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1. Introduction

The set of permutations of [n] = {1, 2, . . . , n} is denoted Sn. We write a permutation 
σ ∈ Sn as a word over [n] in one-line notation, σ = σ(1)σ(2) · · ·σ(n), and say that such 
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a permutation σ has size n. If π1 and π2 are words of the same size over R, then we write 
π1 ≈ π2 to denote that their letters appear in the same relative order. This prompts the 
classical notion of pattern containment.

Definition 1.1. Consider π ∈ Sr. A permutation σ ∈ Sn contains the pattern π if there 
are indices 1 � i1 < · · · < ir � n such that σ(i1) · · ·σ(ir) ≈ π. If σ contains π, we write 
π � σ. If σ does not contain π, then σ avoids π.

From this, it is natural to define the “pattern poset” on permutations.

Definition 1.2. Let the pattern poset, P, be the graded poset over 
⋃

k�1 Sk, ordered by 
the containment relation �.

By definition, the elements of rank k in P are exactly the elements of Sk.
This paper is concerned with principal downsets of this poset, that is, with the sets 

of patterns which lie below a given permutation. In particular, we examine those per-
mutations whose downset is as large as possible in the upper ranks.

This is related to problems of pattern packing [1,14], which seek to maximize the 
total number of distinct patterns contained in a permutation, and to problems of su-
perpatterns [6,8,9,14], which are concerned with determining the size of the smallest 
permutations whose downset contains every permutation of some fixed size. Other related 
work addresses permutation reconstruction [7,15,16], establishing when permutations are 
uniquely determined by the (multi)set of large patterns they contain. The reader is re-
ferred to the books by Bóna [3] and Kitaev [13] for an overview of problems related to 
the permutation pattern poset.

It follows immediately from the definition of P that, for a permutation σ ∈ Sn, there 
are at most 

(
n
k

)
distinct permutations π � σ that lie exactly k ranks below σ in P, since 

each such permutation is obtained from σ by the deletion of k letters from the one-line 
notation for σ. Our interest is in those permutations of size n which contain maximally 
many patterns of size n − k.

Definition 1.3. Fix positive integers n > k � 1. A permutation σ ∈ Sn is k-prolific if

∣∣∣{π ∈ Sn−k : π � σ
}∣∣∣ =

(
n

k

)
.

Clearly, not every permutation is k-prolific. As a trivial example, the identity permu-
tation 12 · · ·n ∈ Sn contains only one pattern of each size, and thus is never k-prolific 
for any k < n.

Prolific permutations were previously investigated by the second author in [10]. The 
present work corrects and significantly improves upon the results presented there.

It is helpful to consider permutations from a graphical perspective.
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Fig. 1. The plot of the permutation 274915836.

Definition 1.4. The plot of a permutation σ ∈ Sn is the collection of lattice points 
{(i, σ(i)) : 1 � i � n} in the Euclidean plane R2. In practice, we tend to identify 
the ith entry of a permutation σ with the point (i, σ(i)) in its plot, and we linearly order 
the points in a plot from left to right; that is,

(i, σ(i)) < (j, σ(j)),

if i < j.

See Fig. 1 for an illustration of a permutation plot.
This viewpoint motivates the following two definitions concerning the distance be-

tween entries of a permutation.

Definition 1.5. For a permutation σ ∈ Sn and i, j ∈ [n], the distance dσ(i, j) between 
the ith and jth entries of σ is given by the L1 distance (the “taxicab” or “Manhattan” 
distance) between the corresponding points in the plot of σ:

dσ(i, j) =
∥∥(i, σ(i)) − (j, σ(j))

∥∥
1 =

∣∣i− j
∣∣ +

∣∣σ(i) − σ(j)
∣∣.

For example, if σ = 274915836, as in Fig. 1, then dσ(1, 2) = 1 + 5 = 6, and dσ(1, 3) =
2 + 2 = 4.

Definition 1.6. For n > 1, the breadth of σ ∈ Sn, denoted br(σ), is the minimum distance 
between any two distinct entries:

br(σ) = min
i,j∈[n], i �=j

dσ(i, j).

For example, br(274915836) = 4, and this is realized by any of the pairs of entries

{i, j} ∈ {{1, 3}, {2, 3}, {2, 4}, {3, 6}, {4, 7}, {6, 7}, {6, 8}, {6, 9}, {7, 9}, {8, 9}}.

With these definitions in place, we can state our two primary results. First, we have 
the following complete characterization of k-prolific permutations (Theorem 2.25):
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A permutation σ is k-prolific if and only if br(σ) � k + 2.

That is, permutations are prolific precisely if their points are not too close together. 
(Coleman [5] was the first to observe that maximizing the distance between points tends 
to increase the number of distinct subpermutations.) As a consequence, it is readily seen 
that k-prolific permutations of size n are in bijection with certain packings of diamonds, 
which we call permuted packings. Section 2 is dedicated to the proof of this theorem. 
(This result was previously presented in [10], but the short proof given there contains 
an error.)

It is not possible for small permutations to be k-prolific because their points are too 
close together. Hence, our second main result is an exact determination of the minimum 
possible size of a k-prolific permutation (Corollary 4.3):

The smallest k-prolific permutations have size 
⌈
k2/2 + 2k + 1

⌉
.

In Section 3, we prove that every k-prolific permutation must be at least this big (Theo-
rem 3.4). The argument relies heavily on the interpretation of k-prolific permutations as 
permuted diamond packings. Then, in Section 4, we present constructions demonstrating 
that k-prolific permutations do exist of this size (Theorem 4.2), and also of all greater 
sizes (Theorem 4.5).

In the final section of the paper we discuss possible directions for further research, 
including some questions concerning permuted packings which may be of independent 
interest.

2. Characterizing k-prolific permutations

We begin by introducing notation to denote the pattern that results from the deletion 
of specified entries from a permutation.

