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1. Introduction

We introduce the following concept of resonance.1

Definition 1.1. Suppose G = 〈g〉 is a cyclic group acting on a set X, Cω = 〈c〉 a cyclic 
group of order ω acting nontrivially on a set Y , and f : X → Y a surjection. We say the 
triple (X, G, f) exhibits resonance with frequency ω if, for all x ∈ X, c · f(x) = f(g · x), 
that is, the following diagram commutes:

X X

Y Y

g·

f f

c·

In our examples, Y will be either a set of combinatorial objects drawn in the plane 
with c acting by rotation or a set of words with c acting by a cyclic shift. Resonance 
is a pseudo-periodicity property of the G-action, in that the resonant frequency ω is 
generally less than the order of the G-action. Note that (X, G, idX) satisfies the definition 

1 The mathematically precise definition of resonance given here is new, though the phenomenon has been 
discussed by various people over the past several years, in particular, at the 2015 “Dynamical Algebraic 
Combinatorics” workshop at the American Institute of Mathematics where work on this paper began. 
Thanks to J. Propp for coining the term “resonance” which so nicely encapsulates the idea.
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of resonance with frequency |G|; we call this an instance of trivial resonance. In general, 
if a system exhibits resonance with frequency ω, then it also exhibits resonance with 
frequency any multiple of ω; hence one is most interested in finding resonances with 
small ω.

We think of the property of resonance as somewhat analogous to the cyclic sieving phe-
nomenon (introduced by V. Reiner–D. Stanton–D. White [27], generalizing the q = −1
phenomenon of J. Stembridge [35]) and the homomesy property (isolated by J. Propp–
T. Roby [26], inspired by observations of D. Panyushev [20]) in being a somewhat subtle 
“niceness” property of a cyclic group action. We suspect that the phenomenon of res-
onance, like those of cyclic sieving and homomesy, is significantly more common than 
previously realized. Heuristically, one is led to suspect the presence of resonance in a 
system by observing that many orbit cardinalities are multiples or divisors (or multiples 
of divisors) of ω.

This paper centers around two new examples of resonance on increasing tableaux under 
K-promotion and plane partitions under rowmotion, as well as a new equivariant bijection 
relating these phenomena. Here we summarize our main results, the first in greater detail 
to clarify the definition of resonance. See the referenced sections for relevant definitions.

An increasing tableau of partition shape λ is a filling of λ with positive integers such 
that labels strictly increase from left to right across rows and from top to bottom down 
columns. Denote as Incq(λ) the set of all increasing tableaux of shape λ with entries 
at most q. Define the binary content of an increasing tableau T ∈ Incq(λ) to be the 
sequence Con(T ) = (a1, a2, . . . , aq), where ai = 1 if i is an entry of T and ai = 0 if it is 
not.

K-promotion, which we define in Section 2.1 and denote as K-Pro, was first described 
by the second author [21]. It is an variant of M.-P. Schützenberger’s promotion operator 
[34] built on the K-jeu de taquin that was introduced by H. Thomas–A. Yong [39] to 
study K-theoretic Schubert calculus. K-promotion has been further studied in [4,23,29].

In Section 2.2, we prove the following, our first result on resonance.

Theorem 2.2. (Incq(λ), 〈K-Pro〉, Con) exhibits resonance with frequency q.

An example is shown in Fig. 1.
The K-promotion orbit of the depicted increasing tableaux in Inc12(4 × 4) has car-

dinality 36. The binary content (written below each tableau) is, however, of order 12
under cyclically shifting (denote this action as rot). We will see in Lemma 2.1 that the 
diagram of Fig. 1 commutes. This illustrates the result that (Inc12(4 × 4), 〈K-Pro〉, Con)
exhibits resonance with frequency 12, since while K-Pro12(T ) �= T for either tableau in 
the figure, rot12(Con(T )) = Con(T ) for all T ∈ Inc12(4 × 4).

Rowmotion, which we define in Section 3.1, has attracted much attention since it 
was first studied (under another name) by A. Brouwer–A. Schrijver [6] in 1974; see for 
example [2,9,12,20,26,31,32,38]. More recently, several authors have studied a birational
lift of rowmotion [11,13,14], with some relations to Zamolodchikov periodicity.
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Fig. 1. An increasing tableau in Inc12(4 × 4) and its image under K-Pro, along with the map to the binary 
content of each.

Let J(a × b × c) denote the set of plane partitions inside an a × b × c box and Row
denote rowmotion; see Section 3.3 for the definitions of Xmax and D. Our second main 
resonance result is the following.

Theorem 3.10. (J(a×b ×c), 〈Row〉, Xmax ◦D) exhibits resonance with frequency a + b +
c − 1.

To better study plane partitions, we introduce and develop the machinery of affine 
hyperplane toggles and n-dimensional lattice projections, including a higher-dimensional 
analogue of N. Williams and the third author’s result on the equivariance of (poset-)pro-
motion and rowmotion [38]. We obtain a large family of toggling actions {Proσπ,v} whose 
orbit structures are equivalent to that of rowmotion. See Sections 3.4 and 3.5 for further 
details.

Theorem 3.26. Let P be a finite poset with an n-dimensional lattice projection π. Let 
v = (v1, v2, v3, . . . , vn) and w = (w1, w2, w3, . . . , wn), where vj , wj ∈ {±1}. Finally 
suppose that σ : supp(P, π, v) → supp(P, π, v) and τ : supp(P, π, w) → supp(P, π, w) are 
bijections. Then there is an equivariant bijection between J(P ) under Proσπ,v and J(P )
under Proτπ,w.

This similarity of Theorems 2.2 and 3.10 leads us to establish an equivariant bijection 
between plane partitions under rowmotion and increasing tableaux under K-promotion.

Theorem 4.5. J(a×b × c) under Row is in equivariant bijection with Inca+b+c−1(a × b)
under K-Pro.

Part of our approach to establishing this equivariant bijection involves the reinterpre-
tation of K-promotion in terms of K-Bender–Knuth involutions, which we introduce; 
see Proposition 2.5. We also extend, in Section 2.4, a result of B. Rhoades on descent 
cycling to the K-promotion setting.
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We obtain a variety of corollaries of this equivariant bijection. Many of these corollaries 
are new proofs of previously discovered results on the order of Row and K-Pro. We 
highlight here only those results that are new.

Corollary 4.9. The order of K-Pro on Inca+b(a × b) is a + b.

Corollary 4.10. The order of K-Pro on Inca+b+1(a × b) is a + b + 1.

We also obtain the following strengthening of a theorem of P. Cameron–D. Fon-
der-Flaass [9, Theorem 6(a)]. The original theorem had the more stringent hypothesis 
c > ab − a − b + 1.

Theorem 4.12. If a + b + c − 1 is prime and c > 2ab−2
3 − a − b + 2, then the cardinality 

of every orbit of Row on J(a × b × c) is a multiple of a + b + c − 1.

The rest of this paper is structured as follows. In Section 2, we recall the K-promotion 
operator on increasing tableaux and establish a number of new properties (including res-
onance) that we will use. In Section 3, we establish resonance of plane partitions under 
rowmotion and extend machinery developed by N. Williams and the third author [38] to 
introduce the family of toggle group actions {Proσπ,v} and show that each Proσπ,v acts with 
the same cycle structure as rowmotion. In Section 4, we give an equivariant bijection be-
tween increasing tableaux under K-promotion and plane partitions under Pro(1,1,−1) and 
Row. We then extract a number of corollaries from this equivariant bijection, including 
new proofs of theorems of A. Brouwer–A. Schrijver [6] and P. Cameron–D. Fon-der-Flaass 
[9], a strengthening of a theorem of P. Cameron–D. Fon-der-Flaass [9], and several new 
results on the order of K-promotion. Finally, we conjecture the order of rowmotion on 
plane partitions of height 3 (which we have shown to be also the order of K-promotion on 
certain classes of increasing tableaux). In Section 5, we give another example of resonance 
on fully-packed loop configurations and propose additional instances of resonance related 
to alternating sign matrices and totally symmetric self-complementary plane partitions.

