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Let In and Jn denote the set of involutions and fixed-
point free involutions of {1, . . . , n}, respectively, and let 
des(π) denote the number of descents of the permutation π. 
We prove a conjecture of Guo and Zeng which states that 
In(t) :=

∑
π∈In

tdes(π) is γ-positive for n ≥ 1 and J2n(t) :=∑
π∈J2n

tdes(π) is γ-positive for n ≥ 9. We also prove that the 
number of (3412, 3421)-avoiding permutations with m double 
descents and k descents is equal to the number of separable 
permutations with m double descents and k descents.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A polynomial p(t) = art
r + ar+1t

r+1 + · · · + ast
s is called palindromic of center n

2 if 
n = r + s and ar+i = as−i for 0 ≤ i ≤ n

2 − r. A palindromic polynomial can be written 
uniquely [2] as

p(t) =
�n

2 �∑

k=r

γkt
k(1 + t)n−2k,
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and it is called γ-positive if γk ≥ 0 for each k. The γ-positivity of a palindromic polyno-
mial implies unimodality of its coefficients (i.e., the coefficients ai satisfy ar ≤ ar+1 ≤
· · · ≤ a�n/2� ≥ a�n/2�+1 ≥ · · · ≥ as).

Let Sn be the set of all permutations of [n] = {1, 2, . . . , n}. For π ∈ Sn, the descent 
set of π is

Des(π) = {i ∈ [n− 1] : π(i) > π(i + 1)},

and the descent number is des(π) = # Des(π). The double descent set is

DD(π) = {i ∈ [n] : π(i− 1) > π(i) > π(i + 1)}

where π(0) = π(n + 1) = ∞, and we define dd(π) = # DD(π).
Finally, a permutation π is said to avoid a permutation σ (henceforth called a pattern) 

if π does not contain a subsequence (not necessarily consecutive) with the same relative 
order as σ. We let Sn(σ1, . . . , σr) denote the set of permutations in Sn avoiding the 
patterns σ1, . . . , σr.

The descent polynomial An(t) =
∑

π∈Sn
tdes(π) is called the Eulerian polynomial, and 

we have the following remarkable fact, which implies that An(t) is γ-positive.

Theorem 1.1 (Foata–Schützenberger [4]). For n ≥ 1,

An(t) =
�n−1

2 �∑

k=0

γn,kt
k(1 + t)n−1−2k,

where γn,k = #{π ∈ Sn : dd(π) = 0, des(π) = k}.

Similarly, let In be the set of all involutions in Sn, and let Jn be the set of all 
fixed-point free involutions in Sn. Define

In(t) =
∑

π∈In

tdes(π), Jn(t) =
∑

π∈Jn

tdes(π).

Note that Jn(t) = 0 for n odd. Strehl [15] first showed that the polynomials In(t) and 
J2n(t) are palindromic. Guo and Zeng [6] proved that In(t) and J2n(t) are unimodal and 
conjectured that they are in fact γ-positive. Our first two theorems, which we prove in 
Sections 2 and 3, confirm their conjectures.

Theorem 1.2. For n ≥ 1, the polynomial In(t) is γ-positive.

Theorem 1.3. For n ≥ 9, the polynomial J2n(t) is γ-positive.

Theorem 1.1 and many variations of it have been proved by many methods, see for 
example [8,13]. One of these methods uses the Modified Foata–Strehl (MFS) action on 
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Sn [1,11,12]. In fact it follows from [1, Theorem 3.1] that the same property holds for 
all subsets of Sn which are invariant under the MFS action. The (2413, 3142)-avoiding 
permutations are the separable permutations, which are permutations that can be built 
from the trivial permutation through direct sums and skew sums [7, Theorem 2.2.36]. 
These are not invariant under the MFS action. However, in 2017, Fu, Lin, and Zeng [5], 
using a bijection with di-sk trees, and Lin [9], using an algebraic approach, proved that 
the separable permutations also satisfy the following theorem.

Theorem 1.4 ([5, Theorem 1.1]). For n ≥ 1,

∑

π∈Sn(2413,3142)

tdes(π) =
�n−1

2 �∑

k=0

γS
n,kt

k(1 + t)n−1−2k,

where γS
n,k = #{π ∈ Sn(2413, 3142) : dd(π) = 0, des(π) = k}.

