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1. Introduction

Let p be a prime, and let Vn be any n-dimensional vector space over Fp . For a function f from Vn

to Fp the Fourier transform (or Walsh transform) of f is the complex-valued function f̂ on Vn given by

f̂ (b) =
∑
x∈Vn

ε
f (x)−〈b,x〉
p (1.1)

where εp = e2π i/p and 〈 , 〉 denotes any inner product on Vn . The Fourier spectrum of f is the multiset
spec( f ) = { f̂ (b) | b ∈ Vn}.

Definition 1.1. A function f : Vn → Fp is called bent if |̂ f (b)|2 = pn for all b ∈ Vn .
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Alternatively, a function f from Vn to Fp is bent if and only if for all nonzero a ∈ Vn , the derivative
function Da f (x) = f (x + a) − f (x) is balanced. If p = 2 then εp = −1 and f̂ (b) is an integer, so
a necessary condition for the existence of a bent function is that n is even. This does not hold for
odd p, where bent functions can exist for both odd and even n. When p is odd, bent functions are
sometimes called p-ary bent functions.

As all vector spaces of dimension n over Fp are isomorphic, we may associate Vn with Fn
p or with

the finite field Fpn . In the first case we use as inner product the conventional dot product, in the
second we use the inner product 〈x, y〉 = Trn(xy) where Trn(z) denotes the absolute trace of z ∈ Fpn .
The Fourier transform (1.1) is then adapted accordingly.

Often one considers the normalized Fourier coefficient p−n/2 f̂ (b) of a bent function. For any p, we
can only say a priori that the normalized Fourier coefficients lie on the unit circle. For p = 2, a bent
function must therefore have normalized Fourier coefficients ±1, because the Fourier coefficients are
integers. For odd p, there exists a function f ∗ : Vn → Fp such that (cf. [4], [7, Property 8])

p−n/2 f̂ (b) =
{±ε

f ∗(b)
p if n is even or n is odd and p ≡ 1 mod 4,

±iε f ∗(b)
p if n is odd and p ≡ 3 mod 4.

(1.2)

Definition 1.2. Let f be a bent function from Vn to Fp . Then f is called regular if, for all b ∈ Vn ,

we have p−n/2 f̂ (b) = ε
f ∗(b)
p for a function f ∗ : Vn → Fp , i.e., the normalized Fourier coefficients of

f form a subset, in fact the full set, of the p-th roots of unity. The bent function f is called weakly
regular if every quotient of two Fourier coefficients is a p-th root of unity. Otherwise f is called
non-weakly regular.

It is obvious from (1.2) that regular bent functions can only exist for even n and for odd n with
p ≡ 1 mod 4. For example, when p = 3, regular bent functions can only exist in even dimensions. The
normalized Fourier coefficients are then ε

f ∗(b)
3 for every b ∈ Vn and a function f ∗ : Vn → F3. A ternary

weakly regular bent function (which is not regular) has normalized Fourier coefficients −ε
f ∗(b)

3 if n is
even. If n is odd, then the normalized Fourier coefficients of a ternary weakly regular bent function
are all of the form iε f ∗(b)

3 , or all are of the form −iε f ∗(b)
3 . In contrast, ternary non-weakly regular bent

functions would have normalized Fourier coefficients ε
f ∗(b)

3 and −ε
f ∗(b)

3 when n is even, and iε f ∗(b)
3

and −iε f ∗(b)
3 if n is odd.

Almost all known p-ary bent functions are weakly regular. Until this paper, there are just a few
sporadic examples of non-weakly regular bent functions known (see [4,5]).

Two functions f , g from Vn to Fp are called extended affine equivalent (EA-equivalent) if g(x) =
af (L(x) + u) + 〈v, x〉 + c for some elements a, c ∈ Fp , u, v ∈ Vn and a linear permutation L(x) of Vn
(which corresponds to a coordinate transformation). It is well known that the absolute values in
the Fourier spectrum are preserved by EA-equivalence. In particular if for f : Vn → Fq we define

f v(x) = f (x) + 〈v, x〉 then ( f̂ v + c)(b) = εc
p f̂ (b − v). In the framework of the vector space Fn

p we have

L(x) = Ax for an invertible n × n-matrix A over Fp . Then f̂ (Ax)(b) = f̂ ((A−1)T b), where AT denotes
the transpose of the matrix A.