2. K-Promotion on increasing tableaux

In this section, we study increasing tableaux, the first of the objects in our main 
bijection (Theorem 4.1). After recalling the basic concepts, we establish resonance of 
increasing tableaux under K-promotion in Theorem 2.2. In Section 2.3, we reinterpret 
K-promotion in terms of K-Bender–Knuth involutions, which we introduce; this in-
terpretation plays an important role in Section 4.2 in establishing equivariance of our 
main bijection. In Section 2.4, we extend a descent cycling result of B. Rhoades [28, 
Lemma 3.3] from standard Young tableaux to increasing tableaux; this extension is used 
in Theorem 4.13 to improve on a theorem of P. Cameron–D. Fon-der-Flaass [9].
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Fig. 2. An increasing tableau T of shape λ = (4, 4, 4, 2).

2.1. Increasing tableaux

Identify a partition λ with its Young diagram. (Throughout this paper, we use the 
English orientation on Young diagrams.) An increasing tableau of shape λ is a filling of 
λ with positive integers such that labels strictly increase from left to right across rows 
and from top to bottom down columns. An example appears in Fig. 2. We write Incq(λ)
for the set of all increasing tableaux of shape λ with all entries at most q. (In contrast to 
other definitions that have appeared in the literature, we do not assume here that every 
integer between 1 and q appears.)

Increasing tableaux have appeared in various contexts within algebraic combinatorics. 
Most notably for our purposes, H. Thomas–A. Yong introduced [39] a K-jeu de taquin
algorithm for increasing tableaux, which they applied to K-theoretic Schubert calculus, 
obtaining Littlewood–Richardson rules for the Grothendieck rings of algebraic vector 
bundles over Grassmannians. This algorithm has been has been extended to the K-theory 
of a wider variety of spaces by [7,8,10], as well as to the torus-equivariant K-theory of 
Grassmannians [22,40].

In [21], the second author studied a K-promotion operator, analogous to that of 
M.-P. Schützenberger for semistandard tableaux [34], but using K-jeu de taquin in place 
of ordinary jeu de taquin. K-promotion has been further studied by J. Bloom–D. Saracino 
and the second author [4], T. Pressey–A. Stokke–T. Visentin [23] and B. Rhoades [29].

K-promotion is defined as follows. Let T ∈ Incq(λ). Delete all labels 1 from T . (Note 
there is at most one such label.) Consider the set of boxes that are either empty or 
contain 2. This set naturally decomposes into connected components that are short 
ribbons, i.e. connected sets of boxes containing no 2 × 2 subshape and with each column 
and row of length at most 2. For each such short ribbon containing more than one box, 
we delete each label 2, while simultaneously placing 2 in each empty box. We do not 
make any change to short ribbons consisting of a single box. Now consider the set of 
boxes that are either empty or contain 3, and repeat the above process. Continue until 
all empty boxes are located at outer corners of λ. Finally, label those boxes q + 1 and 
then subtract 1 from each entry. The result is K-Pro(T ) ∈ Incq(λ) (see Fig. 3).

2.2. Binary content cycling

Define the binary content of an increasing tableau T ∈ Incq(λ) to be the sequence 
Con(T ) = (a1, a2, . . . , aq), where ai = 1 if i is an entry of T and ai = 0 if it is not. That 
is, ai := χi(T ) where χi denotes the indicator function for the label i.
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Fig. 3. Calculating the K-promotion of T ∈ Inc7(2 ×4). In each intermediate step, we have colored the short 
ribbons on which we are about to act.

Lemma 2.1. Let T ∈ Incq(λ). If Con(T ) = (a1, a2, . . . , aq), then Con(K-Pro(T )) is the 
cyclic shift (a2, . . . , aq, a1).

Proof. Case 1: (χ1(T ) := a1 = 0): Then T has no labels 1. Hence the first step of 
K-promotion is trivial, deleting no labels. The ribbon switching process is also trivial, as 
there are no empty boxes. Therefore, at the final step, there are no boxes to fill. Thus, 
in this case, the total effect of K-promotion is merely to subtract 1 from each entry. The 
lemma is then immediate in this case.

Case 2: (χ1(T ) := a1 = 1): Then the first step of K-promotion is to delete a nonempty 
collection of labels 1. Hence there are a nonzero number of empty boxes. The ribbon 
switching process may change the number of empty boxes, but clearly preserves its 
nonzeroness. Hence in the final step of K-promotion, there will be a nonzero number of 
boxes filled with q + 1 and then decremented by 1. Hence χq(K-Pro(T )) = 1.

Let i > 1 and suppose χi(T ) = 1. Then i appears as an entry of T . The ribbon 
switching process preserves this property (though not in general the number of entries i). 
Hence after subtracting one from each entry, this yields χi−1(K-Pro(T )) = 1. If instead 
χi(T ) = 0, then i does not appear in T . Hence during the ribbon switching process, 
when we consider the ribbons consisting of i’s and empty boxes, each is a single empty 
box and by definition we make no change. Hence the ribbon switching process preserves 
the absence of i. After decrementing, this yields χi−1(K-Pro(T )) = 0. �

The following instance of resonance follows directly from Lemma 2.1.

Theorem 2.2. (Incq(λ), 〈K-Pro〉, Con) exhibits resonance with frequency q.

Together with the following fact, this leads to a useful corollary.

Fact 2.3. If p is prime and (X, G, f) exhibits resonance with frequency p, then for any 
x ∈ X with c · f(x) �= f(x), the G-orbit of x has cardinality a multiple of p.
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Fig. 4. The action of some K-Bender–Knuth involutions on the tableau T from Fig. 2.

Corollary 2.4. Suppose q is prime and T ∈ Incq(λ) does not have full binary content. 
Then the size of the K-promotion orbit of T is a multiple of q.

Proof. By Theorem 2.2 and Fact 2.3. �
2.3. K-Bender–Knuth involutions

In this subsection, we reinterpret K-promotion as a product of involutions, which we 
will need in our proof of Theorem 4.4. We define operators K-BKi on Incq(λ) for each 
1 ≤ i ≤ q. Take T ∈ Incq(λ). We compute K-BKi(T ) as follows: Consider the set of 
boxes in T that contain either i or i +1. This set decomposes into connected components 
that are short ribbons. On each nontrivial such component, we do nothing. On each 
component that is a single box, replace the symbol i by i + 1 or vice versa. The result is 
K-BKi(T ). That is, the action of K-BKi on T is to increment i and/or decrement i + 1, 
wherever possible. These operators are illustrated in Fig. 4.

Clearly each K-BKi is an involution. We call it the ith K-Bender–Knuth involu-
tion because in the case T is standard, K-BKi coincides with the classical involution 
introduced by E. Bender–D. Knuth [3].

Proposition 2.5. For T ∈ Incq(λ), K-Pro(T ) = K-BKq−1 ◦ · · · ◦K-BK1(T ).

Proof. Another way to think of K-BKi is as the K-infusion [39, Section 3] of the labels 
i through the labels i + 1. That is, treat the labels i as empty boxes and swap the short 
ribbons of empty boxes and (i + 1)’s as in the definition of K-promotion; then relabel 
each i + 1 as i and each empty box as i + 1.

From this characterization, it is clear that K-BKq−1 ◦ · · ·◦K-BK1 amounts to deleting 
the 1’s and swapping the empty boxes successively through each other label in order, 
decrementing each other label as the empty boxes swap through it, and finally labeling 
the empty boxes at outer corners by q. This is transparently the same as K-promotion, 
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except that the decrementing of labels happens throughout the process instead of all at 
the end. �
2.4. Descent cycling

In this subsection, we restrict consideration to increasing tableaux of rectangular 
shape. We extend a result of B. Rhoades [28, Lemma 3.3] from standard Young tableaux 
to increasing tableaux. Our proof is a elaboration of his argument. We will use this 
result in Theorem 4.13 to improve on a theorem of P. Cameron–D. Fon-der-Flaass [9, 
Theorem 6(a)]. Throughout this section, we write “East”, “east” and “southEast” to 
mean “strictly east”, “weakly east” and “weakly south and strictly east” respectively, 
etc.

