2, p4, p6, . . . ), . . . );

i.e., f [g] is obtained from f by replacing each pi with pi[g] = g(pi, p2i, p3i, . . . ). Then 
ZF (G) = ZF [ZG]. In particular, since ZE2 = h2 = 1

2(p2
1 + p2), we have ZE2 [g] = 1

2 (g2 +
p2[g]). The cycle index operation corresponding to the Cartesian product on species is 
an operation on symmetric functions called the Kronecker product, internal product, or 
inner product. The Kronecker product, denoted by ∗, is defined by pλ ∗ pμ = δμλzλpλ
and linearity, or equivalently,∑

λ

aλ
pλ
zλ

∗
∑
λ

bλ
pλ
zλ

=
∑
λ

aλbλ
pλ
zλ

.

Then ZF×G = ZF ∗ ZG.
As is customary in discussing species we will consider isomorphic species to be equal; 

for example, in equation (4) below the two sides are really isomorphic rather than equal.

3. Tanglegrams

Let R be the species of (rooted) binary trees with labeled leaves and unlabeled internal 
vertices. A binary tree is either a single labeled vertex or an unlabeled root together with 
an unordered pair of binary trees. Thus R satisfies the equation

R = X + E2(R), (4)

so the cycle index ZR satisfies

ZR = p1 + h2[ZR]. (5)

Terms of ZR can be computed fairly easily by successive substitution in (5), though there 
are other ways to compute them that are more efficient. (See, e.g., [11, Corollary D1]
and Section 6.) The first few terms of ZR are
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p1 +
(

1
2p

2
1 + 1

2p2

)
+

(
1
2p1p2 + 1

2p
3
1

)
+

(
5
8p

4
1 + 3

8p
2
2 + 3

4p
2
1p2 + 1

4p4

)
+ · · ·

It is easy to see from (5) that if the power sum pi occurs in ZR, then i is a power of 2. 
From (5) we can also easily derive the well-known functional equation for the ordinary 
generating function R̃(x)

R̃(x) = x + 1
2
(
R̃(x)2 + R̃(x2)

)
,

(see [14, A001190]) but to count unlabeled tanglegrams we need the full cycle index.
Now let T be the species of (labeled) tanglegrams. Since a tanglegram is a pair of 

binary trees with the same set of labels, T is the Cartesian product R × R, so ZT =
ZR×R = ZR ∗ ZR. Thus if

ZR =
∑
λ

rλ
pλ
zλ

, (6)

where the sum is over all partitions λ, then ZT =
∑

λ r
2
λpλ/zλ, and the number of 

unlabeled tanglegrams with n leaves is

∑
λ�n

r2
λ

zλ
. (7)

A formula equivalent to (7) was given by Billey, Konvalinka, and Matsen [3, Theorem 
1]; we will discuss their result further in Section 6.

A tangled chain of length k is a k-tuple of binary trees sharing the same set of leaves. 
It is clear that the species of tangled chains is the kth Cartesian power of R, so the 
number of unlabeled tangled chains of length k is

∑
λ�n

rkλ
zλ

, (8)

as also shown by Billey, Konvalinka, and Matsen [3, Theorem 3].
It may be noted that (8) is an easy consequence of Burnside’s lemma: if a group G

acts on a finite set S then the number of orbits is

1
|G|

∑
g∈G

fix g, (9)

where fix g is the number of elements of S fixed by g. To derive (8) from Burnside’s 
lemma, we consider the action of Sn on k-tuples of labeled binary trees with leaf set [n]. 
A k-tuple is fixed by a permutation if and only if all its entries are fixed, so the n!/zλ
permutations of cycle type λ contribute (n!/zλ)rkλ to the sum (9). Thus the number of 
orbits is
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1
n!

∑
λ�n

n!
zλ

rkλ =
∑
λ�n

rkλ
zλ

.

4. Unordered tanglegrams

To count unordered tanglegrams, we use another operation on species, inner plethysm, 
that is not as well known as the other operations. Inner plethysm is a kind of composition 
of species that bears the same relation to the Cartesian product that ordinary compo-
sition bears to the ordinary product. It is closely related to the operation of functorial 
composition of species introduced in [4] and discussed further in [1, Section 2.2]. The 
term “inner plethysm” was introduced by D.E. Littlewood [13] for the corresponding op-
eration on symmetric functions, and the species operation was introduced by L. Travis in 
his Ph.D. thesis [18]. We refer to this thesis for results about inner plethysm not proved 
here.

