
Journal of Combinatorial Theory, Series A 133 (2015) 97–138
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

Irreducible modules for the degenerate double affine 

Hecke algebra of type A as submodules of Verma 

modules

Martina Balagović
School of Mathematics and Statistics, Newcastle University, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 April 2014
Available online 23 February 2015

Keywords:
Degenerate DAHA
Category O
Intertwiners
Fusion procedure

We give a full classification, in terms of periodic skew 
diagrams, of irreducible modules in category Oss for the 
degenerate double affine Hecke algebra of type A which can 
be realized as submodules of Verma modules.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Irreducible representations in category O for the degenerate double affine Hecke alge-
bra (trigonometric Cherednik algebra) Ḧn (κ) of type A have been classified by Suzuki 
in [14]. They are parametrized by periodic Cherednik diagrams, which are an infinite, 
periodic, skew generalization of Young diagrams. Given such a diagram D, the con-
struction in [14] produces a character χD of a commutative subalgebra C[u1, . . . , un] of 
Ḧn (κ). One can induce from any one dimensional representation χ of the subalgebra 
C[u1, . . . , un] and get a representation of the entire algebra Ḧn (κ); the resulting in-
duced representation Mχ is called the Verma module. For a character χ = χD obtained 
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from a periodic Cherednik diagram D, the resulting Verma module Mχ = MD has a 
distinguished quotient ND called the small Verma module, which in turn has a unique 
irreducible quotient LD. All irreducible representations of Ḧn (κ) in the appropriately 
defined category O can be realized in this way, and it is known which diagrams D produce 
isomorphic irreducible representations. This gives a parametrization of simple objects in 
category O in terms of equivalence classes of periodic Cherednik diagrams.

A certain full subcategory Oss of O is particularly approachable. Its objects are 
semisimple or calibrated modules, defined as those Ḧn (κ) modules on which the sub-
algebra C[u1, . . . , un] acts diagonally. Suzuki and Vazirani [16] classify such irreducible 
modules in terms of periodic Cherednik diagrams. They prove that an irreducible module 
LD is semisimple if and only if D is a periodic skew diagram. This is a combinatorial 
condition on the arrangement of boxes in D, and it directly generalizes the corresponding 
condition for semisimple representations of the degenerate affine Hecke algebra from [12].

In fact, many results in the representation theory of (degenerate) double affine Hecke 
algebras parallel analogous results in the representation theory of (degenerate) affine 
Hecke algebras. The correspondence is analogous to that between Weyl groups and an 
affine Weyl groups. For example, irreducible representations of degenerate affine Hecke 
algebras correspond to (finite) Cherednik diagrams, and semisimple representations cor-
respond to (finite) skew Young diagrams (see [1,13]). This paper proves a double affine 
analogue of a theorem about affine Hecke algebras due to Guizzi, Nazarov, and Papi.

The result in question appears in [3]. It relies on the philosophy that submodules 
are easier to understand and work with than quotients, (e.g. in computations and ex-
amples), and seeks to explicitly realize any irreducible module Laff

χ for the affine Hecke 
algebra, normally constructed as a quotient of the Verma module Maff

χ , as a submodule 
of (another) Verma module Maff

τ . For a character χD corresponding to a Cherednik di-
agram D, the authors consider the character τ = w0χ, for w0 the longest element of the 
symmetric group, construct a homomorphism Maff

χ → Maff
τ using rescaled intertwiners, 

and prove that it factors through the quotient map Maff
χ → Laff

χ , thus realizing Laff
χ as 

a submodule of Maff
τ . Though the existence of such an inclusion could potentially be 

deduced from general principles (for example, by proving that every Verma module Maff
τ

has a simple socle isomorphic to Laff
w0τ , or by considering dual modules), the advantage of 

the construction in [3] is in the explicit construction of the eigenvector in Maff
τ with the 

required eigenvalue, and the underlying combinatorics of fusion of intertwining operators 
associated to the symmetric group, continuing the work on fusion developed in [1,2,6].

We study the corresponding question for double affine Hecke algebras Ḧn (κ), for 
n ∈ N, n ≥ 2 and a parameter κ ∈ N. The main result of the paper is the following:

Theorem 1.1. Let LD be the semisimple irreducible module for the degenerate double 
affine Hecke algebra Ḧn (κ) associated to a periodic skew diagram D. Then LD can be 
realized as a submodule of a Verma module if and only if κ = 1, or κ ≥ 2 and the diagram 
D has no infinite column.
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Notice some similarities and differences to the main result of [3]. Firstly, in the double 
affine Hecke algebra setting there is no longest element w0 of the Weyl group (affine 
symmetric group in our case, and symmetric group in [3]), so the choice of τ such that 
LD embeds into Mτ is more involved. Secondly, in the case of degenerate affine Hecke 
algebras every irreducible module can be embedded into a Verma module, while for 
degenerate double affine Hecke algebras there exist irreducible modules for which this 
is not true. These modules are in a sense a degenerate case, and are “too small” to 
be embedded into an induced module. Thirdly, we only prove our result for semisimple 
modules, as we use the combinatorics described in [16] to prove that the image of the 
homomorphism MD → Mτ is the irreducible module LD. We conjecture that a similar 
result holds for non-semisimple modules as well. Finally, we note that there is no clear 
way how the double affine result could follow from general principles such as duality, as 
socles of Verma modules are not always simple. The motivation for studying the question 
of the existence of the inclusions in the double affine case is thus both in realizing
simple modules in a more direct and computation-friendly way, and in understanding 
the combinatorics of the fusion of intertwiners.

The method of the proof is as follows. We treat the following three cases separately. 
For κ > 1 and D a periodic skew diagram with an infinite column, we find explicit torsion 
in the module LD, and prove that submodules of Verma modules have no torsion. For 
κ > 1 and D a periodic skew diagram with no infinite column, we construct an element 
w̃ of the affine Weyl group depending on D, and choose τ = w̃−1χD. We then construct 
a homomorphism F : MD → Mτ in a way analogous to [3], using limits of intertwiners. 
The proof that the homomorphism is well defined relies on the same tools as in the 
affine case (the combinatorial study of reduced decompositions of elements of reflection 
groups), but the combinatorics involved is different due to the different choice of the 
group element w̃. The proof that F factors through the quotient map Q : MD → LD

is combinatorial, and relies on the results in [16], as opposed to the algebraic proof of 
[3] for the affine Hecke algebras, which uses a functor to quantum groups and results 
from their representation theory. Finally, for κ = 1, we find an explicit embedding of any 
semisimple irreducible module into a Verma module.

The methods and the results here obtained for the degenerate double affine Hecke 
algebras apply analogously to the case of double affine Hecke algebras, with the same 
proofs.

The roadmap of the paper is as follows. In Section 2, we review the results about 
degenerate double affine Hecke algebras and their representations which we will use, 
most notably from [14–16]. We also review the corresponding result of [3] concerning 
embeddings of irreducible modules into Verma modules for affine Hecke algebras. In 
Section 3 we classify the semisimple irreducible modules which cannot be embedded into 
Verma modules, for κ > 1. In Section 4, for κ > 1, we classify all semisimple irreducible 
modules which can be embedded into Verma modules, and give an explicit embedding. In 
Section 5 we deal with the case κ = 1, and find an explicit embedding of any semisimple 
irreducible module into a Verma module.
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2. Preliminaries

2.1. The Weyl group and the affine Weyl group of type A

All the material in this section is standard and can be found in [5].

Definition 2.1. For integer n ≥ 2, the extended affine Weyl group of type An is the group 
Ẇn with generators s1, . . . , sn−1 and x±1

1 , . . . , x±1
n and relations:

s2
i = 1

sisi+1si = si+1sisi+1

sisj = sjsi |i− j| �= 1

xixj = xjxi

sixi = xi+1si

sixj = xjsi j �= i, i + 1.

The subgroup generated by s1, . . . , sn−1 is the symmetric group Wn. It is the Weyl 
group of type An, and it acts on the gln weight lattice P = ⊕n

i=1Zεi by the permutation 
action w(εi) = εw(i) for w ∈ Wn. The subgroup of Ẇn generated by x±1

1 , . . . , x±1
n is 

isomorphic to this lattice written multiplicatively. The simple roots for Wn are αi =
εi − εi+1 for i = 1, . . . , n − 1. The group Ẇn is isomorphic to the semidirect product of 
Wn � P , and its group algebra is C[Ẇn] = C[Wn] �C[x±

1 , . . . , x
±
n ].

We extend the root lattice to ⊕n
i=1Zεi⊕Zc, and define εi+kn = εi−kc for i = 1, . . . , n

and k ∈ Z. Then the affine roots R are αi,j = εi − εj ; they satisfy αi+n,j+n = αi,j . 
Positive affine roots can be chosen to be R+ = {αi,j | j > i}.

We will use another well known presentation of Ẇn. Let sij ∈ Wn be the transpo-
sition of i and j; in particular si = si,i+1. Set s0 = x1x

−1
n s1n and π = x1s1s2 . . . sn−1. 

Abusing notation, set si+kn = si for 0 ≤ i ≤ n − 1, k ∈ Z. Then Ẇn is generated by 
s0, s1, . . . , sn−1, π±1, with the relations:

• for any n:

s2
i = 1

πsiπ
−1 = si+1;

• for n ≥ 3, in addition to the above:

sisi+1si = si+1sisi+1

sisj = sjsi |i− j| �≡ 1 (mod n).
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The length function on Ẇn is determined by l (π) = 0, l (si) = 1. Let Ẇ 0
n be the 

subgroup generated by s0, . . . , sn−1.

2.2. Degenerate double affine Hecke algebra of type A

In the following subsections we recall the definition of degenerate double affine Hecke 
algebras and some results from [14–16].

Definition 2.2. For integers n ≥ 2 and κ ≥ 1, the degenerate double affine Hecke algebra 
(trigonometric Cherednik algebra) of type A is the unital associative algebra Ḧn (κ) over 
C such that:

(i) as a vector space, Ḧn (κ) = C[Ẇn] ⊗ C[u1, . . . , un];
(ii) the natural inclusions C[Ẇn] ↪→ Ḧn (κ) and C[u1, . . . , un] ↪→ Ḧn (κ) are algebra 

homomorphisms;
(iii) the relations between the generators of Ẇn and u1, . . . , un are as follows:

siui = ui+1si − 1 i = 1 . . . n− 1

s0un = (u1 − κ) s0 − 1

siuj = ujsi j �≡ i, i + 1 (mod n)

πuiπ
−1 = ui+1 i = 1 . . . n− 1

πunπ
−1 = u1 − κ.

The subalgebra of Ḧn (κ) generated by C[Wn] and C[u1, . . . , un] is the degenerate 
affine Hecke algebra Ḣn.

While the above definition makes sense for any κ ∈ C, this restriction is common (see 
[14,16]) because the behavior for κ ∈ C \ Q is very simple (the appropriately defined 
category of representations is semisimple), the behavior for κ ∈ Q \ {0} can be deduced 
from the behavior for κ ∈ N, and the behavior for κ = 0 is very different and usually 
considered separately.

The commutator between ui and xj can be computed from the above definition as

[ui, xj ] =
{
κxi + xi

∑
k<i xkski +

∑
k>i xisik i = j

−xmin{i,j}sij i �= j.

Multiplication in the algebra induces an isomorphism C[x±
1 , . . . , x

±
n ] ⊗ C[Wn] ⊗

C[u1, . . . , un] → Ḧn (κ).
It is convenient to define uj+kn = uj−kκ for j, k ∈ Z, 1 ≤ j ≤ n. With that convention 

and the convention si+kn = si, we can uniformly write the relations as: for all i, j ∈ Z,
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siui = ui+1si − 1

siuj = ujsi if j �≡ i, i + 1 (mod n)

πuiπ
−1 = ui+1.

2.3. An action of Ẇn on Z and on Cn

Consider the permutation action modulo n of the group Ẇn on the set Z, introduced 
in [8], and determined by:

si (j) =

⎧⎨
⎩

j + 1 j ≡ i (mod n)
j − 1 j ≡ i + 1 (mod n)
j otherwise

π (j) = j + 1.

From this it follows that

xi (j) =
{
j + n j ≡ i (mod n)
j otherwise.

The action of Ẇn on the set R of affine roots coincides with the action given by setting 
w (εi) = εw(i).

For ξ = (ξ1, . . . , ξn) ∈ Cn, we define the functional ξ : C[u1, . . . , un] → C by 
ξ (ui) = ξi. Accordingly, extend the indexing of ξ to Z by defining ξi+kn = ξi − kκ; 
this is consistent with the above convention ui+kn = ui − kκ. Define the action of Ẇn

on Cn by setting (wξ)i = ξw−1(i).

2.4. Periodic diagrams

We now recall the definitions of the combinatorial objects which parametrize irre-
ducible representations of Ḧn (κ), periodic Cherednik diagrams and periodic skew Young 
diagrams. These diagrams are certain sets D of integral points in the plane, generalizing
Young diagrams. This is one of the possible parametrizations of irreducible representa-
tions of various (double) affine Hecke algebras, a version of which is used in [1,3,14–16]; 
another one is by Zelevinsky’s multisegments, defined in [17]. As is usual for Young dia-
grams, we will draw points (a, b) ∈ D ⊆ Z2 as boxes, labeling integer points in the plane 
like rows and columns of an infinite matrix (rows with labels increasing downward and 
columns with labels increasing to the right).

Definition 2.3.