Definition 2.6. Let T ∈ Incq(a × b). For 1 ≤ i < q, the symbol i is a descent of T if some 
instance of i appears in a higher row than some instance of i + 1. Additionally, q is a
descent of T if q − 1 is a descent of K-Pro(T ).

Lemma 2.7. Suppose i is a descent of T ∈ Incq(a × b). Then i − 1 mod q is a descent 
of K-Pro(T ).

Proof. Throughout this proof, we use the original definition of K-promotion involving 
empty boxes, instead of the K-Bender–Knuth alternative.
Case 1: (1 < i < q): T has an instance of i in row h and an instance of i + 1 in row k
with h < k. In K-Pro(T ), there is an i − 1 in row h or h − 1 and there is an i in row k
or k − 1. Hence i − 1 is a descent in K-Pro(T ) if k − h > 1. Thus assume k = h + 1.

Restrict attention to rows h and h + 1 of T . T has a unique i in row h and a unique 
i + 1 in row h + 1. By increasingness, this i + 1 is not East of this i.

Suppose the i + 1 is West of the i. Then T contains the local configuration y z

i+1
. 

Since z ≤ i < i +1, the i +1 cannot move North during this application of K-promotion. 
Hence K-Pro(T ) has i in row h + 1, and i − 1 is a descent of K-Pro(T ).

Thus, it remains to consider the case that i and i + 1 are in the same column of T . 
The i + 1 can only move North if the i moves. If the i moves North, we are done, so 

assume i moves West. Then T has the local configuration i

y i+1
where y ≥ i. But by 

increasingness, y < i +1. Hence y = i, so T has the local configuration i

i i+1
. Therefore, 

K-Pro(T ) has the local configuration i−1 i

i

and thus i − 1 is a descent of K-Pro(T ).

Case 2: (i = 1): We must show that q is a descent of K-Pro(T ), that is, q−1 is a descent 
of K-Pro2(T ).

For V ∈ Incq(a × b), let F(V ) be the flow path of V , that is the set of pairs of 
adjacent boxes {B, B′} of V such that B and B′ are at some point part of the same 
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Fig. 5. The flow path of a tableau V ∈ Inc16(5 × 4). Elements of the lower flow path are shown in red, while 
elements of the upper flow path are shown in blue and the remaining elements of the flow path are shown 
in yellow-orange. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

short ribbon during the application of K-Pro to V . For B a box of a × b, we write 
B↑ for the box immediately North of B, B→ for the box immediately East of B, etc. 
Define the upper flow path F(V ) to be those {B, B→} ∈ F(V ) such that {B, B→} is 
northmost in its columns among F(V ) together with those {B, B↓} such that {B, B↓}
is eastmost in its rows among F(V ). Similarly define the lower flow path F(V ) to be 
those pairs in F(V ) that are southmost or westmost. Fig. 5 shows an example of these 
flow paths.

Let Q be the box in the lower right corner of a × b. By Proposition 2.1, q ap-
pears in K-Pro(T ). Hence by increasingness, K-Pro(T ) has q ∈ Q. Thus it suffices 
to show that {Q↑, Q} ∈ F(K-Pro(T )). The proof proceeds by comparing F(T ) and 
F(K-Pro(T )).

Let S = {B ∈ a × b : {B, B→} ∈ F(T )}. It is clear that S contains exactly one box 
from each column of a × b, except the eastmost column.

If {Q↑, Q} /∈ F(K-Pro(T )), then there is some B ∈
⋃

F(K-Pro(T )) such that B ∈ S. 
Choose B to be maximally west among such boxes.

Since B is chosen maximally west, {B←, B} /∈ F(K-Pro(T )). Suppose {B↑, B} ∈
F(K-Pro(T )). Then in K-Pro(T ), the entry of B is strictly less than the entry of B↑→. 
That is, if h is the entry of B and k is the entry of B↑→ then h < k. However, in T we 
have k + 1 ∈ B↑→ and h + 1 ∈ B→; this contradicts the increasingness of T . Thus B is 
the northwestmost box of a × b.

Since 1 is a descent of T and B ∈ S, T has 1 ∈ B, 2 ∈ B↓ and 2 ∈ B→.
Let S = {B ∈ a × b : {B, B→} ∈ F(T )}. We claim that if {B, B→} ∈ F(T ), then 

there is a pair {A, A→} ∈ F(K-Pro(T )) with A North of B in the same column. To see 
this, first observe by local analysis that if {B, B→} ∈ F(T ) and B↑ ∈

⋃
F(K-Pro(T )), 

then {B↑, B↑→} ∈ F(K-Pro(T )). Now recall that S contains exactly one box from each 
column of a × b, except the eastmost column. Moreover since T has 2 ∈ B↓, no box of 
S is in the northmost row. The claim follows. Thus Q↑ ∈

⋃
F(K-Pro(T )) and we are 

done.
Case 3: (i = q): By definition. �
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Proposition 2.8. The symbol i is a descent of T ∈ Incq(a × b) if and only if i − 1 mod q

is a descent of K-Pro(T ).

Proof. Suppose i is a descent of T . By Lemma 2.7, i −1 mod q is a descent of K-Pro(T ). 
Since Incq(a × b) is finite, there is some M such that K-ProM (T ) = K-Pro−1(T ). Hence 
by M applications of Lemma 2.7, i + 1 is a descent of K-Pro−1(T ). �
Definition 2.9. Let T ∈ Incq(a × b). For 1 ≤ i < q, i is transpose descent of T if some 
instance of i appears in a lower indexed column than some instance of i +1. Additionally 
q is a transpose descent of T if q − 1 is a descent of K-Pro(T ).

Equivalently, j is a transpose descent of T if and only if j is a descent of the transpose 
of T .

Proposition 2.10. The symbol i is a transpose descent of T ∈ Incq(a × b) if and only if 
i − 1 mod q is a transpose descent of K-Pro(T ).

Proof. Since clearly K-promotion commutes with transposing, the proposition is imme-
diate from Proposition 2.8. �

The following is an enriched version of Corollary 2.4 for rectangular tableaux.

Proposition 2.11. Let T ∈ Incq(a ×b) with q prime. Suppose at least one of the following 
is true:

• T does not have full binary content,
• some 1 ≤ i ≤ q is not a descent in T , or
• some 1 ≤ i ≤ q is not a transpose descent in T .

Then, the K-promotion orbit of T has cardinality a multiple of q.

Proof. If T does not have full binary content, Corollary 2.4 applies. Otherwise, some 
1 ≤ i ≤ q is not a (transpose) descent in T . The proposition is then immediate by 
Fact 2.3 together with either Proposition 2.8 or 2.10. �

Finally, we prove the following lemma, which we will use in Section 4.3.

Lemma 2.12. Let T ∈ Incq(a × b) and suppose that 1 ≤ i < q is both a descent and a 
transpose descent in T . Then the number of i’s in T plus the number of (i + 1)’s in T is 
at least 3.

Proof. Since i is a descent, both i and i +1 must appear in T . Hence if i appears at least 
twice in T , we are done. Thus assume i appears exactly once in T . Since i is a descent, 
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some i + 1 appears South of this i. Since i is a transpose descent, some i + 1 appears 
East of this i.

We claim these instances of i + 1 are distinct, completing the proof of the lemma. 
Otherwise, we have i + 1 SouthEast of i. Consider the label z of the box that is in the 
row of the i and in the column of the i + 1. By the increasingness conditions on T , 
i < z < i + 1, contradicting that z is an integer. �

In Section 4.3, we will use Proposition 2.11, Lemma 2.12, and our main results, Theo-
rems 3.25 and 4.4, to give in Theorem 4.13 a strengthening of a theorem of P. Cameron–
D. Fon-der-Flaass on plane partitions in a box.