Definition 2.1. For a permutation σ ∈ Sn and i ∈ [n], let σ〈i〉 ∈ Sn−1 be the pattern 
formed by deleting the ith entry from σ. Similarly, if A = {i1, i2, . . . , ik} ⊂ [n], then let 
σ〈A〉 ∈ Sn−k be the pattern formed by deleting the i1th, i2th, . . ., ikth entries from σ.

The goal of this section is to prove that a permutation is k-prolific if and only if its 
breadth is at least k+ 2. Specifically, we need to demonstrate that, given a permutation 
σ ∈ Sn, there exist distinct k-sets of indices A, B ⊂ [n] such that σ〈A〉 = σ〈B〉 if and only 
if br(σ) < k + 2.

The proof of the “only if” direction is straightforward (and was first proved by 
Hegarty [9]), as is the argument in the “if” direction when there is an index common 
to A and B; we present these later. The next several pages, leading up to Lemma 2.23
are thus concerned with characterizing the situation when σ〈A〉 = σ〈B〉 with A and B
disjoint. To this end, we introduce a plane graph associated with such a scenario and 
determine its structure.
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Fig. 2. An oriented chain graph (Definition 2.3), and a plot of the discrepancy (Definition 2.4) of its vertices. 
The edges of each chain are oriented away from its red end-vertex, shown as a disk, towards its blue 
end-vertex, shown as a ring.

To define this graph, we first need to define what it means for an entry in a permutation 
to “fulfill” an entry in a pattern that it contains.

Definition 2.2. Suppose σ ∈ Sn and A ⊂ [n]. Let [n] \ A = {i1, i2, . . . , ir}, where i1 <

i2 < · · · < ir. For each j ∈ [r], we say that the ijth entry of σ fulfills the jth entry of 
σ〈A〉.

Our graph joins the points of σ that fulfill the “same” point in σ〈A〉 and σ〈B〉.

Definition 2.3. Given a permutation σ ∈ Sn, and disjoint k-sets of indices A, B ⊂ [n], 
such that σ〈A〉 = σ〈B〉, the chain graph of σ for A and B is a plane graph on the points 
in the plot of σ. For each index i ∈ [n − k], an edge is added between the point of σ
that fulfills the ith entry of σ〈A〉 and the point of σ that fulfills the ith entry of σ〈B〉. If 
σ〈A〉(i) and σ〈B〉(i) are fulfilled by the same point, p, of σ, then we call p a fixed point, 
and no edge is added.

To facilitate the discussion, we let the vertices corresponding to elements of A be 
colored red, and those corresponding to elements of B be colored blue. The remaining 
vertices are uncolored.

Note that this definition implies that no vertex of a chain graph has degree greater 
than two. See Fig. 2 for an illustration of a chain graph; its vertex set contains eight red 
points (in A), eight blue points (in B), six fixed points, and seventeen other uncolored
points.

Recall the comment in Definition 1.4 about identifying points in the plot of a permu-
tation with their x-coordinates, and ordering them from left to right. In a chain graph, 
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these points are the vertices. Thus, the vertices of a chain graph are also identified by 
their x-coordinates, and considered to be ordered from left to right.

Note that throughout this section we only consider situations in which A ∩B = ∅ and 
σ〈A〉 = σ〈B〉 = π, say. The definition of a chain graph is restricted to these settings. In 
such cases, if the ath entry of σ fulfills the ith entry of σ〈A〉 and the bth entry of σ fulfills 
the ith entry of σ〈B〉, then it is also the case that the σ(a)th entry of σ−1 fulfills the 
π(i)th entry of σ〈A〉

−1 and the σ(b)th entry of σ−1 fulfills the π(i)th entry of σ〈B〉
−1. Hence, 

properties of the chain graph are preserved under permutation inversion, so symmetry 
may be invoked to convert “horizontal” arguments into “vertical” ones.

We are interested in determining the properties of chain graphs, with the ultimate 
goal of proving that their vertices cannot be too far apart. To investigate their structure, 
we introduce the concept of the “discrepancy” of a vertex in a chain graph.

Definition 2.4. For each point p in a chain graph, let nred(p) be the number of red 
points strictly to the left of p and nblue(p) be the number of blue points strictly to the 
left of p. We define the discrepancy of p, which we denote δ(p), to be the difference, 
δ(p) = nred(p) − nblue(p).

A plot showing the discrepancy of the vertices in a chain graph is exhibited at the 
bottom of Fig. 2.

Discrepancy has the properties outlined in the following two observations.

Observation 2.5. If we consider the points from left to right, the discrepancy either in-
creases by one (after a red point), decreases by one (after a blue point), or stays the same 
(after an uncolored point). Since there are equally many red points as blue points, the 
discrepancy returns to zero after the last point.

Thus a plot of the discrepancy is a Motzkin bridge — similar to a Motzkin path, but 
permitted to wander both above and below its start point.

Observation 2.6. If the point p (the pth entry of σ) is not red, then it fulfills the entry of 
σ〈A〉 that has index a := p − nred(p). Similarly, if p is not blue, then it fulfills the entry 
of σ〈B〉 that has index b := p − nblue(p). Hence, an uncolored point p is a fixed point if 
and only if δ(p) = 0.

If p is not red and δ(p) > 0, then the ath entry of σ〈B〉 is fulfilled by the δ(p)th 
non-blue point to the left of p. Similarly, if p is not blue and δ(p) � 0, then the bth entry 
of σ〈A〉 is fulfilled by the δ(p + 1)th non-red point to the right of p. The case for negative 
δ(p) is analogous; indeed, it is equivalent to the positive case applied to the reverse of the 
permutation.

We now show that the structure of a chain graph is tightly constrained, and that its 
name is justified.
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Proposition 2.7. The chain graph of a permutation σ for k-sets A and B consists of k
monotone paths, which we call chains together with one isolated vertex for each fixed 
point. Each chain has one red end-vertex and one blue.