Two sets of patterns Π1 and Π2 are des-Wilf equivalent if
∑

π∈Sn(Π1)

tdes(π) =
∑

π∈Sn(Π2)

tdes(π),

and are Des-Wilf equivalent if
∑

π∈Sn(Π1)

∏

i∈Des(π)

ti =
∑

π∈Sn(Π2)

∏

i∈Des(π)

ti.

We also say that the permutation classes Sn(Π1) and Sn(Π2) are des-Wilf or Des-Wilf 
equivalent.

In 2018, Lin and Kim [10, Theorem 5.1] determined all permutation classes avoiding 
two patterns of length 4 which are des-Wilf equivalent to the separable permutations, all 
of which are Des-Wilf equivalent to each other but not to the separable permutations.

One such class is the (3412, 3421)-avoiding permutations, which is invariant under the 
MFS action. A byproduct of this is that the number of (3412, 3421)-avoiding permuta-
tions with no double descents and k descents is also equal to γS

n,k. In Section 4, we prove 
the following more general fact.

Theorem 1.5. For n ≥ 1,
∑

π∈Sn(3412,3421)

xdes(π)ydd(π) =
∑

π∈Sn(2413,3142)

xdes(π)ydd(π).

2. Proof of the γ-positivity of In(t)

In this section we prove Theorem 1.2, restated below for clarity. Let the γ-expansion 
of In(t) be
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In(t) =
�n−1

2 �∑

k=0

an,kt
k(1 + t)n−2k−1.

We have the following recurrence relation for the coefficients an,k.

Theorem 2.1 ([6, Theorem 4.2]). For n ≥ 3 and k ≥ 0,

nan,k =(k + 1)an−1,k + (2n− 4k)an−1,k−1 + [k(k + 2) + n− 1]an−2,k

+ [(k − 1)(4n− 8k − 14) + 2n− 8]an−2,k−1

+ 4(n− 2k)(n− 2k + 1)an−2,k−2,

where an,k = 0 if k < 0 or k > (n − 1)/2.

Theorem 1.2. For n ≥ 1, the polynomial In(t) is γ-positive.

Proof. We will prove by induction on n the slightly stronger claim that an,k ≥ 0 for n ≥ 1, 
k ≥ 0, and an,k ≥ 2

nan−1,k−1 if n = 2k+1 and k ≥ 4. Assume the claim is true whenever 
the first index is less than m. We want to prove the claim for all am,k. If m ≤ 2000, we 
can check the claim directly (this has been done by the author using Sage). Thus, we 
may assume that m > 2000. If m ≥ 2k + 3, then all the coefficients in the recursion are 
nonnegative, so we are done by induction. Thus, assume that (m, k) = (2n + 1, n) or 
(2n + 2, n) with n ≥ 1000.

Case 1: (m, k) = (2n + 2, n). We wish to show that a2n+2,n ≥ 0. We apply the 
recurrence in Theorem 2.1, noting that a2n,n = 0 since n > (2n − 1)/2, to get

(2n + 2)a2n+2,n = (n + 1)a2n+1,n + 4a2n+1,n−1 + 24a2n,n−2 − (2n− 2)a2n,n−1

≥ 4a2n+1,n−1 + 24a2n,n−2 − 2na2n,n−1

≥ 4a2n+1,n−1 + 24a2n,n−2 − na2n−1,n−1 − 4a2n−1,n−2

− 24a2n−2,n−3, (†)

where the last inequality comes from applying the recurrence once again to obtain

2na2n,n−1 ≤ na2n−1,n−1 + 4a2n−1,n−2 + 24a2n−2,n−3.

Note that since 2n +1 ≥ 2(n −1) +3, when we apply the recurrence relation for a2n+1,n−1
all terms in the sum are positive. We drop all terms but the a2n−1,n−1 term and multiply 
by 4/(2n + 1) to get

4a2n+1,n−1 ≥ 4
2n + 1 [(n− 1)(n + 1) + 2n] a2n−1,n−1 ≥ na2n−1,n−1.
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Similarly, since 2n ≥ 2(n − 2) + 3, when we use the recursion to calculate a2n,n−2, we 
can drop all terms but the a2n−1,n−2 term, which after multiplying by 12/(2n) gives

12a2n,n−2 ≥ 12
2n [(n− 1)a2n−1,n−2] ≥ 4a2n−1,n−2.