There is no standard notation for inner plethysm, so we will introduce the notation 
F{G} for the inner plethysm of species, with the same notation for inner plethysm of 
symmetric functions. We will define here only the inner plethysm En{G}, which is all 
that we need: for any finite set A, En{G}[A] is the set of multisets of size n of elements 
of G[A]. We can define En{G} in another way: The symmetric group Sn acts on the 
elements of the nth Cartesian power G×n[A] by permuting the n entries, and the elements 
of En{G}[A] are the orbits under this action. (The functorial composition of species is 
defined similarly, but with a set, rather than a multiset, of elements of G[A].)

Inner plethysm of symmetric functions is determined by the following:

(1) for fixed g, the map f �→ f{g} is a homomorphism from the ring of symmetric func-
tions with the usual product to the ring of symmetric functions with the Kronecker 
product

(2) For a partition λ and an integer k, let λk denote the cycle type of the kth power of 
a permutation with cycle type λ. Then

pk

{∑
λ

aλ
pλ
zλ

}
=

∑
λ

aλk

pλ
zλ

.

Travis [18, Theorem 2.12] showed that for any species F and G, we have ZF{G} =
ZF {ZG}.

It is clear that the species of unordered tanglegrams is E2{R}, where R is the species of 
binary trees. So the cycle index for unordered tanglegrams is h2{ZR} = 1

2(p2
1 +p2){ZR}. 

Thus if ZR =
∑

λ rλpλ/zλ then the cycle index for unordered tanglegrams is

1
2

(∑
r2
λ

pλ
zλ

)
+ 1

2

(∑
rλ2

pλ
zλ

)
,

λ λ
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and we obtain the number of unordered tanglegrams with n leaves by setting each pλ
to 1 in the sum of the terms of degree n. So if an is the number of unordered tanglegrams 
with n leaves then

an = 1
2
∑
λ�n

r2
λ + rλ2

zλ
.

This formula for unordered tanglegrams can also be derived directly from Burnside’s 
lemma, using the action of Sn×S2 on labeled tanglegrams, where S2 acts by permuting 
the two trees.

Here are the first few values of the number an of unordered tanglegrams with n leaves 
(see [14, A259114]):

n 1 2 3 4 5 6 7 8 9 10 11
an 1 1 2 10 69 807 13048 269221 6660455 191411477 6257905519

Similarly, Ek{R} is the species of unordered tangled chains of length k.

5. Unrooted tanglegrams

To count unrooted tanglegrams, we need to find the cycle index for unrooted trees, and 
to do this we use a dissymmetry theorem. Dissymetry theorems, introduced by Leroux 
[12], reduce the enumeration of unrooted trees to the enumeration of several types of 
rooted trees, and these rooted trees can usually be counted through decompositions. The 
basic dissymmetry theorem says that if A is a species of unrooted trees of some type, 
A• is the species of A-trees rooted at a vertex,4 A− is the species of A-trees rooted 
at an edge, and A•− is the species of A-trees rooted at a vertex and incident edge (or 
equivalently, at a directed edge), then

A + A•− = A• + A−. (10)

We give here a brief sketch of the proof of (10), referring the reader to [1, Section 4.1]
for a more detailed discussion. Every tree has a unique “center,” which is a vertex or 
edge that is fixed by every automorphism of the tree. An unrooted tree may be identified 
with a tree rooted at its center. To prove (10), we describe a bijection, equivariant with 
respect to the automorphism group of the tree, from the non-center vertices and edges of 
a tree to pairs consisting of a vertex and an incident edge. If v is a non-center vertex, we 
pair it with the first edge on the unique path from v to the center (this edge may be the 
center), and if e is a non-center edge, we pair it with the first vertex on the unique path 
from e to the center (this vertex may be the center). From the bijection just described, 

4 A tree rooted at a vertex is formally an ordered pair (T, v), where T is a tree and v is a vertex of T . 
Trees rooted at edges are defined similarly.
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we get a bijection from A-trees rooted at a vertex or edge to A-trees rooted at a center 
vertex or edge (equivalent to unrooted A-trees) or at a vertex and incident edge.

Now let U be the species of “unrooted binary trees”; that is, unrooted trees in which 
every vertex has degree one or three, the leaves (vertices of degree one) are labeled, and 
the internal vertices (of degree three) are unlabeled. (We are not including the tree with 
one vertex.) First we consider U -trees rooted at an edge e. Removing the edge e and 
rooting the remaining two trees at the vertices incident with e gives two rooted binary 
trees. Thus U− = E2(R) = R−X, where R is the species of rooted binary trees discussed 
in Section 3. Similarly, we can remove the root edge from a U -tree rooted at a vertex 
and incident edge to obtain a pair of rooted trees, but in this case the pair is ordered, so 
U•− = R2. Finally, the U -trees rooted at a vertex may be rooted at either an internal 
vertex or a leaf. The species of U -trees rooted at an internal vertex is E3(R) and the 
species of U -trees rooted at a leaf is XR, so U• = E3(R) + XR. Thus (10) gives

U + R2 = E3(R) + XR + R−X,

and we obtain a formula for the cycle index of U ,

ZU = h3[ZR] + p1ZR + ZR − Z2
R − p1.