3. Promotion and rowmotion, revisited

In this section, we switch our focus from increasing tableaux to our other main objects 
of study: plane partitions. A plane partition is a stack of unit cubes in the positive or-
thant, justified toward the origin in all three directions. Plane partitions inside a box with 

side lengths a, b, and c, are counted by P. MacMahon’s box formula: 
∏ i + j + k − 1

i + j + k − 2
where the product is over all 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c [18].

Plane partitions inside an a × b × c box can be seen as order ideals in the product 
of three chains poset a × b × c. Thus, most of our discussion in this section centers on 
posets and order ideals, keeping in mind that all such general results can be applied to 
plane partitions.

We begin in Section 3.1 by discussing the rowmotion action on order ideals and some 
results on the order of this action on products of two and three chains. In Section 3.2, we 
discuss the toggle group, first defined by P. Cameron–D. Fon-der-Flaass [9] and further 
studied by N. Williams and the third author [38]. In Section 3.3, we use the main theorem 
of [38] to prove resonance of plane partitions under rowmotion. The toggle group will 
be the algebraic structure underlying Sections 3.4 and 3.5, in which we revisit this main 
result of [38] by proving, in Theorem 3.25, a generalization in the setting of n-dimensional 
lattice projections.

3.1. Rowmotion

Let P be a finite partially ordered set (poset). P is a chain if all its elements are 
mutually comparable. Let n denote the n-element chain. The product of k chains poset, 
P = n1 ×n2 × · · ·nk, has as elements ordered integer k-tuples (x1, x2, . . . , xk) such that 
0 ≤ xi ≤ ni − 1 with partial order given by componentwise comparison.

A subset I ⊆ P is an order ideal if it is closed downward, i.e. if y ∈ I and x ≤ y, 
then x ∈ I. Denote the set of order ideals of P as J(P ). An order ideal in P is uniquely 
determined by its set of maximal elements, or alternatively by the set of minimal elements 
of its complement in P . We study the orbit structure of rowmotion, Row: J(P ) → J(P ), 
defined as the order ideal whose maximal elements are the minimal elements of P \ I.
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The function Row has a long history of rediscovery and has appeared under many 
names. A partial summary of previous work follows; for a more complete discussion, 
see [38]. A. Brouwer–A. Schrijver [6] studied Row for P = a × b, the product of two 
chains. They discovered that this action has much smaller orbits than one naively expects:

Theorem 3.1 ([6, Theorem 3.6]). The order of Row on J(a × b) is a + b.

P. Cameron–D. Fon-der-Flaass [9] studied the same question on plane partitions, that 
is, J(a × b × c).

Theorem 3.2 ([9, Theorem 6(b)]). The order of Row on J(a × b × 2) is a + b + 1.

Extrapolating from Theorems 3.1 and 3.2, one might speculate that Row has order 
a + b + c − 1 on J(a × b × c). In general, the order is unknown but often significantly 
greater than this naive guess. However, P. Cameron–D. Fon-der-Flaass established the 
following related fact.

Theorem 3.3 ([9, Theorem 6(a)]). If a + b + c − 1 is prime and c > ab − a − b + 1, then 
the cardinality of every orbit of Row on J(a × b × c) is a multiple of a + b + c − 1.

We will revisit Theorems 3.1 and 3.2 in Remark 3.7. In Section 3.3, we give a new proof 
of Theorem 3.3. Furthermore, as a consequence of our main equivariant bijection between 
plane partitions and increasing tableaux (Theorem 4.4), we will show, in Theorem 4.13, 
that in Theorem 3.3 the condition c > ab −a −b +1 may be relaxed to c > 2ab−2

3 −a −b +2. 
This is evidence toward the conjecture of P. Cameron–D. Fon-der-Flaass [9] that this 
condition may be dropped entirely.

The approach of P. Cameron–D. Fon-der-Flaass was to reinterpret rowmotion as a 
toggle group action. We describe the toggle group in the next subsection.

3.2. The toggle group

The toggle group was first studied by P. Cameron–D. Fon-der-Flaass [9] and sub-
sequently N. Williams and the third author [38]. It is the subgroup of the symmetric 
group on all order ideals SJ(P ) generated by certain involutions, called toggles. For each 
element e ∈ P define its toggle te : J(P ) → J(P ) as follows.

te(X) =

⎧⎪⎪⎨
⎪⎪⎩

X ∪ {e} if e /∈ X and X ∪ {e} ∈ J(P )
X \ {e} if e ∈ X and X \ {e} ∈ J(P )
X otherwise

Remark 3.4. Observe that te, tf commute whenever neither e nor f covers the other.

The following theorem interprets rowmotion as a toggle group action.
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Theorem 3.5 ([9]). Given any poset P , Row is the toggle group element that toggles the 
elements of P in the reverse order of any linear extension. If P is ranked, this is the 
same as toggling the ranks (rows) from top to bottom.

In 2012 [38], N. Williams and the third author built on the work of P. Cameron–
D. Fon-der-Flaass, showing that rowmotion is conjugate to the toggle group action they 
called promotion, or Pro, defined as toggling the elements of the poset from left to right 
(given a suitable notion of left-to-right, for which they used the term rc-poset).

Theorem 3.6 ([38, Theorem 5.2]). For any rc-poset P , there is an equivariant bijection 
between J(P ) under Pro and J(P ) under Row.

We discuss this result in further detail in Sections 3.4 and 3.5 and give a multidimen-
sional generalization of it in Theorem 3.25.

Remark 3.7. For many posets, the orbit structure of promotion is easier to study than 
that of rowmotion. Thus Theorem 3.6 yielded many results on the orbit structure of 
rowmotion by translating from the analogous result on promotion. Theorem 3.6 was 
applied in [38] to give simple new proofs of Theorem 3.1 of A. Brouwer–A. Schrijver and 
Theorem 3.2 of P. Cameron–D. Fon-der-Flaass (discussed in Section 3.1), as well as easy 
proofs of the cyclic sieving phenomenon of V. Reiner, D. Stanton, and D. White [27] in 
these cases and a few others.

In the next subsection, we use Theorem 3.6 to prove resonance of rowmotion on plane 
partitions.

3.3. Resonance of plane partitions

In this subsection, we prove our second resonance result, Theorem 3.10. We also give 
a new proof of Theorem 3.3.

In [38, Section 7.2], N. Williams and the third author applied their theory to plane 
partitions, that is, the order ideals J(a × b × c). They characterized J(a × b × c) in 
terms of boundary path matrices. We give a sketch of this characterization here; for futher 
details, see [38]. Given an order ideal in a special kind of planar poset (in the language 
of [38], an rc-poset of height 1, or in the language of the next section, a poset with a 
2-dimensional lattice projection), its boundary path is a binary sequence that encodes 
the path that separates the order ideal from the rest of the poset. Given a plane partition 
I ∈ J(a × b × c), its boundary path matrix is a b × (a + b + c − 1) matrix {Xi,j} with 
entries in {0, 1} such that the ith row consists of the boundary path of layer i preceded 
by i − 1 zeros and succeeded by b − i zeros. The rows of a boundary path matrix each 
sum to a and the entries obey the condition
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if
k∑

j=1
Xi,j =

k∑
j=1

Xi+1,j , then Xi+1,j+1 �= 1.

It was noted in [38, Section 7.2] that Pro traces from left to right through the columns 
of the boundary path matrix, swapping each pair of entries in adjacent columns and the 
same row that result in a matrix still satisfying the condition above.

Given I ∈ J(a × b × c) with boundary path matrix {Xi,j}, define Xmax(I) to be the 
vector of length a + b + c − 1 whose jth entry is max(Xi,j)1≤i≤b.

Lemma 3.8. Let I ∈ J(a × b × c). If Xmax(I) = (x1, x2, . . . , xa+b+c−1), then 
Xmax(Pro(I)) is the cyclic shift (x2, . . . , xa+b+c−1, x1).