(1) Let n, m, l be integers such that n ≥ 2, 1 ≤ m ≤ n. A periodic Cherednik diagram of 
degree n and period (m,−l) is a set D ⊆ Z2 such that:
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(i) restricted to each row, D is a nonempty segment:

∀a ∈ Z ∃μa ≤ λa s.t. {b | (a, b) ∈ D} = [μa, λa] = {μa, μa + 1, . . . , λa};

(ii) there is a total of n points in rows labeled 1 to m:

m∑
a=1

(λa − μa + 1) = n;

(iii) it is periodic of period (m,−l):

D + Z · (m,−l) = D;

(iv) its left and right edges satisfy:

∀a μa+1 ≤ μa + 1 and

if μa+1 = μa + 1 then λa+1 ≤ λa + 1.

(2) A periodic Cherednik diagram D is called a periodic skew diagram if instead of (iv)
it satisfies a stronger condition:
(iv’)

∀a μa+1 ≤ μa and λa+1 ≤ λa.

Because of periodicity, specifying a diagram of degree n and period (m,−l) is equiva-
lent to specifying its first m rows. We call this set the fundamental domain of D. Given 
μ = (μ1, . . . , μm) and λ = (λ1, . . . , λm), the other endpoints of row segments can be 
calculated as μi+km = μi − kl, λi+km = λi − kl.

If D is a periodic skew diagram of period (m,−l), then l ≥ 0. It is easy to see that if 
D is a periodic skew diagram and (a, b) ∈ D, (a + s, b + t) ∈ D for some s, t ≥ 0, then 
(a + s′, b + t′) ∈ D for all 0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t.

Example 2.4. In the following examples we draw the first 2m rows of a diagram. 
Not a periodic 
Cherednik diagram

A periodic 
Cherednik diagram

A periodic 
skew diagram

n = 6, m = 3, l = 1 n = 8, m = 3, l = 0 n = 7, m = 3, l = 2
μ = (1, 3, 2) μ = (1, 2, 2) μ = (2, 2, 1)
λ = (3, 3, 3) λ = (2, 3, 5) λ = (3, 3, 3)
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2.5. Tableaux on periodic diagrams and the content of a tableau

Next, we label the boxes of D by integers.

Definition 2.5.

(i) A tableau on a periodic Cherednik diagram D of degree n and period (m,−l) is a 
bijection T : D → Z, such that for any box (a, b) ∈ D

T ((a, b) + k (m,−l)) = T (a, b) + kn.

(ii) A tableau is said to be standard if T is increasing along rows and columns:

if (a, b) , (a, b + 1) ∈ D then T (a, b) < T (a, b + 1) ,

if (a, b) , (a + 1, b) ∈ D then T (a, b) < T (a + 1, b) .

(iii) A row reading tableau T0 on D is the tableau determined on the first m rows by 
the condition: for a = 1, . . . , m and (a, b) ∈ D,

T0 (a, b) =
a−1∑
i=1

(λi − μi + 1) + b− μa + 1.

(iv) The content of a tableau T is the function CT : Z → Z given by

for i = T (a, b) , CT (i) = b− a.

(v) For a fixed diagram D we define the action of Ẇn on the set of all tableaux on D
by

(wT ) (a, b) = w (T (a, b)) .

Example 2.6. In the following examples, n = 4, m = 2, l = 1. We place the diagram so 
that the top left box on this picture is (1, 1), and calculate (CT (1), CT (2) , CT (3) , CT (4)). 
Periodic tableau Standard periodic tableau Row reading tableau

2 1
3 4

6 5
7 8

1 3
2 4

5 7
6 8

1 2
3 4

5 6
7 8

(1, 0,−1, 0) (0,−1, 1, 0) (0, 1,−1, 0)
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2.6. Verma modules, small Verma modules and their irreducible quotients

Let D be a periodic Cherednik diagram of degree n and period (m,−l), and T0 its row 
reading tableau. Assume m, l are such that κ = m + l ≥ 1, and consider the degenerate 
double affine Hecke algebra Ḧn (κ). Let χ = χD be the character of the subalgebra 
C[u1, . . . , un] determined by:

χi = χD (ui) = CT0(i).

This is consistent with our conventions ui+kn = ui − kκ and χi+kn = χi − kκ; if i =
T0 (a, b), then i + kn = T0 (a + km, b− kl), so

CT0 (i + kn) = (b− kl) − (a + km) = (b− a) − k (m + l) = CT0(i) − kκ.

For any character χ of C[u1, . . . , un], let Cχ = C1χ be the one-dimensional repre-
sentation of C[u1, . . . , un], determined by ui1χ = χi1χ. If χ = χD, we sometimes write 
1D = 1χ.

Definition 2.7. The standard or Verma module associated to a character χ of C[u1, . . . , un]
is the Ḧn (κ) module

Mχ = IndḦn(κ)
C[u1,...,un]Cχ.

If χ = χD for some diagram D, we write MD = Mχ.

The module Mχ is canonically isomorphic to C[Ẇn] as a C[Ẇn] module, and has a 
basis {w1χ | w ∈ Ẇn}.

For a diagram D with the row reading tableau T0 and χ = χD, let I be the set of all 
integers i ∈ {1, . . . , n} such that i and i + 1 are in the same row of T0. Let WI ⊆ Wn

be the subgroup generated by {si | i ∈ I}. This is the parabolic subgroup of Wn, 
consisting of row preserving permutations of T0. Extend the representation Cχ to be 
a trivial representation of C[WI ]. This is consistent with the relations of Ḧn (κ), and 
makes Cχ into a representation of the subalgebra ḦI (κ) of Ḧn (κ) generated by C[WI ]
and C[u1, . . . , un].

Definition 2.8. The small Verma module associated to D is the module

ND = IndḦn(κ)
ḦI(κ)Cχ.

It is isomorphic to the quotient of MD by the left Ḧn (κ) submodule generated by 
{si − 1 | i ∈ I}.
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As a C[Ẇn] module, ND is canonically isomorphic to C[Ẇn]/C[WI ]. Abusing notation, 
write the cyclic generator of ND which is the image under the quotient morphism of 
1D ∈ MD as 1D ∈ ND.

Remark 2.9. In type A, the trigonometric Cherednik algebra is closely related to the 
rational Cherednik algebra (see [15]). Define yi ∈ Ḧn (κ) by the equation ui = xiyi +∑

j<i sji. The subalgebra of Ḧn (κ) generated by xi, yi, i = 1, . . . , n and si, i = 1, . . . , n −1
is isomorphic to the rational Cherednik algebra, while the localization of the rational 
Cherednik algebra at x−1

i recovers the trigonometric Cherednik algebra Ḧn (κ).
Consider the Verma module for the rational Cherednik algebra whose lowest weight 

is the trivial representation of Wn. As a vector space this module is isomorphic to 
C[x1, . . . , xn], with xi acting by multiplication, Wn by permutation action, and yi act by 
Dunkl operators. On the lowest weight vector, all yi act as 0, while the Jucys–Murphy 
elements act by scalars 0, 1, . . . , n − 1. Localizing this representation at x−1

i , we get the 
small Verma module for the trigonometric Cherednik algebra associated to the diagram 
D whose fundamental domain is 1 2 3 · · · n . This representation is isomorphic to 
C[x±1

1 , . . . , x±1
n ] as a vector space. The generators ui respect the natural grading by de-

gree of polynomials, and their eigenvectors in ND are non-symmetric Jack polynomials. 
(See [7,9].)

Definition 2.10. Let O be the category of Ḧn (κ) modules which are finitely generated, 
locally finite for the action of C[u1, . . . , un], and such that the generalized eigenvalues for 
the action of (u1, . . . , un) are integers. Let Oss be the full subcategory of O consisting 
of those modules on which (u1, . . . , un) diagonalize.

Verma modules and small Verma modules associated to periodic Cherednik diagrams 
belong to category O. The following theorem describes the irreducible objects in these 
categories.

Theorem 2.11. (See [14,16].)

(i) If D is a periodic Cherednik diagram of degree n and period (m,−l), n, m ≥ 1, 
κ = m + l ≥ 1, then the small Verma module ND for Ḧn (κ) has a unique simple 
quotient. Call this simple module LD.

(ii) For any simple module L in category O of Ḧn (κ) representations there exists 1 ≤
m ≤ n, and a periodic Cherednik diagram D of degree n and period (m,− (κ−m)), 
such that L is isomorphic to LD as Ḧn (κ) modules.

(iii) The modules LD and LD′ are isomorphic if and only if there exists r ∈ Z such that 
D′ = D + (r, r).

(iv) An irreducible module LD is in Oss if and only if D is a periodic skew diagram.
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2.7. Intertwining operators

Let us consider the following elements of the appropriate localization of Ḧn (κ):

Φi = si + 1
ui − ui+1

Φπ±1 = π±1.

In particular, Φ0 = s0 + 1
u0−u1

= s0 + 1
−u1+un+κ , and Φi+nk = Φi. They satisfy:

• for any n:

ΦπΦi = Φi+1Φπ

Φ2
i = 1 − 1

(ui − ui+1)2
;

• for n ≥ 3, in addition to the above:

ΦiΦi+1Φi = Φi+1ΦiΦi+1,

ΦiΦj = ΦjΦi |i− j| �≡ 1 (mod n);

• for any n:

Φiui = ui+1Φi

Φiui+1 = uiΦi

Φiuj = ujΦi j �≡ i, i + 1 (mod n)

Φπui = ui+1Φπ.

If w = πrsi1 . . . sil is a reduced expression in Ẇn, define Φw = Φr
πΦi1 . . .Φil ; it does 

not depend on the reduced decomposition. The operators Φw satisfy ΦwuiΦ−1
w = uw(i). 

In representations, they act as maps between different eigenspaces of u1, . . . , un, and we 
call them intertwiners. Corresponding operators Φw have been considered in [1,13].

Assume that M is a representation of Ḧn (κ), ξ = (ξ1, . . . , ξn) is an eigenvalue of 
(u1, . . . , un), and M [ξ] = {v ∈ M | uiv = ξiv} the corresponding eigenspace. Then:

(i) Φπ : M [ξ] → M [π (ξ)] is an isomorphism with the inverse Φπ−1 ;
(ii) if ξi − ξi+1 �= 0, then Φi|M [ξ] = si + 1

ξi−ξi+1
: M [ξ] → M [si (ξ)];

(iii) if ξi − ξi+1 �= 0, ±1, then Φi : M [ξ] → M [si (ξ)] is an isomorphism with inverse 
(ξi−ξi+1)2

2 Φi.
1−(ξi−ξi+1)
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Define also the rescaled intertwiners Ψi. For an eigenvalue ξ ∈ Cn with ξi − ξi+1 �=
0, ±1, define

Ψi|M [ξ] = ξi − ξi+1

ξi − ξi+1 + 1Φi = ξi − ξi+1

ξi − ξi+1 + 1si + 1
ξi − ξi+1 + 1 .

They satisfy Ψ2
i = 1, along with the braid relations ΨiΨi+1Ψi = Ψi+1ΨiΨi+1, ΨiΨj =

ΨjΨi for |i − j| > 1. This enables us to define Ψw for w ∈ Ẇn.
Informally, the usefulness of Φw and Ψw comes from the fact that, using Φw instead 

of w turns the Hecke algebra relations between si and ui turn into simpler semidirect 
product relations between Φi and ui. For semisimple representations of Ḧn (κ), where 
ui diagonalize and Φw are maps between their joint eigenspaces, understanding the 
structure of the representation means understanding the combinatorics of the eigenvalues 
and the action of Ẇn on them.

Notice that for a Cherednik diagram D, the small Verma module ND is the quotient 
of the Verma module MD by the submodule generated by {Φi | i ∈ I}.

2.8. Irreducible semisimple modules

Theorem 2.12. (See [16].) Let D be a periodic skew diagram of degree n and period 
(m,−l), χ = χD the associated character of C[u1, . . . , un], and MD and LD the corre-
sponding Verma module and its irreducible quotient for the algebra Ḧn (κ).

(1) The irreducible module LD is isomorphic to the module with the basis

{vT | T a standard tableau on D}

and the action

uivT = CT (i)vT
πvT = vπ(T )

sivT =
{

CT (i)−CT (i+1)+1
CT (i)−CT (i+1) vsi(T ) − 1

CT (i)−CT (i+1)vT , si (T ) standard
− 1

CT (i)−CT (i+1)vT , si (T ) not standard

(2) Identifying LD with this module, the quotient map Q : MD � LD is the unique 
Ḧn (κ) morphism such that Q (1D) = vT0 .

(3) The kernel of Q : MD � LD is generated as an Ḧn (κ)-module by the set

{ΦiΦw1D | wT0 standard, siwT0 not standard}.

Part (1) of this theorem is Section 4.3 of [16], part (2) follows from the definition of MD

as an induced module by Frobenius reciprocity, and part (3) follows from Lemma 3.17 
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in [16]. In particular, all eigenspaces of LD are one dimensional, if ξ is an eigenvalue of 
u1, . . . , un on LD then ξi �= ξi+1 for every i, and if wξ = ξ for some eigenvalue ξ with 
eigenvector v ∈ LD and some w �= 1 ∈ Ẇn, then Φwv = 0.

We can describe the module LD in terms of intertwiners:

• if both T and siT are standard, vsiT = ΨivT ;
• if T is standard and siT is not, then sivT can be calculated from ΦivT = 0.

