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An (a, b)-Dyck path P is a lattice path from (0, 0) to (b, a)
that stays above the line y = a

b
x. The zeta map is a curious 

rule that maps the set of (a, b)-Dyck paths into itself; it is 
conjecturally bijective, and we provide progress towards proof 
of bijectivity in this paper, by showing that knowing zeta of 
P and zeta of P conjugate is enough to recover P .
Our method begets an area-preserving involution χ on the 
set of (a, b)-Dyck paths when ζ is a bijection, as well as a 
new method for calculating ζ−1 on classical Dyck paths. For 
certain nice (a, b)-Dyck paths we give an explicit formula for 
ζ−1 and χ and for additional (a, b)-Dyck paths we discuss how 
to compute ζ−1 and χ inductively.
We also explore Armstrong’s skew length statistic and present 
two new combinatorial methods for calculating the zeta 
map involving lasers and interval intersections. We provide 
a combinatorial statistic δ that can be used to recursively 
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compute ζ−1 and show that δ is computable from ζ(P ) in the 
Fuss–Catalan case.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let a and b be relatively prime positive integers and let Da,b be the set of (a, b)-Dyck 
paths, lattice paths P from (0, 0) to (b, a) staying above the line y = a

bx. These paths 
are often called rational Dyck paths and they generalize the classical and well-studied 
Dyck paths.

We study a remarkable function ζ on rational Dyck paths conjectured to be an auto-
morphism,1 which has received considerable attention lately; this “zeta map” generalizes 
the map on standard Dyck paths discovered by Haiman in the study of diagonal harmon-
ics and q, t-Catalan numbers [14]. Combinatorial definitions of q, t-statistics for classical 
Dyck paths were famously difficult to find, but were nearly simultaneously discovered 
by Haglund and Haiman. Interestingly, they discovered two different pairs of statistics: 
Haiman found area and dinv shortly after Haglund discovered bounce and area statis-
tics. The zeta map was then uncovered, which satisfies bounce(ζ(P )) = area(P ) and 
area(ζ(P )) = dinv(P ).

Many details about the zeta map have been gathered and unified in a comprehensive 
article by Armstrong, Loehr, and Warrington [3], including progress on proving its bi-
jectivity in certain cases such as (a, am ± 1)-Dyck paths [12,19] (which is associated to 
the Fuss–Catalan numbers). The zeta map was shown to be a bijection in these special 
cases by way of a “bounce path” by which zeta inverse could be computed. However, 
constructing such a bounce path for the general (a, b) case remains elusive. Armstrong, 
Loehr, and Warrington showed that there is a much larger family of sweep maps (for 
which the zeta map is a special case) which extensive computational exploration suggests 
are also bijective. A construct of theirs upon which we have relied heavily is the notion 
of the levels of a lattice path.

Recent progress related to rational Dyck paths has been made in the case when a ≤ 3
by Gorsky and Mazin and by Kaliszewski and Li [12,16], when a = 4 by Lee, Li, and Loehr 
[17] in connection with the q, t-symmetry of the rational Catalan numbers. A type C

analog of the zeta map has been introduced by Sulzgruber and Thiel [22]. Rational 
Dyck paths also are intimately entwined in the study of rational parking functions and 
MacDonald polynomials, with recent work by Gorsky, Mazin, and Vazirani [13] and when 
a and b are not relatively prime by Bergeron, Garsia, Levin, and Xin [7].

1 After this article was accepted for publication, we learned that Nathan Williams proved that the zeta 
map and its sweep map brethren are indeed bijective using other methods [23].



C. Ceballos et al. / Journal of Combinatorial Theory, Series A 141 (2016) 33–77 35
Our goal is to explore the following conjecture:

Conjecture 1.1. (See [3,11].) Let a and b be relatively prime positive integers. The zeta 
map ζ : Da,b → Da,b is a bijection.

Our perspective is that there are in fact two maps, the zeta map and the eta map, 
which jointly contain enough information to recover the original path. In Section 6.1, 
we provide a straightforward algorithm for recovering P from the combined data of 
Q = ζ(P ) and R = η(P ). What we find interesting is that the information contained 
solely in ζ(P ) does not seem to be enough to reconstruct P directly. Our argument does 
not give an explicit construction of ζ−1(Q), nor do we construct a bounce path.

The zeta and eta maps appeared previously in the work of Gorsky and Mazin (see Gn,m

and Gm,n in [12]) and in the work of Armstrong, Loehr, and Warrington (varying the 
direction of the sweep map in [3]). Although, they were never used simultaneously as we 
do in this paper. The eta map is based on a natural notion of conjugation on rational Dyck 
paths explored in Section 4 that arises from Anderson’s bijection [4] between (a, b)-Dyck 
paths and simultaneous (a, b)-core partitions, which in turn are related to many more 
combinatorial interpretations. (See [1] for additional background.) One can define the 
map η by η(P ) = ζ(P c); in most cases ζ(P ) �= η(P ). Section 5 is devoted to presenting 
the algorithms for calculating the zeta map and the eta map in multiple fashions. In 
particular, we present two new methods involving lasers and interval intersections.

Meanwhile, ζ and η combine to induce a new area-preserving involution χ on the set 
of Dyck paths defined in Section 6.2 by

χ(Q) := η(ζ−1(Q)) = ζ(ζ−1(Q)c).

In Section 7, we give a new proof that in the classical Catalan case, this conjugate-area 
map χ is the map that reverses the Dyck path. Applying our inverse algorithm presents 
a new construction of the inverse of the zeta map on a Dyck path. However, we have 
no explicit description of χ(Q) from Q in the general (a, b)-case. Indeed, a concrete 
construction of χ(Q) from Q could be used to construct an explicit inverse for the zeta 
map.

In Section 8, we show that when a rational Dyck path Q visits the lattice point having 
level equal to 1, ζ−1(Q) has a nice decomposition as does its image under the conjugate-
area map χ. These observations allows us to explicitly find χ (and therefore ζ−1) of any 
path that has valleys exactly on levels equal to {1, . . . , k} for k < a in Theorem 8.3. We 
have also constructed χ(Q) and ζ−1(Q) for paths that bound left-adjusted or up-adjusted 
partitions in Proposition 6.13.

Section 9 investigates the poset of rational Dyck paths ordered by when one path 
is weakly below the other, motivating a new statistic δ(P ) that appears to be fruitful 
for recursively computing ζ−1 from evidence gathered by computer learning algorithms. 
Indeed, in the remainder of Section 9, we use δ(P ) to construct the initial part of a 



36 C. Ceballos et al. / Journal of Combinatorial Theory, Series A 141 (2016) 33–77
rational bounce path and to give a new algorithm that computes ζ−1 for (a, am +1)-Dyck 
paths.

One of the primary motivations for our research was the study of conjectured statistics 
for the q, t-enumeration of (a, b)-Dyck paths. Section 2 sets the stage by introducing key 
combinatorial concepts and statistics associated to (a, b)-Dyck paths. In Section 3 we 
investigate the skew length statistic sl(P ), originally defined in the context of (a, b)-cores 
in [1]. The original definition of skew length seems to depend on the ordering of a and b; 
we show that skew length is in fact independent of this choice. The main tools we develop 
involve a row length filling of the boxes under the (a, b)-Dyck path P and above the main 
diagonal, along with the idea of skew inversions and flip skew inversions. Section 4 shows 
that skew length is preserved under conjugation.

2. Background and notation

Definition 2.1. An (a, b)-lattice path P is a lattice path in Z2 consisting of north and east 
steps starting from the origin and ending at the point (b, a).

We call P an (a, b)-Dyck path if P remains (weakly) above the diagonal line connecting 
the origin to (b, a). Equivalently, the lattice points (x, y) along P satisfy ax ≤ by. We 
draw (a, b)-Dyck paths in an a × b grid, where the lower left corner is the origin.

We denote the full collection of (a, b)-Dyck paths by Da,b, or simply D if there is no 
confusion about the values of a and b.

We use the English notation for Young diagrams, drawing the largest row at the top. 
The hook length of a box B in the Young diagram of a partition is the number of boxes 
in the hook of boxes directly below or directly to the right of B, including the box B
itself. An a-core partition (or simply a-core) is a partition for which its Young diagram 
has no boxes with hook length equal to a. Similarly, a simultaneous (a, b)-core partition
(or (a, b)-core for short) has no hooks equal to a or b.

Anderson proved that when a and b are relatively prime there are finitely many 
(a, b)-cores [4] by finding a bijection with the set of (a, b)-Dyck paths; these are counted 
by the formula

1
a + b

(
a + b

a

)
.

This formula seems to have been discovered at various times; the earliest reference we 
know of is [9] in 1947. In 1954, Bizley considered the general case of rectangular Dyck 
paths of which this formula is a special case [8].

Bizley’s counting method starts from the full set of lattice paths from (0, 0) to (b, a), 
and considers the orbit of the cyclic group Ca+b acting by cyclic shifts on paths. In the 
case where a and b are relatively prime, there is a unique Dyck path in each such orbit.
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Fig. 1. (Left) A lattice path P when a = 5 and b = 8. The hook filling is given by the numbers in the center 
of the boxes. The boxes above the path show that the partition bounded by P is (4, 1). (Right) The levels 
of the lattice points along the path.

Example 2.2. Let N and E represent a north step and an east step, respectively. Through-
out this paper, we will use as our running example the (5, 8)-Dyck path

P = NNNENEEENEEEE,

shown in Fig. 1.

2.1. Dictionary of notation

We keep track of numerous bits of data associated to an (a, b)-Dyck path P .

(1) General constructions:
• The hook filling of the boxes in the square lattice is obtained by filling the box 

with lower-right lattice point (b, 0) with the number −ab and increasing by a for 
every one box west and increasing by b for every one box north. A box is above 
the main diagonal if and only if the corresponding hook is positive. (See Fig. 1.)

• The positive hooks of P are the numbers in the hook filling below the path but 
greater than zero. (Elsewhere these have been called beta numbers or bead num-
bers.)

• We denote by c(P ) the (a, b)-core corresponding to P under Anderson’s bijection. 
The hook lengths of the boxes in the first column of c(P ), its leading hooks, are 
precisely the positive hooks of P . An example of Anderson’s bijection is illustrated 
in Fig. 2.

• The row length filling of P are numbers placed in the boxes under P . They 
correspond to the number of boxes in the row of c(P ) with the given hook. This 
will be developed in Section 3.2. (See Fig. 5.)

• The partition bounded by P is the partition whose Young diagram is the collection 
of boxes above the path P .

(2) Combinatorial statistics:
• The area of P , denoted area(P ) is the number of positive hooks of P . Equivalently, 

this is the number of rows in c(P ).
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Fig. 2. Anderson’s bijection gives a correspondence between (a, b)-Dyck paths and (a, b)-core partitions. 
Corresponding to P = NNNENEEENEEEE is the (5, 8)-core (6, 4, 3, 2, 2, 1, 1, 1, 1).