Proof. For i > 1, if column i of the boundary path matrix is all zeros, then in the 
application of Pro, all of these entries swap with the entries of column i − 1, since the 
condition on the partial row sums is not violated.

If i = 1, the column of all zeros swaps all the way through the matrix, from the first 
column to the last column.

Thus, under Pro, a column of all zeros cyclically shifts to the left. �
The following instance of resonance follows directly from Lemma 3.8.

Proposition 3.9. (J(a×b ×c), 〈Pro〉, Xmax) exhibits resonance with frequency a +b +c −1.

Let D be the conjugating toggle group element between rowmotion and promotion 
given in [38, Theorem 5.4]. By the equivariance of Pro and Row in [38], we have the 
following statement of resonance on rowmotion, whose proof follows directly from Propo-
sition 3.9 and [38, Theorem 5.4].

Theorem 3.10. (J(a × b × c), 〈Row〉, Xmax ◦D) exhibits resonance with frequency a +
b + c − 1.

This leads to the following corollary.

Corollary 3.11. Suppose a + b + c − 1 is prime and I ∈ J(a×b × c). Suppose there is a 
zero in Xmax(I). Then the size of the promotion orbit of I is a multiple of a + b + c − 1.

Proof. By Theorem 3.10 and Fact 2.3. �
Using Corollary 3.11, we have a new proof of Theorem 3.3 of P. Cameron–D. Fon-der-

Flaass.

Proof of Theorem 3.3. If a + b + c − 1 is prime and c > ab − a − b + 1, then there are a 
total of ab ones in the boundary path matrix, but a total of a + b + c − 1 > ab columns 
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in the matrix, so there must be a column of all zeros. Thus, there is a zero in Xmax(I)
for any plane partition I in the a × b × c box, and the promotion orbit is a multiple of 
a + b + c − 1 by Corollary 3.11. Then by Theorem 3.6, the orbits of rowmotion are also 
multiples of a + b + c − 1. �

P. Cameron–D. Fon-der-Flaass’s original proof of Theorem 3.3 is similar, though more 
complicated, since it analyzes rowmotion directly rather than conjugating to promotion.

3.4. n-Dimensional lattice projections

In this and the next subsections, we adapt the proof of the conjugacy of promotion 
and rowmotion from [38] to give a generalization in the setting of n-dimensional lattice 
projections, which we introduce in Definition 3.13. (This new perspective includes the 
original theorem as the case n = 2.) We prove, in Theorem 3.25, the equivariance of the 
2n−1 toggle group actions given in Definition 3.14.

Definition 3.12. We say that a poset P is ranked if it admits a rank function rk : P → Z

satsifying rk(y) = rk(x) + 1 when y covers x.

Definition 3.13. We say that an (n-dimensional) lattice projection of a ranked poset P
is an order and rank preserving map π : P → Z

n, where the rank function on Zn is the 
sum of the coordinates and x ≤ y in Zn if and only if the componentwise difference y−x

is in (Z≥0)n.

In light of Remark 3.4, the key feature of π is that it preserves cover relations. That 
is, if y covers x in P , then π(y) covers π(x) in Zn. However, since Zn is ranked, π being 
cover-relation preserving would make rk ◦π a rank function for P . And if P is ranked, 
then a map π : P → Z

n being cover-relation preserving is equivalent to it being order 
and rank preserving (up to a shift of the rank functions).

In [38], the definition of an rc-poset was a poset that had a 2-dimensional lattice 
projection (albeit to a slightly different lattice). However, E. Sawin noted that every 
ranked poset P with rank function ρ has such an embedding given by π(x) = (ρ(x), 0)
for x ∈ P [33]. Similarly, any poset P with a lattice projection π has a rank function 
given by the sum of the coordinates in π(x) for x ∈ P .

Additionally, a ranked poset may have multiple distinct projections. For example, 
in Fig. 6, we have the boolean lattice on three elements, which we may think of as a 
product of three chains of length 2. In Fig. 7, we have the standard three-dimensional 
lattice projection of this poset obtained by viewing it as a product of three chains. In 
Fig. 8, we show two different two-dimensional lattice projections of this poset. In the 
projection on the right, we assign every element of the same rank to the same point, but 
instead of doing so along the x-axis as in the previous paragraph, we do this diagonally 
in a zig-zag pattern. Therefore, instead of considering rc-posets, we consider any ranked 
poset, but with respect to a given lattice projection.
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Fig. 6. A product of three chains poset.

Fig. 7. The standard three-dimensional lattice projection of the poset of Fig. 6.

Fig. 8. Two distinct two-dimensional lattice projections of the poset of Fig. 6.

3.5. Promotion via affine hyperplane toggles

We now define a toggling order on our poset with respect an n-dimensional lattice 
projection, and with respect to a distinguished direction.

Definition 3.14. Let P be a poset with an n-dimensional lattice projection π, and let 
v = (v1, v2, v3, . . . , vn), where vj ∈ {±1}. Let T i

π,v be the product of toggles tx for all 
elements x of P that lie on the affine hyperplane 〈π(x), v〉 = i. If there is no such x, then 
this is the empty product, considered to be the identity. Then define promotion with 
respect to π and v as the toggle product Proπ,v = . . . T−2

π,vT
−1
π,vT

0
π,vT

1
π,vT

2
π,v . . ..

See Fig. 9 for an example.

Remark 3.15. Note that Proπ,−v = (Proπ,v)−1, so we will generally only consider distin-
guished vectors with v1 = 1, as all promotion operators are either of this form, or the 
inverse of something of this form.
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Fig. 9. The affine hyperplane toggles corresponding to Proid,(1,1,−1) for the identity three-dimensional lattice 
projection of the poset J(3 × 2 × 3).

Lemma 3.16. Two elements of a poset that lie on the same affine hyperplane 〈π(x), v〉 = i

cannot be part of a covering relation, so by Remark 3.4, the operator T i
π,v is well-defined 

and (T i
π,v)2 = 1.

Proof. Assume that y covers x, and they both lie on the same affine hyperplane 
(〈π(x), v〉 = 〈π(y), v〉 = i). Then 〈π(y), v〉 − 〈π(x), v〉 = 〈π(y) − π(x), v〉 = 0. But 
since y covers x, π(y) − π(x) = ei for some i. And since v has all coordinates ±1, then 
〈ei, v〉 = ±1, a contradiction. �

For ease of notation, we may suppress explicitly listing the lattice projection map π
or the direction v when referring to the generalized promotion operator, if it is clear 
from context. Note that for a finite poset P , T i

π,v will be the identity operator for all but 
finitely many i.

Remark 3.17. To compare with the notion of promotion and rowmotion given in [38], for 
a given 2-dimensional lattice projection π of a finite poset P , rowmotion corresponds to 
Proπ,(1,1), and promotion corresponds to Proπ,(1,−1).

Proposition 3.18. For any finite ranked poset P and lattice projection π, Proπ,(1,1,...,1) =
Row.
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Proof. Proπ,(1,1,...,1) sweeps through P from top to bottom (in the reverse order of a 
linear extension), so by Theorem 3.5, this is rowmotion. �

We give some further definitions and lemmas, in order to state and prove Theorem 3.25
in full generality.

Definition 3.19. Let P be a poset, and let π, v, and T i
π,v be as in Definition 3.14. Define 

the support of (P, π, v), denoted supp(P, π, v), to be the smallest interval [a, b] ⊆ Z such 
that T i

π,v is the identity operator for all i ∈ Z \ [a, b].

Definition 3.20. If (P, π, v) has finite support, that is, supp(P, π, v) = [a, b] ⊂ Z, let 
σ : [a, b] → [a, b] be a bijection. Then define promotion with respect to P , π, v, and σ
as the following product of hyperplane-toggles:

σ

Pro
π,v

= T σ(a)
π,v T σ(a+1)

π,v . . . Tσ(b−1)
π,v T σ(b)

π,v .

We will use the following toggle group element in the proof of Theorem 3.25.