We can also describe the quotient map Q : MD � LD in terms of intertwiners:

• if wT0 is standard, then using [16, Lemma 3.17], we get that for some aw′ , bw′ ∈ C

Q (w1D) =

⎛
⎝Ψw +

∑
l(w′)<l(w)

aw′Ψw′

⎞
⎠ vT0 = vwT0 +

∑
l(w′)<l(w)

bw′vw′T0 ;

• if wT0 is not standard, then for some cw′ ∈ C

Q (w1D) =
∑

l(w′)<l(w)

cw′vw′T0 .

Lemma 2.13. Assume that D is a periodic skew diagram, T a standard tableau on it and 
i ∈ Z is such that siT is not standard. Then in T , the boxes containing i and i + 1 are 
adjacent.

Proof. The tableaux siT and T only differ by transposing i +kn and i +kn +1 for all k. 
Any integer z �= i, i + 1 is bigger than i if and only if it is bigger than i + 1. Thus, the 
only way that siT can be non-standard while T is standard is that in T , i and i + 1 are 
comparable, meaning they are in the same row or in the same column. As T is standard, 
there can be no integer between them, so the only possibilities are:

i i + 1 and i

i + 1

. �

2.9. Corresponding results for degenerate affine Hecke algebras [3]

Irreducible representations for the (degenerate) affine Hecke algebra Ḣn are parame-
trized by finite Cherednik diagrams in a directly analogous way. To a finite Chrednik 
diagram Dfin consisting of n boxes we associate a character χ = χD as the content of the 
row reading tableaux on Dfin. The induced module Maff

D = Maff
χ is isomorphic to C[Wn]. 

Its quotient by Φi, for si row preserving simple reflections, has a unique an irreducible 
quotient Laff

D = Laff
χ . Let w0 be the longest element of Wn.
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Theorem 2.14. (See [3].) For every finite Chrednik diagram Dfin there exists a nonzero 
homomorphism Laff

χ ↪→ Maff
w0χ.

If χ1, . . . , χn are all distinct, then Φw01w0χ is an eigenvector in Maff
w0χ with eigen-

value w2
0χ = χ, and 1χ 
→ Φw01w0χ determines a homomorphism Maff

χ ↪→ Maff
w0χ. If some 

χi = χj for i �= j, then at least one factor of Φw0 has a pole, and Φw01 is not well defined. 
The proof replaces Φw0 with the limit at z = χD of an appropriate C[Wn]-valued rational 
function of z, and uses the fusion procedure to show that this function (restricted to an 
appropriate subset of Cn) is regular at z = χD. This procedure is combinatorial in nature, 
and relies on the detailed combinatorial study of the possible reduced decompositions of 
the longest elements w0 of the symmetric group. The goal is to produce an eigenvector 
E in Maff

w0χ with the eigenvalue χD, which induces a homomorphism Maff
χ ↪→ Maff

w0χ. To 
prove that this homomorphism factors through the surjection Maff

χ → Laff
χ , the authors 

apply a functor from representations of the affine Hecke algebra to a certain category 
of representations of a quantum group, and use know results about corresponding mor-
phisms in that category.

2.10. The main result

We now state and prove the corresponding result about inclusions of irreducible mod-
ules into Verma modules for double affine Hecke algebras. From now on, we will be 
concerned with periodic skew Young diagrams and semisimple irreducible representa-
tions.

By Theorem 2.14, every irreducible category O module for degenerate affine Hecke 
algebras can be realized as a submodule of a Verma module. For double affine Hecke al-
gebras, the answer is more complicated, and there are irreducible modules for which such 
an inclusion does not exist. These modules are “too small”, in the following sense: Verma 
modules are induced, isomorphic as C[Ẇn] modules to C[Ẇn], and are in particular free 
C[x±1

1 , . . . , x±1
n ] modules of rank n!. Any submodule of a Verma module is therefore free 

of C[x±1
1 , . . . , x±1

n ] torsion. So, any irreducible module which has C[x±1
1 , . . . , x±1

n ] torsion 
cannot be embedded into a Verma module. We will describe such modules in terms of 
periodic skew Young diagrams and find their torsion. For all other modules, we will 
describe a Verma module they inject to and find an explicit embedding.

Theorem 1.1. Let LD be the semisimple irreducible module for the degenerate double 
affine Hecke algebra Ḧn (κ) associated to a periodic skew diagram D. Then LD can be 
realized as a submodule of a Verma module if and only if κ = 1, or κ ≥ 2 and the diagram 
D has no infinite column.

We proceed with the proof in three steps. In Section 3, we show how, for κ ≥ 2, an 
infinite column for D prevents LD from being embedded into a Verma module (Proposi-
tion 3.1). In Section 4, for κ ≥ 2 and D a diagram with no infinite column, we define an 
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affine Weyl group element w̃ and a character w̃−1χD, construct a map of Verma mod-
ules MD → Mw̃−1χD

, and prove it factors through the quotient map MD → LD, giving 
an embedding LD ↪→ Mw̃−1χD

(Proposition 4.1, stated at the beginning and proved 
at the end of Section 4). Finally, in Section 5 we resolve the κ = 1 case, constructing 
an explicit embedding of every irreducible module into a Verma module in that case 
(Proposition 5.3).

3. Irreducible modules which cannot be realized as submodules of Verma modules

In this section, we prove one part of the main result. Namely, we show:

Proposition 3.1. Let D be a periodic skew diagram of degree n and period (m,−l), κ =
m + l ≥ 2, and assume that D has an infinite column (there exists b ∈ Z such that 
(a, b) ∈ D for infinitely many values of a ∈ Z). Then the corresponding irreducible 
module LD for the degenerate double affine Hecke algebra Ḧn (κ) cannot be embedded 
into a Verma module Mτ for any character τ of C[u1, . . . , un].

This is proved through a series of lemmas. The assumption κ ≥ 2 is used to find 
torsion in Lemma 3.3.

Lemma 3.2. If D is a periodic skew diagram of degree n and period (m,−l) with an 
infinite column, then D consists of k consecutive infinite columns. In other words, l = 0, 
n = mk for some k ∈ N, κ = m, and there exists μ ∈ Z, λ = μ + k − 1 such that

D = {(a, b) | a ∈ Z, μ ≤ b ≤ λ} = Z× [μ, λ].

Proof. Let us first show that if D has an infinite column, then l = 0. Setting μ =
mini∈[1,m] μi, λ = maxi∈[1,m] λi, we see that D ⊆ [1, m] × [μ, λ] + Z (m,−l). Assume the 
column b is infinite, then (a, b) ∈ D for all a ∈ Z.

For any r ∈ Z, pick a ∈ Z such that 1 + mr ≤ a ≤ m + mr. As (a, b) ∈ D, it 
follows that (a, b) ∈ [1, m] × [μ, λ] + r (m,−l). In particular, μ − lr ≤ b ≤ λ − lr, and so 
μ − b ≤ lr ≤ λ − b for all r. This is only possible if l = 0.

Condition (iv’) in Definition 2.3 now reads:

μ1 ≥ μ2 ≥ · · · ≥ μm ≥ μm+1 = μ1 − l = μ1

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ λm+1 = λ1 − l = λ1

so μi = μ, λi = λ for all i, and D = Z × [μ, λ]. Setting k = λ − μ + 1, we see that the 
first m rows contain n = mk boxes. �
Lemma 3.3. Consider the periodic skew diagram D = Z × [μ, λ] consisting of k infinite 
columns, with n = mk, l = 0, κ = m, k ≥ 1, and μ, λ ∈ Z with λ = μ + k − 1. In the 
associated irreducible representation LD of Ḧn (κ),
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(x1 + x2 + · · · + xk) vT0 = (xk+1 + xk+2 + · · · + x2k) vT0

= · · · =
(
x(m−1)k+1 + x(m−1)k+2 + · · · + xmk

)
vT0 .

Proof. Define the following temporary notation:

Xi = 1 + sik + sik+1sik + · · · + sik+k−2 . . . sik.

Because of the convention si+n = si and n = mk, we have Xi+m = Xi. Furthermore, 
Xi and sj commute unless j is between ik−1 and ik+k−1 (mod n), and XiXj = XjXi

for all i, j. We will show that

(x1 + x2 + . . . + xk) vT0 = πX0X1 . . . Xm−1vT0 . (3.1)

Using the explicit formulas from Theorem 2.12, and the fact that the first row of T0
looks like 1 2 3 · · · k , we see that s1, s2, . . . , sk−1 all act on vT0 ∈ LD as 1. From 
this, using that xi = πsi−2 . . . s0sn−1 . . . si, it follows that

x1vT0 = πsn−1sn−2 . . . skvT0 ,

x2vT0 = πs0sn−1sn−2 . . . skvT0 ,

...

xkvT0 = πsk−2 . . . s0sn−1 . . . skvT0 .

Summing these, we get that

(x1 + . . . + xk) vT0 = πX0sn−1sn−2 . . . skvT0 . (3.2)

Let us now calculate s2k−1 . . . skvT0 . In what follows, we use the convention that all 
products have decreasing indices, and that the product over the empty set is 1. The first 
two rows of T0 are

T0 =
1 2 3 . . . k−1 k

k+1 k+2 k+3 . . . 2k−1 2k
,

and we see that the tableaux skT0, sk+1skT0, . . . , s2k−2 . . . skT0 are standard, while 
s2k−1 . . . skT0 is not. Using explicit formulas from Theorem 2.12, we can prove by induc-
tion on i that for all i = 0, . . . , k − 2,

sk+i . . . skvT0 =

⎛
⎝ i∏

a=0
Ψk+a −

i∑
j=0

1
k − j

j−1∏
a=0

Ψk+a

⎞
⎠ vT0 .
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From this we get

s2k−1 . . . skvT0 =

⎛
⎝−

k−2∏
a=0

Ψk+a −
k−2∑
j=0

1
k − j

j−1∏
a=0

Ψk+a

⎞
⎠ vT0

=
k−1∑
j=0

−1
k − j

j−1∏
a=0

Ψk+a vT0

=
k−1∑
j=0

⎛
⎝−1 +

k−1∑
i=j+1

1
k − j

⎞
⎠ j−1∏

a=0
Ψk+a vT0

=

⎛
⎝−

k−1∑
i=0

i−1∏
a=0

Ψk+a +
k−1∑
i=1

i−1∑
j=0

1
k − j

j−1∏
a=0

Ψk+a

⎞
⎠ vT0

=
k−1∑
i=0

⎛
⎝−

i−1∏
a=0

Ψk+a +
i−1∑
j=0

1
k − j

j−1∏
a=0

Ψk+a

⎞
⎠ vT0

=
k−1∑
i=0

(
−

i−1∏
a=0

sk+a

)
vT0

= −X1vT0 .

Going back to (3.2), we can conclude that:

(x1 + · · · + xk) vT0 = πX0sn−1sn−2 . . . skvT0

= πX0sn−1sn−2 . . . s2kX1vT0

= πX0X1sn−1sn−2 . . . s2kvT0

· · ·

= πX0X1 . . . Xm−1vT0 .

An analogous calculation then shows that

(xk+1 + xk+2 + · · · + x2k) vT0 = πX1X2 . . . Xm−1XmvT0

= πX1X2 . . . Xm−1X0vT0

= πX0X1 . . . Xm−2Xm−1vT0 ,

thus proving that (x1 + x2 + · · · + xk) vT0 = (xk+1 + xk+2 + · · · + x2k) vT0 . �
Example 3.4. A very similar statement should hold for periodic Cherednik diagrams. 
Here are some examples:
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1.
1 2

3 , (m,−l) = (2, 0): x1 + x2 = x3 = π
(
−Φ0 − 1

2
)

2.
1
2 3 , (m,−l) = (2, 0): x−1

1 = x−1
2 + x−1

3 = π−1 (−Φ0 − 1
2
)

3.
1
2 3 4 , (m, −l) = (2, 0): : x−1

1 = x−1
2 + x−1

3 + x−1
4 = π−1 (−Φ3Φ0 − 1

2Φ0 − 1
3
)

4.

1 2 3
4 5

6 , (m,−l) = (3, 0): x1+x2+x3 = x4+x5 = x6 =
(
Φ3 + 1

2
) (

Φ1Φ0 + 1
2Φ0 + 1

3
)

5.
1

2 , (m,−l) = (2, 0): LD = MD.

Lemma 3.5. If an irreducible module LD can be embedded into a Verma module Mτ , 
then the subalgebra C[x±1

1 , . . . , x±1
n ] of Ḧn (κ) acts on the cyclic vector vT0 ∈ LD without 

torsion.

Proof. As C[Ẇn]-modules, Verma modules are isomorphic to C[Ẇn] ∼= C[Wn] �
C[x±1

1 , . . . , x±1
n ]. In particular, they are free C[x±1

1 , . . . , x±1
n ]-modules of rank |Wn| = n!. 

The action of C[x±1
1 , . . . , x±1

n ] on the cyclic vector vT0 of LD produces a C[x±1
1 , . . . , x±1

n ]-
submodule of LD, so we have a sequence of inclusions of C[x±1

1 , . . . , x±1
n ]-modules

C[x±1
1 , . . . , x±1

n ]v0 ↪→ LD ↪→ Mτ
∼= C[Wn] �C[x±1

1 , . . . , x±1
n ].

