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1. Introduction

A polynomial p(t) = a,t" + a,41t" 1 + - + ast® is called palindromic of center g if
n=r+sand a,y; = as—; for 0 <i < § —r. A palindromic polynomial can be ertten
uniquely [2] as

,_
w3

]
p(t) =) wtt (1 +6)" %,
k=r
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and it is called y-positive if 4, > 0 for each k. The ~-positivity of a palindromic polyno-
mial implies unimodality of its coefficients (i.e., the coefficients a; satisfy a, < a,41 <
S ng2) 2 Alpj2)41 =00 2 Ag)-

Let &,, be the set of all permutations of [n] = {1,2,...,n}. For 7 € &,,, the descent
set of  is

Des(m) ={i € [n—1]: w(i) > n(i + 1)},
and the descent number is des(mw) = # Des(w). The double descent set is
DD(r)={i€n]:w(i—1)>n({)>n(i+1)}

where 7(0) = m(n 4+ 1) = oo, and we define dd(7) = # DD(w).

Finally, a permutation 7 is said to avoid a permutation o (henceforth called a pattern)
if 7 does not contain a subsequence (not necessarily consecutive) with the same relative
order as 0. We let &,,(01,...,0,) denote the set of permutations in &,, avoiding the
patterns o1,...,0,.

The descent polynomial 4,,(t) = ZWGG” tdes(™) g called the Eulerian polynomial, and
we have the following remarkable fact, which implies that A, (t) is y-positive.

Theorem 1.1 (Foata—Schitzenberger [4]). For n > 1,

L25+)

An(t) = > nath(L )12k,
k=0

where v = #{m € &, : dd(7) = 0,des(w) = k}.

Similarly, let Z,, be the set of all involutions in &,,, and let 7, be the set of all
fixed-point free involutions in &,,. Define

In(t) — Z tdes(ﬂ)’ Jn(t) — Z tdes(w).
TELy, TE€ETn

Note that J,(t) = 0 for n odd. Strehl [15] first showed that the polynomials I,,(¢t) and
Jan(t) are palindromic. Guo and Zeng [6] proved that I,,(¢t) and Jo,(¢) are unimodal and
conjectured that they are in fact «-positive. Our first two theorems, which we prove in
Sections 2 and 3, confirm their conjectures.

Theorem 1.2. For n > 1, the polynomial I,(t) is v-positive.
Theorem 1.3. For n > 9, the polynomial Jon,(t) is y-positive.

Theorem 1.1 and many variations of it have been proved by many methods, see for
example [8,13]. One of these methods uses the Modified Foata—Strehl (MFS) action on
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S, [1,11,12]. In fact it follows from [1, Theorem 3.1] that the same property holds for
all subsets of &,, which are invariant under the MFS action. The (2413, 3142)-avoiding
permutations are the separable permutations, which are permutations that can be built
from the trivial permutation through direct sums and skew sums [7, Theorem 2.2.36].
These are not invariant under the MFS action. However, in 2017, Fu, Lin, and Zeng [5],
using a bijection with di-sk trees, and Lin [9], using an algebraic approach, proved that
the separable permutations also satisfy the following theorem.

Theorem 1.4 ([5, Theorem 1.1]). Forn > 1,

L2z
Z tdes(ﬂ) — Z ,ys’ktk(1+t)n—1—2k7

€S, (2413,3142) k=0
where v° , = #{n € &,(2413,3142) : dd(7) = 0,des(7) = k}.
n,k

Two sets of patterns II; and I, are des- Wilf equivalent if

Z tdes(ﬂ') _ Z tdes(ﬂ')7

€S, (I11) T€S,, (1)

and are Des- Wilf equivalent if

> Il w="> 1l =

€S, (I11) i€Des(m) €S, (II3) i€Des(m)

We also say that the permutation classes &,,(II1) and &,,(II3) are des-Wilf or Des-Wilf
equivalent.

In 2018, Lin and Kim [10, Theorem 5.1] determined all permutation classes avoiding
two patterns of length 4 which are des-Wilf equivalent to the separable permutations, all
of which are Des-Wilf equivalent to each other but not to the separable permutations.

One such class is the (3412, 3421)-avoiding permutations, which is invariant under the
MFS action. A byproduct of this is that the number of (3412, 3421)-avoiding permuta-
tions with no double descents and k descents is also equal to ’y;f’ - In Section 4, we prove
the following more general fact.