• The rank of P , denoted rk(P ) is the number of rows in the partition bounded 
by P .

• The skew length of P , denoted sl(P ) is a statistic that we discuss in detail in 
Section 3.

(3) Sets and sequences of numbers associated to P :
• The levels of P are labels associated to the lattice points of P defined by Arm-

strong, Loehr, and Warrington in [2,3]. Assign level 0 to (0, 0) and label the other 
lattice points of P by adding b after each north step and subtracting a after each 
east step. Equivalently, this is the value of the hook filling in the box to the north-
west of the lattice point. Note that the label of the northeast-most lattice point 
(b, a) is once again 0 + a · b − a · b = 0.

• The path P has two reading words obtained by reading the levels in order. The 
reading word of P , denoted L(P ) (for ‘levels’), is obtained by reading the levels 
that occur along the path from southwest to northeast, excluding the final 0. 
(One can imagine assigning to each north and east step of the path the level of 
the step’s initial lattice point.)
The reverse reading word, denoted M(P ), is obtained by reading from northeast 
to southwest, excluding the final 0. (One can imagine P as a path from (b, a) to 
(0, 0) consisting of west and south steps, once again assigning to each step the 
level of its initial lattice point.)
Reading along P in Fig. 1 shows that

L(P ) = (0, 8, 16, 24, 19, 27, 22, 17, 12, 20, 15, 10, 5)

and
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M(P ) = (0, 5, 10, 15, 20, 12, 17, 22, 27, 19, 24, 16, 8).

When a and b are relatively prime, no value occurs more than once in L(P ) or 
M(P ).

• The set of levels of P is partitioned into the set of north levels N(P ) and east levels
E(P ), where when reading from southwest to northeast, levels of lattice points 
starting north steps of P are in N(P ) and levels of lattice points starting east 
steps of P are in E(P ). We order these levels in decreasing order. In our running 
example, the north levels of P are

N(P ) = {19, 16, 12, 8, 0},

and the east levels of P are

E(P ) = {27, 24, 22, 20, 17, 15, 10, 5}.

(4) Permutations associated to P : Throughout the paper we use square brackets to write 
permutations in one-line notation, and round parentheses for permutations in cycle 
notation.
• The reading permutation of P is a permutation σ in Sa+b that encodes the rela-

tive order of the levels recorded in L(P ). The reverse reading permutation of P , 
denoted τ(P ), encodes the relative order of the values in M(P ). In our running 
example, the one-line notation for σ(P ) and τ(P ) are

σ(P ) = [1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2]

and

τ(P ) = [1, 2, 4, 6, 10, 5, 8, 11, 13, 9, 12, 7, 3].

• Let γ(P ) be the permutation in Sa+b that when written in cycle notation starting 
with 1 has the same order of entries as σ(P ) written in one-line notation. In our 
running example P we have

γ(P ) = (1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2)

= [3, 1, 7, 2, 10, 4, 12, 5, 13, 6, 8, 9, 11].

Remark 2.3. The path P can be recovered knowing only σ(P ) (or τ(P ) or γ(P )). The 
east steps of P correspond exactly to the right (cyclic) descents2 of σ; whereas, the 
north steps of P correspond to the right (cyclic) ascents of σ. In our running example, 

2 A descent of a permutation occurs when σ(i) > σ(i + 1). A cyclic descent is defined in the same way, 
but considering the indices modulo a + b, allowing a descent in the last position of σ.
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the right (cyclic) descents of σ(P ) occur in positions 4, 6, 7, 8, 10, 11, 12, and 13, which 
are exactly the positions of the east steps in P .

3. Skew length

In [1] the skew length statistic is proposed as a q-statistic for (a, b)-Dyck paths and a 
related construction is investigated in [2, Section 4]. In this section, we present the orig-
inal definition of skew length on cores and two equivalent interpretations on (a, b)-Dyck 
paths using length fillings and skew inversions. We show that these interpretations are 
indeed equivalent to the original definition and, as a consequence, we prove that skew 
length is independent of the ordering of a and b. Further interpretations of skew length 
are presented in terms of the zeta map in Section 5.

3.1. Skew length on cores and polynomial motivation

We begin with an observation on ordinary core partitions before discussing simulta-
neous core partitions.

Definition 3.1. (See [1, Definition 2.7].) Let κ be an a-core partition. Consider the hook 
lengths of the boxes in the first column of κ. Find the largest hook length of each residue 
modulo a. The a-rows of κ are the rows of κ corresponding to these hook lengths. The 
a-boundary of κ consists of all boxes in its Young diagram with hook length less than a.

Proposition 3.2. Let κ be an a-core partition. The number of boxes in the a-rows of κ
equals the number of boxes in the a-boundary of κ.

Proof. Let l(h) be the number of boxes in the row of κ with leading hook h.
We first observe that if h > a is a leading hook of κ, then h − a is also a leading hook 

of κ. For this, decompose h into two hooks of lengths h −a and a as illustrated in Fig. 3, 
such that the boxes in the row with leading hook h that are intersected by the hook a
are exactly the boxes in the a-boundary in that row. This guarantees that the right-end 
box of the hook h − a is in κ, and therefore that h − a is also a leading hook.

Now, the number of a-boundary boxes in the row of κ corresponding to h is 
l(h) − l(h −a). Summing over all rows gives the number of a-boundary boxes; telescoping 
over residues modulo a gives the number of boxes in the a-rows of κ. �
Corollary 3.3. The number of boxes in the a-rows of κ equals the number of boxes in the 
a-rows of κc

Remark 3.4. For readers familiar with the abacus diagram interpretation, hook lengths 
correspond to beads on the abacus; the a-rows correspond to the largest bead on each 
runner of the a-abacus. Proposition 3.2 gives a way to count the number of boxes in the 
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Fig. 3. The number of a-boundary boxes in the row of κ corresponding to a leading hook h is l(h) − l(h −a).

Fig. 4. (Left) The 8-boundary boxes of our favorite (5, 8)-core κ are shaded; those in the 5-rows of κ are 
darker. (Right) The 5-boundary boxes of κ are shaded; those in the 8-rows of κ are darker. Surprisingly, 
the number of darkly shaded boxes on the left 4 + 3 + 2 + 1 = 10 is equal to the number of darkly shaded 
boxes on the right 3 + 2 + 2 + 1 + 1 + 1 = 10. (See Corollary 3.17.)

a-boundary of an a-core by adding the number of gaps that appear on the abacus before 
each of these largest beads.

Definition 3.5. (See [1, Definition 2.7].) Let κ be an (a, b)-core partition. The skew length
of κ, denoted sl(κ), is the number of boxes simultaneously located in the a-rows and the 
b-boundary of κ.

Example 3.6. The core partition shown in Fig. 4 is the (5, 8)-core κ = c(P ) corresponding 
to the path P in our running example from Figs. 1 and 2.
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On the left, the 5-rows of κ are the rows with leading hook lengths 14, 11, 7, and 3. 
The darkly shaded boxes are those boxes in the 5-rows with hook length less than 8. 
The skew length is equal to 4 + 3 + 2 + 1 = 10.

On the right, we compute of the skew length of κ when considered as an (8, 5)-core. 
The 8-rows of κ are the rows with leading hook lengths 14, 11, 9, 7, 4, and 2. The shaded 
boxes are those boxes in the 8-rows with hook length less than 5. The skew length is 
equal to 3 + 2 + 2 + 1 + 1 + 1 = 10.

We will see in Corollary 3.17 that it is not a coincidence that these two numbers are 
the same.

The number of boxes in the 8-boundary (shaded boxes, left) equals the number of 
boxes in the 8-rows (marked rows, right) and the number of boxes in the 5-boundary 
(shaded boxes, right) equals the number of boxes in the 5-rows (marked rows, left), as 
proved in general in Proposition 3.2.

The skew length statistic was found by Armstrong; he conjectures it as a key statistic 
involved in the q- and q, t-enumeration of (a, b)-cores (or (a, b)-Dyck paths). Recall that 
the rank rk(κ) of an (a, b)-core κ is the number of rows in its corresponding Young 
diagram.

Conjecture 3.7. (See [1, Conjecture 2.8].) Let a and b relatively prime positive integers. 
The expression

fa,b(q) = 1
[a + b]q

[
a + b
a

]
q

is equal to the polynomial

ga,b(q) =
∑
κ

qsl(κ)+rk(κ),

where the sum is over all (a, b)-cores κ.

Haiman [15, Propositions 2.5.2 and 2.5.3] proved that fa,b(q) is a polynomial if and 
only if a and b are relatively prime. [6, Theorem 1.10] provides a proof that fa,b(q) has 
non-negative coefficients involving representation theory of rational Cherednik algebras, 
see also [10, Section 1.12]. A proof of Conjecture 3.7 would provide a combinatorial 
interpretation for the coefficients of fa,b(q).

Proposition 3.8. (See [6,15].) The expression

fa,b(q) = 1
[a + b]q

[
a + b
a

]
q

is a polynomial if and only if gcd(a, b) = 1. Furthermore, when a and b are relatively 
prime, the resulting polynomial has integer coefficients.
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Define the co-skew length of an (a, b)-core κ as

sl′(κ) := (a− 1)(b− 1)
2 − sl(κ).

Armstrong conjectures that rank and co-skew length give a q, t-enumeration of the 
(a, b)-cores, subject to the following symmetry:

Conjecture 3.9. (See [1, Conjecture 2.9].) The following q, t-polynomials are equal:

∑
qrk(κ)tsl

′(κ) =
∑

qsl′(κ)trk(κ)

where the sum is over all (a, b)-cores κ.

These q, t-polynomials are called the rational q, t-Catalan numbers.

3.2. Skew length on Dyck paths via the row length filling

We now provide a new method to calculate the skew length of an (a, b)-Dyck path P
which uses a row length filling of the boxes below P . Our method recovers with the skew 
length statistic discovered by Armstrong for (a, b)-cores. As a consequence, we show that 
skew length of an (a, b)-core is independent of the ordering of a and b.

We provide two equivalent definitions of the row length filling.

Definition 3.10. Let P be an (a, b)-Dyck path. The row length filling of P is an assignment 
of numbers to each box below the path P .

For a box B with positive hook filling h, define the row length of B to be the length 
of the row in c(P ) with leading hook h. Alternatively, define the row length of B to be 
h − ph, where ph is the number of positive entries in the hook filling strictly less than h.

For a box B with non-positive hook filling h, define the row length of B to be zero.
For any hook h in the hook filling of P , we denote by l(h) the corresponding value of 

the row length filling of P .

Fig. 5 shows in red in the upper left corner the row length of the boxes corresponding 
to the positive hooks of P .

Lemma 3.11. The two definitions of row length filling in Definition 3.10 are equivalent.