Thus, C[x±1
1 , . . . , x±1

n ]vT0 is a submodule of a free C[x±1
1 , . . . , x±1

n ]-module, so it is free 
of torsion. �
Proof of Proposition 3.1. If D is a periodic skew diagram with an infinite column, then 
by Lemma 3.2 it consists of k consecutive infinite columns, and n = mk. By Lemma 3.3, ∑k

i=1 xi and 
∑k

i=1 xk+i act the same on the cyclic vector vT0 . If m = κ ≥ 2, then ∑k
i=1 xi �=

∑k
i=1 xk+i, so vT0 is a torsion element of LD. By Lemma 3.5, LD cannot be 

embedded into a Verma module.
This is the only place where the assumption κ ≥ 2 was used. �

4. Irreducible modules which can be realized as submodules of Verma modules, κ ≥ 2
case

In this section we prove another part of the main theorem:

Proposition 4.1. Let D be a periodic skew diagram of degree n and period (m,−l), κ =
m + l ≥ 2, and assume that D has no infinite column. Then the corresponding irreducible 
module LD for the degenerate double affine Hecke algebra Ḧn (κ) can be embedded into 
a Verma module.



M. Balagović / Journal of Combinatorial Theory, Series A 133 (2015) 97–138 115
For this whole section, let D be a fixed periodic skew diagram satisfying the assump-
tions of the proposition.

4.1. Construction of a permutation w̃

Let (a1, b1) ∈ D be an arbitrary box, and let us start by assigning a permutation 
w̃(a1,b1) of Z to this choice. Informally, it is given by reading the numbers in the tableau 
T0 on D, starting at 1 
→ T0 (a1, b1), reading up each column until its end, and then con-
tinuing up the next column to the left. More formally, w̃(a1,b1) is the unique permutation 
of Z satisfying the following properties:

(1) w̃(a1,b1)(1) = T0 (a1, b1);
(2) if w̃(a1,b1)(i) = T0 (a, b), and the box (a− 1, b) immediately above (a, b) is in D, then 

w̃(a1,b1) (i + 1) = T0 (a− 1, b);
(3) if w̃(a1,b1)(i) = T0 (a, b) and the box (a− 1, b) is not in D, then i + 1 maps to the 

bottom entry of the next nonempty column to the left of column b.

Example 4.2. Let D be the periodic tableau with the fundamental domain 
1 2
3 4 and the 

period (2,−1), placed so that 1 = T0 (1, 1). The row reading tableau on it looks like

...
−3 −2
−1 0

1 2
3 4

5 6
7 8
...

Examples of the permutations defined above are

w̃(4,1) =
(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .

4 2 −1 −3 8 6 3 1 12 10 7 5

)

w̃(2,2) =
(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .

0 −2 −5 −7 4 2 −1 −3 8 6 3 1

)
.

Lemma 4.3.

(1) For every choice of (a1, b1) ∈ D, the permutation w̃(a1,b1) of Z satisfies w̃(a1,b1)(i +
n) = w̃(a1,b1)(i) + n.
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(2) The permutation w̃(a1,b1) is given by the action from Section 2.3 of a unique element 
of Ẇn. We call this element w̃(a1,b1) as well.

(3) For any (a1, b1) , (a2, b2) ∈ D, permutations w̃(a1,b1) and w̃(a2,b2) differ by right mul-
tiplication by some power of π ∈ Ẇn.

(4) There is a unique choice of (a1, b1) ∈ D such that w̃(a1,b1) ∈ Ẇn is in a subgroup 
Ẇ 0

n generated by s0, . . . , sn−1 (its reduced decomposition does not contain a power 
of π). For such a choice, let w̃ = w̃(a1,b1).

Proof.

(1) The period of the diagram D is (m,−l), and the tableau T0 is a bijection T0 : D → Z

satisfying T0 (a + m, b− l) = T0 (a, b) + n. Thus, the union of any l consecutive 
columns is a fundamental domain for D, and the set of values of T0 on the boxes 
in these l columns is a set of n numbers, one from each congruence class of integers 
modulo n. When constructing w̃(a1,b1) by reading the values of T0 up each column, 
moving from right to left in columns, there are n − 1 boxes to be read between 
w̃(a1,b1)(i) = T0 (a, b) and T0 (a + m, b− l). Thus,

w̃(a1,b1) (i + n) = T0 (a + m, b− l) = T0 (a, b) + n = w̃(a1,b1)(i) + n.

(2) From (1) it follows that w̃(a1,b1) is completely determined by w̃(a1,b1)(1), . . . ,
w̃(a1,b1) (n), which are integers from different congruence classes modulo n. Using 
the appropriate powers of x1, . . . , xn, we can get a permutation xk1

1 , . . . , xkn
n w̃(a1,b1), 

which is also periodic and which maps {1, . . . , n} to itself. This permutation is given 
by the action in Section 2.3 an element w of the symmetric group. Hence, w̃(a1,b1) is 
a permutation of Z given by the action of the element x−k1

1 , . . . , x−kn
n w ∈ Ẇn.

(3) If w̃(a1,b1) and w̃(a2,b2) are both obtained in this way from a diagram D, for different 
choices of starting boxes, then they are two permutations of Z obtained by reading all 
the integers in T0 in the same order, but with a different starting point w̃(a1,b1)(1) �=
w̃(a2,b2)(1). Thus, one can be obtained from another by precomposing it with a shift 
of all integers by some fixed k ∈ Z, w̃(a2,b2) = w̃(a1,b1)π

k.
(4) The action of Ẇn is defined so that 

∑n
j=1 si (j) =

∑n
j=1 j, for all i = 0, . . . , n − 1, 

while 
∑n

j=1 π (j) =
∑n

j=1 (j + 1). Choose some w̃(a1,b1), and precompose it with 
the appropriate power of πk to get w̃(a1,b1)π

k which satisfies 
∑n

j=1 w̃(a1,b1)π
k (j) =∑n

j=1 j. This permutation is then in the subgroup Ẇ 0
n , and it is of the form 

w̃(a1,b1)π
k = w̃(a2,b2), for (a2, b2) = T−1

0
(
w̃(a1,b1) (k)

)
. �

From now on, for a given D, we will consider w̃ ∈ Ẇ 0
n as above. The choice of w̃

over w̃πk for some k ∈ Z will ease the notation in the proof, but is not significant. The 
modules Mw̃−1χD

and Mπ−kw̃−1χD
are isomorphic, with the isomorphism determined by 

G 
(
1w̃−1χD

)
= Φπk1π−kw̃−1χD

. If F : LD ↪→ Mw̃−1χD
is a homomorphism of modules, 

then so is G ◦ F : LD ↪→ Mπ−kw̃−1χD
.
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4.2. Convex orders on roots and reduced decompositions

We want to use the intertwiner Φw̃ to define an inclusion of an irreducible module 
into a Verma module, and this intertwiner is defined using a reduced decomposition of 
w̃ into simple reflections. Some of its factors might have poles. To be able to calculate 
Φw̃ in those cases as well, we need to fix a particular reduced decomposition of w̃, which 
will allow us to use the fusion procedure from [3] to resolve the poles. In this subsection, 
we recall results about reduced decompositions in reflection groups.

Let w be an arbitrary element of the group Ẇ 0
n, and let Iw = Rw−1 = R+ ∩w (−R+)

be the set of inversions of w−1. Let w = si1 . . . sil be a reduced decomposition of w. 
Consider the l roots given by βk = si1 . . . sik−1αik . Then Iw = {β1, . . . , βl}, and in 
particular, the collection of βk does not depend on the decomposition. Setting β1 <

β2 < . . . < βl gives an order on Iw which does depend on the decomposition; in fact, it 
completely determines it.

Definition 4.4. (See [10].) A total order < on Iw is called convex if it satisfies:

(1) If α, β, α + β ∈ Iw, then α + β is between α and β;
(2) If α + β, β ∈ Iw and α ∈ R+ \ Iw, then β < α + β.

Lemma 4.5. (See [4,10].)

(1) Associating a total order on Iw to every reduced decomposition of w as above is a 
bijection between reduced decompositions of w and convex orders on Iw.

(2) If αi,j−1, αi,j , αj−1,j ∈ Iw, and < is a convex order on it such that αi,j−1 < αi,j are 
adjacent, then there exists a convex order <′ on Iw such that < and <′ are the same 
on all elements of Iw smaller than αi,j, and αi,j−1 <′ αi,j <′ αj−1,j are adjacent 
in <′. An analogous claim holds for >.

4.3. A convex order on Iw̃ and a reduced decomposition of w̃

In this section, we fix a particular convex order on the set Iw̃ associated to the element 
w̃ ∈ Ẇn defined in Section 4.1. We will use the bijection between reduced decompositions 
of w̃ and convex orders on Iw̃, and the fact that the set of inversions Iw̃ can be at once 
recovered from the form of w̃ as a permutation of Z (see [11]).

To do that, we will represent the affine roots αij = εi − εj graphically as arrows on 
the row reading tableau T0 on the periodic skew diagram D we are working with. Draw 
αi,j as an arrow 

−→
ij on the diagram from the box T−1

0 (i) to the box T−1
0 (j). The roots 

satisfy αi,j = αi+n,j+n and T0 satisfies T0 (a + m, b− l) = T0 (a, b) + n, so any root can 
be represented in this way by countably many arrows, differing by shifts by a multiple of 
the period (m,−l). If we fix the fundamental domain of D consisting of the first m rows, 
any such root can be represented uniquely by an arrow finishing in this fundamental 
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domain. The only exception to this are the roots kc, which can be written as εi − εi+kn

for any i, but they will not be relevant to us (in terms of the usual root theory for 
Kac–Moody algebras, this means considering only real roots).

The tableau T0 is row reading, and the set of positive roots is {αi,j | i < j}, so arrows 
−→
ij associated to positive roots are:

(1) pointing right, if i and j are in the same row;
(2) or pointing down, or down and left, or down and right, if i is in some row above j.

In particular, because of l > 0, the roots kc are represented by arrow pointing down and 
left.

Lemma 4.6. The set Iw̃ is the finite set of all roots αij represented on T0 by arrows 
pointing right, pointing down, and pointing down and right.

Proof. A positive affine root αij with i < j is in w̃(−R+) if and only if w̃−1(i) > w̃−1 (j). 
This means that, when reading off the integers for w̃ up each column and taking columns 
in order from right to left, the integer i is read after j. So either i is in a column to the 
left of j (so 

−→
ij points right or right and down), or i and j are in the same column with i

above j (so 
−→
ij points down). �

Now let us fix a convex order on Iw̃.

Definition 4.7. For vectors αi,j , αp,q ∈ Iw̃ written so that 1 ≤ j, q ≤ n, define

αi,j < αp,q if w̃−1(i) > w̃−1 (p) or
i = p and j < q.

We refer to this order as special.

In words, we order the roots αij with a version of lexicographical order, first by the 
first index i, and then by the second index j, where the order on the second index is 
standard order on Z, and order in the first index is the opposite of the way we calculate w̃: 
we read the numbers down each column and taking columns in order from left to right.

Example 4.8. Consider the diagram from Example 4.2, and

w̃ = w̃(0,2) =
(
. . . −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .

−5 −7 4 2 −1 −3 8 6 3 1 12 10

)
.

Then

Iw̃ = {α1,2, α1,3, α1,4, α−3,2, α−3,4, α3,4, α−1,2, α−1,4, α2,4}.



M. Balagović / Journal of Combinatorial Theory, Series A 133 (2015) 97–138 119
The order on the first index is 1 < 3 < −3 < −1 < 2, so the special order on Iw̃ is

α12 < α13 < α14 < α34 < α−32 < α−34 < α−12 < α−14 < α24.

Lemma 4.9. The special order on Iw̃ from Definition 4.7 satisfies:

(1) If α, β, α + β ∈ Iw̃, then α + β is between α and β.
(2) If α + β, β ∈ Iw̃ and α ∈ R+ \ Iw̃, then β < α + β.
(3) If i = T0 (a, b) and j = T0 (a + c, b + c) are in different boxes with the same content 

and i < j, then the roots αi,j−1, αi,j and αj−1,j are in Iw, and αi,j−1 < αi,j are 
adjacent in the special order.

Proof.

(1) This statement is symmetric with respect to α and β, so we may assume that α = αij , 
β = αjk and α + β = αik, for some i < j < k ∈ Z. By using αpq = αp+n,q+n we can 
also assume that 1 ≤ k ≤ n.
The root α = αij is in Iw̃, which means that w̃−1(i) > w̃−1 (j), and consequently 
that α + β = αik < αjk = β in the special order.
If j ≥ 1, then it also satisfies 1 ≤ j ≤ n and the root α = αij is written so that it 
ends in the correct fundamental domain. By the definition of special order and using 
j < k, we get α = αij < αik = α + β.
If j < 1, then let p ∈ N be such that 1 ≤ j + pn ≤ n, and the correct way to 
write α is as αi+pn,j+pn. It follows that w̃−1 (i + pn) = w̃−1(i) + pn > w̃−1(i), so 
α = αi+pn,j+pn < αi,k = α + β.
So, in either case, α < α + β < β in the special order.

(2) This statement is not symmetric with respect to α and β, so let us consider two 
cases.
Case 1. α = αij , β = αjk. We may assume 1 ≤ k ≤ n. As α /∈ Iw̃, it follows that 
w̃−1(i) < w̃−1 (j) and consequently α + β = αik > αjk = β in the special order.
Case 2. α = αjk, β = αij , and we assume that 1 ≤ k ≤ n. If 1 ≤ j as well, then j < k

implies β = αij < αik = α+ β. If j < 1, then for p > 0 such that 1 ≤ j + pn ≤ n we 
have w̃−1 (i + pn) = w̃−1(i) + pn > w̃−1(i) so β = αi+pn,j+pn < αik = α + β.