Suppose � and r are the left and right end-vertices, respectively, of a chain C. If � is 
red, then δ(�) � 0 and for every point q of σ such that � < q � r, we have δ(q) > 0. 
Analogously, if � is blue, then δ(�) � 0 and for every point q of σ such that � < q � r, 
we have δ(q) < 0.

Proof. Firstly, each fixed point has degree 0, by definition.
Secondly, each red vertex has degree 1 since it fulfills a point of σ〈B〉, but does not 

fulfill a point of σ〈A〉. Analogously, each blue vertex also has degree 1.
Thirdly, let p be a non-fixed uncolored vertex. By Observation 2.6, we know that 

δ(p) �= 0 and that p is adjacent to two other vertices, one to its left (which we denote 
p−), and the other to its right (denoted p+). So p is a medial vertex in a path whose 
vertices are ordered from left to right. By symmetry, p is also medial in a path whose 
vertices are ordered from bottom to top. Thus, from left to right, the path is either 
monotonically increasing or monotonically decreasing.

Suppose now that p is not red and δ(p) > 0. If there are nr red, nb blue and nu

uncolored points in [p−, p), then δ(p−) = δ(p) −nr +nb. Since p− is the δ(p)th non-blue 
point to the left of p, we also have δ(p) = nr+nu, so nr � δ(p). Thus, δ(p−) = nb+nu � 0. 
Moreover, δ(p−) = 0 if and only if the δ(p) points immediately to the left of p, including 
p−, are all red. Furthermore, since there are only nr � δ(p) up-steps in the plot of the 
discrepancy between p− and p, for all q ∈ (p−, p), we have δ(q) > 0.

Provided p− is uncolored and δ(p−) > 0, we may repeat this argument until either p−

is colored or δ(p−) = 0. In either case, since p− is, by definition, not blue, we see that 
p− is red. Thus the left end-vertex, �, of the chain containing p, is red, and δ(q) > 0 for 
all q ∈ (�, p].

An analogous argument shows that if p is not fixed and not blue and δ(p) � 0 then 
δ(p+) > 0, and for all q ∈ (p, p+), we have δ(q) > 0. By iterating this, we see that the 
right end-vertex, r, of the chain containing p, is blue, and δ(q) > 0 for all q ∈ (p, r].

As before, the argument for negative δ(p) is equivalent to the positive case applied to 
the reverse of the permutation. �

As we go forward, in referring to edges in a chain, we make use of the following 
notation, as used in the proof of Proposition 2.7.

Definition 2.8. Given a point p in a chain, but not at its rightmost end, write p+ for the 
point adjacent to p on its right. Thus, every edge of a chain is pp+ for some point p.

In the light of Proposition 2.7, we distinguish between increasing and decreasing chains 
as follows.
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Definition 2.9. A path in a chain graph is an increasing chain if each of its edges pp+

satisfies σ(p) < σ(p+). A path in a chain graph is a decreasing chain if each of its edges 
pp+ satisfies σ(p) > σ(p+).

As an example, the chain graph illustrated in Fig. 2 consists of seven increasing chains, 
one decreasing chain and six isolated fixed points.

Before stating further properties of chain graphs, we introduce the “span” and “central 
span” of a pair of points, and the idea of a point “cutting” an edge.

Definition 2.10. Fix σ ∈ Sn. For any distinct i, j ∈ [n], the span of i and j in σ is the set 
of entries of σ whose positions lie strictly between i and j or whose values lie strictly 
between σ(i) and σ(j). The central span of i and j in σ is the set of entries of σ whose 
positions lie strictly between i and j and whose values lie strictly between σ(i) and σ(j).

Thus, the span of two points consists of the points in a cross-shaped region, and the 
central span of two points consists of the points in a rectangular region.

Definition 2.11. Let q be in the span of points p and p′. This q cuts pp′ from the left
(respectively, right) if q’s position is to the left (respectively, right) of both p and p′. 
This q cuts pp′ from below (respectively, above) if q’s value is less (respectively, greater) 
than both σ(p) and σ(p′). Cuts from the left or right are horizontal; cuts from below or 
above are vertical. Points in the central span of p and p′ are considered to cut pp′ both 
horizontally and vertically.

There is a close relationship between cutting and the distance between two points.

Observation 2.12. The distance dσ(p, p′) is two greater than the number of times that pp′
is cut.

With these definitions in place, we can state two elementary corollaries of Proposi-
tion 2.7. These are the first of several results characterizing how edges of chains may be 
cut, which we use later to prove that some pair of points in a chain graph must be close 
together.

Corollary 2.13. An edge of a chain C cannot be cut by another point from C.

Corollary 2.14. An edge of a chain cannot be cut by a fixed point.

Proof. Every point strictly between the end-vertices of a chain has non-zero discrepancy, 
whereas a fixed point has zero discrepancy. Thus no fixed point can cut a chain vertically. 
The horizontal case follows by symmetry. �
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In light of the fact that one end-vertex of each chain is red and the other is blue, it 
makes sense to orient the edges of a chain graph. We choose to orient the edges of each 
chain away from its red end-vertex and towards its blue end-vertex.

Definition 2.15. We say that a chain is oriented leftwards, rightwards, upwards or down-
wards according to whether its blue end-vertex is to the left of, to the right of, above or 
below its red end-vertex, respectively.

In Fig. 2, the orientation of a chain is shown using arrows; three chains (two increasing 
and one decreasing) are oriented leftwards and five (all increasing) are oriented right-
wards, while six chains (five increasing and one decreasing) are oriented upwards and 
two (both increasing) downwards.

We now show that chains in an oriented chain graph are further constrained by having 
to satisfy a “consistent orientation” property.

Definition 2.16. Suppose that C and C ′ are chains in the chain graph of a permutation σ, 
with left end-vertices � and �′ and right end-vertices r and r′, respectively. We say that 
C and C ′ overlap horizontally if � < r′ and �′ < r and overlap vertically if σ(�) < σ(r′)
and σ(�′) < σ(r).