For the binary case, where bent functions in odd dimension do not exist, the notion of near-bent
functions was introduced in [8]. We generalize this now to characteristic p:

Definition 1.3. A function f : Vn → Fp is called near-bent if |̂ f (b)|2 = pn+1 or 0 for all b ∈ Vn .

We remark that the term semi-bent function in [3,6] and the term three-valued almost-optimal
function in [1] are used for the same concept in characteristic 2.

In this article, we first generalize to characteristic p the technique presented in [8] (see also [3]) for
constructing binary bent functions from near-bent functions. In Section 2, we illustrate the principle
of the construction. In Section 3, we collect some classes of near-bent functions that can be used for
the construction. The Fourier spectrum of quadratic functions is presented in detail in Section 4. With
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these results, we construct infinite classes of weakly regular and non-weakly regular bent functions
in Section 5.

2. Obtaining bent from near-bent functions

For a function f : Vn → Fp let the support of f̂ be defined by supp( f̂ ) = {b ∈ Vn | f̂ (b) �= 0}. For
any p-ary function f we have∑

b∈Vn

∣∣ f̂ (b)
∣∣2 =

∑
b∈Vn

∑
x,y∈Vn

ε
f (x)−〈b,x〉−( f (y)−〈b,y〉)
p =

∑
x,y∈Vn

ε
f (x)− f (y)
p

∑
b∈Vn

ε
〈b,y−x〉
p .

Observing that
∑

b∈Vn
ε

〈b,y−x〉
p = 0 if x �= y, and

∑
b∈Vn

ε
〈b,y−x〉
p = pn if x = y, we obtain the special

case of Parseval’s relation:∑
b∈Vn

∣∣ f̂ (b)
∣∣2 =

∑
x,y∈Vn,x=y

pn = p2n.

For a near-bent function f , clearly∑
b∈Vn

∣∣ f̂ (b)
∣∣2 = ∣∣supp( f̂ )

∣∣pn+1

and combining this with Parseval’s relation gives∣∣supp( f̂ )
∣∣ = pn−1.

The following theorem presents how to obtain p-ary bent functions from a set of p near-bent
functions f0(x), f1(x), . . . , f p−1(x) from Vn to Fp with supp( f̂ i) ∩ supp( f̂ j) = ∅ for i �= j. We remark

that then
⋃p−1

i=0 supp( f̂ i) = Fpn . The construction follows the principle of the classical Lagrange inter-
polation.

Theorem 2.1. Let f0(x), f1(x), . . . , f p−1(x) be near-bent functions from Vn to Fp such that supp( f̂ i) ∩
supp( f̂ j) = ∅ for 0 � i �= j � p − 1. Then the function F (x, y) from Vn × Fp to Fp defined by

F (x, y) = (p − 1)

p−1∑
k=0

y(y − 1) · · · (y − (p − 1))

y − k
fk(x)

is bent. Moreover the Fourier spectrum of F (x, y) is

spec(F ) =
p−1⋃
k=0

p−1⋃
b=0

ε−bk
p spec( fk) \ {0}.

Proof. For (a,b), (x, y) ∈ Vn × Fp the inner product we use is 〈a, x〉 + by. The Fourier transform F̂
of F at (a,b) is

F̂ (a,b) =
∑

x∈Vn, y∈Fp

ε
F (x,y)−〈a,x〉−by
p =

∑
y∈Fp

ε
−by
p

∑
x∈Vn

ε
F (x,y)−〈a,x〉
p

=
∑
y∈Fp

ε
−by
p

∑
x∈Vn

ε
(p−1)!(p−1) f y(x)−〈a,x〉
p

=
∑
y∈Fp

ε
−by
p

∑
x∈Vn

ε
f y(x)−〈a,x〉
p =

∑
y∈Fp

ε
−by
p f̂ y(a).

As each a ∈ Vn belongs to the support of exactly one f̂ y , y ∈ Fp , for this y we have F̂ (a,b) =
ε

−by
p f̂ y(a), and consequently |̂F (a,b)| = |ε−by

p f̂ y(a)| = p
n+1

2 . �
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3. Near-bent functions

The objective of this section is to collect near-bent functions for which the supports of their Fourier
transforms are easy to describe. These functions can then be used in connection with Theorem 2.1 to
construct new classes of bent functions. In Section 5 we will use some of them to construct infinite
classes of non-weakly regular bent functions.

