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A rack is a set together with a self-distributive bijective 
binary operation. In this paper, we give a positive answer to a 
question due to Heckenberger, Shareshian and Welker. Indeed, 
we prove that the lattice of subracks of a rack is atomic. 
Further, by using the atoms, we associate certain quandles 
to racks. We also show that the lattice of subracks of a rack is 
isomorphic to the lattice of subracks of a quandle. Moreover, 
we show that the lattice of subracks of a rack is distributive 
if and only if its corresponding quandle is the trivial quandle. 
So the lattice of subracks of a rack is distributive if and only 
if it is a Boolean lattice.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1943, a certain algebraic structure, known as key or involutory quandle, was in-
troduced by M. Takasaki in [7] to study the notion of reflection in the context of finite 
geometry. In 1959, J.C. Conway and G.C. Wraith introduced a more general algebraic 
structure called wrack in an unpublished correspondence. In 1982, D. Joyce for the first 
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time used the word quandle for an algebraic and combinatorial structure to study knot 
invariants [5]. Joyce’s definition of quandle is the same as the one which is nowadays 
used.

Let R be a set together with a binary operation � which satisfies the equality
a � (b � c) = (a � b) � (a � c), for all a, b, c ∈ R. This equality is called (left) self-distribu-
tivity identity. A knot is an embedding of S1 in R3. In 1984, S. Matveev, and in 1986, 
E. Brieskorn independently used self-distributivity systems to study the isotopy type of 
braids and knots, in [6] and [2], respectively. In 1992, R. Fenn and C. Rourke initiated 
to use the word rack instead of wrack. They used racks to study links and knots in 
3-manifolds [3]. A rack is indeed a generalization of the concept of quandle. Racks are 
used to encode the movements of knots and links in the space.

In the following, the definition of a rack and some known examples of racks are given.

Definition 1.1. A rack R is a set together with a binary operation � such that

(1) for all a, b and c in R, a � (b � c) = (a � b) � (a � c), and
(2) for all a and b in R there exists a unique c ∈ R with a � c = b.

Conditions (1) and (2) are called self-distributivity and bijectivity, respectively. A rack 
R is called a quandle if it satisfies the following additional condition:

a � a = a, for all a ∈ R.

It follows from the bijectivity condition of racks that the function fa : R → R with 
fa(b) = a � b is bijective, for all a ∈ R. Therefore, by self-distributivity we have fa(b) �
fa(c) = fafb(c), for all a, b, c ∈ R.

Example 1.2. The followings are some known examples of racks:

(1) Let R be a set and a � b = b, for all a, b ∈ R. Then R is a quandle, called the trivial 
quandle.

(2) Let R be a set and f be a permutation on R. Define a � b = f(b), for all a, b ∈ R. 
Then R is a rack, but not a quandle.

(3) Let A be an abelian group and a � b = 2a − b, for all a, b ∈ A. Then A is a quandle, 
called the dihedral quandle.

(4) Let G be a group and a � b = ab−1a, for all a, b ∈ G. Then G is a quandle, called the 
core quandle (or rack).

(5) Let S = Z[t, t−1] be the ring of Laurent polynomials with integer coefficients, and M
be an S-module. Define a � b = (1 − t)a + tb, for all a, b ∈ M . Then M is a quandle, 
called the Alexander quandle.

(6) Let S = Z[t, t−1, s] be the ring of all polynomials over Z with the variables s, t, t−1

such that t is invertible with the inverse t−1. Assume that R = S/ 
〈
s2 − s(1 − t)

〉
, 
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and M is an R-module. Let x � y = sx + ty, for all x, y ∈ M , where s and t denote 
s +

〈
s2 − s(1 − t)

〉
and t +

〈
s2 − s(1 − t)

〉
, respectively. Then M is a rack, called the 

(s, t)-rack. It is easy to observe that an (s, t)-rack is not a quandle, whenever s is 
not invertible. Note that if s is invertible, then it follows from s2 = s(1 − t) that 
s = 1 − t, and hence M is the Alexander quandle. One could see that (2, −1)-racks 
and dihedral racks are the same.