Proof. When ordered in increasing order, the entries in the hook filling of P correspond 
to the hook lengths of the boxes in the first column of c(P ) from shortest to longest. 
Suppose the first box of the ith shortest row has hook length h. Then the length of the 
ith shortest row is h − (i −1), which is exactly the corresponding entry in the row length 
filling. �
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Fig. 5. The row length filling of boxes below the path P is given in red in the upper left corner. The values 
correspond to the length of the rows of c(P ) in Fig. 2. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

Remark 3.12. For readers familiar with the abacus diagram interpretation, the row length 
filling associates to each bead on the abacus the number of gaps that appear before it 
on the abacus.

The row length filling is very useful for reading off common core statistics from the 
Dyck path. For example, we can immediately see that:

Corollary 3.13. The sum of the entries of the row length filling of P is equal to the number 
of boxes of the core c(P ).

Furthermore, because the a-rows of c(P ) correspond to the westmost boxes under P
and the b-rows of c(P ) correspond to the northmost boxes under P , the number of boxes 
in c(P ) with hook length less than a or less than b can be determined from the row 
length filling as a direct consequence of Proposition 3.2.

Corollary 3.14. The number of boxes in the a-boundary of an (a, b)-core c(P ) is equal to 
the sum of the row length fillings of the westmost boxes under P . Likewise, the number 
of boxes in the b-boundary of c(P ) is equal to the sum of the row length fillings of the 
northmost boxes under P .

In the same vein, the skew length of P can also be easily computed, as follows:

Theorem 3.15. The skew length of an (a, b)-core c(P ) may be computed from the row 
length filling of P by adding all lengths at peaks of P and subtracting all lengths at valleys 
of P .

Proof. By the argument in the proof of Proposition 3.2, we see that when h is a positive 
hook of an (a, b)-Dyck path P (so that h − a is the hook of the box directly east of the 
box with hook h and h − b is the hook of the box directly south of the box with hook h),
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then

(i) The number of a-boundary boxes in the row of c(P ) corresponding to h is

l(h) − l(h− a).

(ii) The number of b-boundary boxes in the row of c(P ) corresponding to h is

l(h) − l(h− b).

By restricting to the a-rows or b-rows, we see that the skew length of c(P ) is given by:

∑
l(h) − l(h− b), (3.1)

where the sum is over all westmost boxes under P , or alternatively the skew length of 
c(P ) is given by:

∑
l(h) − l(h− a), (3.2)

where the sum is over all northmost boxes under P . When one westmost box under P
is directly north of another, Formula (3.1) telescopes. After canceling terms, we are left 
with the lengths at peaks of P minus the lengths at valleys of P . An equivalent argument 
can be made from Formula (3.2). �
Example 3.16. In Fig. 5, we see that the sum of the row length fillings is 21, which is 
the number of boxes of c(P ). Adding the row lengths of the westmost boxes under P
gives 2 + 6 + 4 + 1 + 0 = 13 boxes in the 5-boundary of c(P ), while adding the row 
lengths of the northmost boxes under P gives 4 + 6 + 3 + 1 + 2 + 1 + 0 + 0 = 17 boxes 
in the 8-boundary of c(P ), as expected from Fig. 4. Our path P has three peaks with 
row lengths 2, 6, and 4 and two valleys with row lengths 2 and 0. The skew length of 
our path is then

sl(P ) = (2 + 6 + 4) − (2 + 0) = 10.

When computing skew length directly from the core, it is not obvious that the number 
of boxes in a-rows and the b-boundary should be equal to the number of boxes in b-rows 
and the a-boundary (see Fig. 4). But the method of computing the skew length given 
by Theorem 3.15 is independent of the ordering of a and b: Switching a and b flips the 
rectangle to a b × a rectangle in which peaks are still peaks, valleys are still valleys, and 
the hook filling and row length filling are otherwise unaffected.

Corollary 3.17. The skew length of an (a, b)-core κ is independent of the ordering of a
and b.
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Fig. 6. When h is the hook filling of a westmost box under P , the associated north level is nh = h +a. When 
h is the hook filling of a northmost box under P , the associated east level is eh = h + a + b.

3.3. Skew length via skew inversions

This section presents another interpretation of the skew length of an (a, b)-Dyck 
path P in terms of the number of its skew inversions or the number of its flip skew 
inversions.

Recall that the north levels of P are the levels N(P ) = {n1, . . . , na} of the initial 
lattice points of the north steps in the path, and that the east levels of P are the levels 
E(P ) = {e1, . . . , eb} of the initial lattice points of the east steps.

Definition 3.18. A skew inversion of P is a pair of indices (i, j) such that ni > ej . A flip 
skew inversion of P is a pair of indices (i, j) with ni + b < ej − a.

Theorem 3.19. Let P be an (a, b)-Dyck path. The skew length of P equals the number of 
skew inversions of P , which is equal to the number of flip skew inversions of P .

The key to the proof of Theorem 3.19 is recognizing the relationship between westmost 
boxes under P and north levels in N(P ) and the relationship between northmost boxes 
under P and east levels in E(P ).

Remark 3.20. Fig. 6 shows that when h is the hook filling of a westmost box under P , 
then the associated north level nh (corresponding to the lattice point at its southwest 
corner) is h + a. When h is the hook filling of a northmost box under P , then the 
associated east level eh (corresponding to the lattice point at its northwest corner) is 
h + a + b.

Lemma 3.21. Let h be the hook filling of a westmost box under an (a, b)-Dyck path P . 
The length difference l(h) − l(h − b) is equal to the number of skew inversions involving 
the associated north level nh, which equals the number of b-boundary boxes in the a-row 
corresponding to h.

Proof. Recall that l(h) = h − ph, where ph is the number of positive hooks in the hook 
filling of P less than h. Then:
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l(h) − l(h− b) = h− ph − (h− b) + ph−b

= b− (ph − ph−b)

= b− #{g | h− b ≤ g < h}.

Each box with hook filling g satisfying the inequalities h − b ≤ g < h is in a distinct 
column of the diagram of P . If two were in the same column, then the difference of 
their hooks would be a multiple of b, so that both could not satisfy the inequality. As a 
result, we may add a multiple of b to each g satisfying the inequalities to obtain a unique 
northmost box under P with hook filling g satisfying h − b ≤ g. Conversely, for every 
northmost box under P with hook filling g satisfying this inequality there is a unique 
box with hook filling g in the same column satisfying h − b ≤ g < h. Therefore,

l(h) − l(h− b) = b− #{g | h− b ≤ g}

= #{g | h− b > g}.

By Remark 3.20, this is equivalent to l(h) − l(h − b) = #{ej | nh > ej}, as desired. 
The last clause of the statement of the lemma is given in the proof of Theorem 3.15. �

Similar arguments prove the following.

Lemma 3.22. Let h be the hook filling of a northmost box under an (a, b)-Dyck path P . 
The length difference l(h) −l(h −a) is equal to the number of flip skew inversions involving 
the associated east level eh, which equals the number of a-boundary boxes in the b-row 
corresponding to h.

Theorem 3.19 now follows directly from Definition 3.5 by summing over all westmost 
boxes in Lemma 3.21 and all northmost boxes in Lemma 3.22.

Example 3.23. In our running example, the north levels are N = {19, 16, 12, 8, 0} and 
the east levels are E = {27, 24, 22, 20, 17, 15, 10, 5}. There are 10 skew inversions because 
there are 4 east levels less than n1 = 19, 3 east levels less than n2 = 16, 2 east levels less 
than n3 = 12, 1 east level less than n4 = 8, and 0 east levels less than n5 = 0. The total 
number of skew inversions is then 4 + 3 + 2 + 1 + 0 = 10. These numbers correspond to 
the number of b-boundary boxes in the a-rows of the core c(P ) in Fig. 4.

To calculate the flip skew inversions, consider the sets N + b = {27, 24, 20, 16, 8} and 
E − a = {22, 19, 17, 15, 12, 10, 5, 0}. There are 10 flip skew inversions because there are 3 
elements of the form ni + b less than e1 −a = 22, there are 2 less than e2 −a = 19, 2 less 
than e3−a = 17, 1 less than e4−a = 15, 1 less than e5−a = 12, 1 less than e6−a = 10, 
0 less than e7−a = 5, and 0 less than e8−a = 0. The total number of flip skew inversions 
is then 3 + 2 + 2 + 1 + 1 + 1 + 0 + 0 = 10. These numbers correspond to the number of 
a-boundary boxes in the b-rows of the of the core c(P ).
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Fig. 7. The conjugate map on (a, b)-cores.

Fig. 8. The conjugate map on (a, b)-Dyck paths.

Remark 3.24. Skew inversions in an (a, b)-Dyck path arise from pairs of north levels and 
east levels where ni > ej . Note that ni + b is the level of the terminal lattice point of 
the corresponding north step (instead of initial lattice point), while ej − a is the level of 
the terminal lattice point of the corresponding east step. So flip skew inversions are best 
understood by a reverse reading of P as a sequence of west and south steps, counting the 
pairs where the south level is less than the west level. Alternatively, flip skew inversions 
of P correspond to skew inversions of P when P is reflected (flipped) to be a (b, a)-Dyck 
path.

4. The conjugate map

For any partition κ, its conjugate partition κc is obtained by reflecting along its main 
diagonal. (See Fig. 7.) Since hook lengths are preserved under this reflection, when κ is 
an (a, b)-core, so is κc. When a and b are relatively prime, there is a natural conjugate 
map on (a, b)-Dyck paths P . Apply cyclic shifts to the path P until we encounter a path 
strictly below the diagonal, the conjugate path P c is the result of rotating this path 180◦. 
(See Fig. 8.) The first main result of this section (Theorem 4.1) shows that these conju-
gations are equivalent under Anderson’s bijection, and the second (Theorem 4.5) shows 
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that conjugation preserves skew length. These two results were simultaneously found in 
independent work by Xin in [25]. Lemmas 4.2 and 4.3 mirror the notion of conjugation 
of the semimodule of leading hooks presented by Gorsky and Mazin [12].

Theorem 4.1. Conjugation on (a, b)-cores coincides with conjugation on (a, b)-Dyck paths 
via Anderson’s bijection:

c(P )c = c(P c).

This follows directly by showing the equivalence between the leading hooks of c(P )c
and the positive hooks of P c. A result of Olsson gives the leading hooks of c(P )c; we 
include a proof for completeness.

Lemma 4.2. (See [21, Lemma 2.2].) Let κ be any partition with leading hooks given by 
the set H, with m = max(H). The conjugate partition κc has leading hooks given by 
{m − n : n ∈ {0, 1, . . . , m} \H}.