Alternatively, we could have dropped all but the a2n−2,n−3 term to get

12a2n,n−2 ≥ 12
2n [(n− 3) · 2 + 4n− 8]a2n−2,n−3 ≥ 24an−2,n−3.

Plugging the previous three inequalities into (†) proves that a2n+2,n ≥ 0, as desired.

Case 2: (m, k) = (2n + 1, n). We want to show (2n + 1)a2n+1,n ≥ 2a2n,n−1. By the 
recurrence relation, we have

(2n + 1)a2n+1,n = 2a2n,n−1 + 8a2n−1,n−2 − (6n− 4)a2n−1,n−1.

Thus, it suffices to show that 8a2n−1,n−2 − (6n − 3)a2n−1,n−1 ≥ 0. Note that

8a2n−1,n−2−(6n− 3)a2n−1,n−1

≥ 8a2n−1,n−2 − 6a2n−2,n−2 − 24a2n−3,n−3 (∗)

because, by applying the same recurrence relation for a2n−1,n−1 and dropping the −(6n −
10)a2n−3,n−2 term, which is negative, we see that

(6n− 3)a2n−1,n−1 = 3(2n− 1)a2n−1,n−1

≤ 3(2a2n−2,n−2 + 8a2n−3,n−3)

= 6a2n−2,n−2 + 24a2n−3,n−3.

Multiplying the right hand side of (∗) by 2n − 1 and applying the recurrence relation for 
a2n−1,n−2 we get

(2n− 1) · (∗) = 8(2n− 1)a2n−1,n−2 − (12n− 6)a2n−2,n−2 − (48n− 24)a2n−3,n−3

= 8[(n− 1)a2n−2,n−2 + 6a2n−2,n−3 + (n2 − 2)a2n−3,n−2

+ (2n− 4)a2n−3,n−3 + 48a2n−3,n−4]

− (12n− 6)a2n−2,n−2 − (48n− 24)a2n−3,n−3

= 48a2n−2,n−3 + (8n2 − 16)a2n−3,n−2 + 384a2n−3,n−4

− (4n + 2)a2n−2,n−2 − (32n + 8)a2n−3,n−3. (∗∗)

Now, since 2n − 2 ≥ 2(n − 3) +3, we use the recursion to calculate a2n−2,n−3, drop some 
terms, and multiply by 48/(2n − 2) to get
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48a2n−2,n−3 ≥ 48
2n− 2 [(n− 4) · 2 + 4n− 12]a2n−4,n−4 ≥ 120a2n−4,n−4.

Now we apply the recursion for a2n−2,n−2 and multiply by (4n + 2)/(2n − 2), which is 
less than 5, to obtain

(4n + 2)a2n−2,n−2 = 4n + 2
2n− 2 [(n− 1)a2n−3,n−2 + 4a2n−3,n−3

+ 24a2n−4,n−4 − (2n− 6)a2n−4,n−3]

< (5n− 5)a2n−3,n−2 + 20a2n−3,n−3 + 120a2n−4,n−4

− (10n− 30)a2n−4,n−3.

We substitute the above two bounds on 48a2n−2,n−3 and (4n + 2)a2n−2,n−2 for the 
corresponding terms in (∗∗) to get

(∗∗) ≥ 120a2n−4,n−4 + (8n2 − 16)a2n−3,n−2 + 384a2n−3,n−4

− (5n− 5)a2n−3,n−2 − 20a2n−3,n−3 − 120a2n−4,n−4

+ (10n− 30)a2n−4,n−3 − (32n + 8)a2n−3,n−3

= (8n2 − 5n− 11)a2n−3,n−2 + 384a2n−3,n−4 + (10n− 30)a2n−4,n−3

− (32n + 28)a2n−3,n−3. (∗ ∗ ∗)

Since 2n −3 = 2(n −2) +1, by the a2k+1,k ≥ 2
2k+1a2k,k−1 part of the induction hypothesis, 

we have

(8n2 − 5n− 11)a2n−3,n−2 ≥ 2(8n2 − 5n− 11)
2n− 3 a2n−4,n−3 ≥ (8n + 6)a2n−4,n−3.

Plugging the previous inequality into (∗ ∗ ∗) gives

(∗ ∗ ∗) ≥ (18n− 24)a2n−4,n−3 + 384a2n−3,n−4 − (32n + 28)a2n−3,n−3.