Quadratic functions. For a function f from Vn to Fp , an element a ∈ Vn for which f (x + a) − f (x) is
constant is called a linear structure of f . The set Λ of the linear structures of a function f from Vn

to Fp is a subspace of Vn . Since adding a constant to a p-ary function preserves the absolute values
in the Fourier spectrum we may assume w.l.o.g. that f (0) = 0. Then f is a linear transformation on Λ

(otherwise the function f (x) − f (0) is a linear transformation on Λ). A quadratic function f from Vn

to Fp can be defined as a function for which f (x + a) − f (x) is linear or constant for all a ∈ V . Note
that then if a is not a linear structure of the quadratic function f , the function f (x + a) − f (x) is
balanced, i.e. every element in Fp is taken on precisely pn−1 times.

Partially bent functions. The set of quadratic functions is a subset of the set of partially bent functions,
which can be defined as the set of functions f from Vn to Fp for which f (x + a) − f (x) is either
balanced or constant. Let f be a partially bent function from Vn to Fp with f (0) = 0, and let s be
the dimension of Λ, then applying the standard Welch-squaring technique we obtain for b ∈ Vn∣∣ f̂ (b)

∣∣2 =
∑

x,y∈Vn

ε
f (x)− f (y)−〈b,x−y〉
p =

∑
y,z∈Vn

ε
f (y+z)− f (y)−〈b,z〉
p

=
∑
z∈Vn

ε
f (z)−〈b,z〉
p

∑
y∈Vn

ε
f (y+z)− f (y)− f (z)
p .

Using that f (y + z) − f (y) − f (z) is balanced as a function in variable y if z /∈ Λ, we get

∣∣ f̂ (b)
∣∣2 = pn

∑
z∈Λ

ε
f (z)−〈b,z〉
p =

{
pn+s if f (z) − 〈b, z〉 ≡ 0 on Λ,

0 otherwise
(3.1)

where in the last step we used that f (z) − 〈b, z〉 is linear on Λ.

Clearly a partially bent function is near-bent if the vector space Λ of its linear structures has
dimension 1, i.e. Λ = {cβ | c ∈ Fp} for some β ∈ Vn . By (3.1) the support of f̂ is a certain coset of the
orthogonal complement of Λ, depending on f (β).

Observation 3.1. Let f i , f j be near-bent functions with the same set of linear structures Λ = {cβ |
c ∈ Fp}, then the supports of the Fourier transforms of f i(x) + 〈ai, x〉 and f j(x) + 〈a j, x〉 are disjoint
if and only if f i(β) + 〈ai, β〉 �= f j(β) + 〈a j, β〉. Consequently there are many choices for separating
the supports of the Fourier transforms for a set { fk(x), 0 � k � p − 1} of near-bent functions with
the same Λ by adding appropriate linear terms. However, since {〈cβ,β〉 | c ∈ Fp} = Fp it suffices to
choose linear terms 〈a, x〉 with a ∈ Λ. In particular if fk(β) = d for all k = 0, . . . , p − 1, then { fk(x) +
〈kβ, x〉,0 � k � p − 1} is a set of near-bent functions for which the Fourier transforms have pairwise
disjoint support.

Example 1. For a bent function f (x) from Vn−1 to Fp , we define a function f̃ (x, y) from Vn−1 × Fp

to Fp by f̃ (x, y) = f (x). Then for (u, v) ∈ Vn−1 × Fp we have f̃ (x + u, y + v) − f̃ (x, y) = f (x + u) −
f (x), which vanishes if u = 0, and is balanced for u �= 0 (as f is bent). Consequently f̃ is near-bent
and the elements (0,a), a ∈ Fp are the linear structures of f̃ . As one easily sees from (3.1), the support
of the Fourier transform of f̃ is the orthogonal complement of Λ (if w.l.o.g. we suppose f (0) = 0).
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Example 2. The quadratic function f (x1, . . . , xn−1) = d1x2
1 + · · · + dn−1x2

n−1 with d1, . . . ,dn−1 ∈ F∗
p ,

is a bent function from Fn−1
p to Fp (see Section 4). Adding one variable xn we obtain the near-bent

function f̃ (x1, . . . , xn−1, xn) = d1x2
1 +· · ·+dn−1x2

n−1 from Fn
p to Fp . Obviously this example is a special

case of the previous one, the linear structures of f̃ are the vectors (0, . . . ,0,a), a ∈ Fp .