Proof. Let κ be any partition with leading hooks (hooks in the first column) given by 
the set H, with m = max(H). The leading hooks of its conjugate partition are the 
hooks in the top row of κ. This partition has one column for each number n in the set 
{0, 1, . . . , m} \H. The hook of the upper box in the column corresponding to n is equal 
to m − n as illustrated in Fig. 9. �
Lemma 4.3. Let P be an (a, b)-Dyck path with positive hooks given by H, with 
m = max(H). The conjugate path P c has positive hooks given by {m − n : n ∈
{0, 1, . . . , m} \H}.

Proof. Let P be an (a, b)-Dyck path with positive hook set given by H and where 
m = max(H). Fill all the boxes on the left of the path with the hooks that are less 
than m. Hooks appearing in the same row are equivalent mod a. Furthermore, the rows 
contain all the residues 0, 1, . . . , a −1 modulo a because a and b are relatively prime and, 
as a consequence, the filled hooks contain all the numbers from 0 to m.

Draw a diagonal parallel to the main diagonal passing through the upper left corner 
of the box below P with the largest hook m. Consider the area A below this diagonal 
directly on the left of P as illustrated in Fig. 9. The boxes in A are exactly the boxes 
on the left of the path with hook length n less than m. Applying cyclic shifts to P to 
obtain a path below the main diagonal transforms the area A to the area between the 
main diagonal and the shifted path. Since this transformation maps the box with hook 
length m to the box with hook length 0 (when rotated 180 degrees), the hook length n
gets transformed to the hook length m − n. �
Example 4.4. In both Fig. 7 and Fig. 8, the set of hooks on the left is H =
{1, 2, 3, 4, 6, 7, 9, 11, 14}, with m = 14. The set {0, 1, . . . , m} \ H = {0, 5, 8, 10, 12, 13}, 
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Fig. 9. Illustration of the proof of Lemmas 4.2 and 4.3.

and subtracting these numbers from 14 we get that the leading and positive hooks of 
the conjugate are {14, 9, 6, 4, 2, 1} as desired.

Theorem 4.5. The skew length of P is equal to the skew length of P c.

Proof. Let ni > ej be a skew inversion for the path P , with largest level m. The north 
and east steps of the conjugate path are in correspondence with the north and east 
steps in the original path, respectively. The corresponding north and east levels are 
given by n′

i = m − ni − b and e′j = m − ej + a. A simple calculation shows that these 
satisfy n′

i + b < e′j − a, giving a flip skew inversion for P c. Thus, there is a one-to-one 
correspondence between skew inversions for P and flip skew inversions in P c (and a 
similar correspondence between flip skew inversions for P and skew inversions in P c). 
The result follows directly from Theorem 3.19. �
Remark 4.6. As explained in the proof of Theorem 4.5 the number of skew inversions 
of P c is equal to the number of flip skew inversions of P . Therefore, the skew length of a 
conjugate path may be thought of as the skew length of the original path when flipped 
to a (b, a)-Dyck path.

Consider the hook lengths of the boxes in the first row of an (a, b)-core partition κ. 
Find the largest hook length of each residue modulo a. The a-columns of κ are the 
columns of κ corresponding to these hook lengths. Theorem 4.5 implies the following 
result, which is illustrated in Fig. 10.

Corollary 4.7. Let κ be an (a, b)-core partition. The number of boxes in the a-rows and 
b-boundary of κ is equal to the number of boxes in the a-columns and b-boundary of κ.
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Fig. 10. (Left) The 8-boundary boxes of our favorite (5, 8)-core κ are shaded; those in the 5-rows of κ are 
darker. (Right) The 8-boundary boxes of κ are shaded; those in the 5-columns of κ are darker. The number 
of darkly shaded boxes on the left 4 + 3 + 2 + 1 = 10 is equal to the number of darkly shaded boxes on the 
right 6 + 3 + 1 = 10. (See Corollary 4.7.)

Proof. The number of boxes in the a-rows and b-boundary of κ is equal to the skew 
length of κ. The number of boxes in the a-columns and b-boundary of κ is equal to 
the skew length of κc. The result then follows from Theorem 4.1 and Theorem 4.5 by 
applying Anderson’s bijection. �
5. The zeta map (and eta)

The zeta map is an intriguing map from Da,b to Da,b which can be defined in a wide 
variety of ways. See, for example, [1–3,12], with equivalence of many definitions given 
in [3]. The precise description of zeta depends on making some choices; in our experience, 
these choices always resolve into one of two distinct maps, which we call zeta and eta. The 
eta map can be interpreted as the zeta map applied to the conjugate of P , as reproved 
in Proposition 5.5 by appealing to skew inversions. The joint dynamics of zeta and eta 
will be used to present a combinatorial description of the inverse of zeta in Section 6.

In this section we present four combinatorial descriptions for computing the zeta 
and eta maps, starting with an interpretation involving core partitions implicit in [1], 
followed by with an equivalent description via the sweep maps considered in [3]. Our 
main contributions are two new combinatorial descriptions of the zeta map involving 
interval intersections and a laser filling, along with the study of the eta map in all four 
contexts.

5.1. Zeta and eta via cores

Drew Armstrong conjectured a combinatorial interpretation for the zeta map by way of 
core partitions, drawing inspiration from Lapointe and Morse’s bounded partitions [18], 
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after learning of Loehr and Warrington’s sweep map discussed in the next section. We 
present his definition and provide a parallel definition for the eta map.

Definition 5.1. Let P be an (a, b)-Dyck path and let c(P ) be its corresponding 
(a, b)-core. From P define two partitions λ(P ) and μ(P ) and corresponding lattice 
paths ζ(P ) and η(P ):

• λ(P ) = (λ1, . . . , λa) is the partition that has parts equal to the number of b-boundary 
boxes in the a-rows of c(P ).

• μ(P ) = (μ1, . . . , μb) is the partition that has parts equal to the number of a-boundary 
boxes in the b-rows of c(P ).

• ζ(P ) is the (a, b)-Dyck path that bounds the partition λ(P ).
• η(P ) is the (a, b)-Dyck path that bounds the conjugate of the partition μ(P ).

The zeta map ζ : Da,b → Da,b is defined by ζ : P �→ ζ(P ). The eta map η : Da,b → Da,b

is defined by η : P �→ η(P ).

One can see from the definition of zeta and eta, via the sweep map described below, 
that ζ(P ) and η(P ) are indeed paths that stay above the main diagonal. We refer to [3]
for a proof.

An alternative method for calculating λ(P ) and μ(P ) follows from Lemmas 3.21
and 3.22.

Lemma 5.2. The entries of the partitions λ(P ) and μ(P ) satisfy:

(i) λi is the number of skew inversions of P involving the north level ni.
(ii) μj is the number of flip skew inversions of P involving the east level ej.

In the (n, n + 1) case, the zeta map specializes to the map studied in [14] for classical 
Dyck paths, which sends the dinv and area statistics considered by Haiman to the area
and bounce statistics considered by Haglund. One of the main interests on the zeta map 
is the fact that it sends skew length to co-area, or equivalently, co-skew length to area.

Corollary 5.3. The skew length of P is equal to the co-area of ζ(P ).

Proof. The co-area of ζ(P ) is by definition equal to the number of boxes in the parti-
tion λ. By Lemma 5.2, this number of boxes counts the number of skew inversions of P , 
and thus is equal to the skew length of P . �
Remark 5.4. The dinv statistic for classical Dyck paths can be generalized to the rational 
Catalan case as the number of boxes B above the path satisfying

arm(B) ≤ b
<

arm(B) + 1
,
leg(B) + 1 a leg(B)
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Fig. 11. In our running example, ζ(P ) bounds the partition λ(P ) = (4, 3, 2, 1, 0) and η(P ) bounds the 
conjugate of the partition μ(P ) = (3, 2, 2, 1, 1, 1, 0, 0).

where arm denotes the number of boxes directly on the right of B above the path, and leg 
denotes the number of boxes directly below B above the path. This intriguing statistic 
also satisfies dinv(P ) = area(ζ(P )), see [20, Theorem 16] and [11]. As a consequence the 
co-skew length and dinv statistics are the same,

sl′(P ) = dinv(P ). (5.1)

Note that the definition of dinv is preserved by flipping an (a, b)-Dyck path to a 
(b, a)-Dyck path, and therefore skew length is preserved by flipping (as alternatively 
proved in Corollary 3.17). By Remark 4.6, the skew length of the conjugate of P is equal 
to the skew length of P when flipped to a (b, a)-Dyck path. This provides an alternative 
proof that skew length is preserved under conjugation (Theorem 4.5).

The work of Gorsky and Mazin [12, Theorem 8] and of Armstrong, Loehr, and War-
rington [3, Table 1] include the following proposition; we present a new proof involving 
skew inversions.

Proposition 5.5. (See [3,12].) Let P be an (a, b)-Dyck path. Then

η(P ) = ζ(P c).

Proof. There is a one-to-one correspondence between the skew inversions of P c and the 
flip skew inversions of P , as shown in the proof of Theorem 4.5. Through Lemma 5.2, 
one deduces that λ(P c) is the conjugate of μ(P ). As a consequence, ζ(P c) = η(P ). �
Remark 5.6. In [12], conjugation is considered in terms of normalized dual semimodules. 
The zeta and eta maps correspond to the maps Gm,n and Gn,m in [12, Section 2.3].

Denote by P flip the result of flipping an (a, b)-Dyck path P to a (b, a)-Dyck path. The 
example corresponding to the path P in Fig. 11 and the following result are illustrated 
in Fig. 12. This result can also be essentially found in [3, Table 1].
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Fig. 12. Zeta and eta applied to the flipped Dyck path of our running example path P .

Proposition 5.7. (See [3].) Let P be an (a, b)-Dyck path. Then,

ζ(P flip) = η(P )flip,

η(P flip) = ζ(P )flip.

Proof. The skew inversions of P flip are in correspondence with the flip skew inversions 
of P , and therefore λ(P flip) = μ(P ). As a consequence, ζ(P flip) = η(P )flip. A similar 
argument shows that μ(P flip) = λ(P ) and η(P flip) = ζ(P )flip. �
Example 5.8. Fig. 11 illustrates an example of the zeta map and the eta map applied to 
our running example path P . From Example 3.23, the 8-boundary boxes in the 5-rows of 
c(P ) give λ(P ) = (4, 3, 2, 1, 0) and the 5-boundary boxes in the 8-rows of the core c(P )
give μ(P ) = (3, 2, 2, 1, 1, 1, 0, 0). Then ζ(P ) is the path that bounds λ(P ) and η(P ) is 
the path that bounds the conjugate partition μ(P )c = (6, 3, 1, 0, 0). We often combine 
λ(P ), ζ(P ), μ(P ), and η(P ) as on the right hand side of Fig. 15.

The core partition c(P c) corresponding to the conjugate path P c is illustrated in the 
right part of Fig. 7. The a-rows of this core are the rows with leading hooks 14, 6, and 2. 
Counting the number of b-boundary boxes in these rows shows that λ(P c) = (6, 3, 1, 0, 0), 
which equals μ(P )c. We see that η(P ) = ζ(P c).