Theorem 1.5. Forn > 1,

Z xdes(ﬂ)ydd(ﬂ') — Z xdes(ﬂ)ydd(ﬂ').
TE€G, (3412,3421) €S, (2413,3142)

2. Proof of the y-positivity of I,,(t)

In this section we prove Theorem 1.2, restated below for clarity. Let the y-expansion
of I,,(t) be
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Lt)= Y anpt" (14121
k=0

We have the following recurrence relation for the coefficients a, .
Theorem 2.1 ([6, Theorem 4.2]). Forn >3 and k > 0,

Ny, =(k+1)an—1x+ (2n — 4k)an—1,k—1 + [k(k+2) +n—1an—2k
+[(k—1)(4n — 8k — 14) + 2n — 8lap—2 k-1
+ 4(n — 2k)(n — 2k + 1>an72,k727

where anp =0 ifk <0 ork>(n—1)/2.
Theorem 1.2. For n > 1, the polynomial I,,(t) is v-positive.

Proof. We will prove by induction on n the slightly stronger claim that a,, , > 0 forn > 1,
k>0,and an > %an,17k71 if n = 2k+1 and k > 4. Assume the claim is true whenever
the first index is less than m. We want to prove the claim for all a,, 5. If m < 2000, we
can check the claim directly (this has been done by the author using Sage). Thus, we
may assume that m > 2000. If m > 2k + 3, then all the coefficients in the recursion are
nonnegative, so we are done by induction. Thus, assume that (m,k) = (2n + 1,n) or
(2n + 2,n) with n > 1000.

Case 1: (m,k) = (2n + 2,n). We wish to show that agp42, > 0. We apply the

recurrence in Theorem 2.1, noting that agy, ,, = 0 since n > (2n —1)/2, to get

(2n+2)asnt2,n = (M + 1)asnti,n + 4a2n+1,n—1 + 24a2p n—2 — (2n — 2)a2n n—1
Z 4a2n+1,n71 + 24a2n,n72 - 2na2n,n71
> 4aop41,m—1 + 2402, n—2 — NA2p—1,n—1 — 4A29,—1 n—2

- 24a2n—2,n—3a (T)
where the last inequality comes from applying the recurrence once again to obtain
2na2n,n—1 < Naz2p—1,n-1+ 4a2n—1,n—2 + 24a2n—2,n—3-

Note that since 2n+1 > 2(n—1)+3, when we apply the recurrence relation for ag,+1,5—1
all terms in the sum are positive. We drop all terms but the asy,—1,,—1 term and multiply
by 4/(2n + 1) to get

4aopt1,n—1 = [(n—1)(n+1)+2n]asn—1,n-1 > NA2n—1,n—1-

2n+1
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Similarly, since 2n > 2(n — 2) 4+ 3, when we use the recursion to calculate agy, n—2, we
can drop all terms but the as,—1 -2 term, which after multiplying by 12/(2n) gives

12
1202 n—2 > %[(n — Dagn—1,n—2] > 4a2,—1n—2.

Alternatively, we could have dropped all but the as,—2,,—3 term to get
12
12a0p, n—2 > 2—[(n —3)-2+44n — 8lagn—2.n—3 > 24an_2,n_3.
n

Plugging the previous three inequalities into () proves that agnt+2,, > 0, as desired.

Case 2: (m,k) = (2n + 1,n). We want to show (2n + 1)agn+1,n > 2a2,n—1. By the
recurrence relation, we have

(271 + 1)a2n+1,n == 2a2n,n—l + 8a2n—1,n—2 - (677’ - 4)a2n—1,n—1-
Thus, it suffices to show that 8agn—_1,n—2 — (6n — 3)a2n—1,n—1 > 0. Note that

8azn—1n—2—(6n — 3)agn—1,n-1
> 8a2p—1,n—2 — 6a2n—2.n—2 — 24a2,_3 n—3 (%)

because, by applying the same recurrence relation for as,,—1,,—1 and dropping the —(6n—
10)azpn—3,n—2 term, which is negative, we see that

(6n — 3)azn—1,n—1 = 3(2n — 1)agn—1,n-1
< 3(2a2n—2,n—2 + 8azn—3n—3)
= 6agn—2,n—2 + 24a2,—3 n—3.
Multiplying the right hand side of (x) by 2n — 1 and applying the recurrence relation for
2n—1,n—2 We get
(2n—1)-(x) =8(2n — Dasn—1.n-2 — (12n — 6)asn—2.n—2 — (480 — 24)asn_3 3
=8[(n —1)azn—2,n—2 + 6asn_2n_3+ (n? — 2)agn—3.n—2
+ (2n — 4)azn—3,n—3 + 48a2n—3,n—4]
— (12n — 6)agn—2,n—2 — (48n — 24)asy_3.n—3
= 48a2,—2,n—3 + (80 — 16)azn—3n—2 + 384a2,—3 n—4
— (An+ 2)agn—2.n—2 — (32n + 8)az,—3.n—3. (xx)

Now, since 2n —2 > 2(n — 3) + 3, we use the recursion to calculate as,,—2 ,—3, drop some
terms, and multiply by 48/(2n — 2) to get
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48
2n —

48a9n—2,n—3 > > [(n—4)-24+4n — 12]as,—an—a > 12002, 4,5 —4.