Proposition 2.17. If two chains in a chain graph overlap horizontally, then either both 
chains are oriented leftwards or both chains are oriented rightwards. Analogously, if two 
chains overlap vertically, then either they are both oriented upwards or they are both 
oriented downwards.

Proof. Let C and C ′ be chains in the chain graph of a permutation σ, with left end-
vertices � and �′ and right end-vertices r and r′, respectively. Without loss of generality, 
suppose that � is red. By Proposition 2.7, for every point q of σ that lies strictly between 
� and r, we have δ(q) > 0. Now, if �′ were blue, then, similarly, for every point q′ of C ′, 
we would have δ(q′) � 0. But, since C and C ′ overlap horizontally, there is some point 
of C ′ between the end-vertices of C, so �′ must in fact be red.

The vertical case follows by symmetry. �
This consistent orientation property has consequences for how edges of chains may be 

cut.

Corollary 2.18. If a chain C has an edge cut vertically by a point from another chain C1, 
then either C and C1 are both oriented leftwards or they are both oriented rightwards. 
Analogously, if C has an edge cut horizontally by a point from a chain C2, then either 
C and C2 are both oriented upwards or they are both oriented downwards.

Corollary 2.19. If C is an increasing chain and C ′ is a decreasing chain, then it is 
not possible for C and C ′ to overlap both horizontally and vertically. Thus, an edge of 
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an increasing chain C cannot be cut both horizontally and vertically by points from a 
decreasing chain C ′.

Corollary 2.20. If C1 and C2 are increasing chains that overlap (either horizontally or 
vertically), and C ′ is a decreasing chain, then it is not possible for there to be points 
q1 and q2 of C ′ such that q1 cuts an edge of C1 horizontally and q2 cuts an edge of C2
vertically.

Chains in a chain graph also satisfy an “interleaving” property, which implies that 
two chains cannot cross. Recall the linear ordering of points from Definition 1.4.

Proposition 2.21. Suppose pp+ and qq+ are edges in distinct chains. If p < q, then 
p+ < q+. If σ(p) < σ(q), then σ(p+) < σ(q+).

Proof. If p+ < q, then the result follows trivially. Assume that q < p+. Without loss of 
generality, suppose that δ(p+) > 0, and hence δ(q+) > 0.

Suppose p+ were to the right of q+. Let d be the difference between their x-coordinates, 
and let nb be the number of blue points in the interval [q+, p+). Then, δ(p+) � δ(q+) +
d − 2nb, with a strict inequality if nb = 0, since q+ cannot be red.

Now, point p is the δ(p+)th non-blue point to the left of p+. Since there are d− nb non-
blue points in [q+, p+), it is the case that p is no further to the left than the (δ(q+) −nb)th 
non-blue point to the left of q+. But q is the δ(q+)th non-blue point to the left of q+, 
which means that p is to the right of q, a contradiction.

The vertical case follows by symmetry. �
The interleaving property further restricts the ways in which an edge of a chain may 

be cut by points from another chain.

Corollary 2.22. An edge e of a chain C can be cut at most once horizontally and at most 
once vertically by points from some other chain C ′. If C and C ′ are increasing chains, 
then it is only possible for points of C ′ to cut e either from the left and from above (if 
C ′ is to the upper left of C), or else from the right and from below (if C ′ is to the lower 
right of C).

Corollary 2.22, together with Corollaries 2.13, 2.14, 2.19, and 2.20, completes our 
characterization of how edges of chains may be cut. We are now able to prove that the 
points in a chain graph cannot be very far apart.

Lemma 2.23. Suppose we have a permutation σ, and disjoint k-sets of indices A and B, 
such that σ〈A〉 = σ〈B〉. Then br(σ) < k + 2.

Proof. Assume, to the contrary, that br(σ) � k + 2 and let G be the chain graph of σ
for A and B.
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Fig. 3. An illustration of the second half of the proof of Lemma 2.23, for k = m = 4.

To begin, we demonstrate that every edge of a chain in G must be cut twice, once 
horizontally and once vertically, by points from some other chain. Let e = pp+ be an 
edge of a chain C of G. Without loss of generality, suppose that C is an increasing 
chain.

Since dσ(p, p+) � k + 2, the edge e is cut by at least k vertices. By Corollaries 2.13
and 2.14, e is not cut by a point of C or by a fixed point. There are only k − 1 chains 
in G that are distinct from C, so, by the pigeonhole principle, there is at least one 
chain, C ′, whose points cut e twice. By Corollary 2.19, C ′ is an increasing chain, and by 
Corollary 2.22, one cut must be horizontal and the other vertical.

Now, we show that the two cuts cannot be from the same point of C ′. Suppose that 
a point q of C ′ cuts e both horizontally and vertically; that is, this q is in the central 
span of p and p+. Now, e can be cut by at most k− 1 points horizontally, one from each 
chain, and similarly by at most k − 1 points vertically, so dσ(p, p+) � 2k. Thus, since 
dσ(p, p+) = dσ(p, q) + dσ(q, p+), either dσ(p, q) � k or dσ(q, p+) � k, and so br(σ) � k, 
a contradiction. Thus, there is no point in the central span of p and p+, and e is cut by 
two distinct points of C ′.

To conclude our proof, we examine the positioning of the points that occur in increas-
ing chains, and by an infinite descent argument reach a contradiction. Specifically, we 
prove that if br(σ) � k + 2 then to the upper left of each increasing chain is another in-
creasing chain, which is an impossibility since the number of chains is finite. For brevity 
in what follows, we call a point of an increasing chain an increasing point, and a point 
of a decreasing chain a decreasing point.

Suppose that G contains m increasing chains and d := k−m decreasing chains. With-
out loss of generality, we may assume that m � 1. For an illustration of the argument 
that follows, see Fig. 3 (for simplicity, d = 0 in this figure).