5.2. Zeta and eta via sweep maps

This section presents the combinatorial description of the zeta map on rational Dyck 
paths as a sweep map created by Loehr and Warrington in [3].

Heuristically, this map ‘sweeps’ the line of fixed slope ab across P starting on the main 
diagonal moving to the northwest, recording north and east steps in the order in which
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Fig. 13. Zeta and eta via sweep maps. The steps of ζ(P ) are labeled by the levels of the lattice points of P
in order, recording whether they correspond to north or east levels. The steps of η(P ) are labeled by the 
levels of the lattice points of P in reverse order starting from the upper right corner, recording whether 
they correspond to south or west levels.

they are met. Analogously, the eta map ‘sweeps’ the line of slope ab across P starting 
at the farthest point from the main diagonal moving to the southeast, recording south 
and west steps in the order in which they are met.3 This procedure is illustrated for our 
running example in Fig. 13.

Recall that the reading word L(P ) is obtained by reading the levels that occur along 
the path from southwest to northeast, excluding the final 0, and the reverse reading word 
M(P ) is obtained by reading from northeast to southwest, excluding the final 0.

Theorem 5.9. (See [3].) The zeta map can be computed as follows:

(1) Place a bar over each of the entries of L(P ) corresponding to an east step; these 
occur exactly at the right (cyclic) descents of σ.

(2) Sort L(P ) in increasing order, keeping track of the bars on various values.
(3) Read the resulting sequence of labels (bars and non-bars) to produce a new northeast 

lattice path, which we denote ζ(P ).

Theorem 5.10. The eta map can be computed as follows:

(1′) Place a bar over each of the entries of M(P ) corresponding to a west step; these 
occur exactly at the right (cyclic) ascents of τ .

(2′) Sort M(P ) in increasing order, keeping track of the bars on various values.
(3′) Read the resulting sequence of labels (bars and non-bars) to produce a new southwest 

lattice path from (b, a) to (0, 0), which we denote η(P ).

Example 5.11. In our running example in Fig. 13, we mark the reading word

L(P ) = (0, 8, 16, 24, 19, 27, 22, 17, 12, 20, 15, 10, 5),

3 These definitions exhibit the choice of ‘east-north’ or ‘west-south’ convention in [3].
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which sorts to (0, 5, 8, 10, 12, 15, 16, 17, 19, 20, 22, 24, 27). Thus ζ(P ) is the path

NENENENENEEEE.

We mark the reverse reading word

M(P ) = (0, 5, 10, 15, 20, 12, 17, 22, 27, 19, 24, 16, 8),

which sorts to (0, 5, 8, 10, 12, 15, 16, 17, 19, 20, 22, 24, 27). Thus η(P ) is the path

WWSWWWSWWSWSS,which is equivalent to NNENEENEEENEE.

Remark 5.12. Note that both computations in Theorem 5.9 and Theorem 5.10 can be 
performed just as easily on the standardization σ(P ) of L(P ), since only the relative 
values of the labels matter.

Proof of Theorems 5.9 and 5.10. Consider the path ζ(P ) described in Theorem 5.9. The 
number of boxes on the left of the north step corresponding to a north level ni of P is 
equal to the number of east levels smaller that ni. This number is equal to the number of 
skew inversions involving ni, which coincides with λi by Lemma 5.2(i). Therefore the de-
scribed algorithm to compute ζ(P ) coincides with the definition of zeta in Definition 5.1.

Consider the (rotation of the) path η(P ) described in Theorem 5.10. The number 
of boxes below a given west step of P is equal to the number of south levels smaller 
than the corresponding west level. This number is equal to the number of flip skew 
inversions involving the corresponding level ej , which coincides with μj by Lemma 5.2(ii). 
Therefore, the described algorithm to compute η(P ) coincides with the definition of eta 
in Definition 5.1. �
5.3. Zeta and eta via the laser filling

This section presents a new interpretation of zeta and eta that are read from a laser 
filling in the boxes below the path P and above the main diagonal. Our main result in 
this section describes the partitions λ and μ in terms of the laser filling. This result will 
be used in Section 7 to give a new combinatorial description of the inverse of the zeta 
map in the square case without the use of bounce paths.

Fig. 14 illustrates the following definition.

Definition 5.13. Let P be an (a, b)-Dyck path and let B be a box below P and above the 
line y = a

bx. Draw the line of slope ab through the southeast corner of B (a bi-directional 
laser). The laser filling of B is equal to the number of vertical walls of P crossed by 
the laser. Equivalently, it is equal to the number of horizontal walls of P crossed by the 
laser.
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Fig. 14. Laser filling of a path P . The laser pointed from the lower right corner of the box with filling 2 
crosses two vertical walls of the path, while all other lasers cross only one. The entries of the partition 
λ(P ) = (4, 3, 2, 1, 0) are the sums of the laser fillings on the rows. The entries of the partition μ(P ) =
(3, 2, 2, 1, 1, 1, 0, 0) are the sums of the laser fillings on the columns.

Remark 5.14. Lasers also appear in Armstrong, Rhoades, and Williams’s [5]. Their lasers 
stop at the first wall they meet; by contrast, our lasers traverse (and count!) the walls 
of the path P .

Theorem 5.15. The partitions λ and μ associated to P can be computed as follows:

(i) The parts of λ(P ) are the sums of the laser fillings in the rows.
(ii) The parts of μ(P ) are the sums of the laser fillings in the columns.

Proof. The entries of λ count the skew inversions involving the north levels of each of the 
vertical steps in the path. For a given vertical step, this number is equal to the number 
of horizontal steps in the path that are strictly below the laser through its starting point. 
Each of these horizontal steps is crossed by exactly one of the lasers through the lower 
right corners of the boxes below the path that are in the same row of the vertical step 
in consideration. Statement (i) follows and Statement (ii) is proved similarly. �
Corollary 5.16. The skew length of P is equal to the sum of the laser fillings of P .

Proof. The skew length of P is equal to the area of λ(P ). By the previous theorem, this 
area is equal to the sum of all laser fillings of P . �
5.4. Zeta and eta via interval intersections

This section presents a second new combinatorial interpretation of zeta and eta in 
terms of interval intersections. Each step of the path P has an associated closed interval 
whose endpoints are the levels of its starting and ending points. When the intervals are 
ordered in increasing order, zeta and eta can be directly determined.

Definition 5.17. Let P be an (a, b)-Dyck path. Let N(P ) be the north levels of P and 
E(P ) be the east levels of P . Define the north intervals of P to be the set IN = {[ni, ni+b]
for ni ∈ N(P )} and the east intervals of P to be the set IE = {[ej−a, ej ] for ej ∈ E(P )}.
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Fig. 15. Zeta and eta via interval intersections. The intervals on the left correspond to the ordered level 
intervals of the vertical steps in the path. The intervals on the top correspond to the level intervals of the 
horizontal steps. The shaded boxes of λ and μ are the boxes whose corresponding row and column intervals 
do not intersect.

Theorem 5.18. Create an a × b grid. Label the rows of the grid by the north intervals 
of P increasing from bottom to top, and the columns of the grid by the east intervals 
of P increasing from left to right. Fill in the boxes in this grid when the corresponding 
row and column intervals do not intersect. The boundary path of the shaded boxes above 
the main diagonal is ζ(P ) and the boundary path of the shaded boxes below the main 
diagonal is η(P ), rotated 180 degrees.

Proof. This theorem is a straightforward consequence of Lemma 5.2. �
Example 5.19. For our running example path P , the north intervals are [0, 8], [8, 16], 
[12, 20], [16, 24], and [19, 27], which can be read directly from the north steps of P , or 
calculated from the north levels as in Definition 5.17. Similarly, the east intervals of P
are [0, 5], [5, 10], [10, 15], [12, 17], [15, 20], [17, 22], [19, 24], and [22, 27]. Labeling the rows 
of a 5 × 8 grid with the north levels and the columns with the east levels gives the right 
side of Fig. 15. The shaded boxes are the those where the corresponding row interval 
does not intersect the corresponding column interval, from which λ(P ), μ(P ), ζ(P ), and 
η(P ) can be read posthaste.

6. Pairing the zeta map with the eta map

By considering the zeta map together with the eta map, we gain two new ideas: a 
new approach for proving that the zeta map is a bijection and (if ζ is a bijection) a new 
area-preserving involution on the set of (a, b)-Dyck paths. For clarity and consistency, 
we have decided to use the letter P to denote a path that is in the domain of ζ and use 
the letter Q to denote a path that is in the image of ζ.

6.1. Inverse of the zeta map knowing eta

For the image Z under the pair of maps

(ζ, η) : D → D×D,
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we define a map ι : Z → D such that (ζ, η) ◦ ι is the identity map. Further, we conjecture 
that for every (a, b)-Dyck path Q that appears as the image of ζ, there exists a unique 
(a, b)-Dyck path R such that (Q, R) ∈ Z. This would imply that in Z every element of 
D appears exactly once as the initial entry in the pair, from which it would follow that 
the zeta map is a bijection.

Definition 6.1. A pair of (a, b)-Dyck paths (Q, R) is an admissible pair if (Q, R) =(
ζ(P ), η(P )

)
for some (a, b)-Dyck path P . The set of admissible pairs Z ⊂ D × D is 

the image under the pair of maps (ζ, η) : D → D ×D.

We now describe a simple combinatorial description of the inverse map ι that recovers 
P from the pair (Q, R) or, equivalently, from the pair of partitions (λ, μ) they bound.

Definition 6.2. Let (Q, R) be an admissible pair. Define ι(Q, R) as follows.

(1) Draw the path Q above the diagonal and rotate the path R 180 degrees so that it 
embeds below the diagonal in the same diagram. Label the steps of each path from 1
to a + b starting at the bottom-left corner and ending at the top-right corner in the 
order in which they appear in the path.

(2) Create the permutation γ : [a + b] → [a + b] as follows. If l is a label of a horizontal 
step in Q, define γ(l) to be the label of the horizontal step in R that is in the same 
column of l. If l is a label of a vertical step in Q, define γ(l) to be the label of the 
vertical step in R that is in the same row of l.

(3) For admissible pairs (Q, R), γ is a cycle permutation. Interpret γ in cycle notation 
as (σ1, σ2, . . . , σa+b), fixing σ1 = 1. Define P = ι(Q, R) to be the path whose east 
steps correspond to the cyclic descents of σ.4

Theorem 6.3. γ is a cycle permutation and the map ι is the inverse map for the pair 
(ζ, η).

Proof. Suppose (Q, R) is an admissible pair, so that there exists a P ∈ D such that 
(Q, R) = (ζ(P ), η(P )). Label the steps of Q and R with the levels of P as determined 
by the sweep map algorithm given in Theorems 5.9 and 5.10 (as illustrated in Fig. 13). 
The definition of the permutation γ using these labels instead of on [a + b] induces 
a permutation on the set of levels of the lattice points of P . We will prove that this 
permutation is the cycle permutation given by the reading word L(P ) of P .