Since 2n − 3 ≥ 2(n − 4) ≥ 3, when apply the recursion for a2n−3,n−4, we can drop the 
a2n−5,n−6 term which is positive, to get (after multiplying by 384/(2n − 3)),

384a2n−3,n−4 ≥ 384
2n− 3 [(n− 3)a2n−4,n−4 + 10a2n−4,n−5

+ (n2 − 4n + 4)a2n−5,n−4 + (10n− 44)a2n−5,n−5].

Apply the recursion for a2n−3,n−3 directly and multiply by 32n + 28/(2n − 3) to get

(32n + 28)a2n−3,n−3 = 32n + 28
2n− 3 [(n− 2)a2n−4,n−3 + 6a2n−4,n−4

+ (n2 − 2n− 1)a2n−5,n−3 + (2n− 6)a2n−5,n−4 + 48a2n−5,n−5].
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Now, we will check that each of the terms in the expansion for (32n + 28)a2n−3,n−3 is 
less than one of the terms in the expansion of (18n − 24)a2n−4,n−3 + 384a2n−3,n−4.

We have (32n + 28)/(2n − 3) ≤ 17, and we see that

17 · (n− 2)a2n−4,n−3 ≤ (18n− 24)a2n−4,n−3,

17 · 6a2n−4,n−4 ≤ 384(n− 3)
2n− 3 a2n−4,n−4,

17 · (2n− 6)a2n−5,n−4 ≤ 68(n2 − 4n + 4)
2n− 3 a2n−5,n−4,

17 · 48a2n−5,n−5 ≤ 384(10n− 44)
2n− 3 a2n−5,n−5.

Now, it suffices to show

17 · (n2 − 2n− 1)a2n−5,n−3 ≤ 316(n2 − 4n + 4)
2n− 3 a2n−5,n−4.

It suffices to show that

9a2n−5,n−4 ≥ na2n−5,n−3.

By the recurrence relation we have

na2n−5,n−3 ≤ n

(2n− 5)(2a2n−6,n−4 + 8a2n−7,n−5)

4.5a2n−5,n−4 ≥ 4.5(n− 3)
(2n− 5) a2n−6,n−4

4.5a2n−5,n−4 ≥ 4.5(2n− 8)
(2n− 5) a2n−7,n−5.

Combining these gives the desired inequality. �
3. Proof of the γ-positivity of J2n(t)

In this section we prove Theorem 1.3, restated below. Let the γ-expansion of J2n(t)
be

J2n(t) =
n∑

k=1

b2n,kt
k(1 + t)2n−2k.

We have the following recurrence relation for the coefficients b2n,k.
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Theorem 3.1 ([6, Theorem 4.4]). For n ≥ 2 and k ≥ 1, we have

2nb2n,k = [k(k + 1) + 2n− 2]b2n−2,k + [2 + 2(k − 1)(4n− 4k − 3)]b2n−2,k−1

+ 8(n− k + 1)(2n− 2k + 1)b2n−2,k−2,

where b2n,k = 0 if k < 1 or k > n.

Theorem 1.3. For n ≥ 9, the polynomial J2n(t) is γ-positive.

Proof. We will prove by induction on n the slightly stronger claim that for b2n,k ≥ 0
for n ≥ 9, k ≥ 1, and b2n,n ≥ b2n−2,n−1 for n ≥ 11. Assume the claim is true whenever 
the first index is less than m. We want to prove the claim for all bm,k. If m ≤ 2000, we 
can check the claim directly (this has been checked using Sage). Thus, we may assume 
m > 2000. If m > 2k, then all of the coefficients in the recursion are nonnegative, so we 
are done by induction. Thus, we can assume that (m, k) = (2n, n) with n > 1000.

By the recurrence relation, we have

2nb2n,n = 8b2n−2,n−2 − (6n− 8)b2n−2,n−1.

We want to show that 8b2n−2,n−2 − (8n − 8)b2n−2,n−1 ≥ 0. We have

8b2n−2,n−2−(8n− 8)b2n−2,n−1

= 8b2n−2,n−2 − 32b2n−4,n−3 + 4(6n− 14)b2n−4,n−2.

Multiplying by (2n − 2)/8, it suffices to show

(2n− 2)b2n−2,n−2 − (8n− 8)b2n−4,n−3 + (6n2 − 20n + 14)b2n−4,n−2 ≥ 0.