A topic of independent interest is finding polynomial representations of (quadratic) bent or near-
bent functions from Fpn to Fp . Recall that a quadratic function from Fpn to Fp , p odd, can be
represented as (see [3,4])

f (x) = Trn

(
l∑

i=0

aix
pi+1

)
, ai ∈ Fpn , 0 � i � l,

for an integer l, 0 � l � n/2. Following the Welch-squaring technique we see that the linear struc-
ture Λ of f is the kernel of the linearized polynomial

L(z) =
l∑

i=0

(
apl

i zpl+i + apl−i

i zpl−i )
. (3.2)

We hereby can refer to [4, Proposition 2]. Accordingly, f is near-bent if the kernel of L given as
in (3.2) is one dimensional.

We might hope for a monomial near-bent function, but unfortunately these do not exist as we
now prove.

Theorem 3.2. Quadratic monomial near-bent functions f (x) = Trn(axpr+1), a ∈ Fpn , in odd characteristic p
do not exist.

Proof. The linearized polynomial (3.2) that corresponds to f (x) = Trn(axpr+1) is given by L(z) = az +
apr

zp2r
.

We have to show that for any odd prime p, integers r,n � 1 and a ∈ Fpn the kernel Λ of the linear

map on Fpn induced by L(z) = az + apr
zp2r

does not have dimension 1. For a primitive element γ
of Fpn let a = γ c for some c, 0 � c � pn − 2. Then L(γ t) = 0 for an exponent t , 0 � t � pn − 2, if and
only if

γ
pn−1

2 −c(pr−1) = γ (p2r−1)t,

which is equivalent to

pn − 1

2
− c

(
pr − 1

) ≡ (
p2r − 1

)
t mod

(
pn − 1

)
.

Λ has dimension 1 if and only if this congruence has p − 1 incongruent solutions. Solutions exist if
and only if p − 1 divides pn−1

2 − c(pr − 1). And then, there are p − 1 incongruent solutions if and
only if gcd(p2r − 1, pn − 1) = p − 1. The second condition is satisfied if and only if gcd(2r,n) = 1, in
particular n is then odd, which contradicts the first condition. �
Remark 3.3. In [4] it is pointed out that f is bent, i.e. Λ has dimension 0, if and only if pgcd(2r,n) − 1
does not divide pn−1

2 − c(pr − 1). By Theorem 3.2, Λ has at least dimension 2 in all remaining cases.

As a consequence of Theorem 3.2 we must consider non-monomial quadratic functions in order to
be able to apply Theorem 2.1. A class of binomial near-bent functions is presented in the following
theorem.
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Theorem 3.4. Let c �= 0 be an element of Fp . The function f from Fpn to Fp

f (x) = Trn
(
cxpr+1 − cxpt+1) (3.3)

is near-bent if and only if gcd(n, r + t) = gcd(n, r − t) = gcd(n, p) = 1.

Proof. We show that the kernel Λ of the linearized polynomial L(x) given as in (3.2) corresponding
to f (x) has dimension 1 as a subspace of Fpn , i.e. gcd(L(x), xpn − x) has degree p. Equivalently Λ is
one dimensional if and only if the associates A(x) and xn − 1 of L(x) and xpn − x, respectively, satisfy
deg(gcd(A(x), xn − 1)) = 1, see [9, p. 118].

For the binomial (3.3) we have L(x) = c(x + xp2r − xpr−t − xpr+t
), consequently A(x) = c(1 + x2r −

xr−t − xr+t) = c(xr+t − 1)(xr−t − 1). Using gcd(xm − 1, xn − 1) = xgcd(m,n) − 1 we easily see that
deg(gcd(A(x), xn − 1)) = 1 if and only if gcd(n, r + t) = gcd(n, r − t) = gcd(n, p) = 1. The last con-
dition prevents 1 from being a multiple root of xn − 1. �
Remark 3.5. The kernel Λ of L(x) in Fpn for the function (3.3) is the set of the solutions of xp − x,
which is Fp .

Remark 3.6. With similar arguments one can show that the function f (x) = Trn(cxpr+1 + cxpt+1)

from Fpn to Fp is near-bent if and only if gcd(n,2(r + t)) = gcd(n,2(r − t)) = 2, r − t is odd, and
gcd(n, p) = 1. For this function Λ is the set of the solutions of xp + x. We note that the conditions for
this function to be near-bent imply that n is even.