Because of the relationship between the forward reading word L(P ) and the reverse 
reading word M(P ), the labels of the vertical steps of R are exactly the labels of the 
vertical steps of Q plus b, while the labels of the horizontal steps of R are exactly the 

4 A descent occurs when σi > σi+1. A cyclic descent is defined in the same way, but considering the 
indices modulo a + b, allowing a descent in the last position of σ.
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Fig. 16. Calculating P = ι(Q,R) using the method in Definition 6.2.

labels of the horizontal steps of Q minus a. This implies that the permutation γ maps 
the level of a lattice point in P to the level of the next lattice point along P , forming a 
permutation on the set of labels that is a cycle ordered by the reading word L(P ).

Since the level labels appear in order as we walk along Q, only the relative order of 
the labels matters; returning all labels to the numbers from 1 up to a + b recovers γ(P ), 
which when interpreted as a permutation in one line notation is the reading permutation 
σ(P ). By Remark 2.3, we recover P directly from σ(P ) and the result follows. �

Taken with Theorem 6.3, the following conjecture would imply that ζ is a bijection.

Conjecture 6.4. Suppose that Q ∈ Da,b. There exists at most one R ∈ Da,b such that 
(Q, R) ∈ Z.

Example 6.5. Fig. 16 illustrates the procedure outlined in Definition 6.2 for the 
pair (Q, R) = (ζ(P ), η(P )) from our running example P . After labeling the paths 
Q = ζ(P ) and R = η(P ) from 1 to 13, we see that γ(1) = 3, γ(2) = 1, γ(3) = 7, 
etc. Writing γ in cycle notation gives

γ = (1, 3, 7,12, 9,13,11,8, 5,10,6,4,2).

If we instead interpret this sequence of numbers as the one line notation of a permuta-
tion σ, the cyclic descents of σ are bolded and correspond to the east steps of ι(Q, R). 
We see that ι(Q, R) = P .

Remark 6.6. The essence of the proof of Theorem 6.3 is that the ζ and η maps track the 
positions of the right cyclic descents of L(P ) and M(P ). Using these two sets of data, and 
the precise relationship between L(P ) and M(P ), we are able to solve for the levels of P . 
Interestingly, ζ(P ) does not obviously contain enough information to reconstruct P . We 
cannot construct a unique permutation solely from its collection of right descents, and 
need additional information to recover P . In the standard Catalan case, this additional 
information is essentially implied by the particular structure of the n × (n +1) rectangle; 
for the general case, we obtain the extra information necessary from η(P ).
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Fig. 17. Diagrammatic description of the conjugate-area involution.

Remark 6.7. When pairing arbitrary Q and R paths a number of things can go wrong. 
First, Theorem 4.5 implies that in order to come from an actual path, we must have 
area(Q) = area(R). Second, we know that γ must have a single cycle; it is simple to 
construct examples where this does not occur. It is also possible to find pairs (Q, R)
where γ has a single cycle, but the labels li obtained from the reverse bijection are in 
the wrong relative order. In other words, we may have ζ(ι(Q, R)) �= Q.

We propose the problem of characterizing all possible permutations γ(P ). As a 
straightforward consequence of the description of this permutation in terms of the pair 
Q and R, we conclude Proposition 6.8 without proof.

Proposition 6.8. The positions of the exceedences of γ(P ) give the collection of north 
steps in ζ(P ), and the values of the exceedences of γ(P ) are the north steps in η(P ) when 
rotated 180◦.

6.2. An area-preserving involution on rational Dyck paths

If ζ is invertible, we can use η to define a new area-preserving involution on the set of 
(a, b)-Dyck paths, induced by the conjugate map under ζ which we call the conjugate-area 
map. This involution sends the path ζ(P ) to the path η(P ) = ζ(P c) and is predictable 
for certain families of (a, b)-Dyck paths.

Definition 6.9. The conjugate-area map (Fig. 17) applied to an (a, b)-Dyck path Q is the 
path

χ(Q) := ζ ◦ c ◦ ζ−1(Q).

If λ is the partition bounded by Q, we define χ(λ) to be the partition bounded by χ(Q).

Remark 6.10. For partitions λ and μ bounded by ζ(P ) and η(P ) we have χ(λ) = μc.

Proposition 6.11. If the zeta map is a bijection then the conjugate-area map is an area-
preserving involution on the set of (a, b)-Dyck paths.

Proof. Since conjugation is an involution, we see that applying the operator ζ ◦ c ◦ ζ−1

twice is equal to the identity, and therefore χ(χ(Q)) = Q. Furthermore, conjugation 
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Fig. 18. The left-justified partition λ8, up-justified partition ν8, and corresponding path P 8.

preserves skew length (Theorem 4.5), which is mapped to co-area via the zeta map. 
Thus, χ must be an area-preserving involution. �

One possible approach to prove that ζ is a bijection would be to directly construct 
the involution χ. In Section 7 we show that in the square case χ is exactly the map that 
reverses the path P ; equivalently one finds χ(λ) by simple conjugation. In the rational 
case, conjugation must fail in general because conjugates of partitions may not sit above 
the main diagonal. Although, Proposition 6.13 exhibits our empirical observation that 
for ‘small’ partitions λ, χ(λ) is often the conjugate.

We have found that χ is predictable in other families of examples as well; in Section 8
we present an inductive combinatorial description of the inverse of the zeta map and of 
the area-preserving involution for a nice family of examples.

Example 6.12 (Left-justified and up-justified partitions). Consider two families of parti-
tions whose Young diagrams fit above the main diagonal in the a × b grid. Let n ∈ N be 
a number no bigger than the number of boxes above the main diagonal in the a × b grid. 
Define the left-justified partition λn to be the unique partition whose Young diagram 
has n boxes as far to the left as possible and the up-justified partition νn to be the 
unique partition whose Young diagram has n boxes as far up as possible. Fig. 18 shows 
λ8 = (3, 2, 2, 1) embedded above the diagonal and ν8 = (6, 2) rotated 180 degrees and 
embedded below the diagonal. We use the notation νn because it is the conjugate of 
what one might expect if we called it μn, as pointed out by an astute referee.

Proposition 6.13. The left-justified and up-justified partitions are related by the 
conjugate-area map:

χ(λn) = νn.

Moreover, ζ−1(λn) is the path with area n containing the first n positive hooks in the 
grid.

Proof. Let Pn be the path containing the first n positive hooks in the grid. This path 
consists of all the boxes below a line parallel to the main diagonal sitting in the highest 
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Fig. 19. The conjugate-area involution in the (n, n + 1) case.

level of the path, and therefore all the labels in the laser filling are equal to 1. Adding 
the labels in the rows and the columns we obtain the partitions λn and (νn)c. �

Fig. 18 illustrates and example of left-justified and up-justified partitions λn and νn

together with their corresponding path Pn for n = 8. The reader is invited to verify that 
ζ(P 8) and η(P 8) are given by the paths bounding λ8 and ν8 using any of the methods 
described in Section 5, as well as to verify that the inverse map ι presented in Section 6
gives P 8 when applied to the paths bounding λ8 and ν8.

7. The square case

In this section, we consider (n, n + 1)-Dyck paths, lattice paths in an n × (n + 1) grid 
staying above the main diagonal. They are in bijection with classical Dyck paths in an 
n × n grid by simply forgetting the last east step of the path. Haglund and Haiman [14]
discovered a beautiful description of the inverse of the zeta map in this case using a 
bounce path that completely characterizes the area sequence below the path. We present 
a new combinatorial description of the inverse of the zeta map in this case in terms of 
an area-preserving involution. This approach opens a new direction in proving that the 
zeta map is a bijection in the general (a, b) case.

7.1. The conjugate-area involution, conjugate partitions and reverse paths

Let Q be an (n, n + 1)-Dyck path. The area-preserving involution χ conjugates the 
partition λ bounded by the path Q. This was proved in [12, Theorem 9]; we provide a 
new proof using our laser interpretation of zeta and eta. For simplicity, denote by Qr the 
path whose bounded partition is λc. We refer to P r as the reverse path of Q. Forgetting 
the last east step of the path, the reverse operation acts by reversing the path in the 
n ×n grid. An example of the conjugate-area involution, conjugate partition and reverse 
path is illustrated in Fig. 19.
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Fig. 20. Argument in the proof of Theorem 7.1. The values of the sums over the rows are in correspondence 
with the values of the sums over the columns, and therefore λ = μ.

Theorem 7.1. (See [12].) For a Dyck path Q and the partition λ it bounds, we have 
χ(Q) = Qr and χ(λ) = λc.

Proof. We need to show that the partitions λ and μ bounded by the images ζ(P ) and 
η(P ) of any (n, n + 1)-Dyck path P satisfy

χ(λ) = μc = λc.

Equivalently, we need to show that λ = μ. The entries of the partitions λ and μ are the 
sums of the labels in the laser filling of P over the rows and columns respectively (Theo-
rem 5.15). We will show that the values of the sums over the rows are in correspondence 
with the values of the sums over the columns, and therefore λ = μ. This correspondence 
is illustrated for an example in Fig. 20.

For every row, draw a line of slope 1 in the northeast direction pointing from the 
starting point of the north step in that row. This line hits the path for the first time in 
the ending point of an east step of the path. The labels of the laser filling in the boxes in 
the column corresponding to this east step are exactly the same as the labels of the laser 
filling in the row in consideration. (This is because the lasers are lines with slope n

n+1 , 
which implies that for any two boxes on the same diagonal of slope 1 that are not 
interrupted in line of sight by the path P , they will have the same laser filling.) Thus, their 
corresponding sums are equal. Doing this for all the rows gives the desired correspondence 
between the entries of the partition λ and the entries of the partition μ. �
7.2. The inverse of the zeta map

Because Theorem 7.1 provides the explicit formula for χ, the method to find inverse 
of the zeta map in the (n, n + 1) case follows as a direct consequence of Theorem 6.3. 
The description of the map ι is presented in Definition 6.2.
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Fig. 21. The inverse of ζ by way of conjugate partitions.

Fig. 22. Alternative description of the cycle permutation γ.

Theorem 7.2. Let Q be an (n, n + 1)-Dyck path. Then, ζ−1(Q) = ι(Q, Qr).

An example of this result is illustrated in Fig. 21. The laser filling of the path ζ−1(Q) in 
this example is shown in Fig. 20. One can verify that the sum of the labels of the laser fill-
ing on the rows and columns gives rise to the partitions λ and μ bounded by Q and χ(Q)
(Theorem 5.15).