Definition 3.21. For a poset P , define the parity of p ∈ P as even (resp. odd) if the parity 
of rk(p) is even (resp. odd). Define gyration Gyr as the toggle group element which first 
toggles all p ∈ P with even parity, then all p with odd parity.

Remark 3.22. Given a lattice projection π, the rank of p is the same as the rank of 
π(p) = (x1, x2, . . . xn), which is 

∑
i xi. Since all the coordinates in v are ±1, the parity 

of π(p) will be the same as the parity of 〈π(p), v〉. Thus, all elements lying on the same 
affine hyperplane with respect to v will have the same parity.

Lemma 3.23. If (P, π, v) has finite support [a, b], then for any bijection σ : [a, b] → [a, b]
such that σ(k) is odd if k < a+b

2 and even if k > a+b
2 , we have Proσπ,v = Gyr.

We are now nearly ready to state and prove the main theorem of this section. We will 
need the following lemma, which appears as [38, Lemma 5.1].

Lemma 3.24 ([16]). Let G be a group whose generators g1, . . . , gn satisfy g2
i = 1 and 

(gigj)2 = 1 if |i − j| > 1. Then for any σ, τ ∈ Sn, 
∏

i gσ(i) and 
∏

i gτ(i)are conjugate.

The main theorem of this section is below, whose proof follows the proof of [38, 
Theorem 5.2].

Theorem 3.25. Let P be a finite poset with an n-dimensional lattice projection π. Let 
v = (v1, v2, v3, . . . , vn) and w = (w1, w2, w3, . . . , wn), where vj , wj ∈ {±1}. Finally
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suppose that σ : supp(P, π, v) → supp(P, π, v) and τ : supp(P, π, w) → supp(P, π, w) are 
bijections. Then there is an equivariant bijection between J(P ) under Proσπ,v and J(P )
under Proτπ,w.

Proof. Suppose P is a finite poset with an n-dimensional lattice projection π. Let 
v = (v1, v2, v3, . . . , vn), where vj ∈ {±1}. We claim the toggles T i

π,v for i ∈ supp(P, π, v)
satisfy the conditions of Lemma 3.24. By Lemma 3.16, (T i

π,v)2 = 1. Also, if 〈π(x), v〉 = i

and 〈π(y), v〉 = j, then 〈π(y) − π(x), v〉 = j − i. So if |j − i| > 1, as all the coef-
ficients in v are ±1, then π(y) − π(x) cannot be ei for any i, and y and x cannot 
be part of a covering relation. Thus, toggles on non-adjacent hyperplanes commute, 
and we have (T i

π,vT
j
π,v)2 = 1 when |j − i| > 1. So by Lemma 3.24, for any bijections 

σ, σ′ : supp(P, π, v) → supp(P, π, v), there is an equivariant bijection between J(P ) under 
Proσπ,v and J(P ) under Proσ

′

π,v (since such bijections can be considered as permutations 
in Sb−a+1 if supp(P, π, v) = [a, b]).

Consider Gyr of Definition 3.21. By Lemma 3.23, for every v there exists a σv such 
that Gyr can be realized as Proσv

π,v. Therefore, there is an equivariant bijection between 
J(P ) under Proσπ,v and under Proσv

π,v = Gyr, from which the theorem follows. �
After we see a bijection between increasing tableaux and plane partitions given in 

the next section, we will use Theorem 3.25 to give an improvement on Theorem 3.3 of 
P. Cameron–D. Fon-der-Flaass (discussed in Section 3.1).

4. An equivariant bijection between plane partitions and increasing tableaux

4.1. Bijections between plane partitions and increasing tableaux

In this section, we introduce bijections between increasing tableaux and plane parti-
tions. The existence of these bijections should not be at all surprising. However, these 
maps have amazing properties that will be key to many of our results. These maps are 
also fundamental to [15], where they are used to give the first bijective proofs of various 
results on plane partitions, including R. Proctor’s main result from [24].

We define a map Ψ3 : J(a × b × c) → Inca+b+c−1(a × b) as follows. Let I ∈ J(a ×
b × c). Thinking of I in the standard way as a pile of small cubes in an a × b × c box, 
project onto the a × b face. Record in position (i, j) the number of boxes of I with 
coordinate (i, j, k) for some 0 ≤ k ≤ c − 1. The result is a standard plane partition 
representation of I, as a filling of the Young diagram a × b with nonnegative integers 
such that rows weakly decrease from left to right and columns weakly decrease from 
top to bottom. Rotate this plane partition 180◦, so that rows and columns become 
weakly increasing. Now thinking of a × b as a graded poset with the upper left corner 
box the unique element of rank 0, add to each label its rank plus 1. That is, increase 
each label by one more than its distance from the upper left corner box. (This is the
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Fig. 10. The process of applying Ψ3 to the illustrated I ∈ J(4 × 4 × 4). Here we think of Ψ3 as projecting 
onto the bottom face of the large bounding box.

standard way of converting a weakly increasing sequence into a strictly increasing one.) 
The result is the increasing tableau Ψ3(I). For an example of this transformation, see 
Fig. 10.

Theorem 4.1. Ψ3 : J(a × b × c) → Inca+b+c−1(a × b) gives a bijection between plane 
partitions inside an a × b × c box and increasing tableaux of shape a × b and entries at 
most a + b + c − 1.

Proof. The map is defined as the composition of a projection, a rotation, and entrywise 
addition, all of which are clearly invertible. �

Similarly, define bijections Ψ2 : J(a × b × c) → Inca+b+c−1(a × c) and Ψ1 : J(a ×
b × c) → Inca+b+c−1(b × c) projecting onto the a × c and b × c faces, respectively (cf. 
Fig. 11).

Given the simplicity of the bijection of Theorem 4.1, one might wonder why it was 
previously overlooked. The set of increasing tableaux in bijection with plane partitions 
includes those with gaps in the binary content. However much previous research on 
increasing tableaux was motivated by K-theoretic geometry, and in this context there 
is little reason to consider increasing tableaux without full binary content. Moreover, by 
restricting to tableaux of full binary content, one obtains some attractive enumerations 
[21,23]; for instance, the number of increasing tableaux with shape 2 ×n and full binary 
content is the nth small Schröder number [21, Theorem 1.1]. It was the equivariance of 
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Fig. 11. The three bijections, Ψ1, Ψ3, and Ψ2.

the actions of K-Pro and Row, discussed in the next section, which led us to observe the 
bijection of Theorem 4.1.

4.2. The equivariance of K-Pro and Row

Our first main result was Theorem 3.25, that given a poset P with lattice projec-
tion π, there is an equivariant bijection between the order ideals J(P ) under Proσπ,v
and Proτπ,w, where σ, τ are any permutations of the hyperplane toggles associated to the 
{−1, 1}-vectors v, w. In this section, we use Theorem 3.25 in our proof of our second 
main result, Theorem 4.4, that K-Pro and Row are in equivariant bijection.

Lemma 4.2. Ψ3 intertwines Proid,(1,1,−1) and K-Pro. That is, the following diagram 
commutes:
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J(a × b × c) Inca+b+c−1(a× b)

J(a × b × c) Inca+b+c−1(a× b)

Ψ3

Proid,(1,1,−1) K-Pro

Ψ3

Proof. Let I ∈ J(a × b × c) and let T = Ψ3(I). Note that the poset a × b × c has 
a 3-dimensional lattice projection, in the sense of Definition 3.13, given by the identity 
map.

By Proposition 2.5, K-Pro(T ) = K-BKa+b+c−2 ◦ · · · ◦ K-BK1(T ). Similarly,
Proid,(1,1,−1) = T

(a−1)+(b−1)−(a+b+c−2)
id,(1,1,−1) ◦ · · · ◦ T (a−1)+(b−1)−1

id,(1,1,−1) .
Thus, it suffices to show that

Ψ3

(
T

(a−1)+(b−1)−�
id,(1,1,−1) (I)

)
= K-BK

�
(T ).