In the next example, we provide a new example of a rack which is not a quandle.

Example 1.3. For any integers a and b, we define

a � b =
{

b, if b is even,
b + 2, if b is odd.

Then it is observed that Z together with the above binary operation is a rack which is 
not a quandle.

Let (R, �) be a rack. A subset Q of R is called a subrack of R if (Q, �) is a rack. The 
poset of all subracks of R, denoted by R(R), together with the inclusion relation is a 
lattice.

Let G be a group. Define a � b = aba−1, for all a, b ∈ G. Then (G, �) is a quandle. The 
lattice of subracks of this rack was studied in [4] by I. Heckenberger et al. where they 
considered some sublattices of R(G) and specified their homotopy types. For example, 
let Q be the subrack of all transpositions of Sn. Then R(Q) is isomorphic to Πn which 
is the lattice of all partitions of a set with n elements. It is known that Πn has the 
homotopy type of a wedge of (n − 2)-spheres. As another example discussed in [4], let 
p be an odd prime number and n > 4 be an integer with 2p ≤ n. Assume that Πn,p is 
the sublattice of all elements B = B1|B2| · · · |Bt of Πn such that |Bi| = 1 or |Bi| ≥ p, 
for all 1 ≤ i ≤ t. If L is the subrack of all p-cycles in the alternating group An, then 
R(L) is isomorphic to Πn,p, and hence it has the homotopy type of a wedge of spheres 
of (possibly) different dimensions.

We recall the definition of an atomic lattice in the following. Let L be a lattice with 
the least element 0. An element a ∈ L is called an atom whenever x < a implies that 
x = 0. Then L is called atomic if every element of L is the join of some atoms. In the 
last section of [4], some questions were posed by the authors concerning the lattice of 
subracks of R. Among them, we focus on the following question:

Question 1.4 ([4, Question 1]). Is R(R) atomic for all racks R?

It is known that the lattice of subracks of a quandle is atomic, since the atoms of 
the lattice are exactly the singletons ([4, Lemma 2.1]). We give a positive answer to 
Question 1.4 in general.



58 D. Kiani, A. Saki / Journal of Combinatorial Theory, Series A 162 (2019) 55–64
This paper is organized as follows. In Section 2, we prove our main results. First, we 
prove that the lattice of subracks of any rack is atomic, which gives a positive answer 
to Question 1.4. Next, we define a certain binary operation on the set of the atoms of 
a rack. Then, we show that the set of atoms together with this operation is a quandle. 
Moreover, we show that the lattice of subracks of this quandle is isomorphic to the lattice 
of subracks of the rack from which the quandle has been obtained. Furthermore, we show 
that the lattice of subracks of a rack is distributive if and only if its corresponding quandle 
is trivial. It follows that the lattice of subracks of a rack is distributive if and only if it 
is a Boolean lattice.

2. Main results

In this section, we prove our main results. First, we show that the lattice of subracks 
of a rack is atomic, which gives a positive answer to Question 1.4 (posed in [4]). For this 
purpose, the following lemmas are needed.

Lemma 2.1. Let R be a rack. For any a and b in R we have

(1) ffa(b) = fafbf
−1
a ,

(2) ff−1
a (b) = f−1

a fbfa.

Proof. Let c ∈ R. Then by self-distributivity

ffa(b)(c) = fa(b) � c = fa(b) � faf−1
a (c) = fa(b � f−1

a (c)) = fafbf
−1
a (c).

Thus ffa(b) = fafbf
−1
a which proves (1). To prove the second equality, we have

fa(f−1
a (b) � (c)) = (faf−1

a (b)) � fa(c) = b � fa(c) = fbfa(c).

Therefore ff−1
a (b)(c) = f−1

a (b) � c = f−1
a fbfa(c), and hence ff−1

a (b) = f−1
a fbfa. �

It follows easily from Lemma 2.1 that f−1
fa(b) = faf

−1
b f−1

a and f−1
f−1
a (b) = f−1

a f−1
b fa.