An alternative way to obtain the cycle permutation γ directly from Q is as follows. 
Shade the boxes in the n × (n + 1) rectangle that are crossed by the main diagonal as 
illustrated in Fig. 22. Move east from a vertical step labeled i until the center of the first 
shaded box you see, and then move up until hitting an horizontal step of the path. The 
image γ(i) is equal to the label of this horizontal step plus 1. In the example of Fig. 22, 
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Fig. 23. Base induction for zeta inverse and the area-preserving involution.

the path starting at the vertical step labeled 7 hits the horizontal step 12, therefore 
γ(7) = 12 + 1 = 13.

In order to determine γ(i) of a label of an horizontal step, we move down until the 
center the last shaded box we see, and then move left until hitting a vertical step of the 
path. As before, γ(i) is equal to the label of this vertical step plus 1. In the example, 
γ(15) = 10 + 1 = 11. The image of the label of the first horizontal step of the path is 
by definition equal to 1. Interpret γ in cycle notation as (σ1, σ2, . . . , σ2n+1) where we fix 
σ1 = 1. As a direct consequence of Theorem 7.2 we get:

Theorem 7.3. Let Q be an (n, n + 1)-Dyck path. The inverse ζ−1(Q) is the path whose 
east steps correspond to the cyclic descents of the permutation γ when interpreted in one 
line notation.

8. Zeta inverse and area-preserving involution for a nice family of examples

In this section we present an inductive combinatorial description of the inverse of the 
zeta map and of the conjugate-area involution χ for a nice family of (a, b)-Dyck paths. 
This family consists of the Dyck paths that contain the lattice point with level 1. Such 
Dyck paths are obtained by concatenating two Dyck paths in the a′ × b′ and a′′ × b′′

rectangles illustrated in Fig. 23. The sides of these two rectangles are the unique positive 
integers 0 < a′, a′′ < a and 0 < b′, b′′ < b such that

a′b− b′a = 1,

b′′a− a′′b = 1.

As a consequence, a′ and b′ are relatively prime as well as a′′ and b′′, allowing us to 
apply induction.

8.1. Zeta inverse

Let P be an (a, b)-Dyck path congaing the lattice point at level 1, and let P ′ and 
P ′′ be the two Dyck paths in the a′ × b′ and a′′ × b′′ rectangles whose concatenation is 
equal to P . Define the star product of P ′ 
 P ′′ as the path obtained by cutting P ′ at its 
highest level and infixing P ′′. This special product is illustrated in Fig. 24. Note that 
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Fig. 24. Star product of rational Dyck paths.

the highest level of P ′ can be equivalently obtained by sweeping the main diagonal of 
either the a × b rectangle or the a′ × b′ rectangle.

Theorem 8.1. If Q is an (a, b)-Dyck path containing the lattice point at level 1, zeta 
inverse of Q is equal to the star product of the zeta inverses of Q′ and Q′′:

ζ−1(Q) = ζ−1(Q′) 
 ζ−1(Q′′).

Proof. We will show that ζ(P ′
P ′′) is the concatenation of ζ(P ′) and ζ(P ′′), the theorem 
then follows by applying zeta to both sides of the equation. Since the path P ′ is cut at 
its highest level, sweeping the main diagonal of the a × b rectangle crosses the levels of 
P ′ 
 P ′′ corresponding to the path P ′ first, followed by all the levels corresponding to 
the path P ′′. Therefore, ζ(P ′ 
 P ′′) is the concatenation of ζ(P ′) and ζ(P ′′). �
8.2. Area-preserving involution

The conjugate-area map of Q can be obtained by induction in this case as well.

Lemma 8.2. Let l be the level of a lattice point p in the a × b grid. If Ul is the rectangle 
composed by the boxes northwest of p and Ũl is the rectangle composed by the boxes 
southeast of p, then

area(Ũl) − area(Ul) = l.

Proof. If p = (p1, p2), then l = p2b − p1a. Furthermore,

area(Ũl) − area(Ul) = (b− p1)p2 − p1(a− p2) = p2b− p1a = l. �
Theorem 8.3. Let Q is an (a, b)-Dyck path containing the lattice point at level 1. The 
bounded partition of χ(Q) is the partition whose restriction to the a′ × b′ and a′′ × b′′

rectangles gives the bounded partitions of χ(Q′) and χ(Q′′), and which contains all boxes 
below the main diagonal outside the two rectangles.

Proof. We first observe that χ(Q) defined this way has the same area of Q. This is 
equivalent to show that the bounded partitions of χ(Q) and Q have the same area, when 
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Fig. 25. The inductive conjugate-area map for paths containing level 1.

restricted to the complement of the a′ × b′ and a′′ × b′′ rectangles. These restrictions 
are exactly the rectangle Ũ1 after removing the box on its upper left corner, and the 
rectangle U1. The claim then follows by Lemma 8.2.

Now, let γ′ and γ′′ be the cycle permutations arising from the pairs (Q′, χ(Q′)) and 
(Q′′, χ(Q′′)), and γ be the cycle permutation of (Q, χ(Q)). The cycle permutation γ can 
be obtained by cutting γ′ exactly before its highest value and putting γ′′ in between, 
with all its values increased by a′ + b′. In the example in Fig. 25 we get

γ′ = (1, 3 | 5, 4, 2)

γ′′ = (1, 3, 7, 5, 8, 6, 4, 2)

γ = (1, 3, 6, 8, 12, 10, 13, 11, 9, 7 5, 4, 2)

The cyclic descents of γ correspond exactly to the cyclic descents of γ′ and γ′′. More-
over, the descent at the highest value of γ′ corresponds to the east step at the highest 
level of ζ−1(Q′). Thus, replacing cyclic descents in γ by east steps and ascents by north 
steps gives rise to the start product ζ−1(Q′) 
 ζ−1(Q′′), which is equal to ζ−1(Q) by 
Theorem 8.1. �
8.3. kth valley Dyck paths

One interesting family of (a, b)-Dyck paths is the family of kth valley Dyck paths, 
paths Qk with valleys at levels 0, 1, 2, . . . , k for some k < a. The area-conjugate map for 
these paths behaves very nice and can be described in terms of the rectangles Ul and Ũl

in Lemma 8.2.
For 0 < l < a, consider the collections of boxes Vl and V̂l defined by

Vl = Ul �

l−1⋃
i=1

Ui, V̂l = Ûl �

l−1⋃
i=1

Ûi,

where Ûi is composed of the boxes of Ũi that are below the main diagonal. Equivalently, 
Ûi is the result of removing the box in the upper left corner of Ũi. An example is 
illustrated in Fig. 26.



C. Ceballos et al. / Journal of Combinatorial Theory, Series A 141 (2016) 33–77 69
Fig. 26. Example of the conjugate-area map for kth valley Dyck paths for k = 3. The area of Vi is equal to 
the area V̂i.

Fig. 27. Example of the inverse of the zeta map for kth valley Dyck paths for k = 3.

Lemma 8.4. For 0 < l < a, the area of Vl is equal to the area of V̂l.

Proof. Since V1 = U1 and V̂1 = Û1, which is Ũ1 after removing one box, Lemma 8.2 im-
plies that V1 and V̂1 have the same area. The level 2 becomes level 1 in the smaller a′′×b′′

rectangle, and V2, V̂2 are given by U1, Û1 in this smaller rectangle. Again, Lemma 8.2
implies that V2 and V̂2 have the same area. Continuing the same argument in the smaller 
rectangles that appear in the process finishes the proof. �

Note that the bounded partition of Qk is the (disjoint) union of V1, . . . , Vk.

Proposition 8.5. The bounded partition of χ(Qk) is the (disjoint) union of V̂1, . . . , V̂k.

Proof. Note that the restriction of Qk to the a′×b′ and a′′×b′′ rectangles gives two smaller 
kth valley Dyck paths Q′

k′ and Q′′
k′′ . The result then follows directly from Theorem 8.3

by induction on k. �
Fig. 27 illustrates an example of the inverse of the zeta map for kth valley Dyck paths 

obtained by applying Theorem 6.3.
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9. The delta statistic and initial bounce paths

We have tried a number of approaches for showing that the zeta map is a bijection. 
Our last approach uses a delta statistic which can be estimated by means of an initial 
bounce path.

Definition 9.1. Define the delta statistic δ(P ) to be the number of levels li < a +b along P .

Geometrically, δ(P ) counts the number of lattice points in P that belong to the 
diagonal path (closest to the diagonal). Surprisingly, this is sufficient to construct the 
inverse of the zeta map.

Theorem 9.2. If δ(P ) is determined uniquely by ζ(P ) for all P , then the map ζ is 
invertible. In such case, the inverse path P is determined from γ(P ) as in Proposition 9.9.

9.1. Box math and the inclusion poset of rational Dyck paths

Our approach for proving Theorem 9.2 relies on careful analysis of the poset structure 
on the set of rational Dyck paths under the usual inclusion relation: we say P < Q if the
path P is weakly below the path Q, or, equivalently, if the set of positive hooks of P is 
contained in the set of positive hooks of Q. This poset is graded by the area statistic, 
with covering relation given by adding a single box.

Definition 9.3. The maximal level m of a path P is the largest level appearing in the 
reading word of L(P ). Likewise, the maximal box is the box under the peak of P labeled 
by the maximal level m. For any path with area greater than 0, we define the predecessor
of P as the path obtained by removing the box under the peak of P farthest from the 
diagonal. This replaces the maximal level m with m − a − b in L(P ).

Lemma 9.4. Suppose that P is an (a, b)-Dyck path with predecessor P ′. We have

sl(P ′) < sl(P ).

Proof. Since P ′ is obtained by removing the maximal box of P , the laser filling of P ′ is 
equal to the laser filling of P when removing the laser filling of its maximal box. Since 
skew length is equal to the sum of the entries in the laser filling, the result follows. �

Since every path has a unique maximal hook, we induce a spanning tree T in the 
Hasse diagram of D with the property that if P ′ < P in T , then sl(P ′) < sl(P ). We 
can also precisely describe the combinatorial effect of removing the maximal box from 
P on ζ(P ).

Proposition 9.5. All of the following operations are equivalent ways to remove the maxi-
mal box:
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(1) Remove the box whose associated hook length is greatest (furthest box from the diag-
onal).

(2) Remove the longest row from c(P ).
(3) In the reading word (l1, l2, . . . , la+b) of P , reduce the maximal level m by (a + b), 

leaving all other levels unchanged.
(4) In the standardization σ(P ), let α be the number of levels of P greater than m −a −b

excluding m. Replace the entry (a + b) in σ with a + b − α, and increase all entries 
greater than or equal to a +b −α by one. Equivalently, multiply σ(P ) on the left by the 
cycle permutation ρa+b−α,a+b with cycle notation (a + b −α, a + b −α+1, . . . , a + b).

(5) Conjugate the permutation γ(P ) by the cycle ρa+b−α,a+b to obtain:

ρa+b−α,a+bγ(P )ρ−1
a+b−α,a+b.