The first few terms of ZU are(
1
2p

2
1 + 1

2p2

)
+

(
1
6p

3
1 + 1

2p1p2 + 1
3p3

)
+
(

1
8p

4
1 + 1

4p
2
1p2 + 3

8p
2
2 + 1

4p4

)
+ · · ·

Then the species of unrooted tanglegrams is the Cartesian product U ×U , with cycle 
index ZU ∗ZU and the species of unrooted unordered tanglegrams is E2{U}, with cycle 
index h2{ZU}. These cycle indices are easily computed, and the numbers of unlabeled 
tanglegrams of these types may be obtained from the cycle indices by (2). The numbers 
bn of unrooted tanglegrams and cn of unrooted unordered tanglegrams, with n leaves, 
for small values of n are as follows:

n 2 3 4 5 6 7 8 9 10 11 12
bn 1 1 2 4 31 243 3532 62810 1390718 36080361 1076477512

n 2 3 4 5 6 7 8 9 10 11 12
cn 1 1 2 4 22 145 1875 31929 698183 18056523 538340256

The sequence bn is [14, A259115] and the sequence cn is [14, A259116].
Similarly, the kth Cartesian power U×k is the species of unrooted tangled chains of 

length k and the inner plethysm Ek{R} is the species of unordered unrooted tangled 
chains of length k.

Symmetric function computations were done with the help of John Stembridge’s Maple 
package for symmetric functions [16,17].
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6. The formula of Billey, Konvalinka, and Matsen

Billey, Konvalinka, and Matsen [3, Proposition 4] proved (though they did not state 
it this way) that if λ is a binary partition of n, that is, a partition in which every part 
is a power of 2, then the coefficient rλ of pλ/zλ in ZR, as defined in (5), is given by the 
simple explicit formula

rλ =
l(λ)∏
i=2

(
2(λi + · · · + λl(λ)) − 1

)
, (11)

where l(λ) is the number of parts of λ. (If λ is not a binary partition then rλ = 0.) They 
proved (11) by showing that the right side of (11) satisfies the same recurrence that (5)
implies for the coefficients of ZR. A bijective proof of (11) was given by Fusy [5].

Although Billey, Konvalinka, and Matsen’s proof of (11) is short and direct, it is of 
interest to place (11) into a broader context.

If we let r(z) be the result of setting p1 = z and pi = 0 for i > 1 in ZR then, as noted 
in [3], r(z) is the exponential generating function for labeled binary trees, and (5) yields

r(z) = z + r(z)2/2. (12)

There are two ways of deriving from (12) the explicit formula

r(z) =
∞∑

n=1
1 · 3 · 5 · · · (2n− 3)z

n

n! , (13)

in which the coefficient of zn/n! is given by (11) for λ = (1n); we might hope that at 
least one of them will generalize to give (11).

First, we can apply Lagrange inversion [6], which can solve functional equations of 
the form f(z) = z + G

(
f(z)

)
, and we obtain

r(z) =
∞∑

n=1

1
2n−1n

(
2n− 2
n− 1

)
zn =

∞∑
n=1

1 · 3 · 5 · · · (2n− 3)z
n

n! ,

and more generally, for any positive integer k we have

r(z)k =
∞∑

n=k

k

2n−k(2n− k)

(
2n− k

n

)
zn

= k!
∞∑

n=k

1 · 3 · 5 · · · (2n− 2k − 1)
(

2n− k − 1
k − 1

)
zn

n! .

Here and elsewhere an empty product is taken to be 1. There is a generalization of 
Lagrange inversion for plethystic equations, due to Labelle [11] (see also [7]), which can 
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be applied to (5). However, it is not clear how (11) can be obtained from Labelle’s 
formula.

The second approach to equation (13) is through the binomial theorem. We can solve 
(12) to get r(z) = 1 −

√
1 − 2z, and then apply the binomial theorem to get

r(z) =
∞∑

n=1
(−1)n−1

( 1
2
n

)
2nzn =

∞∑
n=1

1 · 3 · 5 · · · (2n− 3)z
n

n! .

More generally, the binomial theorem gives for any k

(
1 − r(z)

)k = (1 − 2z)k/2 = 1 −
∞∑

n=1
k(2 − k)(4 − k) · · · (2n− 2 − k)z

n

n! .

If generalized Lagrange inversion is the right way to derive (11), then one would expect 
to find similar nice formulas for Zk

R, for integers k > 1. On the other hand, if (11) is 
a consequence of a binomial theorem for symmetric functions then we might expect to 
find nice formulas for coefficients of (1 − ZR)k rather than for Zk

R.
It turns out that we find nice formulas for (1 −ZR)k but not for Zk

R, suggesting that 
(11) may be related to the binomial theorem, and this is in fact the case.