By expanding (2n −2)b2n−2,n−2 using the recursion, we find that the above is equivalent 
to

(7n2 − 21n + 12)b2n−4,n−2 + 48b2n−4,n−4 − (6n− 4)b2n−4,n−3 ≥ 0. (‡)

By the induction hypothesis,

(7n2 − 21n + 12)b2n−4,n−2 ≥ (7n2 − 21n + 12)b2n−6,n−3.

By the recurrence in Theorem 3.1,

(2n− 4)2n−4,n−4 ≥ (n2 − 5n + 6)b2n−6,n−4 + (10n− 48)b2n−6,n−5.

Multiplying by 48/(2n − 4) yields
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48b2n−4,n−4 ≥ 48
2n− 4 [(n2 − 5n + 6)b2n−6,n−4 + (10n− 48)b2n−6,n−5].

Also, multiplying the recurrence for b2n−4,n−3 by (6n − 4)/(2n − 4) yields

(6n− 4)b2n−4,n−3 = 6n− 4
2n− 4 [(n2 − 3n)b2n−6,n−3 + (2n− 6)b2n−6,n−4

+ 48b2n−6,n−5].

We check that each term in this sum is less that one of the terms in the expansion of 
(7n2 − 21n + 12)b2n−6,n−3 + 48b2n−4,n−4. We have (6n − 4)/(2n − 4) ≤ 4 and

4(n2 − 3n)b2n−6,n−3 ≤ (7n2 − 21n + 12)b2n−6,n−3

4(2n− 6)b2n−6,n−4 ≤ 48(n2 − 5n + 6)
2n− 4 b2n−6,n−4

4 · 48b2n−6,n−5 ≤ 48(10n− 48)
2n− 4 b2n−6,n−5.

Thus (‡) is true, as desired. �
4. (3412, 3421)-avoiding permutations and separable permutations

In this section we prove Theorem 1.5, restated below.

Theorem 1.5. For n ≥ 1,
∑

π∈Sn(3412,3421)

xdes(π)ydd(π) =
∑

π∈Sn(2413,3142)

xdes(π)ydd(π).

For convenience we define the following variants of the double descent set. Let

DD0(π) = {i ∈ [n] : π(i− 1) > π(i) > π(i + 1)}

where π(0) = 0, π(n + 1) = ∞, and

DD∞(π) = {i ∈ [n] : π(i− 1) > π(i) > π(i + 1)}

where π(0) = ∞, π(n + 1) = 0. Similarly define dd0(π) and dd∞(π). Finally, let

des′(π) = #(Des(π) \ {n− 1}), dd′(π) = #(DD(π) \ {n− 1}).

Let S1
n = Sn(2413, 3142) and S2

n = Sn(3412, 3421). For i = 1, 2, define

Si(x, y, z) =
∑

n≥1

∑

π∈Si
n

xdes(π)ydd(π)zn.
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Moreover, define

F1(x, y, z) =
∑

n≥1

∑

π∈S1
n

xdes(π)ydd0(π)zn

R1(x, y, z) =
∑

n≥1

∑

π∈S1
n

xdes(π)ydd∞(π)zn

T2(x, y, z) =
∑

n≥1

∑

π∈S2
n

xdes′(π)ydd′(π).

We will also use Si, F1, etc. to denote Si(x, y, z), F1(x, y, z), etc.
The proof of the following lemma is very similar to the proof of [9, Lemma 3.4], so it 

is omitted. The essence of the proof is Stankova’s block decomposition [14].

Lemma 4.1. We have the system of equations

S1 = z + (z + xyz)S1 + 2xzS2
1

1 − xR1F1
+ xzS2

1(F1 + xR1)
1 − xR1F1

,

F1 = z + (xzS1 + zF1) + 2xzF1S1

1 − xR1F1
+ xzF1S1(F1 + xR1)

1 − xR1F1
,

R1 = yz + zS1 + xyzR1 + 2xzR1S1

1 − xR1F1
+ xzR1S1(F1 + xR1)

1 − xR1F1
.

Combining the first equation multiplied by F1 and the second equation multiplied by 
S1, and combining the first equation multiplied by R1 and the third equation multiplied 
by S1, respectively, gives us

F1 = S1 + xS2
1

1 + xyS1
, R1 = yS1 + S2

1
1 + S1

.

Plugging these values into the first equation and expanding yields the following.