By Definition 3.14, T (a−1)+(b−1)−�
id,(1,1,−1) is the product of the toggles tx for all x ∈ a×b ×c

lying on the affine hyperplane determined by 〈x, (1, 1, −1)〉 = (a −1) +(b −1) −	. Consider 
x = (i, j, k) on this hyperplane. Then i + j − k = (a − 1) + (b − 1) − 	.

We have x = (i, j, k) ∈ I if and only if the (a − i, b − j) entry of T is at least 
k + (a − i) + (b − j) − 1 = k + a + b − i − j − 1. Since k = i + j − (a − 1) − (b − 1) + 	, 
we can rewrite this condition as the (a − i, b − j) entry of T being at least (i + j − (a −
1) − (b − 1) + 	) + a + b − i − j − 1 = 	 + 1. Hence x ∈ I if and only if the (a − i, b − j)
entry of T is at least 	 + 1.
(Case 1: x ∈ I): If (i, j, k+1) ∈ I, then x is unaffected by the toggle and the (a − i, b − j)
entry of T is at least 	 + 2 and so unaffected by K-BK�.

Otherwise (i, j, k+1) /∈ I and the (a −i, b −j) entry of T equals 	 +1. K-BK� will turn 
this 	 +1 into 	 exactly when neither the (a − i −1, b − j) nor the (a − i, b − j−1) entry of 
T equals 	. By increasingness of T , neither entry is greater than 	. The (a − i − 1, b − j)
entry of T is at least 	 exactly when (i + 1, j, k) ∈ I. Similarly the (a − i, b − j − 1)
entry of T is at least 	 exactly when (i, j + 1, k) ∈ I. Hence K-BK� will turn this 	 + 1
into 	 exactly when neither (i + 1, j, k) nor (i, j + 1, k) is in I. But this is exactly when 
the hyperplane toggle removes x from I. Since I is an order ideal, (i, j, k − 1) ∈ I, so if 
T

(a−1)+(b−1)−�
id,(1,1,−1) removes x from I, then the (a − i, b − j) entry of Ψ3

(
T

(a−1)+(b−1)−�
id,(1,1,−1) (I)

)

equals 	, as desired.
(Case 2: x /∈ I): The (a − i, b − j) entry of T is at most 	. If it is less than 	, then 
(i, j, k − 1) /∈ I. Hence x is unaffected by the hyperplane toggle and the (a − i, b − j)
entry of T is unaffected by K-BK�.

Otherwise, the (a − i, b − j) entry of T equals 	 and (i, j, k− 1) ∈ I. K-BK� will turn 
this 	 into 	 + 1 exactly when neither the (a − i + 1, b − j) nor the (a − i, b − j + 1) entry 
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of T equals 	 + 1. This happens exactly when both (i − 1, j, k) ∈ I and (i, j − 1, k) ∈ I. 
Thus T (a−1)+(b−1)−�

id,(1,1,−1) toggles x into I exactly when K-BK� turns this 	 into 	 + 1. �
Remark 4.3. By symmetry of J(a× b × c), we obtain analogous results for Ψ1 and Ψ2.

As a consequence of the above lemma and Theorem 3.25, we obtain the following.

Theorem 4.4. J(a×b ×c) under Row is in equivariant bijection with Inca+b+c−1(a × b)
under K-Pro.

4.3. Consequences of the bijection

In this subsection, we give a number of consequences of Theorem 4.4. We first give 
another statement of resonance on plane partitions in Corollary 4.5 (cf. Theorem 3.10). 
In Corollary 4.7, we give K-Pro-equivariant bijections between various sets of increasing 
tableaux using the tri-fold symmetry of J(a×b ×c). We exploit this symmetry to prove 
Corollaries 4.10 and 4.11. We make a conjecture about the order of Row on J(a×b ×3). 
Finally, in Theorem 4.13, we improve the bound of Theorem 3.3 of P. Cameron–D. Fon-
der-Flaass.

We obtain the following statement of resonance of rowmotion on plane partitions as 
a consequence of Theorems 4.4 and 2.2. Let d be the toggle group element conjugating 
Row to Proid,(1,1,−1). (Theorem 3.25 guarantees the existence of such an element.)

Corollary 4.5. (J(a × b × c), 〈Row〉, Con ◦ Ψ3 ◦ d) exhibits resonance with frequency 
a + b + c − 1.

Remark 4.6. Given the similarity between Corollary 4.5 and Theorem 3.10, one may 
ask what the relation between Xmax and Con may be. The statistics Xmax and Con
do not correspond exactly (via Ψ3) since the action corresponding to K-Pro on plane 
partitions is Proid,(1,1,−1) rather than Proid,(1,−1,1), the action (studied in [38]) that 
cyclically shifts Xmax. Rather, one can see that Xmax is the reverse of Con ◦ Ψ2.

We obtain the following corollary via the tri-fold symmetry of J(a × b × c).

Corollary 4.7. There are K-Pro-equivariant bijections between the sets Inca+b+c−1(a ×b), 
Inca+b+c−1(a × c), and Inca+b+c−1(b × c).

Proof. By Lemma 4.2, Remark 4.3, and Theorem 3.25, Ψ2◦d1◦Ψ−1
3 is a K-Pro-equivariant 

bijection between Inca+b+c−1(a × b) and Inca+b+c−1(a × c), where d1 is the toggle group 
element taking Pro(1,1,−1) to Pro(1,−1,1). Similarly, Ψ1 ◦ d2 ◦ Ψ−1

3 is an equivariant bi-
jection between Inca+b+c−1(a × b) and Inca+b+c−1(b × c), where d2 is the toggle group 
element taking Pro(1,1,−1) to Pro(−1,1,1). Theorem 3.25 guarantees the existence of such 
d1 and d2. �
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Theorem 4.4 and Corollary 4.7 allow us to obtain a number of results for small values 
of c. We obtain new proofs of known results Theorems 3.1 and 3.2, while Corollaries 4.10
and 4.11 are new.

We use the following trivial facts about the order of K-Pro on particular increasing 
tableaux.

Fact 4.8. The order of K-Pro on Incq(1 × a) is q.

Fact 4.9. Let q > a + b − 1 and let M ∈ Incq(a × b) be the boxwise-minimal increasing 
tableau of shape a × b, that is the tableau with 1’s along the first antidiagonal, 2’s along 
the second antidiagonal, etc. Then the orbit of M under K-Pro has cardinality q.

The following is a new proof of Theorem 3.1 of A. Brouwer–A. Schrijver [6], which we 
restate for convenience.

Theorem 3.1. The order of Row on J(a × b) is a + b.

Proof. The order of Row on J(a×b) is the same as the order of Row on J(a×b ×1). By 
Corollary 4.4, the order of Row on J(a×b ×1) equals the order of K-Pro on Inca+b(a ×1). 
By Fact 4.8, the order of K-Pro on Inca+b(a × 1) is a + b. �

The following result is new.

Corollary 4.10. The order of K-Pro on Inca+b(a × b) is a + b.

Proof. By the tri-fold symmetry of Corollary 4.7, there is a K-Pro-equivariant bijection 
between the sets Inca+b(a × b) and Inca+b(1 × a). The result is then immediate by 
Fact 4.8. �

We can also use Theorem 4.4 and Corollary 4.7 to show that the Theorem 3.2 of 
P. Cameron–D. Fon-der-Flaass [9] is equivalent to a theorem of the second author on 
increasing tableaux, thus providing a new proof of Theorem 3.2. Alternatively, one may 
use Theorem 3.2 along with Theorem 4.4 and Corollary 4.7 to give a new proof of the 
second author’s result.

Theorem 3.2. The order of Row on J(a × b × 2) is a + b + 1.