Proof. The second operation follows directly from the definition of c(P ). The third 
method is clear from the effect on the labels li of applying the first method. The fourth 
item follows from third, and the fifth item follows from the effect of conjugation on the 
cycle notation of a permutation. �

We can thus try to understand the structure of the tree T by understanding certain 
conjugations of the permutation γ(P ). We can observe that adding the box at the label 
l1 = 0 is equivalent to removing the maximal box from P c. This reduces all labels li by 
a + b except for the label l1 = 0, which remains the same. As a result, the relative value 
of the label 0 is increased from 1 to the number δ(P ) of labels li < a + b, while all other 
labels ≤ δ(P ) are reduced by one.

Proposition 9.6. Let P ′ be the conjugate of the path obtained by removing the maximal 
box from P c. The permutation γ(P ′) is the conjugate

γ(P ′) = ρ−1
1,δ(P )γ(P )ρ1,δ(P ).

The action of removing the maximal box from P c on Q = ζ(P ) is also completely 
determined by δ(P ). For simplicity, we call the path Q′ = ζ(P ′) the ζ-predecessor of Q.

Proposition 9.7. The ζ-predecessor of Q = ζ(P ) is completely determined by δ = δ(P )
as follows:

1. All the steps in Q after the first δ steps remain unchanged.
2. The first δ steps are rotated as follows:

(a) the first east step that appears is changed to a north step,
(b) the first north step is changed to an east step,
(c) the first δ steps are rotated once (rotating the first step to the end of the first 

delta steps).
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Fig. 28. Determining the ζ-predecessor of a path Q = ζ(P ) with δ(P ).

Example 9.8. An example of this procedure is illustrated in Fig. 28 for the path Q = ζ(P )
associated to our running example path P . The number of levels of P smaller than a + b

is δ(P ) = 5. The cycle permutation γ′ is obtained from γ by rotating the labels 1, . . . , 5.

Proof. Adding a box at the level �1 = 0 of P increases this level by a + b and all other 
levels remain unchanged. The level �1 = 0 is transformed from a north level in P to an 
east level in P ′, while the east level �i = a is transformed to a north level. Observing that 
the levels �1 and �i correspond to the first north and first east steps in Q respectively, 
and that the relative order of the levels less than a + b is rotated once, one concludes the 
result. �

The two formulations in Proposition 9.6 and Proposition 9.7 have the advantage that 
we do not actually need to know the value of the maximal label m, and reduces the 
problem of showing that ζ is a bijection to computing a single statistic. To wit, if δ(P )
can be directly computed from Q = ζ(P ), then we can obtain the ζ-predecessor of Q, 
and repeat until we arrive at the diagonal path P0. This would completely determine P
from ζ(P ).

Proposition 9.9. Let Q = ζ(P ) and Q = Q1, . . . , Ql be the list of ζ-predecessors of Q
with Ql being the final path containing all boxes above the main diagonal. If δi is the 
δ-statistic corresponding to Qi, then the permutation γ(P ) is determined by

γ(P ) = ρ γ0 ρ−1,

where ρ = ρ1,δ1 . . . ρ1,δl−1 , the permutation ρ1,i has cycle notation (1, . . . , i), and γ0 =
γ(P0). The east steps of the path P are encoded by the cyclic descents of γ when considered 
in one-line notation, as described in Section 6.1.

Remark 9.10. The δ statistic has also been considered shortly after this paper by Xin 
in [24]. This statistic, and another related statistic called “key”, is used by the author 
to present a search algorithm for inverting the zeta map. This algorithm shows an al-
ternative proof that the zeta map is a bijection in the cases (a, ak ± 1), by giving a 
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recursive construction of ζ−1(Q). However, the general case remains open. The results of 
Xin in [24] are very similar to those presented in this section, and also use the operations 
of removing the maximal box in P and P c. Corollary 9.2 should be compared with [24, 
Corollary 19]. We also present estimates for the δ statistic and a precise formula in the 
Fuss–Catalan case (a, ak + 1) in Proposition 9.13 and Corollary 9.15, which should be 
compared with [24, Theorem 16]. The estimates we present in Proposition 9.13 deter-
mine the number of children of the nodes in the search tree in the “ReciPhi algorithm” 
in [24, Section 5]. Our algorithm for describing the inverse of zeta in the Fuss–Catalan
case (a, ak + 1) should be compared with the ReciPhi algorithm for the Fuss–Catalan
case in [24, Section 5].

9.2. Initial part of a rational bounce path

The zeta map has been shown to be a bijection in the special cases (a, am ± 1)
by way of a “bounce path” by which zeta inverse could be computed [12,19]. However, 
constructing such a bounce path for the general (a, b) case remains elusive. In this section, 
we construct the initial part of a rational bounce path and show its relation to the δ
statistic. In particular, we explicitly compute δ in the Fuss–Catalan case (a, ak + 1).

Definition 9.11. Let Q be an (a, ak+r)-Dyck path with 0 ≤ k and 0 < r < a. The rational 
initial bounce path of Q consists of a sequence of alternating k + 1 vertical moves and k

horizontal moves. We begin at (0, 0) with a vertical move followed by a horizontal move, 
and continue until eventually finish with the (k + 1)th vertical move. Let v1, . . . , vk+1

denote the lengths of the successive vertical moves and h1, . . . , hk denote the lengths of 
the successive horizontal moves. These lengths are determined as follows.

We start from (0, 0) and move north v1 steps until reaching an east step of Q. Next, 
move h1 = v1 steps east. Next, move north v2 steps from the current position until 
reaching an east step of Q. Next, move h2 = v1 + v2 steps east. In general, we move 
north vi steps from the current position until reaching an east step of the path, and 
then move east ei = v1 + · · · + vi steps. This is done until obtaining the last vertical 
move vk+1.

Remark 9.12. The definition of the initial bounce path is exactly the same as an initial 
part of the bounce path in the Fuss–Catalan case [12,19]. The description of this initial 
part remains the same for the general (a, b)-case but we still do not know how to extend 
it to a complete bounce path in general.

It turns out that the initial bounce path is closely related to the δ statistic. Denote 
by |v| = v1 + · · · + vk+1 and by |h| = h1 + · · · + hk. In all the results of this section we 
always assume 0 ≤ k and 0 < r < a.
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Proposition 9.13. Let Q = ζ(P ) be an (a, ak + r)-Dyck path and δ̃(P ) ≤ δ(P ) be the 
number of levels in P that are less than or equal to a(k+1). The two following equations 
hold:

δ̃(P ) = |v| + |h| + 1, (9.1)

|v| + |h| + 1 ≤ δ(P ) ≤ |v| + |h| + r. (9.2)

This proposition will follow from the following lemma. Note that every such a path 
P contains the east levels a, 2a, . . . , (k + 1)a at the end of the path. Moreover,

Lemma 9.14. The east steps of Q = ζ(P ) that are reached by the vertical moves 
v1, . . . , vk+1 of its initial bounce path correspond to the east levels a, 2a, . . . , (k + 1)a
of P .

Proof. Denote by A0 = {0, 1, . . . , a −1} the set of natural numbers between 0 and a −1, 
and let Ai = A0 + ia be the translation of A0 by ia. Note that the number of boxes 
above the main diagonal that are directly on the right of a north step with north level 
in Ai is exactly equal to i. So, these sets can be used to encode the “area-vector” of a 
Dyck path.

As in the known Fuss–Catalan bounce path description, we will show that the vertical 
steps of Q that are directly on the left of the vi vertical move contribute area i − 1 in P . 
More precisely, we will show:

1. The vertical steps of Q that are directly on the left of the vi vertical move correspond 
to north levels in P that belong to Ai−1.

2. The horizontal steps of Q that are directly above of the hi horizontal move correspond 
to east levels in P that belong to Ai.

Denote by Ni the set of north levels in P that belong to Ai, for i = 0, . . . , k. Similarly, 
denote by Ei the set of east levels in P that belong to Ai, for i = 1, . . . , k. We first show 
that Ei can be obtained as the disjoint union

Ei =
i−1⋃
j=0

(Nj + (i− j)a) . (9.3)

For this, note that the first north level in P that appears after an east level e ∈ Ei

should be a north level n ∈ Nj for some j ∈ {0, . . . i − 1}, and that e = n + (i − j)a. 
Reciprocally, every north level n ∈ Nj for some j ∈ {0, . . . i − 1} forces the east levels 
ej+1, ej+2 . . . , ek to appear as east levels in P , where ej+l = n + la (indeed, ej+l ∈
Aj+l which means that ek−1 < ak < b = ak + r. Then, all the lattice points one step 
below ej+1, ej+2 . . . , ek−1 are below the main diagonal). Thus, the north level n ∈ Nj

contributes with exactly one east level e = n + (i − j)a in Ei.
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Items 1 and 2 above are now equivalent to prove that vi = |Ni−1| and hi = |Ei|. 
Equation (9.3) implies that |Ei| = |N0| + · · ·+ |Ni−1|. Since hi = v1 + · · ·+ vi, it suffices 
to prove vi = |Ni−1|. Note that v1 is clearly the number of elements in N0, since the 
smallest east level of P (which corresponds to the first east step in Q) is equal to a. 
Moving h1 = v1 = |E1| steps horizontally covers all the east steps of Q corresponding 
to the east levels in P that belong to A1. Moving up v2 units from the current position 
hits the path at the east step corresponding to the first east level of P that belongs 
to A2. This east level is exactly equal to 2a, and all the north steps on the left of v2 in 
Q correspond to the north levels in P that belong to A1, that is v2 = |N1|. In general, 
P contains all east levels a, 2a, . . . , (k + 1)a. Therefore, the initial value of Ei is equal 
to ia and is smaller than all values in Ni. As a consequence the vertical move vi of the 
bounce path hits the path Q precisely at the east step corresponding to the level ia of 
P as desired, and vi = |Ni−1|. This finishes the proof of the proposition and the proof 
of items 1 and 2. �
Proof of Proposition 9.13. The east step of Q that is reached by the vertical move vk+1
corresponds to the east level (k + 1)a in P . So, δ̃(P ) is equal to the position of this east 
step in Q, which is equal to |v| + |h| + 1. Since a + b = (k + 1)a + r and a + b never 
appears as a level in P , then δ ≤ δ̃ + r − 1 = |v| + |h| + r. �

Replacing r = 1 in Equation (9.2), we obtain.

Corollary 9.15. In the Fuss–Catalan case (a, ak+1), the statistic δ(P ) is determined by 
the initial bounce path of Q = ζ(P ) by

δ(P ) = |v| + |h| + 1. (9.4)

As a consequence of Corollary 9.2 and Corollary 9.15 we obtain an alternative proof 
that the zeta map is a bijection in the Fuss–Catalan case (a, ak+1), as previously shown 
by Loehr in [19].

Corollary 9.16. The zeta map is a bijection in the Fuss–Catalan case (a, ak + 1).
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