Let p1 be the lowermost increasing point in G, and let e1 be the edge p1p
+
1 , with p+

1
to the upper right of p1. Then, for each j = 2, . . . , m, let pj be the lowermost increasing 
point that cuts ej−1 from the left (we show that such a point always exists), and set 
ej := pjp

+
j . Our goal is to prove that, for each j, the edge ej is not cut from below by 

any increasing point. We proceed by induction on j.
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For the base case, it follows from the definition of p1 and the fact that the central 
span of p1 and p+

1 is empty that e1 is not cut from below by any increasing point.
Now, fix j � 1 and assume that ej is not cut from below by any increasing point.
Since ej is not cut from below by an increasing point, no increasing chain has points 

which cut ej from both the right and from below. So, by Corollary 2.22, points of 
some increasing chain must cut ej from both the left and from above. So there exists a 
lowermost increasing point that cuts ej from the left, namely pj+1.

Suppose that ej is cut from the right by rj increasing points and cut horizontally by 
hj decreasing points. By the definition of pj+1, these are the only points that can occur 
above pj and below pj+1, so σ(pj+1) −σ(pj) � rj+hj+1. Hence, since dσ(pj , pj+1) � k+2, 
we have

pj − pj+1 � (k + 2) − (rj + hj + 1) = k + 1 − rj − hj .

Now suppose that ej+1 is cut vertically by vj+1 decreasing points. By Proposition 2.20, we 
know that hj+vj+1 � d. Observe that ej+1 is cut from above by at most m −1 −rj increas-
ing points, the rj chains cutting ej from the right also being to the right of ej+1. Hence,

p+
j+1 − pj+1 � m− 1 − rj + vj+1 + 1 � m− rj + d− hj = k − rj − hj .

Thus,

pj − p+
j+1 � (k + 1 − rj − hj) − (k − rj − hj) = 1.

Thus, p+
j+1 is to the left of pj , so ej+1 is not cut from below by pj .

Moreover, since the central span of pj+1 and p+
j+1 is empty, the edge ej+1 is not cut 

from below by any other increasing point. This is because, otherwise, either p1 would not 
be the lowermost increasing point in G, or else p2, . . . , pj+1 would not be the lowermost 
increasing points cutting e1, . . . , ej from the left.

Now consider the final edge em = pmp+
m. By the same inductive argument, it too 

is cut from the left by some increasing point pm+1. But this is impossible, because 
there are only m increasing chains in G. Hence, our initial assumption is false, and thus 
br(σ) < k + 2. �

Having established the desired result when A and B are disjoint, we now have al-
most all we need to establish the relationship between the breadth of a permutation 
and whether that permutation is k-prolific or not. The final ingredient is the following 
proposition, adapted from [10].

Proposition 2.24. Deleting a single entry from a permutation decreases the breadth by at 
most one.

Proof. Suppose σ is a permutation with breadth b, and p is a point of σ. Now, for any 
i and j, we have dσ〈p〉(i, j) � dσ(i, j) − 2, where dσ〈p〉(i, j) = dσ(i, j) − 2 precisely when 
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p is in the central span of i and j in σ. Hence, br(σ〈p〉) = b − 2 only if there are points 
i and j such that dσ(i, j) = b and p is in their central span. But p cannot be in their 
central span, for then we would have dσ(i, p) < dσ(i, j) = b, and the breadth of σ would 
be less than b. �

Here, finally, is our first main result: a complete characterization of k-prolific permu-
tations.

Theorem 2.25. A permutation σ is k-prolific if and only if br(σ) � k + 2.

Proof. For the forward direction, suppose that i �= j are such that dσ(i, j) < k + 2. Let 
S be the set of elements of σ in the span of i and j. It follows that |S| < k. But we have 
σ〈S∪{i}〉 = σ〈S∪{j}〉, so σ is not (|S| + 1)-prolific. Moreover, σ〈S∪{i}∪X〉 = σ〈S∪{j}∪X〉, 
for any set of indices X not containing i or j, so σ is not k-prolific.

For the reverse direction, we proceed by induction on k.
For the base case, suppose that br(σ) � 3, but that σ is not 1-prolific; that is, there 

exists i �= j such that σ〈i〉 = σ〈j〉. Assume without loss of generality that i < j and 
σ(i) < σ(j). The (j − 1)th entry of σ〈i〉 is σ(j) − 1, while the (j − 1)th entry of σ〈j〉 is 
σ(j − 1) or σ(j − 1) − 1, depending on the relationship between σ(j − 1) and σ(j). The 
latter case can be disregarded since it would imply that σ(j−1) = σ(j), an impossibility.

But if σ(j) − 1 = σ(j − 1), then

br(σ) � dσ(j, j − 1) =
∣∣j − (j − 1)

∣∣ +
∣∣σ(j) − σ(j − 1)

∣∣ = 2,

a contradiction. Therefore σ must be 1-prolific.
Now fix k > 1 and assume that, for any permutation τ , if br(τ) � k + 1, then τ is 

(k−1)-prolific. Suppose that the breadth of σ is at least k+2, but that σ is not k-prolific; 
that is, there are distinct k-sets A and B such that σ〈A〉 = σ〈B〉.

If there is an index c ∈ A ∩ B, then σ′ = σ〈c〉 is (k − 1)-prolific, by Proposition 2.24
and the induction hypothesis. But

σ′
〈A\{c}〉 = σ〈A〉 = σ〈B〉 = σ′

〈B\{c}〉,

so σ′ cannot be (k − 1)-prolific. Thus A and B must be disjoint.
The result then follows by Lemma 2.23. �
As a consequence of this characterization, we see that any permutation of size n

containing maximally many patterns of size n − k also contains maximally many larger 
patterns.

Corollary 2.26. If σ is k-prolific, then σ is also j-prolific for all 1 � j < k.
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3. Bounding the size of k-prolific permutations from below

In this section, we determine a lower bound on the size of k-prolific permutations. We 
use the following notation to denote the size of the smallest k-prolific permutation.