Now we apply the recursion for ag,—2 ,—2 and multiply by (4n + 2)/(2n — 2), which is

less than 5, to obtain

4n + 2
2n — 2

(4n +2)azp—2n—2 = [(n —1)agn—3n—2 + 4a2,-3n—3

+ 24a9n—an—14 — (2n — 6)a2n—4,n—3]
< (5bn — 5)azn—3,n—2 + 20a2n,—3 n—3 + 120a2,—4,n—4
— (].OTL — 30)042",4’“,3.

We substitute the above two bounds on 48a2,—2,—3 and (4n + 2)ag,_2,—2 for the
corresponding terms in (%) to get

(%) > 120a2,—4.n—a + (8n% — 16)a2,_3.n—2 + 384a9, 3.4
— (5bn —5)az2n—3n—2 — 20a2n—3 n—3 — 120029, _4.nn—4a
+ (10n — 30)azn—a,n—3 — (32n + 8)asn_3,n—3
= (8n® — 5n — 11)az,—3n—2 + 384a2;,—3.n—41 + (100 — 30)az,—4.n—3
— (32n + 28)agn—3,n—3. (3 % %)

Since 2n—3 = 2(n—2)+1, by the agg41,% > %ﬂagk7k,1 part of the induction hypothesis,

we have

2(8n? — 5n — 11)
2n -3

(8n? —5n — 11)ag, 3,2 > A2n—4,n-3 > (81 4 6)az, 43

Plugging the previous inequality into (x * x) gives
(* * *) > (18n — 24)0,271_47”_3 + 384&27,_3’”_4 — (32n + 28)a2n_37n_3.

Since 2n — 3 > 2(n —4) > 3, when apply the recursion for as,—3,—4, we can drop the
a2n—5.n—6 term which is positive, to get (after multiplying by 384/(2n — 3)),

384
2n —3
+ (n? —4n 4+ 4)asn—5n—a + (10n — 44)as,—5,—5|.

384aop_3,m—4 >

[(n —3)agn—a,n—a + 10a2,—4 n—5

Apply the recursion for agy,—_3,,—3 directly and multiply by 32n + 28/(2n — 3) to get

32n + 28
2n —3

+(n? = 2n — Dagn_5,-3 + (2n — 6)agn_5,—a + 48a2,_5.1—5).

(32n + 28)agn—3n-3 = [(n —2)agn—4a,n—3 + 6a2n—4,n—a
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Now, we will check that each of the terms in the expansion for (32n + 28)ag,—3,,—3 is
less than one of the terms in the expansion of (18n — 24)ag,—4.n—3 + 384a2,—3 n—4.
We have (32n + 28)/(2n — 3) < 17, and we see that

17 - (n — 2)a2n747n73 < (187’L — 24)0427174,71737
384(n —3)
- 2n-3

68(n% —4n +4
17- (2n - 6)(12n—5,n—4 < (271——3)

384(10n — 44
17 - 48a9y —5.n_5 < M
’ 2n —3

17-6a2p—4,n—4a 27 —4,n—4,
A2n—5,n—4,
A2n—5n—5-

Now, it suffices to show

316(n? —4n +4)
2n—3

17 (n? = 2n — D)agy—5,5-3 < A2n—5,n—4-

It suffices to show that

9a2n—5,n—4 = N2y —5.1—3-

By the recurrence relation we have

n
Na2p—5n-3 < m(ZCLQn—G,n—4 + 8a2n—7,n—5)
4.5(n—3
4-5a2n—5,n—4 =z <2£L_5))a2n—6,n—4
4.5(2n — 8
4-5a2n—5,n—4 =z (2(71_5))a2n—7,n—5-

Combining these gives the desired inequality. O
3. Proof of the y-positivity of Jay, (t)

In this section we prove Theorem 1.3, restated below. Let the y-expansion of Jay, ()
be

Jgn(t) = Z bgn}ktk(l + t)2n_2k.
k=1

We have the following recurrence relation for the coefficients by, k.
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Theorem 3.1 (/6, Theorem 4.4]). For n > 2 and k > 1, we have

2nbop . = [k(k +1) 4+ 2n — 2]bay ok + [2 4 2(k — 1)(4n — 4k — 3)]ban—2,k—1
+ 8(n —k + 1)(2n — 2k + 1)b2n—27k—25

where bay 1, =0 if k<1 or k> n.
Theorem 1.3. For n > 9, the polynomial Jan,(t) is y-positive.