(3) If i < j are in different boxes with the same content, then i = T0 (a, b) and 
j = T0 (a + c, b + c) for some c > 0. As D is a periodic skew diagram, the box 
(a + c, b + c− 1) is also in D, and T0 (a + c, b + c− 1) = j − 1. Assume without loss 
of generality that 1 ≤ j ≤ n. As j − 1 is in the same row as j, it also satisfies 
1 ≤ j−1 ≤ n, so both αi,j−1 and αi,j are correctly written positive roots. The arrow 
−−−−−−−→
j − 1, j is pointing right, so αj−1,j ∈ Iw̃. If c > 1 then j − 1 is to the right of i, 
and 

−−−−−−→
i, j − 1 is pointing down and right; if c = 1 then i and j − 1 are in the same 

column 
−−−−−−→
i, j − 1 is pointing down. In either case, αi,j−1 ∈ Iw̃. In the special order, 

αi,j−1 < αi,j are adjacent. �
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We conclude by Lemma 4.9 that the special order is convex, and it determines a 
reduced decomposition of w̃ by Lemma 4.5.

Example 4.10. The special order from Example 4.8 corresponds to the reduced decom-
position

w̃ = s1s2s3s2s0s1s3s0s3.

Remark 4.11. One can associate an l-tuple (ordered multiset) of roots to any decompo-
sition of w ∈ Ẇ 0

n of length l into simple reflections, using the same formulas for βi. The 
decomposition is nonreduced if and only if there is a root β such that both β and −β

appear in the multiset. In this case, the product of simple reflections can be reordered so 
that the two instances of the repeating root are adjacent, and the corresponding factors 
cancel.

Example 4.12. Consider the nonreduced product s1s2s1s2. The roots associated to them 
are β1 = α12, β2 = s1 (α23) = α13, β3 = s1s2 (α12) = α23, β4 = s1s2s1 (α23) = α21 =
−α12. Rewriting the product as s2s1s2s2, we get the new order on the multiset α23 <

α13 < α12 < α21, and the last two reflections corresponding to the repeating root cancel, 
s2s2 = 1.

4.4. Intertwining operators and a map of Verma modules

In this section we construct a map of Verma modules MχD
→ Mw̃−1χD

. The construc-
tion is motivated by the analogous result from [3], made slightly simpler by the fact we 
are dealing with semisimple modules, and slightly more complicated by the fact that we 
are dealing with degenerate double affine Hecke algebras.

We first define several rational functions of complex variables z = (zi)i∈Z
with values 

in the group algebra C[Ẇn]. We allow infinitely many variables zi, but only finitely many 
ever appear in any formula.

• Let ϕi (z) = si+ 1
zi−zi+1

. If V is an Ḧn (κ) module and V [ξ] a (u1, . . . , un) eigenspace 
such that ξi �= ξi+1, then Φi|V [ξ] = ϕi (ξ).

• For a root αij , let ϕij
k (z) = ϕ

αij

k (z) = sk + 1
zi−zj

. In particular, ϕi = ϕαi
i = ϕi,i+1

i .

• For w ∈ Ẇn, let wϕi (z) = ϕi (wz) = ϕw−1αi
i (z).

• For a product si1 . . . sil (not necessarily reduced), let

ϕsi1 ...sil
(z) = ϕi1 (si2 . . . silz) . . . ϕil−1 (silz)ϕil (z) .

• The following identities are easy to check:

if sisj = sjsi then ϕi (sjz)ϕj (z) = ϕj (siz)ϕi (z)

ϕi (si+1siz)ϕi+1 (siz)ϕi (z) = ϕi+1 (sisi+1z)ϕi (si+1z)ϕi+1 (z) .
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It follows that, for any reduced decomposition w = si1 . . . sil of an element w ∈ Ẇ 0
n , 

the function ϕsi1 ...sil
(z) depends only on w and not on the choice of decomposition. 

Let ϕw (z) = ϕsi1 ...sil
(z).

• Call a product ϕβ1
i1

. . . ϕβl

il
matched if βj =

(
sij . . . sil

)−1 (
αij

)
. Matching products 

come from (possibly nonreduced) words in Ẇ 0
n , 

(
ϕβ1
i1

. . . ϕβl

il

)
(z) = ϕsi1 ...sil

(z). For 
example, ϕ13

1 ϕ23
2 = ϕs1s2 is matched, while ϕ12

1 ϕ23
2 is not.

• If ϕβ1
i1

. . . ϕβl

il
is a matched product, then the two l-tuples (i1, . . . , il) and (β1, . . . , βl)

mutually determine each other. Sometimes we will use it to write

ϕβ1
i1

. . . ϕβl

il
= ϕ•

i1 . . . ϕ
•
il

= ϕβ1 . . . ϕβl .

• The following identities hold if all the products are matched and i, j, k, l are all 
distinct,

ϕijϕikϕjk = ϕjkϕikϕij

ϕijϕkl = ϕklϕij .

• If ϕsi1 ...sik
= ϕβ1

i1
. . . ϕβk

ik
is a matched product such that not all roots βj are distinct, 

then si1 . . . sik is not a reduced word in Ẇ 0
n. If βj = −βj′ , j < j′, then the product 

si1 . . . sij′−1 can be rewritten as a product of simple reflections ending in sj′ , and the 
product sij+1 . . . sik can be rewritten to start with sij .

• When this happens, two adjacent terms can be canceled, producing a scalar function 
of z:

ϕji
k (z)ϕij

k (z) =
(
sk − 1

zi − zj

)(
sk + 1

zi − zj

)
= 1 − 1

(zi − zj)2
.

Another lemma gives us a shorter expression for the functions we will need later:

Lemma 4.13. For a reduced expression w = si1 . . . sil ∈ Ẇ 0
n, and βk = si1 . . . sik−1 (αik) ∈

Iw as above,

ϕw

(
w−1z

)
=

(
ϕβ1
i1
ϕβ2
i2

. . . ϕβl

il

)
(−z) =

(
ϕ−β1
i1

ϕ−β2
i2

. . . ϕ−βl

il

)
(z) .

Proof. As w−1 = sil . . . si1 , we have

ϕw

(
w−1z

)
= ϕi1

(
si2 . . . silw

−1z
)
. . . ϕil−1

(
silw

−1z
)
ϕil

(
w−1z

)
= ϕi1 (si1z) . . . ϕil−1

(
sil−1 . . . si1z

)
ϕil (sil . . . si1z)

= ϕ
si1

(
αi1

)
i1

(z) . . . ϕ
si1 ...sil−1

(
αil−1

)
il−1

(z)ϕsi1 ...sil
(
αil

)
il

(z)

= ϕ−β1
i1

(z) . . . ϕ−βl

il
(z)

= ϕβ1
i (−z) . . . ϕβl

i (−z) . �

1 l
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For a periodic skew diagram D, we want to evaluate the function ϕw̃

(
w̃−1z

)
at the 

point z = χD. The obstacle is that some factors might have poles. More specifically, 
ϕij
k (z) has a pole along the divisor zi = zj , and for z = χD, zi = zj if and only if i and 

j are on the same diagonal of the row reading tableau T0 on D. In that case, αi,j−1 and 
αij are adjacent in the special convex order by Lemma 4.9, and by Lemma 4.5, we can 
reorder the roots after αij to get another convex order in which αi,j−1 < αij < αj−1,j
are adjacent.

Lemma 4.14. Let w ∈ Ẇ 0
n , and assume that αi,j−1 < αij < αj−1,j are adjacent in some 

convex order on Iw. Then, in the reduced decomposition of w into simple reflections 
corresponding to this convex order, the factors corresponding to these roots are sasa+1sa
for some a.

Proof. Let αi,j−1 be the k-th root in that particular convex order on Iw, so that 
βk = αi,j−1, βk+1 = αi,j and βk+2 = αj−1,j . Let sa, sb, sc be the simple reflections 
corresponding to those factors in the reduced decomposition of w corresponding to this 
convex order, so w = w′sasbscw

′′ for some w′, w′′ ∈ Ẇ 0
n .

By the rule for associating roots βk, βk+1, βk+2 to the reduced decomposition of w,

αi,j−1 = w′ (αa)

αi,j = w′sa (αb)

αj−1,j = w′sasb (αc) .

The first of these implies that i = w′ (a) and j − 1 = w′ (a + 1). From the second of 
these equalities it follows that i = w′sa (b), which can be rewritten as b = saw

′ −1(i) =
sa (a) = a + 1. The third one implies that j − 1 = w′sasb (c), so c = sbsaw

′ −1 (j − 1) =
sa+1sa (a + 1) = a. �

So, if αi,j−1 < αij < αj−1,j are adjacent in some convex order on Iw, then the part of 
the product ϕw

(
w−1z

)
corresponding to them is the factor 

(
ϕ
−αi,j−1
a ϕ

−αi,j

a+1 ϕ
−αj−1,j
a

)
(z).

Lemma 4.15. Assume that zj−1 = zj − 1. Then

ϕj−1,i
a (z)ϕj,i

a+1 (z)ϕj,j−1
a (z) =

(
sasa+1 −

1
zj − zj−1

sa+1 −
1

zj − zj−1

)
· ϕj,j−1

a (z) .

In particular, it is regular along the divisor zi = zj.

Proof. Let zi − zj = ε ∈ C. Then zi − zj−1 = ε + 1. We calculate:

ϕj−1,i
a (z)ϕj,i

a+1 (z)ϕj,j−1
a (z) =

(
sa −

1
zi − zj−1

)(
sa+1 −

1
zi − zj

)(
sa −

1
zj−1 − zj

)

=
(
sa −

1
)(

sa+1 −
1
)

(sa + 1)

ε + 1 ε
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=
(
sa −

1
ε + 1

)
sa+1 (sa + 1) − 1

ε

(
sa −

1
ε + 1

)
(sa + 1)

=
(
sa −

1
ε + 1

)
sa+1 (sa + 1) − 1

ε
· ε

ε + 1
(sa + 1)

=
(
sasa+1 −

1
ε + 1sa+1 −

1
ε + 1

)
· (sa + 1) ,

which proves the first claim. In particular, its limit at zi = zj is

lim
ε→0

(
sasa+1 −

1
ε + 1sa+1 −

1
ε + 1

)
· (sa + 1) = (sasa+1 − sa+1 − 1) · (sa + 1) . �

We are now ready to prove a key proposition.

Proposition 4.16. For a periodic skew diagram D and the permutation w̃ from Lemma 4.3, 
the function ϕw̃

(
w̃−1z

)
, restricted to the set

FD = {(zi)i | ∀ i, j in the same row of T0 , zi − zj = χi − χj}

is regular and nonzero in a neighborhood of the point z = χD ∈ FD.

We allow arbitrarily many zi, but ϕw̃

(
w̃−1z

)
only depends on finitely many of them, 

namely on those zi such that there exists j ∈ Z such that ±αi,j ∈ Iw̃. The statement 
should be interpreted in that way, i.e. FD ⊂ CN for some N .

Proof. Let w̃ = si1 . . . sil be the reduced decomposition corresponding to the special 
order from Section 4.3. By Lemma 4.13,

ϕw̃

(
w̃−1z

)
=

(
ϕ−β1
i1

ϕ−β2
i2

. . . ϕ−βl

il

)
(z) .

The factors of this product which have a pole at z = χD are those for which βk = αij

with χi = χj , meaning that i and j are on the same diagonal of the row reading tableau 
T0 on D. By Lemma 4.9, in that case the affine root preceding αij in the special order 
is βk−1 = αi,j−1, which does not have a pole. Restricted to FD and in the neighborhood
of z = χD, all other terms can be evaluated. To evaluate ϕw̃

(
w̃−1z

)
|FD

at z = χD, we 
proceed as follows, evaluating terms from left to right:

• If k is such that neither the k-th term ϕ−βk

ik
nor the (k + 1)-st term ϕ−βk+1

ik+1
have a 

pole, then evaluate it at χD, getting ϕ−βk

ik
(χD).

• If terms up to (k − 1)-st have been evaluated, the k-th term needs to be evaluated 
next and the (k + 1)-st term has a pole, then we evaluate the k-th and (k + 1)-st 
term together. By Lemma 4.9, βk = αi,j−1, βk+1 = αi,j , and i and j are on the same 
diagonal in D. Using Lemma 4.5, we can reorder terms k + 2, . . . , l, keeping terms 
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1, . . . , k + 1 fixed, so that the new order is again convex and represents a different 
reduced decomposition of w̃, and so that in the new order the (k + 2)-nd term is 
βk+2 = αj−1,j . By Lemma 4.14, the k-th, (k + 1)-st and (k + 2)-nd terms are then (
ϕj−1,i
a ϕj,i

a+1ϕ
j,j−1
a

)
(z). By Lemma 4.15, the limit of this product along FD at χD

is (sasa+1 − sa+1 − 1) · ϕj,j−1
a (z) |z=χD

. Now reorder the terms k + 2, . . . , l again 
back to their original order, bringing ϕ−αj−1,j

a (z) back to its original place. The net 
effect of this step was to replace the product of the k-th and (k + 1)-st term by 
(sasa+1 − sa+1 − 1), keeping all the other terms fixed.

In this way, one can evaluate all terms of ϕw̃

(
w̃−1z

)
|FD

at z = χD, so this rational 
function is regular at that point. To see that it is nonzero, notice that ϕw̃

(
w̃−1χD

)
= w̃+

a linear combination of shorter terms, so in particular it is nonzero in C[Ẇn]. �
The procedure described here is called fusion. In later computations, we will call the 

terms ϕ−αi,j−1
a ϕ

−αi,j

a+1 fused, and refer to ϕ−αi,j−1
a , ϕ−αi,j

a+1 and ϕ−αi,j−1
a as the first, second 

and third term of a fusion.
Another key proposition is

Proposition 4.17. The vector

ED = ϕw̃

(
w̃−1z

)
|z=χD∈FD

1w̃−1χD
∈ Mw̃−1χD

is an eigenvector for u1, . . . , un with the eigenvalue χD. It determines a nonzero Ḧn (κ)
homomorphism of Verma modules F : MχD

→ Mw̃−1χD
by F (1χD

) = 1w̃−1χD
.