Definition 3.1. Given a positive integer k, let minprol(k) be the minimum value n for 
which there exists a k-prolific permutation in Sn.

Clearly, for a k-prolific permutation of size n to exist, we need (n − k)! �
(
n
k

)
. This 

inequality yields a very weak lower bound on minprol(k), which can, using Stirling’s 
approximation, be shown to grow like k + e

√
k for large k. Nevertheless, in conjunction 

with the fact that both 2413 and 3142 cover all four non-monotone permutations in S3, 
it is sufficient to determine that minprol(1) = 4.

We now establish a much tighter lower bound on minprol(k) by recasting Theorem 2.25
in terms of packings of diamonds. Recall that a translational packing with a tile (a com-
pact non-empty subset of R2) is a collection of translates of the tile whose interiors are 
mutually disjoint (see [4]). We are interested in translational packings in which the tiles 
are centered on the points of a permutation.

Definition 3.2. A translational packing Π, consisting of n translates of a tile T , is a 
permuted packing if there exists a permutation σ ∈ Sn such that Π = {T +(i, σ(i)) : 1 �
i � n}.

The following proposition establishes the relationship between k-prolific permutations 
and permuted packings.

Proposition 3.3. Given integers n > k � 1, let D be a diamond whose diagonal has length 
k + 2. The family of k-prolific permutations of size n is equinumerous to the family of 
permuted packings that consist of n translates of D.

Proof. By Theorem 2.25, a permutation is k-prolific if and only if the minimum L1
distance between two points in the plot of the permutation is at least k + 2. Thus, if 
we center a ball of radius k/2 + 1 (under the L1 metric) at each point of the plot, the 
interiors of these balls are mutually disjoint. Since, in R2, an L1 ball of radius k/2 + 1
is a diamond whose diagonal has length k + 2, it is readily seen that this construction 
yields a bijection between k-prolific permutations of size n and the specified family of 
permuted packings. �

Fig. 4 depicts a 6-prolific permutation and the corresponding permuted diamond pack-
ing.

Using this characterization of k-prolific permutations, we now bound minprol(k) from 
below.
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Fig. 4. The permuted diamond packing corresponding to a 6-prolific permutation, showing the square box 
used in the proof of Theorem 3.4.

Theorem 3.4. For each positive integer k, minprol(k) �
⌈
k2/2 + 2k + 1

⌉
.

This result was previously proved for k > 800 by Gunby [8]. The basic approach taken 
in our proof was first used by Miller [14].

Proof. Suppose that σ ∈ Sn is k-prolific. Let s = k/2 + 1 be the length of the semidi-
agonals of the diamonds in the associated permuted packing. The area of each of the n
diamonds in the packing is 2s2.

Consider the square box [s − 1, n + 2 − s]2, centered over the packing, as illustrated 
in Fig. 4. The margins around this box have width k. Note that when k is even, s is an 
integer and the sides of the box pass through the centers of four of the diamonds; when 
k is odd, they do not.

The total area of the diamond tiles is bounded above by the area of this square box 
plus the total area of the parts of the diamonds that “overflow” into the margins outside 
the box. The overflowing parts are shaded more darkly in Fig. 4. The area of the parts 
of the diamonds in a given margin can be calculated exactly, as follows.

Consider the region to the left of the left side of the box, including the top left and 
bottom left corners. In this margin are parts of each of the diamonds centered at the 
first k points of σ. For each j < k/2, the overflowing part of the jth diamond from the 
left and the overflowing part of the (k − j)th diamond can be glued together to form 
a complete diamond. For example, in Fig. 4, the two parts labeled a form a complete 
diamond, as do the two labeled b. If k is even, then the overflowing part of the (k/2)th 
diamond is exactly half a diamond. Finally, the overflowing part of the kth diamond is 
a triangle with area 1. Thus, the total area of the parts of the diamonds that overflow 
into any one margin is given by

(
k−1) · 2s2 + 1 = (k − 1)s2 + 1.
2
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Fig. 5. A permuted packing of extended diamonds corresponding to a 5-prolific permutation.

The total area of all of the parts of the diamonds that overflow is no more than four 
times this, a value which counts the contributions from the corners twice. Therefore, we 
have the inequality

2s2n � (n + 3 − 2s)2 + 4
(
(k − 1)s2 + 1

)
.

Substituting k/2 + 1 for s applying the quadratic formula, we obtain

n � k2 + 8k +
√
k4 + 32k − 16
4 ,

an expression which exceeds k2/2 + 2k for all k > 1/2.
Since minprol(k) is an integer, for even k we thus have minprol(k) � k2/2 + 2k + 1, as 

required, and for odd k, minprol(k) � k2/2 + 2k + 1/2.
A marginally greater lower bound can be established for odd k by using a slightly 

different shape of tile. If k is odd, then the length of the semidiagonal of the diamonds, 
s = k/2 + 1, is a half-integer. Since, in the packing, each diamond is centered on an 
integer lattice point, it is not possible for three of these diamonds to meet at a point. 
Thus, either above or below the rightmost corner of each of these diamonds is a small 
diamond-shaped region, of semidiagonal length 1/2, not covered by any diamond tile. 
We thus extend the tiles by the addition of these regions, which we call extensions, and 
consider permuted packings of these extended diamonds. See Fig. 5 for an illustration.

For these extended diamonds, we now repeat our analysis of the parts of the tiles that 
overflow into the margins. The total area of the parts of the diamond-shaped extensions 
to the right of the box is k/2 + 1/4, made up of k complete extensions, each of area 1/2, 
and half an extension from the (k+1)th diamond from the right. The contribution from 
the extensions that overflow into the top margin is at most k/4, made up of (k − 1)/2
complete extensions and half an extension. The bottom margin is analogous. Since no 
extension can overflow into the left margin, the total area of the parts of the extensions 
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that overflow is no more than k + 1/4. Therefore, accounting for the additional area of 
each tile, we have the inequality

(2s2 + 1/2)n � (n + 3 − 2s)2 + 4
(
(k − 1)s2 + 1

)
+ k + 1/4.