Let S be a subset of a rack R. The subrack generated by S in R, denoted by � S �, is 
defined to be the intersection of all subracks of R containing S. For two racks R and R′, 
a map φ : R → R′ is called a rack homomorphism if φ(a �b) = φ(a) �φ(b), for all a, b ∈ R. 
A bijective rack homomorphism is called a rack isomorphism. An isomorphism from a 
rack R to itself is called an automorphism. For any a ∈ R, fa is an automorphism, since 
fa(b � c) = fa(b) � fa(c), for any b, c ∈ R, by self-distributivity. The set of all automor-
phisms of R is denoted by Aut(R), and is a subgroup of the group of all permutations 
on R. The subgroup generated by the set {fa : a ∈ R} is called the inner group of 
R and is denoted by Inn(R). The inner group of R acts on R with the natural action 
φ ∗ a = φ(a), with φ ∈ Inn(R). The orbits of this action are called orbits of R. Let 
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G = Inn(R). We denote the orbit containing a ∈ R by Ga. Moreover, for a subset S ⊆ R

and a subgroup H of Inn(R) we set

HS =
⋃
s∈S

Hs.

Lemma 2.2. Let R be a rack. Then

(1) the orbits of R are subracks of R, and
(2) if S ⊆ R and H is the subgroup of Inn(R) generated by {fs : s ∈ S}, then � S �=

HS.

Proof. (1) Let a ∈ R and G = Inn(R). We show that Ga is a subrack of R. Let x =
f ε1
a1
f ε2
a2

· · · f εt
at

(a) and y = f
ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(a) be two arbitrary elements of Ga for which εi
and ε′j are 1 or −1, for all i, j. Then by Lemma 2.1 we have

x � y = ffε1
a1f

ε2
a2 ···f

εt
at (a)f

ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(a) = f ε1
a1

· · · f εt
at
faf

−εt
at

· · · f−ε1
a1

f
ε′1
b1

· · · f ε′l
bl

(a),

which implies that x � y ∈ Ga. Now, it is enough to prove that for all x, y ∈ Ga, there 
exists an element z ∈ Ga for which fx(z) = y.

Let x = f ε1
a1
f ε2
a2

· · · f εt
at

(a) and y = f
ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(a). Then

z = f ε1
a1

· · · f εt
at
f−1
a f−εt

at
· · · f−ε1

a1
f
ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(a)

is an element of Ga and x � z = y. Therefore Ga is a subrack of R.
(2) Let x = f ε1

a1
f ε2
a2

· · · f εt
at

(s1) and y = f
ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(s2) be two elements of HS. Then 
we have

x � y = f ε1
a1

· · · f εt
at
fs1f

−εt
at

· · · f−ε1
a1

f
ε′1
b1

· · · f ε′l
bl

(s2),

and hence x � y ∈ HS. Moreover, if

z = f ε1
a1

· · · f εt
at
f−1
s1 f−εt

at
· · · f−ε1

a1
f
ε′1
b1
f
ε′2
b2

· · · f ε′l
bl

(s2),

then x � z = y. Therefore HS is a subrack of R, and hence � S �⊆ HS. The other 
inclusion, follows easily from the definition of HS. �

The following theorem plays a key role in our main result.

Theorem 2.3. Let R be a rack and a ∈ R. Then

(1) � a �= {fn
a (a) : n ∈ Z}, and

(2) if Q is a subrack of R such that Q∩ � a ��= ∅, then � a �⊆ Q.
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Proof. (1) It follows from Lemma 2.2 that � a �= Ha where H is the subgroup of 
Inn(R) generated by fa. Thus H = {fn

a : n ∈ Z}, and hence � a �= {fn
a (a) : n ∈ Z}.

(2) Let Q be a subrack of R with Q∩ � a ��= ∅, and let fn0
a (a) ∈ Q∩ � a �, for 

some n0 ∈ Z. We show that � fn0
a (a) �=� a �. For n0 = 0, there is nothing to prove. 