Proof. The vector ϕw̃

(
w̃−1z

)
|z=χD∈FD

1w̃−1χD
∈ Mw̃−1χD

is well defined and nonzero 
by the previous lemma. The only thing to prove is that it is an eigenvector u1, . . . , un

with the eigenvalue χD.
Define

vk =
(
ϕ
−βk+1
ik+1

. . . ϕ−βl

il

)
|z=χD∈FD

1w̃−1χD

for all 0 ≤ k ≤ l such that ϕ−βk+1
ik+1

(z) does not have a pole at z = χD. This is a regular 
and nonzero in the limit z → χD along z ∈ FD.

We will prove by downwards induction on k, starting from k = l and going 
down by steps of 1 or 2, that vk is an eigenvector for u1, . . . , un with the eigenvalue 
sik+1 . . . silw̃

−1χD.
For k = l, vl = 1w̃−1χD

∈ Mw̃−1χD
, and this is an eigenvector with the eigenvalue 

w̃−1χD. Assume we have proved the claim for vk. In the step if induction, we will 
distinguish two cases, and prove the corresponding claim for either vk−1 or vk−2.

First case: Assume that ϕ−βk

ik
(z) does not have a pole at z = χD. Then the intertwiner 

Φik is well defined (it does not have a pole) on the eigenspace sik+1 . . . silw̃
−1χD, and, 
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restricted to it, Φik = ϕ−βk

ik
(χD). Thus, vk−1 = Φikvk, which is an eigenvector for 

u1, . . . , un with the eigenvalue siksik+1 . . . silw̃
−1χD.

Second case: Assume that ϕ−βk

ik
(z) has a pole at z = χD. We will prove the claim for 

vk−2 = ϕ
−βk−1
ik−1

ϕ−βk

ik
vk.

By the definition of the special order, and by Lemma 4.14, there exists some in-
tegers a, i, j such that ϕ−βk−1

ik−1
ϕ−βk

ik
= ϕ

−αi,j−1
a ϕ

−αi,j

a+1 . By the fusion procedure from 

Lemma 4.16, in the limit z → χD along FD, the product ϕ−βk−1
ik−1

(z)ϕ−βk

ik
(z) is replaced 

by the fused factor (sasa+1 − sa+1 − 1).
Using that the product defining vk−2 is matched and that ϕj,i

a+1 has a z = χD, we 
see that the eigenvalues of ua, ua+1, ua+2 on vk are, respectively, c − 1, c, c for c =
(χD)i. Additionally, we can reorder sik+1 . . . sil so that ϕ−βk−1

ik−1
= ϕ

−αj−1,j
a = (sa + 1). In 

particular, (sa − 1) vk = 0.
We now calculate the action of ui on vk−2 = (sasa+1 − sa+1 − 1) vk for all i = 1, . . . , n.

• If i �= a, a + 1, a + 2, then ui (sasa+1 − sa+1 − 1) = (sasa+1 − sa+1 − 1)ui

and (sasa+1ν)i = νi, so vk−2 is an eigenvector for ui with the eigenvalue (
sik−1siksik+1 . . . silw̃

−1χD

)
(ui).

• If i = a, then

uivk−2 = ua (sasa+1 − sa+1 − 1) vk
= (sasa+1ua+2 − sa − sa+1 − sa+1ua − ua) vk
= (sasa+1c− sa − sa+1 − sa+1 (c− 1) − (c− 1)) vk
= c (sasa+1 − sa+1 − 1) vk − (sa − 1) vk
= cvk−2.

• If i = a + 1, then

uivk−2 = ua+1 (sasa+1 − sa+1 − 1) vk
= (sasa+1ua + sa+1 − sa+1ua+2 + 1 − ua+1) vk
= (sasa+1 − sa+1 − 1) (c− 1) vk
= (c− 1) vk−2.

• If i = a + 2, then

uivk−2 = ua+2 (sasa+1 − sa+1 − 1) vk
= (sasa+1ua+1 + sa − sa+1ua+1 − 1 − ua+2) vk
= ((sasa+1 − sa+1 − 1) c + (sa − 1)) vk
= cvk−2.
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So, vk−2 is an eigenvector for u1, . . . , un with the eigenvalue sik−1 . . . silw̃
−1χD. This 

finishes the induction argument.
In particular, the vector v0 = ϕw̃

(
w̃−1z

)
|z=χD∈FD

1w̃−1χD
is an eigenvector for 

u1, . . . , un with the eigenvalue si1 . . . silw̃
−1χD = w̃w̃−1χD = χD.

Verma modules are induced modules, so the eigenvector ED ∈ Mw̃−1χD
induces a 

homomorphism of Verma modules F : MD → Mw̃−1χD
. Because ϕw̃

(
w̃−1z

)
|z=χD∈FD

∈
C[Ẇn] is nonzero and Verma module Mw̃−1χD

is free as a C[Ẇn] module, it follows that 
ED is nonzero, and the morphism F is nonzero as well. �
Example 4.18. For D and w̃ as in Examples 4.2, 4.8, 4.10,

ED = ϕw̃

(
w̃−1z

)
|z=χD∈FD

1w̃−1χD

= lim
z=(ε,1+ε,−1,0)

ε→0

(
ϕ12

1 ϕ13
2 ϕ14

3 ϕ34
2 ϕ−3,2

0 ϕ−3,4
1 ϕ−1,2

3 ϕ−1,4
0 ϕ24

3

)
(−z)1(2,3,−3,−2)

= lim
ε→0

(
ϕ21

1 ϕ31
2 ϕ41

3 ϕ43
2 ϕ2,−3

0 ϕ4,−3
1 ϕ2,−1

3 ϕ4,−1
0 ϕ42

3

)
(z)1(2,3,−3,−2)

= lim
ε→0

(
s1 −

1
z1 − z2

)(
s2 −

1
z1 − z3

)(
s3 −

1
z1 − z4

)(
s2 −

1
z3 − z4

)

·
(
s0 −

1
z−3 − z2

)(
s1 −

1
z−3 − z4

)(
s3 −

1
z−1 − z2

)

·
(
s0 −

1
z−1 − z4

)(
s3 −

1
z2 − z4

)
1(2,3,−3,−2)

= lim
ε→0

(
(s1 + 1)

(
s2 −

1
1 + ε

)(
s3 −

1
ε

)
(s2 + 1)

·
(
s0 −

1
2

)(
s1 −

1
3 + ε

)(
s3 −

1
1 − ε

)(
s0 −

1
2

)(
s3 −

1
1 + ε

))
1(2,3,−3,−2)

= (s1 + 1) (s2s3 − s3 − 1) (s2 + 1)
(
s0 −

1
2

)(
s1 −

1
3

)
(s3 − 1)

·
(
s0 −

1
2

)
(s3 − 1)1(2,3,−3,−2).

4.5. The map F : MχD
→ Mw̃−1χD

factors through LD

To prove that the homomorphism F constructed in the last section as a map between 
Verma modules induces an inclusion of the irreducible module LD into the Verma module 
Mw̃−1χD

, we have to show that it is zero on the kernel of the quotient map Q : MχD
→

LD. By Theorem 2.12, the kernel of Q is generated as an Ḧn (κ)-module by

{ΦiΦw1D | wT0 standard, siwT0 not standard}.

Let us study this set first, before proving that F |Ker Q = 0.
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Lemma 4.19. Assume that D is a periodic skew diagram and w ∈ Ẇn such that wT0 is 
standard and siwT0 is not standard. Then l (siww̃) < l (ww̃).

Proof. By [5, Lemma 1.6], l (siww̃) = l (ww̃) − 1 if and only if αi,i+1 is an inversion of 
(ww̃)−1. The permutation ww̃ of Z is obtained by reading the entries of wT0, up each 
column to its end, and continuing up the next column to the left. By an analogue of 
Lemma 4.6, the set Iww̃ of inversions of (ww̃)−1 is the set of all roots αjk such that 
the arrow 

−→
jk on the tableau wT0 is pointing right, pointing down, or pointing down and 

right. By Lemma 2.13, the boxes containing i and i + 1 in wT0 are adjacent, and the 
arrow 

−−−−−−→
i, i + 1 is pointing one box right or pointing one box down, so αi,i+1 is an inversion 

of (ww̃)−1 and l (siww̃) = l (ww̃) − 1. �
Lemma 4.20. Assume that D is a periodic skew diagram with no infinite column, κ ≥ 2, 
and F : MD → Mw̃−1D as defined in Proposition 4.17. For every w ∈ Ẇn such that wT0
is standard, siwT0 is not, and i and i + 1 are in the same row of wT0, we have

F (ΦiΦw1D) = 0.

Proof. Using that ϕsiw (z) is regular at z = χD, we get

F (ΦiΦw1D) = ΦiΦwF (1D)

= ϕsiw (χD) lim
z→χD

z∈FD

ϕw̃

(
w̃−1 (z)

)
1w̃−1χD

= lim
z→χD

z∈FD

ϕsi (w (z))ϕww̃

(
w̃−1 (z)

)
1w̃−1χD

.

By Lemma 4.19, l (siww̃) < l (ww̃), so it is possible to write ww̃ = siw1, with l (w1) =
l (ww̃) − 1. Use this decomposition to write ϕww̃

(
w̃−1 (z)

)
, and get

F (ΦiΦw1D) = lim
z→χD

z∈FD

ϕsi (w (z))ϕsi (siw (z))ϕw1

(
w̃−1 (z)

)
1w̃−1χD

= lim
z→χD

z∈FD

(si − 1) (si + 1)ϕw1

(
w̃−1 (z)

)
1w̃−1χD

= lim
z→χD

z∈FD

0 · ϕw1

(
w̃−1 (z)

)
1w̃−1χD

= 0. �
Example 4.21. Let D be the periodic diagram from Examples 4.2, 4.8, 4.10 and 4.18. Let 
w = 1, and si = s1. Then siwT0 = s1T0 is not standard, as 1 and 2 are in adjacent boxes 
of T0 in the first row, 1 = T0 (1, 1), 2 = T0 (1, 2). The vector ED can be written as ED =
(s + 1)E′, where E′ = (s2s3 − s3 − 1) (s2 + 1)

(
s0 − 1

2
) (

s1 − 1
3
)
(s3 − 1)

(
s0 − 1

2
)
×

(s3 − 1)1w̃−1χD
∈ Mw̃−1χD

, so
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F (Φ11χD
) = Φ1ED = (s1 − 1) (s1 + 1)E′ = 0.

Writing the function corresponding to the nonreduced element siww̃ = s1w̃,

ϕs1w̃

(
w̃−1z

)
=

(
ϕ12

1 ϕ21
1 ϕ31

2 ϕ41
3 ϕ43

2 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z) ;

we see that the root α12 repeats, and the corresponding terms cancel to give ϕ12
1 ϕ21

1 = 0
at z = χD.

When i and i + 1 are adjacent and in the same column of wT0, the proof that 
F (ΦiΦw1D) = 0 is more complicated. We first give two examples, which illustrate the 
two possible cases.

Example 4.22. Let D and w̃ be the same as in Example 4.18, and let w = s2. The tableau 

s2T0 is standard, and contains 
1 3
2 4 , so s3s2T0 is not standard. The vector Φ3Φ21 is in 

the kernel of Q; let us show that it is also in the kernel of F .
By definition,

F (Φ3Φ21) = lim
z=(ε,1+ε,−1,0)

ε→0

(
ϕ24

3 ϕ23
2 ϕ21

1 ϕ31
2 ϕ41

3 ϕ43
2 ϕ2,−3

0 ϕ4,−3
1 ϕ2,−1

3 ϕ4,−1
0 ϕ42

3

)
(z) · 1.

The fact that the product s3s2w̃ is not reduced is reflected in the fact that the root α24 is 
repeated. The idea is to cancel the functions corresponding to the repeated root; for that, 
let us first rewrite the product so that the factors corresponding to the repeated root 
are adjacent. Let w1 = s2s1s2s3s2s0s1s3s0; then s3s2w̃ = s3w1s3. Direct computation 
shows that s3w1 = w1s3, so s3s2w̃ = w1s3s3. The corresponding function is

F (Φ3Φ21) = lim
ε→0

(
ϕ43

2 ϕ41
1 ϕ31

2 ϕ21
3 ϕ23

2 ϕ4,−3
0 ϕ2,−3

1 ϕ4,−1
3 ϕ2,−1

0 ϕ24
3 ϕ42

3

)
(z) · 1.

Notice that the lower indices in the reduced decomposition of ϕw1 have stayed the same, 
and the upper have been changed by the transposition s24. Now let us cancel the last 
two terms, giving

(
ϕ24

3 ϕ42
3
)
(z) =

(
s3 + 1

z2 − z4

)(
s3 + 1

z4 − z2

)

=
(
s3 −

1
1 + ε

)(
s3 + 1

1 + ε

)
= (2 + ε) ε

(1 + ε)2
.