After substitution for s and the application of the quadratic formula, this yields

n � k2 + 8k + 1 +
√
k4 + 2k2 + 32k − 19
4 ,

an expression which exceeds k2/2 + 2k + 1/2 for all k > 5/8.
Since minprol(k) is an integer, for odd k we thus have minprol(k) � k2/2 + 2k + 3/2, 

as required. �
4. Constructions of k-prolific permutations

In this section, we establish that there is a k-prolific permutation of every size greater 
than or equal to the lower bound of Theorem 3.4, by construction.

Let m(k) =
⌈
k2/2 + 2k + 1

⌉
be the lower bound function from Theorem 3.4. Our 

initial constructions enable us to prove that minprol(k) = m(k).

Definition 4.1. For each k � 1, define σk as follows. For i = 1, . . . , m(k), let

σk(i) =

⎧⎨
⎩i(k + 2) mod m(k) + 1, if k is odd, and

i(k + 1) mod m(k) + 1, if k is even.

See Fig. 6 for an illustration of σ5 and σ6. We claim that σk is a k-prolific permutation 
of size m(k).

First, we must prove that σk is indeed a permutation; that is, that σk(i) takes a 
distinct value for each i. To do so, it is sufficient to show that k + 2 is coprime to 
m(k) + 1 when k is odd, and that k + 1 is coprime to m(k) + 1 when k is even. Observe 
that for odd k, we have

2
(
k2/2 + 2k + 5/2

)
+ (−k − 2)

(
k + 2

)
= 1,

and for even k,

2
(
k2/2 + 2k + 2

)
+ (−k − 3)

(
k + 1

)
= 1.

Thus the relevant terms are coprime.
To demonstrate that each σk is k-prolific, we use an alternative characterization of 

the permutations, in terms of two interlocking grids of lattice points as illustrated in 
Fig. 6.
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Fig. 6. Plots of the permutations σ5 ∈ S24 and σ6 ∈ S31, showing their construction from two interlocking 
grids of lattice points.

For odd k, define the four vectors

p1 = (1, k + 2), p2 =
(
k+3
2 , k+1

2
)
, u = (k + 2,−1), v = (1, k + 2).

Now let

Γ1 =
{
p1 + qu + rv : 0 � q � k+1

2 , 0 � r � k−1
2

}
,

Γ2 =
{
p2 + qu + rv : 0 � q � k−1

2 , 0 � r � k+1
2

}
be two finite grids of lattice points.

We claim that Γ1 ∪ Γ2 is the plot of σk. Indeed, for 1 � i � m(k), if

q = 
(i− 1)/(k + 2)� and r = (i− 1) mod (k + 2),

then

(i, σk(i)) =

⎧⎨
⎩p1 + qu + rv, if r � k−1

2 , and

p2 + qu +
(
r − k+1

2
)
v, otherwise.

Similarly, for even k, define the four vectors

p1 = (1, k + 1), p2 =
(
k
2 + 2, k

2
)
, u = (k + 3,−1), v = (1, k + 1),

and let
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Γ1 =
{
p1 + qu + rv : 0 � q � k

2 , 0 � r � k
2
}
,

Γ2 =
{
p2 + qu + rv : 0 � q � k

2 − 1, 0 � r � k
2 + 1

}
.

Now, for 1 � i � m(k), if

q = 
(i− 1)/(k + 3)� and r = (i− 1) mod (k + 3),

then

(i, σk(i)) =

⎧⎨
⎩p1 + qu + rv, if r � k

2 , and

p2 + qu +
(
r − k

2 − 1
)
v, otherwise.

Thus, for each k, the plot of σk is given by Γ1 ∪ Γ2. We now use this characterization 
to bound minprol(k) from above.

Theorem 4.2. For each positive integer k, the permutation σk is k-prolific.

Proof. By Theorem 2.25, we need only show that the breadth of σk is at least k+2. Let 
x and y be distinct points of σk.

Recall that the points in the plot of σk are partitioned into two sets, Γ1 and Γ2. If x
and y both lie in the same set, then their positions in the plot differ by a nonzero integer 
linear combination qu + rv. Thus, the L1 distance between these points is given by

dσk
(x, y) =

∣∣qa + r
∣∣ +

∣∣rb− q
∣∣,

where

(a, b) =
{

(k + 2, k + 2) if k is odd, and
(k + 3, k + 1) if k is even.

If q = 0, then |r| � 1, because x �= y. In that case, dσk
(x, y) = |r| + |rb| � 1 + b. 

Similarly, if r = 0, then |q| � 1 and dσk
(x, y) = |qa| + |q| � a + 1. Suppose now that 

both |q| and |r| are nonzero. Without loss of generality, we may assume that r � 1. 
If q � 1, then dσk

(x, y) � |qa + r| � a + 1. If, on the other hand, q � −1, then 
dσk

(x, y) � |rb − q| � b + 1. In each case, we have dσk
(x, y) � k + 2.

Now suppose, without loss of generality, that x ∈ Γ1 and y ∈ Γ2. In this case, their 
positions in the plot differ by a vector p1 − p2 + qu + rv, for some integers q and r. 
Thus, the L1 distance between these points is given by

dσk
(x, y) =

∣∣qa− c + r
∣∣ +

∣∣rb + d− q
∣∣,

where
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(c, d) =
{(

k+1
2 , k+3

2
)

if k is odd, and(
k
2 + 1, k

2 + 1
)

if k is even.