Let n0 �= 0. By Lemma 2.2 we have � fn0
a (a) �= Hfn0

a (a) such that H is the subgroup 
of Inn(R) generated by ffn0

a (a). By Lemma 2.1 we have

ffn0
a (a) = f

f
ε|n0|
a (a) = f ε

a · · · f ε
a︸ ︷︷ ︸

|n0|time(s)

fa f
−ε
a · · · f−ε

a︸ ︷︷ ︸
|n0|time(s)

= fa,

such that ε = n0
|n0| . Thus H is the cyclic subgroup of Inn(R) generated by fa. Conse-

quently,

� fn0
a (a) �= {fn+n0

a (a) : n ∈ Z} = {fn
a (a) : n ∈ Z} =� a � .

Finally, � a �=� fn0
a (a) �⊆ Q, since fn0

a (a) ∈ Q. �
Let R be a rack. For any a, b ∈ R, we define: a ∼ b if and only if � a �=� b �. 

It is clear that this is an equivalence relation on R. We denote the desired equivalence 
classes by a, for all a ∈ R. It follows from Theorem 2.3 that a =� a �, for any a ∈ R. 
For any A ⊆ R, let A = {a : a ∈ A}.

Note that in the proof of Theorem 2.3, we proved that for any integer m and a ∈ R, 
we have

fm
fn
a (a) = fm

a (2.4)

Now, we define a binary operation on R to be turned into a quandle. Let a, b ∈ R, 
x ∈ a and y ∈ b. Thus x = fn

a (a) and y = fm
b (b) for some integers m, n. We show that 

a � b = x � y. First, assume that m = 0. It follows from (2.4) that

x � y = fn
a (a) � b = ffn

a (a)(b) = a � b.

Next, assume that m �= 0. By (2.4), we have

x � y = fn
a (a) � fm

b (b) = a � fm
b (b) = faf

ε|m|
b (b) = faf

ε
bf

−1
a faf

ε(|m|−1)
b (b)

= f ε
fa(b)

(
faf

ε(|m|−1)
b (b)

)
,

where ε = m
|m| . Therefore by induction, we have x � y = f

ε|m|
fa(b)(fa(b)), and hence x � y =

a � b. Now, we define the binary operation ∗ on R such that a∗b = a � b, for any a, b ∈ R. 
By the above arrangement, the operation ∗ is well-defined. Using the aforementioned 
notation, we have the following theorem:
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Theorem 2.5. Let R be a rack. Then (R, ∗) is a quandle.

Proof. Note that the self-distributivity condition is inherited from (R, �). Let c = f−1
a (b). 

To show bijectivity condition, first note that we have a∗c = a � c = b. To prove uniqueness 
of c, let x ∈ R with a∗x = b. Then a � x = b, and hence fa(x) = fk

b (b) for some integer k. 
This implies that x = f−1

a fk
b (b). Therefore, similar to the proof of well-definedness of ∗, 

we have the following:

x =
{

f
ε|k|
c (c), if k �= 0,
c, if k = 0,

where ε = k
|k| . Therefore x = c. This completes the proof of bijectivity condi-

tion. Finally, the binary operation ∗ satisfies the quandle condition. Indeed, we have 
a ∗ a = a � a = a. �

For a rack R, we refer to the quandle R as the corresponding quandle of R.
Now, we are ready to answer Question 1.4 as one of our main results.

Corollary 2.6. The lattice of subracks of a rack is atomic.

Proof. Let R be a rack. It follows from Theorem 2.3 that the set of atoms of R(R)
consists of subracks � a �, for all a ∈ R. Moreover, for any subrack Q of R, we have

Q =
∨
a∈Q

� a � . �

The following corollary shows that the lattice of subracks of R and R are indeed 
isomorphic. For this purpose, we use this fact that for any homomorphism φ : R → S

of racks, the image of any subrack of R, and the pre-image of any subrack of S, are 
subracks of S and R, respectively. Moreover, any subrack of S is the image of a subrack 
of R, whenever φ is surjective. Recall that for two lattices L1 and L2 a lattice homo-
morphism from L1 to L2 is a map φ : L1 → L2 such that φ(x ∧ y) = φ(x) ∧ φ(y) and 
φ(x ∨ y) = φ(x) ∨ φ(y) for all x, y ∈ L1. A bijective lattice homomorphism is called a 
lattice isomorphism.