This tends to zero at ε → 0, but it is not identically equal to it. To show that the product 
tends to zero, we need to show that the remaining factor is regular at ε → 0. This factor 
is (

ϕ43
2 ϕ41

1 ϕ31
2 ϕ21

3 ϕ23
2 ϕ4,−3

0 ϕ2,−3
1 ϕ4,−1

3 ϕ2,−1
0

)
(z) .
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All factors of this are regular at z = χD except ϕ41
1 . However, its product with the 

two neighboring factors is again a fusion:

ϕ43
2 ϕ41

1 ϕ31
2 (z) = (s2 + 1)

(
s1 −

1
ε

)(
s2 −

1
1 + ε

)
= (s2 + 1)

(
s1s2 −

1
1 + ε

s1 −
1

1 + ε

)
,

and this is regular at ε = 0.

When i and i + 1 are in the same column of wT0, the proof that ΦiΦw1D is in KerF
will go along the same lines if i and i + 1 are in the rightmost two boxes of their rows. 
We will show in the next lemma that in that case, ϕsiww̃ can be rewritten so that two 
terms cancel, their product tends to 0, and the remaining factor is regular at z = χD. In 
case i and i +1 are not in the rightmost two boxes of their rows, additional cancelations 
are required to show the product tends to 0. This is illustrated in the following example.

Example 4.23. Let D and w = s2 be the same as in Example 4.22, and let si = s1. We 
have

F (Φ1Φ21) = lim
z=(ε,1+ε,−1,0)

ε→0

(
ϕ13

1 ϕ23
2 ϕ21

1 ϕ31
2 ϕ41

3 ϕ43
2 ϕ2,−3

0 ϕ4,−3
1 ϕ2,−1

3 ϕ4,−1
0 ϕ42

3

)
(z) · 1.

The product s1ww̃ is not reduced and the root α13 is repeated. Let w1 = s2s1; then 
s1w1 = w1s2 and the above expression is equal to

F (Φ1Φ21)

= lim
z=(ε,1+ε,−1,0)

ε→0

(
ϕ21

2 ϕ23
1 ϕ13

2 ϕ31
2 ϕ41

3 ϕ43
2 ϕ2,−3

0 ϕ4,−3
1 ϕ2,−1

3 ϕ4,−1
0 ϕ42

3

)
(z) · 1

= lim
z=(ε,1+ε,−1,0)

ε→0

(
ϕ21

2 ϕ23
1 · (2 + ε) ε

(1 + ε)2
· ϕ41

3 ϕ43
2 ϕ2,−3

0 ϕ4,−3
1 ϕ2,−1

3 ϕ4,−1
0 ϕ42

3

)
(z) · 1.

The term ϕ41
3 has a pole at z = χD. It used to be in fusion with the term ϕ31

2 , but that 
term got canceled. Rewrite the product as

lim
ε→0

(2 + ε)
(1 + ε)2

(
ϕ21

2 ϕ23
1 ·

(
εϕ41

3
)
· ϕ43

2 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z) · 1,

and notice that limε→0 εϕ
41
3 = limε→0 ε 

(
s3 − 1

ε

)
= −1, while all other terms are regular 

at ε → 0. So, to show that the above limit is 0, it is enough to show that

−2 · lim
ε→0

(
ϕ21

2 ϕ23
1 · ϕ43

2 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z) = 0.

The difficulty here is that after removing the factor ϕ14
3 , this is no longer a matched 

expression. To make it matched, let us replace all ϕβ
k that were in the product to the 
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left of ϕ14
3 by ϕs14(β)

k . This change corresponds to exchanging z1 and z4. As all terms 
are regular, and lim z1 = lim z4, this does not change the limit. The resulting matched 
product is equal to

−2 · lim
ε→0

(
ϕ24

2 ϕ23
1 ϕ43

2 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z)

= −2 · lim
ε→0

(
ϕ43

1 ϕ23
2 ϕ24

1 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z) .

Comparing this to the expression at the very beginning of this example, we see that 
the canceling which we did has had the same effect as the following steps would have 
had:

(1) Delete all three terms of the fusion (ϕ31
2 ϕ41

3 ϕ43
2 );

(2) Replace all ϕβ
k that show up before this fusion by ϕspqβ

k , where spq is the transposition 
permutation the deleted fusion would have achieved (s14);

(3) Multiply the limit by an overall function which has a regular, nonzero limit (−2).

We have demonstrated above that the original limit is zero if and only if the limit of 
the modified product is zero. So, we are left with the task of showing that

lim
ε→0

(
ϕ43

2 ϕ23
1 ϕ24

2 ϕ2,−3
0 ϕ4,−3

1 ϕ2,−1
3 ϕ4,−1

0 ϕ42
3

)
(z) = 0.

This is a matched product, with the α24 repeating root. Comparing 
−→13 (which we have 

just canceled) and 
−→24 (which we are to cancel next), we see that the repeating root is 

again corresponding to two adjacent boxes in the same column of D, in the same two 
rows as before, and that these two boxes are one place to the right of the original ones.

To cancel the two terms corresponding to α24, let w2 = s0s1s3s0, and notice that 
s1w2 = w2s3, so the above limit is equal to

lim
ε→0

(
ϕ43

2 ϕ23
1 ϕ4,−3

0 ϕ2,−3
1 ϕ4,−1

3 ϕ2,−1
0 ϕ24

3 ϕ42
3

)
(z) .

The product 
(
ϕ24

3 ϕ42
3
)
(z) = ε(2+ε)

(1+ε)2 → 0 and all the other terms are regular, so this limit 
is 0. This shows that Φ1Φ21 ∈ KerF .

These examples illustrate the general situation. The following lemma is the combina-
torial heart of the proof, and the last part we need to prove the main theorem.

Lemma 4.24. Assume that D is a periodic skew diagram with no infinite column, κ ≥ 2, 
and F : MD → Mw̃−1D is a morphism of Ḧn (κ) modules defined in Proposition 4.17. 
For every w ∈ Ẇn such that wT0 is standard, siwT0 is not, and i and i + 1 are in the 
same column of wT0, we have

F (ΦiΦw1D) = 0.
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Proof. Step 1. As in the proof of Lemma 4.20, we have

F (ΦiΦw1D) = lim
z→χD

z∈FD

ϕsiww̃

(
w̃−1 (z)

)
1w̃−1χD

,

with l (siww̃) < (ww̃). When writing ϕsiww̃

(
w̃−1 (z)

)
= ϕβ

i (z)ϕww̃

(
w̃−1 (z)

)
as a prod-

uct of ϕβk

ik
, the root β appears as β = −βk in one of the factors of ϕww̃

(
w̃−1 (z)

)
.

Step 2. Specifying a point z in the set FD is equivalent to specifying a set of num-
bers εa, one for each row of D, and setting zi = χi + εa if i is in row a of T0. Taking 
the limit lim z→χD

z∈FD

is then equivalent to taking lim εa→0
∀a

. This is well defined, as only 

finitely many zi and consequently finitely many εa appear in the calculation of ϕw̃.
Let i = wT0 (a, b), i +1 = wT0 (a + 1, b), and ε = εa−εa+1. By Lemma 4.16, the limit 

of ϕw̃

(
w̃−1 (z)

)
at z → χD, z ∈ FD exists, so it can be calculated as consecutive limits:

lim
z→χD

z∈FD

ϕsiww̃

(
w̃−1 (z)

)
= lim

εj→0
∀j

lim
ε→0

ϕsiww̃

(
w̃−1 (z)

)
.

We will prove that the inner limit limε→0 ϕsiww̃

(
w̃−1 (z)

)
is zero.

Step 3. Claim: if ϕ−α
k ϕw1ϕ

α
j is matched, then it is equal to ϕw1ϕ

−α
j ϕα

j .
To prove this, let 

(
ϕ−α
k ϕw1ϕ

α
j

)
(z) = ϕk (w1sjw2 (z))ϕw1 (sjw2 (z))ϕj (w2z), and 

notice that ϕα
j = w2ϕj implies α = w−1

2 αj , and ϕ−α
k = w1sjw2ϕsk implies −α =

(w1sjw2)−1
αk. From this it follows that αk = w1αj , and consequently that w1sjw

−1
1 = sk.

So, ϕ−α
k ϕw1 = ϕskw1 = ϕw1sj , which implies the claim.

If α = αpq, and if ϕw1 is written as a product of ϕγ
j , the change from ϕ−α

k ϕw1ϕ
α
j to 

ϕw1ϕ
−α
j ϕα

j means that each factor of ϕw1 changes from ϕγ to ϕspq(γ).
Step 4. We will consider the following procedure on ϕsiww̃

(
w̃−1 (z)

)
, which we call 

cancellation at column c.
Assume c ≥ b is such that (a + 1, c + 1) ∈ D. Then (a, c) , (a + 1, c) ∈ D. Let i′ =

T0 (a, c), j′ = T0 (a + 1, c), j′ + 1 = T0 (a + 1, c + 1). The product ϕsiww̃

(
w̃−1 (z)

)
, or 

any which was obtained from it by cancellation at columns c′ < c, contains the fusion 
terms ϕj′,i′

k ϕj′+1,i′
k+1 ϕj′+1,j′

k . The procedure is:

(1) Delete the fusion terms ϕj′,i′

k , ϕj′+1,i′
k+1 , ϕj′+1,j′

k .
(2) For all terms ϕα

k′ to the left of the deleted fusion, replace α by si′,j′+1 (α).
(3) Multiply by the constant −2.

Step 5. Claim: if ϕw1

(
w̃−1z

)
was obtained from ϕs1ww̃

(
w̃−1z

)
by cancellation at 

columns b, b +1, . . . , c −1, then it is matched, regular at z = χD, and has the root αi′′,j′′ , 
i′′ = T0 (a, c), j′′ = T0 (a + 1, c), repeating.

To prove all these claims, we write ϕs1ww̃

(
w̃−1z

)
as a product of ϕβ

k and look at what 
happens to the roots β in cancellation at a column c′. Steps 1 and 2 ensure that the 
product is matched. Replacing some roots β by si′,j′+1 (β) does not change the roots 
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at any fusions before column c′, nor does it create any new poles that would have to 
be resolved by fusion, so the new expression is regular. After cancellation at columns 
b, b + 1, . . . , c − 1, the root αi′′,j′′ appears twice in the new expression: 1) once in its 
original place, as given by the special order; this place was after the deleted fusions, 
so it not influenced by any cancellations; 2) the second time, in place where the root 
αi′′−1′,i′′ was in the original expression ϕs1ww̃

(
w̃−1z

)
; this is before the last deleted 

fusion, and was changed by Step 2 of the cancellation at column c from αi′′−1′,i′′ to 
si′′−1,j′′ (αi′′−1′,i′′) = αi′′,j′′ .

Step 6. Assume that ϕs1ww̃

(
w̃−1z

)
had been changed by cancellation at columns 

b, b + 1, . . . , c − 1. By Step 5, it has a repeating root α = αi′′,j′′ for i′′ = T0 (a, c), 
j′′ = T0 (a + 1, c). The new expression can be written as:

ϕw1skw2sjw3

(
w̃−1 (z)

)
= ϕw1

(
skw2sjw3w̃

−1 (z)
)
ϕα
k (z)ϕw2

(
sjw3w̃

−1 (z)
)
ϕ−α
j (z)ϕw3

(
w̃−1z

)
,

for some w1, w2, w3. By Step 5, all terms in this product are regular. By Step 3, this can 
be further written as

ϕw1

(
skw2sjw3w̃

−1 (z)
)
ϕw2

(
w3w̃

−1 (z)
)
ϕα
j (z)ϕ−α

j (z)ϕw3

(
w̃−1z

)
.

We claim that ϕw2

(
w3w̃

−1 (z)
)

is also regular at z = χD.
To prove that, look at the roots appearing in expressing ϕw2

(
w3w̃

−1 (z)
)

as a product 
of ϕβ

k . They are obtained from the roots appearing ϕw2

(
sjw3w̃

−1 (z)
)

by the action of 
si′′,j′′ . This does not change any of the fusions in ϕw2

(
skw3w̃

−1 (z)
)
. It creates one new 

factor with a pole at ε = 0, namely the factor with the root αi′′−1,j′′ = si′′,j′′ (αi′′−1,i′′). 
In ϕw2

(
skw3w̃

−1 (z)
)
, this factor appears as:

. . . ϕi′′−1,i′′ϕi′′−1,i′′+1ϕi′′−1,i′′+2 . . . ϕi′′−1,k′′
ϕi′′−1,j′′−1 . . .

where k′′ is the last entry in row a. For i′′ + 1 ≤ k′ ≤ k′′, the term ϕk′,j′′−1 com-
mutes with the first k′ − 2 terms of this product, and squares to 1 − 1

zk′−zj′′−1
�= 0. 

By adding the (normalized) squares of these elements to appropriate places, then com-
muting one copy to the beginning of the expression and using another to transform 
ϕk′,j′′−1ϕi′′−1,k′

ϕi′′−1,j′′−1 = ϕi′′−1,j′′−1ϕi′′−1,k′
ϕk′,j′′−1, we can rewrite the above ex-

pression so that it contains

. . . . . . ϕi′′−1,i′′ϕi′′−1,j′′−1 . . .

as adjacent terms. Once they are adjacent, by Lemma 4.5, there is a reorder of the first 
part of it such that ϕj′′−1,i′′ϕi′′−1,i′′ϕi′′−1,j′′−1 are all adjacent. Then ϕi′′−1,i′′ϕi′′−1,j′′−1

can be fused, showing that there is no pole, and ϕw2

(
w3w̃

−1 (z)
)

is regular at ε = 0.
Step 7. Assume that (p = T0 (a, c) , q = T0 (a + 1, c)) is the last pair of boxes in rows 

a, a + 1, i.e. (a + 1, c + 1) /∈ D. Assume also that by doing cancelation in columns 
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b, . . . , c − 1 on ϕsiww̃

(
w̃−1 (z)

)
, we got a nonreduced expression where the root αpq is 

repeated. (Here, we allow the possibility of c = b.) This matched expression looks like

ϕw1skw2sjw3

(
w̃−1 (z)

)
= ϕw1

(
skw2sjw3w̃

−1z
)
ϕpq
k (z)ϕw2

(
sjw3w̃

−1z
)
ϕqp
j (z)ϕw3

(
w̃−1z

)
.