The possible distances can be partitioned into the following five cases:

dσk
(x, y) = k + 2, if 0 � q � 1 and −1 � r � 0,

dσk
(x, y) � |qa− c + r| � 2a− c− 1, if q � 2 and r � −1,

dσk
(x, y) � |rb + d− q| � b + d− 1, if q � 1 and r � 1,

dσk
(x, y) � |qa− c + r| � a + c, if q � −1 and r � 0,

dσk
(x, y) � |rb + d− q| � 2b− d, if q � 0 and r � −2.

Again, in each case, we have dσk
(x, y) � k + 2.

Therefore, the permutation σk has breadth k + 2, and so, by Theorem 2.25, it is 
k-prolific. �

This construction determines an upper bound on the size of the smallest k-prolific 
permutation. Together with the lower bound of Theorem 3.4, it establishes the value of 
minprol(k) exactly.

Corollary 4.3. For each positive integer k, the smallest k-prolific permutations have size ⌈
k2/2 + 2k + 1

⌉
.

Corollary 4.4. For each integer d > 2, if D is a diamond whose diagonals have length d, 
then the smallest nontrivial permuted packings with tile D have size 

⌈
d2/2 − 1

⌉
.

The first few terms of this sequence are 4, 7, 12, 17, 24, 31, 40, 49, 60, 71. It is sequence 
A074148 in [18].

Clearly, any symmetry of σk is k-prolific. However, for even k � 6, these permutations 
are not the only k-prolific permutations of minimal size.

See Fig. 7 for an illustration of another 6-prolific permutation of size 31.
It is not immediately obvious that k-prolific permutations exist of every size greater 

than or equal to minprol(k). We conclude this section by briefly presenting a construction 
that demonstrates that this is, in fact, the case.

Theorem 4.5. There is a k-prolific permutation of every size greater than or equal to ⌈
k2/2 + 2k + 1

⌉
.

Proof. We construct a k-prolific permutation, σ+j
k , of size minprol(k) + j, for each k � 1

and j � 0.
Let σ+0

k = σk. For j � 0, the permutation σ+j+1
k is constructed by inserting a new 

first entry immediately above the (k + 2)th entry of σ+j
k , if k is odd, or immediately 

above the (k + 3)th entry of σ+j
k , if k is even. See Fig. 8 for an illustration.

http://oeis.org/A074148
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Fig. 7. An alternative 6-prolific permutation in S31.

Fig. 8. Plots of the 3-prolific permutations σ+j
3 , for j = 0, . . . , 5; note that σ+5

3 is, in fact, 4-prolific.

We leave as an exercise for the reader the rather tedious details of the proof that this 
construction never leads to a reduction in the breadth of the permutation.

Furthermore, it can be shown that the breadth eventually increases: if k is odd, then 
σ+k+2
k is (k + 1)-prolific, and, if k is even, then σ+k+3

k is (k + 1)-prolific. �
5. Directions for further research

In Section 4, we noted that σk and its symmetries were not necessarily the only 
k-prolific permutations of minimal size. However, for odd k, no additional k-prolific 
permutations of size minprol(k) are known. This prompts the following conjecture.

Conjecture 5.1. For each odd k, the permutation σk (described in Definition 4.1) and its 
symmetries are the only k-prolific permutations of minimal size.

More generally, we wonder whether it is possible to enumerate and characterize all 
minimal k-prolific permutations.

Question 5.2. For each k, how many distinct k-prolific permutations of minimal size are 
there, and what are they?

Another topic of potential interest concerns the presence of k-prolific permutations 
in specific permutation classes (sets closed downwards in the pattern poset P). For 
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example, there appear to be no 1-prolific permutations avoiding 132, and no 2-prolific 
permutations avoiding 123. This motivates the following question.

Question 5.3. For each k, which principal permutation classes (those avoiding a single 
pattern) contain k-prolific permutations?

In various guises, the enumeration of 1-prolific permutations (sequence A002464
in [18]) has been well-studied ever since Kaplansky’s 1944 paper addressing the “n king 
problem” [11,12]. Tauraso [17] presents complete asymptotics. For large n, the proportion 
of permutations of size n which are 1-prolific is

e−2
(

1 − 2
n2 − 10

3n3 − 6
n4 − 154

15n5 + O

(
1
n6

))
.

However, nothing specific appears to have been published concerning the enumeration 
of k-prolific permutations for larger k. In a forthcoming paper, Blackburn, Homberger 
and Winkler establish that the proportion of permutations of size n which are k-prolific 
is asymptotically e−k2−k (see [2]).

Question 5.4. For a given k > 1, how does the number of k-prolific permutations of size 
n grow with n?

The notion of being k-prolific can also be transferred to the context of other graded 
posets, an element of rank n being k-prolific if it has maximally many children of rank 
n − k. The characterization of the k-prolific elements of various combinatorial posets, 
perhaps most obviously those relating to the various subgraph orders, may be of interest.

Finally, permuted packings also invite further investigation. In addition to the per-
muted diamond packings studied here, one might consider permuted packings of other 
regular tiles. Permuted packings of axis-parallel squares appear uninteresting. On the 
other hand, permuted circle packings raise some intriguing questions. See Fig. 9 for an 
illustration.

Recall that the density of a packing Π relative to a bounded domain D is defined as

d(Π, D) =
∑

T ∈Π μ(T ∩D)
μ(D) ,

where μ(X) is the area of X (see [4]).
Let us call a permuted packing of minimal cardinality a minimal permuted packing. 

Among other problems, one that is particularly attractive would be to determine how 
poor a minimal permuted packing can be, asymptotically as the radius of the circular 
tiles tends to infinity.

Question 5.5. What is the value of

lim inf d(Πρ, [1, nρ]2),

ρ→∞

http://oeis.org/A002464
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Fig. 9. Minimal permuted packings of circles of diameter
√

17 and
√

18 + ε.

where Πρ is a minimal permuted packing of circles of radius ρ, and nρ is the number of 
circles in such a packing?

Similar questions might be asked about permuted packings of regular hexagons.
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