Corollary 2.7. Let (R, �) be a rack and (R, ∗) be its corresponding quandle. Then the map 
Q �→ Q defines a lattice isomorphism from R(R) to R(R).

Proof. We have the natural surjective homomorphism π : R → R which sends an element 
a ∈ R to a ∈ R. Therefore for any subrack Q of R, the set Q is a subrack of R. Moreover, 
any subrack of R is of the form of Q, for some subrack Q of R. To prove that this map 
is injective, assume that Q = Q′, for two subracks Q and Q′ of R. For any x ∈ Q, we 
have x ∈ Q, and hence there exists an element x′ ∈ Q′ with x = x′. Given that x′ ∈ Q′, 
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we conclude that x ⊆ Q′, and hence x ∈ Q′. Thus we obtain Q ⊆ Q′. We can conclude 
that Q′ ⊆ Q in a similar way. Therefore Q = Q′ and the map is injective.

Now, we need to show that π is a lattice homomorphism. For this, we have to show that 
π(Q ∩Q′) = π(Q) ∩ π(Q′) and π(� Q, Q′ �) =� π(Q), π(Q′) �, for all Q, Q′ ∈ R(R). 
Let Q, Q′ ∈ R(R). It is easy to see that Q ∩Q′ = Q ∩ Q′, and hence we get the first 
desired equality. Next we verify the second desired equality. It follows from Q, Q′ ⊆
� Q,Q′ � that Q, Q′ ⊆ � Q,Q′ �, and hence � Q, Q′ �⊆ � Q,Q′ �. Conversely, 
assume that y ∈ � Q,Q′ �, and hence y = x for some x ∈� Q, Q′ �. Note that x =
f ε1
x1
f ε2
x2

· · · f εt
xt

(xt+1) for some x1, . . . , xt+1 ∈ Q ∪Q′ and ε1, . . . , εt ∈ {±1}. It follows from 
the definition of the corresponding quandle of a rack that y = x = f ε1

x1
f ε2
x2

· · · f εt
xt

(xt+1), 
and hence y ∈� Q, Q′ �. Therefore � Q,Q′ � ⊆� Q, Q′ � which completes the 
proof. �

Note that the above relationship between a rack R and its corresponding quandle 
reduces the study of the lattice of subracks of R to the quandle’s. A certain quandle has 
been already associated to a rack whose lattice of subracks is not isomorphic to the one 
for R (see [1,2]). In the following, we discuss this correspondence. Let (R, �) be a rack 
and ι : R → R be defined by ι(a) = f−1

a (a). We show that ι is an isomorphism of racks. 
Let a, b ∈ R. It follows from self-distributivity condition that

a � (ι(a) � ι(b)) = (a � ι(a)) � (a � ι(b)) = a � (a � ι(b)).

Now, bijectivity condition of (R, �) guarantees that ι(a) � ι(b) = a � ι(b). Moreover, we 
have

(a � b) � (a � ι(b)) = a � (b � ι(b)) = a � b.

Therefore ι(a � b) = a � ι(b), and hence ι(a � b) = a � ι(b) = ι(a) � ι(b). To show that ι is 
injective, assume that ι(a) = ι(b). Thus, we have

a = a � ι(a) = ι(a) � ι(a) = ι(b) � ι(b) = b � ι(b) = b.

It follows from a = a � ι(a) = ι(a � a) that ι is surjective, and hence ι ∈ Aut(R). Now, 
we can consider R together with the binary operation

a �ι b = a � ι(b) = ι(a) � ι(b), for all a, b ∈ R.