Proof. We will prove by induction on n the slightly stronger claim that for by, ; > 0
for n > 9,k > 1, and bay, , > bap—2,n—1 for n > 11. Assume the claim is true whenever

the first index is less than m. We want to prove the claim for all by, ;. If m < 2000, we
can check the claim directly (this has been checked using Sage). Thus, we may assume
m > 2000. If m > 2k, then all of the coefficients in the recursion are nonnegative, so we
are done by induction. Thus, we can assume that (m, k) = (2n,n) with n > 1000.

By the recurrence relation, we have

2nb2n,n = 8b2n72,n72 - (61’L - 8)b2n72,n71~
We want to show that 8bay,_2.,—2 — (8n — 8)bay_2.n—1 > 0. We have

8ban—2,n—2—(8n — 8)ban—2n—1
= 8bap—2,n—2 — 32b2p—4,n—3 + 4(6n — 14)boy_4 n_o.

Multiplying by (2n — 2)/8, it suffices to show
(2n — 2)bap—2.n—2 — (8n — 8)ban_4.n—3 + (6n% — 200 + 14)b2y 4,2 > 0.

By expanding (2n — 2)bay_2 ,—2 using the recursion, we find that the above is equivalent
to

(Tn? — 21n + 12)bay—4n—2 + 48b2p_4.n—a — (6n — 4)b2y_g n_3 > 0. (1)
By the induction hypothesis,
(Tn? — 21n + 12)b2p_4n—2 > (Tn? — 21n 4+ 12)bop 6.3
By the recurrence in Theorem 3.1,
(2n — 4)2p—a.n—1 > (n* =51+ 6)bop—6,n—a + (10n — 48)bay—6 n—s.

Multiplying by 48/(2n — 4) yields
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48
2n —

48bon—4,n—4 > 1 [(n® — 51+ 6)bap—6.n—a + (101 — 48)bay—6,n—5]-

Also, multiplying the recurrence for bg,—4 ,,—3 by (6n —4)/(2n — 4) yields

6n —4

o — 717 = 3mban.0s + (20 = 6)ban -4

(6n —4)bay—an-3 =
+ 48b2s—6,n—5)-

We check that each term in this sum is less that one of the terms in the expansion of
(Tn? — 21n + 12)bap_6.n—3 + 48b2p_4.n—s. We have (6n —4)/(2n —4) < 4 and

4(712 _ 3n)b2n76,n73 < (7’)7,2 —2In+ 12)b2n76,n73

4(2n — 6)boy—6.n—a < bon—6,n—
(2n — 6)b2y—6,n—a SYe— 2n—6,n—4
48(10n — 48
4 - 48by_gn—5 < Lbzn—ﬁ n—5-
’ 2n — 4 ’

Thus (1) is true, as desired. O
4. (3412, 3421)-avoiding permutations and separable permutations

In this section we prove Theorem 1.5, restated below.

Theorem 1.5. Forn > 1,

Z xdes(ﬂ)ydd(ﬂ') _ Z xdes(ﬂ)ydd(ﬂ').

€S, (3412,3421) €S, (2413,3142)

For convenience we define the following variants of the double descent set. Let
DDog(m)={ien]:7(i—1)>n(i) >n(i+1)}
where 7(0) =0, m(n+ 1) = oo, and
DDy (m)={ien]:n(i—1)>x()>n(i+1)}
where 7(0) = oo, m(n + 1) = 0. Similarly define ddo(7) and dd (7). Finally, let
des'(w) = #(Des(m) \ {n —1}), dd'(m) = #(DD(m) \ {n — 1}).

Let &) = 6,,(2413,3142) and &2 = &,,(3412,3421). For i = 1,2, define

x Y, 2 Z Z xdes ) dd(ﬂ') n

n>1lre&k
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Moreover, define

J? Y,z Z Z xdei ) ddo(ﬂ') n

n>1re6l
des(m), ddec () .10
(wy2) =3 Y alesmydda(,
n>1reGlh
des’(m), dd’(m
(wy,2) = 3 3 ades(myad' (),
’I’L>171'662

We will also use S;, Fy, etc. to denote S;(z, vy, 2), Fi(z,y, z), etc.
The proof of the following lemma is very similar to the proof of [9, Lemma 3.4], so it
is omitted. The essence of the proof is Stankova’s block decomposition [14].