Because αpq is the last vertical line between those two rows, ϕqp
j is not the first term of 

any fusion, so by Step 5 ϕw3

(
w̃−1z

)
is regular. By Step 6, this can be written as

ϕw1

(
skw2sjw3w̃

−1z
)
ϕw2

(
w3w̃

−1z
)
ϕpq
j (z)ϕqp

j (z)ϕw3

(
w̃−1z

)
.

By Step 6, all terms in this product are regular at ε = 0. The product ϕpq
j (z)ϕqp

j (z) is 
equal to

ϕpq
j (z)ϕqp

j (z) =
(
sj + 1

zp − zq

)(
sj + 1

zq − zp

)

=
(
sj + 1

1 + ε

)(
sj −

1
1 + ε

)
= (2 + ε) ε

(1 + ε)2
,

which has the limit 0 when ε tends to 0. Thus,

lim
z→χD

z∈FD

ϕw1skw2sjw3

(
w̃−1 (z)

)
= 0.

Step 8. Assume that (p = T0 (a, c) , q = T0 (a + 1, c)) is not the last pair of boxes in 
rows a, a + 1, i.e. that (a + 1, c + 1) ∈ D. Assume also that after doing cancelation in 
columns b, b +1, . . . , c −1 on ϕsiww̃

(
w̃−1 (z)

)
, we got a nonreduced expression where the 

root αpq is repeated. The second appearance of this root is the first term of a fusion. 
This matched expression can be written as:

ϕw1skw2sjsj+1sjw3

(
w̃−1 (z)

)
=

((
skw2sjsj+1sjw3w̃

−1
ϕw1

)
· ϕpq

k ·
(
sjsj+1sjw3w̃

−1
ϕw2

)
· ϕqp

j ϕq+1,p
j+1 ϕq+1,q

j ·
(
w̃−1

ϕw3

))
(z)

=
((

skw2sjsj+1sjw3w̃
−1
ϕw1

)
·
(
sj+1sjw3w̃

−1
ϕw2

)
· ϕpq

j ϕqp
j ϕq+1,p

j+1 ϕq+1,q
j ·

(
w̃−1

ϕw3

))
(z) .

By Step 6, the terms ϕw1 , ϕw2 , ϕw3 of this product are regular. Let us calculate the limit 
of the middle term:

lim
z→χD∈FD

(
ϕpq
j ϕqp

j ϕq+1,p
j+1 ϕq+1,q

j

)
(z)

= lim
(
sj + 1

)(
sj + 1

)(
sj+1 + 1

)(
sj + 1

)

ε→0 zp − zq zq − zp zq+1 − zp zq+1 − zq
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= lim
ε→0

(
sj + 1

1 + ε

)(
sj −

1
1 + ε

)(
sj+1 −

1
ε

)
(sj + 1)

= lim
ε→0

(2 + ε) · ε
(1 + ε)2

(
sj+1 −

1
ε

)
(sj + 1) = −2 (sj + 1) = −2ϕαq+1,q

j .

Substituting this in the original expression, we get

lim
z→χD∈FD

ϕw1skw2sjsj+1sjw3

(
w̃−1 (z)

)
= lim

z→χD∈FD

((
skw2sjsj+1sjw3w̃

−1
ϕw1

)
·
(
sj+1sjw3w̃

−1
ϕw2

)

·
(
−2ϕq+1,q

j

)
·
(
w̃−1

ϕw3

))
(z) .

This product is not matched (as we effectively took ϕq+1,p
j+1 out). We use the fact 

that lim zp = lim zq+1 and that all terms are regular to replace the above limit of a 
non-matched product with a limit of the following matched product:

lim
z→χD∈FD

ϕw1skw2sjsj+1sjw3

(
w̃−1 (z)

)
= lim

z→χD∈FD

((
sj+1skw2sjsj+1sjw3w̃

−1
ϕw1

)
·
(
sjw3w̃

−1
ϕw2

)

·
(
−2ϕq+1,q

j

)
·
(
w̃−1

ϕw3

))
(z)

= −2 lim
z→χD∈FD

((
sj+1skw2sjsj+1sjw3w̃

−1
ϕw1

)
· ϕq+1,q

k

·
(
sksjw3w̃

−1
ϕw2

)
·
(
w̃−1

ϕw3

))
(z)

= −2 lim
z→χD∈FD

ϕw1skw2w3

(
w̃−1z

)
.

Comparing the beginning and the end of this computation, we see that the net effect 
of Step 8 was the cancelation at column c as described in Step 4.

Step 9. Finally, let us put it all together. For D as in the statement, and i, i +1 in the 
same column of wT0, we calculate F (ΦiΦw1D) by showing limε→0 ϕsiww̃

(
w̃−1z

)
= 0. 

Let i = wT0 (a, b), i + 1 = wT0 (a + 1, b), p = T0 (a, b) = w−1(i) and q = T0 (a + 1, b) =
w−1 (a + 1, c). Then the root αpq is repeated in the expression of ϕsiww̃; it appears 
once as an exponent of ϕsi and once among the exponents of w̃. If (a, b) and (a + 1, b)
are not the last pair of boxes in that row, then by Step 9 this limit is equal to the 
limit of a similar matched product, obtained from ϕsiww̃

(
w̃−1z

)
by cancelation at col-

umn b, which has a repeating root αp+1,q+1, corresponding to p + 1 = T0 (a, b + 1)
and q + 1 = T0 (a + 1, b + 1). Repeating this several times if necessary, we get that 
limε→0 ϕsiww̃

(
w̃−1z

)
is equal to the limit of some other matched product, obtained from 

ϕsiww̃

(
w̃−1z

)
by cancelations at all columns b ≤ c′ < c, where (a, c) and (a + 1, c) are 
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the last pair of boxes these two rows, and the root αp+(c−b),q+(c−b), p +(c− b) = T0 (a, c), 
q + (c− b) = T0 (a + 1, c), is repeated. By Step 8, this limit is equal to 0. �
Proof of Proposition 4.1. For w̃ constructed in Lemma 4.3, in Proposition 4.17 we con-
structed homomorphism F : MD → Mw̃−1χD

of Verma modules. To see that it factors 
through the kernel of the surjective map Q : MD → LD, it is, by Theorem 2.12, enough 
to show that F (ΦiΦw1D) = 0 for all w, si such that wT0 is standard and siwT0 is not 
standard. By Lemma 2.13, in that case i and i + 1 are adjacent in wT0, either in the 
same row or in the same column. If they are in the same row, then F (ΦiΦw1D) = 0 by 
Lemma 4.20. If they are in the same column, then F (ΦiΦw1D) = 0 by Lemma 4.24. So, 
F factors through Q, and induces a nonzero homomorphism LD ↪→ Mw̃−1χD

. �
5. The case κ = 1

In this section, we show that for n ≥ 2 and κ = 1, every semisimple irreducible module 
LD for Ḧn (κ) can be embedded into a Verma module. The choice of this Verma module 
and consequently the method of proof is different than in Section 4; in particular, the 
existence and properties of the element w̃ ∈ Ẇn do not carry over to κ = 1 case. The 
construction in this section is different and straightforward. The first step is to show 
that the for κ = 1 and fixed n, there are very few periodic skew diagrams.

Lemma 5.1. Let n ≥ 2, D a periodic skew diagram of degree n and period (m,−l), and 
κ = m + l = 1. Then the fundamental domain of D is one row with n consecutive boxes, 
while D consists of n consecutive infinite columns.

Proof. If D is a periodic skew diagram, then l ≥ 0, which together with m ≥ 1 and 
m + l = 1 implies m = 1, l = 0. �

In Section 3 we showed that the same picture with more than one row in the fundamen-
tal domain of D produces irreducible modules with torsion which cannot be embedded 
into a Verma module. The proof used elements associated to different rows of the funda-
mental domain of D to find torsion. Here, we show that for if the fundamental domain 
has only one row, this is not the case, and we find an explicit embedding of LD.

Lemma 5.2. Let m = 1, l = 0, κ = 1, μ ∈ Z, λ = μ +n −1, and let D be the periodic skew 
diagram consisting of n consecutive infinite columns, D = Z × [μ, λ]. Then the irreducible 
Ḧ(1) module LD is equal to the small Verma module ND.

Proof. Let us first describe ND. The fundamental domain of T0 is 1 2 3 · · · n , so 
I = {1, . . . , n − 1}. The small Verma module is the quotient ND = MD/K, where K is 
the Ḧn (κ) submodule generated by Φi1D for i = 1, . . . , n − 1.

Let Q be the quotient map Q : MD → LD. It factors through the surjection MD →
ND, so K ⊆ KerQ. We claim that K = KerQ.
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As left C[Ẇn] modules, MD
∼= C[Ẇn], so any element of MD can be uniquely written 

as a finite sum v =
∑

w∈Ẇn
aww1D for some aw ∈ C. Let k (v) be the length of the 

longest w ∈ Ẇn with nonzero aw, and let k′ (v) be the number of terms aww with 
nonzero aw and l (w) = k.

Assume that K is a proper subset of KerQ. Consider the subset of KerQ \K consisting 
of elements which have minimal k (v) = k, and among such elements, pick one with the 
minimal k′ (v). Write it as v =

∑
w∈Ẇn

aww1D.
By the comments below Theorem 2.12, for every w1D ∈ MD there exist bw′ , cw′ ∈ C

such that

Q (w1D) = vwT0 +
∑

l(w′)<l(w)

bw′vw′T0 , if wT0 is standard,

Q (w1D) =
∑

l(w′)<l(w)

cw′vw′T0 , if wT0 is not standard.

As v ∈ KerQ, we see that

0 = Q (v)

= Q

⎛
⎝ ∑

l(w)=k

aww +
∑

l(w)<k

aww

⎞
⎠

=
∑

l(w)=k
wT0 standard

awvwT0 +
∑

l(w)<k

dwvwT0 .

As the set {vwT0 | wT0 standard} is a basis of LD, it follows that wT0 is not standard 
for all nonzero leading terms aww of v with aw �= 0, l (w) = k. As k (v) = k, the set of 
such terms is nonempty; in fact it has k′ (v) elements.

Choose such a summand aww. The fundamental domain of D has only one row, so 
all periodic tableaux are column increasing. Therefore, wT0 is not row increasing. The 
fundamental domain of wT0 is

w(1) w(2) . . . w(n)

so there exists i ∈ 1, 2, . . . , n − 1 such that w(i) > w (i + 1). From this it follows that 
wαi is a negative root, so by [5, Lemma 1.6], l (wsi) < l (w) and by the Exchange 
Condition 1.7 from [5] there exists a reduced expression of w ending in si, w = w′si, 
l (w′) = k − 1.

The element w′Φi1D = w′ (si − 1)1D is in K ⊆ KerQ. Consider

v − aw (w′ (si − 1))1D = v − aww1D + aww
′1D.
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It is in KerQ, as both v and w′Φi1D are. It is not in K, because w′Φi1D is and v is not. 
Finally, it has k′ − 1 summands of length k. This contradicts the choice of v as minimal 
with said properties and the assumption that K �= KerQ. �
Proposition 5.3. Let D = Z ⊗ [μ, μ + n − 1] be a periodic skew Young diagram of period 
(1, 0), and let w0 be the longest element of the symmetric group Wn. Let χ = χD and 
τ = w0χ. Then the map MD → Mτ of Ḧn(1) modules determined by 1D 
→ Φw01τ

factors through LD, and gives rise to an inclusion LD ↪→ Mτ .

Proof. The fundamental domain of T0 is 1 2 3 · · · n , so

χ = (0, 1, 2, . . . , n− 1) + (μ− 1) (1, 1, . . . , 1)

τ = (n− 1, n− 2, . . . , 1, 0) + (μ− 1) (1, 1, . . . , 1) .

The vector Φw01τ ∈ Mτ is well defined (its factors have no poles because all the coordi-
nates of τ are distinct), nonzero (as it is of the form Φw01τ = w01τ +

∑
l(w)<l(w0) aww1τ ), 

and an eigenvector for (u1, . . . , un) with the eigenvalue w0τ = w2
0χ = χ. So, there 

is a unique nonzero morphism of Ḧn (κ) modules F : MD → Mτ determined by 
F (1D) = Φw01τ .

We claim that F is zero when restricted to KerQ, for Q : MD → LD the quotient 
map. By the previous lemma, it is enough to see that F (Φi1D) = 0 for i = 1, . . . , n − 1. 
Pick a reduced decomposition of the longest element w0 starting with si, w0 = siw, 
l (w) = l (w0) − 1. Then Φw0 = ΦiΦw. As Φw1τ is an eigenvector with eigenvalue wτ =
siχ, and (siχ)i − (siχ)i+1 = χi+1 − χi = 1, we have

F (Φi1D) = ΦiΦw01τ = Φ2
iΦw1τ = (si − 1) (si + 1)Φw1τ = 0.

So, the map F : MD → Mτ is zero on the kernel of the quotient map Q : MD → LD, 
and so it induces a nonzero Ḧn (κ) morphism LD → Mτ . As LD is irreducible, this map 
is an inclusion. �
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