We now show how formula (11), and more generally a formula for the coefficients of 
arbitrary powers of 1 − ZR, can be derived from the ordinary binomial theorem, using 
an iterative approach similar to that used by Wagner [19] in deriving a formula for the 
cycle index series for rooted trees.

In the following proof, any product of the form 
∏n

i=n+1 ui is interpreted as 1 and any 
sum of the form vj + vj+1 + · · · + vn with j = n + 1 is interpreted as 0.

Theorem 6.1. Let G = 1 − ZR, where ZR satisfies (5). Then G satisfies

G = (p2[G] − 2p1)1/2, (14)

and for any α,

G−α =
∑
λ

pλ
zλ

l(λ)∏
j=1

(α + 2λj+1 + 2λj+2 + · · · + 2λl(λ)),

where the sum is over all binary partitions λ.

Proof. We first note that Billey, Konvalinka, and Matsen’s formula (11) may be obtained 
from the theorem by rewriting the product as

α

l(λ)∏
(α + 2λj + 2λj+1 + · · · + 2λl(λ)),
j=2
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and setting α = −1.
Since h2 = 1

2 (p2
1 + p2), equation (5) may be written

1 −G = p1 + 1
2 (p2

1 + p2)[1 −G] = p1 + 1
2 (1 −G)2 + 1

2 (1 − p2[G]).

This may be rearranged to G2 = p2[G] − 2p1, which yields (14).
Keeping in mind that G, and thus p2[G], has constant term 1, we may apply the 

binomial theorem to (14) to get

G−α = (p2[G] − 2p1)−α/2 =
∞∑

m=0
(−2)m

(
−α/2
m

)
pm1 p2[G]−α/2−m

=
∞∑

m=0

α(α + 2)(α + 4) · · · (α + 2m− 2)
m! pm1 p2[G]−α/2−m, (15)

where for m = 0, the coefficient in (15) is 1.
Now let C(λ, α) be the coefficient of pλ in G−α. Then C(λ, α) is a polynomial in α, and 

is 0 unless λ is a binary partition. If λ is a binary partition in which 1 occurs m times as 
a part, then there is a (possibly empty) binary partition μ = (μ1, μ2, . . . , μl(λ)−m) such 
that

λ = (2μ1, · · · , 2μl(λ)−m, 1, . . . , 1︸ ︷︷ ︸
m

).

From (15) we see that C(λ, α) satisfies, and is determined by, the recurrence

C(λ, α) = α(α + 2)(α + 4) · · · (α + 2m− 2)
m! C(μ, α/2 + m), (16)

together with the initial condition C(∅, α) = 1. Here the factor in front of C(μ, α/2 +m)
is taken to be 1 for m = 0.

Define D(λ, α) for a binary partition λ by

D(λ, α) = 1
zλ

k∏
j=1

(α + 2λj+1 + 2λj+2 + · · · + 2λk), (17)

where we have written k for l(λ). We will prove that C(λ, α) = D(λ, α) by showing that 
D(λ, α) satisfies the same recurrence as C(λ, α).

Suppose that λ is a nonempty binary partition with m parts equal to 1. Removing from 
λ the parts equal to 1 and then dividing each remaining part by 2 leaves another (possibly 
empty) binary partition μ. A straightforward computation shows that zλ = m! 2k−mzμ.

The product of the last m factors in (17) is

k∏
(α + 2λj+1 + 2λj+2 + · · · + 2λk).
j=k−m+1
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If any parts of λ occur in this product (i.e., if m ≥ 2) then the lowest indexed part that 
occurs is λk−m+2 = 1. Thus all of the parts of λ that occur in this product are equal to 
1, so the product is equal to

(α + 2m− 2)(α + 2m− 4) · · · (α + 2)α, (18)

and this is also true if m = 0 or 1, where the product is 1 if m = 0 and is α if m = 1. 
Thus (17) is equal to (18) times

1
zλ

k−m∏
j=1

(
α + (2λj+1+ · · · + 2λk−m) + (2λk−m+1 + · · · + 2λk)

)

= 1
zλ

k−m∏
j=1

(α + 2m + 2λj+1 + · · · + 2λk−m)

= 2k−m

zλ

k−m∏
j=1

(α/2 + m + 2μj+1 + · · · + 2μk−m)

= 1
m! zμ

k−m∏
j=1

(α/2 + m + 2μj+1 + · · · + 2μk−m)

= 1
m!D(μ, α/2 + m).

Thus D(λ, α) satisfies the same recurrence and initial conditions as C(λ, α), so C(λ, α) =
D(λ, α). �
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