Proof. By Theorem 4.4 and Corollary 4.7, the order of Row on J(a × b × 2) equals the 
order of K-Pro on Inca+b+1(2 × a). By [21, Theorem 1.3], the latter divides a + b + 1. 
(The cited paper only considers those increasing tableaux of full binary content; however 
its proof extends easily to the case of general binary content.) The theorem then follows 
by Fact 4.9. �

The following result is new.
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Corollary 4.11. The order of K-Pro on Inca+b+1(a × b) is a + b + 1.

Proof. By Corollary 4.7, there is a K-Pro-equivariant bijection between the sets 
Inca+b+1(a ×b) and Inca+b+1(2 ×a). The result is then immediate from [21, Theorem 1.3]
and Fact 4.9. �

Recall that for c > 3, the order of Row on J(a × b × c) is generally greater than 
a + b + c − 1. Nonetheless, we make the following conjecture.

Conjecture 4.12. The order of Row on J(a × b × 3) is a + b + 2.

As with the above corollaries, the results of this paper show that Conjecture 4.12 is 
equivalent to the order of K-promotion being a + b + 2 on either Inca+b+2(a × b) or 
Inca+b+2(3 × a). We have verified Conjecture 4.12 for a ≤ 7 and b arbitrary.

Finally, we improve the bound in Theorem 3.3 of P. Cameron–D. Fon-der-Flaass [9] by 
more than a factor of 2

3 . This is evidence toward the conjecture of P. Cameron–D. Fon-
der-Flaass [9] that this condition may be dropped entirely.

Theorem 4.13. If a + b + c − 1 is prime and c >
2ab− 2

3 −a − b +2, then the cardinality 

of every orbit of Row on J(a × b × c) is a multiple of a + b + c − 1.

Proof. Let q = a + b + c − 1. The case q = 2 is trivial, so assume q is odd.
Consider I ∈ J(a × b × c) and let T = Ψ3(I) ∈ Incq(a × b). If T does not have 

full binary content, then by Corollary 2.4, the K-promotion orbit of T has cardinality 
a multiple of q. Hence by Theorem 4.4, the corresponding rowmotion orbit of I has 
cardinality a multiple of q, as claimed. Thus, we may assume T has full binary content.

Similarly, by Proposition 2.11, we may assume that every 1 ≤ i ≤ q is both a descent 
and a transpose descent in T . Hence by Lemma 2.12, for 1 ≤ j ≤ q−1

2 , the number of 
(2j−1)’s in T plus the number of 2j’s in T is at least 3. By the increasingness conditions 
on T , there is exactly 1 instance of q in T . Thus the total number of labels in T is at 
least 3 q−1

2 + 1.
Since T ∈ Incq(a × b), this forces 3a+b+c−2

2 + 1 ≤ ab. Thus c ≤ 2ab−2
3 − a − b + 2, 

contradicting the assumed bound on c. �
5. Resonance for other combinatorial objects

In this final section, we first give in Corollary 5.5 an additional example of resonance 
of the gyration action on fully packed loop configurations. We then state Problems 5.6
and 5.7 on proving new instances of resonance.

Definition 5.1. Consider an [n] × [n] grid of dots in Z2 with edges between dots that are 
horizontally or vertically adjecent. Beginning with the dot at the upper left corner, draw 
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Fig. 12. An example of gyration on the fully-packed loop configuration shown at left. First at each square 
marked with �, we replace the local configuration with and vice versa, obtaining the picture on the 
right. Then we perform the same local switch at each square marked with �. In this case, there are no local 
configurations or in the picture on the right, so we obtain the fully-packed loop configuration on 
the right as the result of gyration.

an edge from that dot up one unit. Then go around the grid, drawing such an external 
edge at every second dot (counting corner dots twice, since at the corners, external edges 
could go in either of two directions). A fully-packed loop configuration (FPL) of order n
is a subgraph of the grid graph described above, such that each of the n2 vertices within 
the grid has exactly two incident edges. Let FPLn be the set of all order n fully packed 
loop configurations.

There is a (non-injective) map from fully-packed loop configurations to their link 
patterns. See Fig. 13 for an example.

Definition 5.2. Given a fully-packed loop configuration, number the external edges clock-
wise, starting with the upper left external edge. Each external edge will be connected by 
a path to another external edge, and these paths will never cross. This matching on the 
external edges is a noncrossing matching on 2n points, and is called the link pattern of 
the FPL.

Consider the following action on fully-packed loop configurations; see Fig. 12.

Definition 5.3. Given an [n] × [n] grid of dots, color the interiors of the squares in a 
checkerboard pattern. Given an FPL of order n drawn on this grid, its gyration, Gyr, 
is computed by first visiting all squares of one color then all squares of the other color, 
applying at each visited square the “local move” that swaps the edges around a square 
if the edges are parallel and otherwise leaves them fixed.

The following theorem of B. Wieland gives a remarkable property of gyration.

Theorem 5.4 (B. Wieland [41]). Gyration of an FPL rotates the associated link pattern 
by an angle of 2π/2n.

We reformulate this theorem into a statement of resonance.
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Fig. 13. A length 4 gyration orbit in FPL5, with corresponding link patterns.

Fig. 14. A 6 × 6 FPL with gyration orbit of length 84, and its link pattern.

Corollary 5.5. Let f be the map from a fully-packed loop configuration to its link pattern. 
Then, (FPLn, 〈Gyr〉, f) exhibits resonance with frequency 2n.

For example, consider gyration on 5 ×5 fully-packed loops. Gyration has orbits of size 
2, 4, 5, and 10. So the order of gyration in this case is 20, but (FPL5, Gyr, f) exhibits 
resonance with frequency 10. Consider the orbit of gyration in Fig. 13. This orbit is of 
size 4, while the link pattern orbit is of size 2. So even though Gyr10(A) �= A for A an 
FPL in this orbit, rot10(f(A)) = f(A) (since, in this case, rot2(f(A)) = f(A)).

As another example, the FPL in Fig. 14 is in a gyration orbit of size 84 (= 12 ·7), while 
(FPL6, Gyr, f) exhibits resonance with frequency 12. So even though Gyr12(A) �= A for 
A an FPL in this orbit, rot12(f(A)) = f(A).

Finally, in Problems 5.6 and 5.7 below, we reformulate some observations from [38] in 
terms of resonance; for additional details, see [38, Sections 8.3 and 8.4].

Fully-packed loops are known to be in bijection with alternating sign matrices [25,41]. 
Alternating sign matrices were introduced by D. Robbins–H. Rumsey [30] as part of 
their study of the lambda-determinant. With W. Mills [19], they then conjectured an 
enumeration for n ×n alternating sign matrices, which was proved by D. Zeilberger [42]
and G. Kuperberg [17] (cf. [5] for a detailed exposition of this history).
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There is a poset An whose order ideals are in bijection with n × n alternating sign 
matrices (denote this set as ASMn), such that gyration of Definition 5.3 is equivalent 
to the action of the toggle group element Gyr of Definition 3.21. For details, see [38, 
Section 8] and [37]. Another element, SPro, of the toggle group on An was introduced 
in [38, Definition 8.14]. It is shown in [38, Theorem 8.15] that the orbit of the empty 
order ideal in J(An) under SPro has cardinality 3n − 2. Further data contained in [38, 
Figure 22] leads us to propose the following.

Problem 5.6. Construct a natural map f such that (ASMn, SPro, f) exhibits resonance 
with frequency 3n − 2.

Similarly, there is a poset Tn whose order ideals are in bijection with totally sym-
metric self-complementary plane partitions inside a 2n × 2n × 2n box (denote this set as 
TSSCPPn). For details, see [38, Section 8] and [36,37]. It is shown in [38, Theorem 8.19]
that the cardinality of the rowmotion-orbit of the empty order ideal in J(Tn) is 3n − 2. 
Further data contained in [38, Figure 22] suggests the following.

Problem 5.7. Construct a natural map f such that (TSSCPPn, Row, f) exhibits reso-
nance with frequency 3n − 2.

We suspect that a solution to the above problems would be a major step towards 
exhibiting an explicit bijection between ASMn and TSSCPPn, which are known (non-
bijectively) to be equinumerous [1,17,42].
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