We show that (R, �ι) is a quandle. The quandle condition follows from a �ιa = a �ι(a) = a. 
Note that we have the following

a �ι f−1
a (ι−1(b)) = ι(a � f−1

a (ι−1(b))) = b.
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Moreover, it follows from a �ιc = b that ι(a �c) = b, and hence a �c = ι−1(b). Consequently, 
we have c = f−1

a (ι−1(b)). Therefore bijectivity condition is satisfied. Self-distributivity 
condition is obtained as follows:

a �ι (b �ι c) = a �ι (b � ι(c)) = a � (ι(b) � ι2(c)) = (a � ι(b)) � (a � ι2(c))

= (a �ι b) � (ι(a) � ι2(c)) = (a �ι b) �ι (a � ι(c)) = (a �ι b) �ι (a �ι c).

Using the above construction, one could easily see that any subrack of (R, �) is a subrack 
of (R, �ι) as well. But the converse is not true. For instance, if (R, �) is the rack defined 
in Example 1.3, then (R, �ι) is the trivial quandle, and hence it has some subracks, like 
{1}, which are not subracks of (R, �). It follows that R ((R, �)) is a proper sublattice of 
the finite lattice R ((R, �ι)), and hence we have R ((R, �)) � R ((R, �ι)).

As an application of our results, in the following theorem, we characterize all racks 
R for which R(R) is distributive. Recall that a lattice L is called distributive, if the 
following holds:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), for all a, b, c ∈ L.

Theorem 2.8. Let (R, �) be a rack. Then the following conditions are equivalent:

(1) The lattice R(R) is distributive.
(2) The quandle (R, ∗) is the trivial quandle.
(3) The lattice R(R) is a Boolean lattice.

Proof. By Corollary 2.7, the statements (2) and (3) follow each other. We show that (1) 
and (2) are equivalent. First, suppose that R is the trivial quandle. For any a, b ∈ R, 
we have fa(b) = b ∈ b, and hence a ∪ b is a subrack of R. Therefore subracks of R are 
arbitrary unions of the atoms of R. In particular, the union of two subracks of R is also 
a subrack of R. This implies that the join of two subracks of R is the union of them. 
Consequently R(R) is distributive.

Conversely, assume that R(R) is distributive and a, b ∈ R. For any c ∈ R\(a ∪ b), we 
have

c ∧
(
a ∨ b

)
= (c ∧ a) ∨

(
c ∧ b

)
= (c ∩ a) ∨

(
c ∩ b

)
= ∅,

and hence c /∈� a, b �. Thus � a, b �= a ∪ b. It follows that fa(b) ∈ b, and hence 
a ∗ b = b. Therefore R is the trivial quandle. �

The above theorem implies that the lattice of subracks of the rack defined in Exam-
ple 1.3 is distributive. For a non-distributive rack we provide a new example of racks 
which is a generalization of the rack defined in Example 1.3.



64 D. Kiani, A. Saki / Journal of Combinatorial Theory, Series A 162 (2019) 55–64
Example 2.9. Let R be a set and {Ri}i∈I be a partition of R. Suppose that {fi}i∈I is a 
family of bijective functions on R such that

• fi(Rj) = Rj , and
• fifj = fjfi

for all i, j ∈ I. We define a � b = fi(b), for all a ∈ Ri and b ∈ R. Then we show that 
(R, �) is a rack. To observe self-distributivity condition, let a, b, c ∈ R with a ∈ Ri and 
b ∈ Rj . So, we have

a � (b � c) = a � fj(c) = fifj(c) = fjfi(c) = fi(b) � fi(c) = (a � b) � fi(c) = (a � b) � (a � c).

To prove bijectivity condition, let x be an element of R for which fi(x) = b. Therefore

a � x = fi(x) = b.

To prove uniqueness of x, assume that a � y = b for some y ∈ R. Then fi(y) = b which 
implies y = f−1

i (b) = x.
As a particular case of this structure, one can consider f to be a permutation on R

and fi = f i.
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