Corollary 4.2. We have

S1(x, y, z) = xS3
1(x, y, z) + xzS2

1(x, y, z) + (z + xyz)S1(x, y, z) + z.

We will show that S2 satisfies the same equation.

Lemma 4.3. We have the system of equations

S2 = z + zS2 + (xy − x)zS2 + xT2S2,

T2 = z + (x− xy)z2 + zS2 + (xyz − 2xz + z)T2 + xT 2
2 .
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Proof. By considering the position of n, we see that every permutation π ∈ S2
n can be 

uniquely written as either π1n where π1 ∈ S2
n−1 or π1 ∗ π2 where π1 ∈ S2

k, π2 ∈ S2
n−k, 

1 ≤ k ≤ n − 1, and π1 ∗ π2 = AnB where

A = π1(1) · · ·π1(k − 1)

B = (π2(1) + �) · · · (π2(j − 1) + �)π1(k)(π2(j + 1) + �) · · · (π2(n− k) + �),

where π2(j) = 1 and � = k − 1. Furthermore,

des(π1n) = des(π1)

dd(π1n) = dd(π1)

des′(π1n) = des(π1)

dd′(π1n) = dd(π1)

des(π1 ∗ π2) = des′(π1) + des(π2) + 1

dd(π1 ∗ π2) = dd′(π1) + dd(π2)

des′(π1 ∗ π2) = des′(π1) + des′(π2) + 1

dd′(π1 ∗ π2) = dd′(π1) + dd′(π2),

with the exceptions dd(1 ∗ π2) = dd(π2) + 1, des′(π1 ∗ 1) = des′(π1), dd′(1 ∗ π2) =
dd′(π2) + 1, and des′(1 ∗ π2) = des′(π2) if n ≤ 2. With the initial conditions

S2(x, y, z) = z + · · · , T2(x, y, z) = z + 2z2 + · · · ,

the above implies the stated equations. �
Proof of Theorem 1.5. Solving the equations in Lemma 4.3 shows that S2 satisfies the 
same equation as S1. �
5. Concluding remarks and open problems

Our proofs of the γ-positivity of In(t) and J2n(t) are purely computational. Guo and 
Zeng first suggested the following question.

Problem 5.1 (Guo–Zeng [6]). Give a combinatorial interpretation of the coefficients an,k.

Dilks [3] conjectured the following q-analog of the γ-positivity of In(t). Here maj(π)
denotes the major index of π, which is the sum of the descents of π.

Conjecture 5.2 (Dilks [3]). For n ≥ 1,

∑

π∈In

tdes(π)qmaj(π) =
�n−1

2 �∑

k=0

γ
(I)
n,kt

kq
(k+1

2
) n−1−k∏

i=k+1

(1 + tqi),

where γ(I)
n,k(q) ∈ N[q].
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Since the (3412, 3421)-avoiding permutations are invariant under the MFS action, it 
would be interesting to find a combinatorial proof of Theorem 1.5, since this would lead 
to a group action on Sn(2413, 3142) such that each orbit contains exactly one element 
of

{π ∈ S2(2413, 3142) : dd(π) = 0, des(π) = k}

(cf. [5, Remark 3.9]).

Problem 5.3. Give a bijection between (3412, 3421)-avoiding permutations with m double 
descents and k descents and separable permutations with m double descents and k
descents.

Note that there does not exist a bijection preserving descent sets because the sepa-
rable permutations are not Des-Wilf equivalent to any permutation classes avoiding two 
patterns.

Finally, Lin [9] proved that the only permutations σ of length 4 which satisfy

∑

π∈Sn(σ,σr)

tdes(π) =
�n−1

2 �∑

k=0

γn,kt
k(1 + t)n−1−2k

where

γn,k = #{π ∈ Sn(σ, σr) : dd(π) = 0, des(π) = k}

are the permutations σ = 2413, 3142, 1342, 2431. Here σr denotes the reverse of σ. We 
can similarly ask the following.

Problem 5.4. Which permutations σ of length � ≥ 6 satisfy the above property?

Remark 5.5. For � = 5, the answer to Problem 5.4 is σ = 13254, 15243, 15342, 23154, 
25143 and their reverses. We have verified using Sage that these are the only permutations 
which satisfy the property for n = 5, 6, 7, and these permutation classes are all invariant 
under the MFS action because in these patterns, every index i ∈ [5] is either a valley or 
a peak.
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