Lemma 4.1. We have the system of equations

2 2
S = 2+ (2 + 2y2) 81 + 2257 zzS7(F1 + zRy)

1—aRiFy l—aRFy
2x2F) S, xzF1S1(F) + xRy)
F = S F
! Z+($21+Z 1)+1—1'R1F1 1—$R1F1 ’
2xzR151 .’EZR151(F1 +$R1)

Ry = s R
L=yt eo tayzia e e 1— 2R F}

Combining the first equation multiplied by F; and the second equation multiplied by
S1, and combining the first equation multiplied by R; and the third equation multiplied
by 57, respectively, gives us

_ S +l‘512 . y51+512
_1+l‘yS1’ o 1+Sl '

Plugging these values into the first equation and expanding yields the following.
Corollary 4.2. We have
Sy (x,y,2) = xS3(x,y, 2) + 2283 (x,y, 2) + (2 + 2y2)Si (x,y,2) + 2
We will show that S5 satisfies the same equation.
Lemma 4.3. We have the system of equations

Sy =z 4+ 252 + (xy — )25 + T35,
Ty =2+ (x — xy)2® + 28 + (xyz — 222 + 2)Th + 2T5.
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Proof. By considering the position of n, we see that every permutation 7 € &2 can be
uniquely written as either myn where m; € &2, or m * Ty where 7 € Gi, Ty € 63171@7
1<k<n-—1,and m * 1 = AnB where

A :’R'l(].)"'ﬂ'l(k— 1)
B = (m(1) +£) - (m2(j — 1) + O)m (k) (m2(f + 1) +€) - -+ (m2(n — k) + 0),

where m3(j) =1 and ¢ = k — 1. Furthermore,

des(min) = des(m) des(my * mo) = des’ (1) + des(ma) + 1
dd(min) = dd(m) dd(my * m9) = dd' (1) + dd(ma)

des’(mn) = des(m) des’ (1 x ) = des' (1) + des’(m2) + 1
dd'(mn) = dd(my) dd'(my * mo) = dd’(my) + dd’(72),

with the exceptions dd(1 * m2) = dd(m2) + 1, des’(my * 1) = des'(m), dd'(1 * me) =
dd’(m3) + 1, and des’(1 * m3) = des’(m2) if n < 2. With the initial conditions

So(zyy,2) =2+, Talz,y,2)=2z+222 4+,
the above implies the stated equations. 0O

Proof of Theorem 1.5. Solving the equations in Lemma 4.3 shows that Sy satisfies the
same equation as S;. O

5. Concluding remarks and open problems

Our proofs of the v-positivity of I,,(¢) and Jo,(t) are purely computational. Guo and
Zeng first suggested the following question.

Problem 5.1 (Guo-Zeng [6]). Give a combinatorial interpretation of the coefficients ay, k.

Dilks [3] conjectured the following g-analog of the ~-positivity of I,(t). Here maj(m)
denotes the major index of 7, which is the sum of the descents of .

Conjecture 5.2 (Dilks [3]). For n > 1,

n—1
Z tdes(ﬂ' maj(mw) _ Z fy H (1+tq2)7

wELy, i=k+1

where ’y( )( ) € N[q].
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Since the (3412, 3421)-avoiding permutations are invariant under the MFS action, it
would be interesting to find a combinatorial proof of Theorem 1.5, since this would lead
to a group action on &,,(2413,3142) such that each orbit contains exactly one element
of

{m € 65(2413,3142) : dd(7) = 0,des(w) = k}
(cf. [5, Remark 3.9]).

Problem 5.3. Give a bijection between (3412, 3421)-avoiding permutations with m double
descents and k descents and separable permutations with m double descents and k&
descents.

Note that there does not exist a bijection preserving descent sets because the sepa-
rable permutations are not Des-Wilf equivalent to any permutation classes avoiding two
patterns.

Finally, Lin [9] proved that the only permutations o of length 4 which satisfy

L25*)
Z tdes(w) — Z ,yn,ktk(l_i_t)nflka

€S, (0,0m) k=0

where
Yok = F#{m € &y(0,0") : dd(m) = 0, des(m) = k}

are the permutations o = 2413, 3142, 1342, 2431. Here ¢" denotes the reverse of o. We
can similarly ask the following.

Problem 5.4. Which permutations o of length £ > 6 satisfy the above property?

Remark 5.5. For £ = 5, the answer to Problem 5.4 is ¢ = 13254, 15243, 15342, 23154,
25143 and their reverses. We have verified using Sage that these are the only permutations
which satisfy the property for n = 5,6, 7, and these permutation classes are all invariant
under the MFS action because in these patterns, every index i € [5] is either a valley or
a peak.
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