A further construction of near-bent functions which can be seen as a generalization of the
Maiorana–McFarland construction is described in Zheng and Zhang [10]. Let P be any injective func-
tion from Fk−1

p to Fk
p , then the function f (x, y) = P (x) · y from F2k−1

p = Fk−1
p × Fk

p to Fp is near-bent.

Let (u, v) ∈ Fk−1
p × Fk

p , then

f̂ (u, v) =
∑

x∈F
k−1
p

y∈F
k
p

ε
P (x)·y−u·x−v·y
p

=
∑

x∈F
k−1
p

εu·x
p

∑
y∈F

k
p

ε
(P (x)−v)·y
p = pk

∑
P (x)=v

εu·x
p

=
{

pkε
u P−1(v)
p if P−1(v) exists,

0 otherwise.

As can be seen immediately, supp( f̂ ) = {(u, v) | v ∈ im(P ), u ∈ Fk−1
p }. Hence it is easy to construct

sets of near-bent functions of this class with pairwise disjoint support. We remark that differently to
the previous examples of near-bent functions, linear structures can be avoided with an appropriate
choice of the mapping P , see [10]. Finally we point out that this class of near-bent functions is
always regular, in the sense that f̂ (b) = p(n+1)/2ε

J (b)
p for all b ∈ supp( f̂ ), where J (b) is a function

from supp( f̂ ) to Fp .

4. Fourier spectrum of quadratic functions

In this section we explicitly determine the Fourier spectrum of quadratic functions. We will use
this result in Section 5 to construct weakly regular and non-weakly regular bent functions. Thereby
we obtain the first known construction of infinite classes of non-weakly regular bent functions.

Fixing a basis of Vn we associate Vn with Fn
p and consider quadratic functions f (x) =∑

1�i� j�n aij xi x j from Fn
p to Fp , where we put x = (x1, . . . , xn). We note that we may omit the affine
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part of the function as it does essentially not affect the Fourier spectrum. Then we can associate f
with a quadratic form

f (x) = xT Ax

where xT denotes the transpose of the vector x, and A is a symmetric matrix with entries in Fp . By
[9, Theorem 6.21] any quadratic form can be transformed to a diagonal quadratic form by a coordinate
transformation, i.e. D = C T AC for a nonsingular (even orthogonal) matrix C over Fp and a diagonal
matrix D = diag(d1, . . . ,dn). Hence it is sufficient to describe the Fourier spectrum of a quadratic
form f (x) = d1x2

1 + · · · + dn−sx2
n−s := Q d

n,n−s(x) for some 0 � s � n − 1 and d = (d1, . . . ,dn−s). Here we
assume w.l.o.g. that the nonzero elements of the matrix D are d1, . . . ,dn−s . We will use the following
simple lemmas, for the first see also [2].

Lemma 4.1. For two functions f and g from Vn to Fp and from Vm to Fp respectively, we define the direct

sum f ⊕ g from Vn+m = Vn × Vm to Fp by ( f ⊕ g)(x, y) = f (x) + g(y). Then ̂( f ⊕ g)(u, v) = f̂ (u)̂g(v).

Lemma 4.2. Let f be a function from Vm to Fp and let f̃ be the function from Vm+n = Vm × Vn to Fp defined

by f̃ (x, y) = f (x). Then ̂̃f (b, c) = pn f̂ (b) if c = 0 and ̂̃f (b, c) = 0 if c �= 0.

Proof. We havễf (b, c) =
∑

x∈Vm
y∈Vn

ε
f̃ (x,y)−〈b,x〉−〈c,y〉
p =

∑
y∈Vn

ε
−〈c,y〉
p

∑
x∈Vm

ε
f (x)−〈b,x〉
p

=
{

pn f̂ (b) if c = 0,

0 else.
�

Theorem 4.3. For the quadratic function Q d
n,n−s(x) = d1x2

1 + · · · + dn−sx2
n−s from Fn

p to Fp let � = ∏n−s
i=1 di ,

and let η denote the quadratic character of Fp . The Fourier spectrum of Q d
n,n−s is given by

spec
(

Q d
n,n−s

) =
⎧⎨⎩ {0, η(�)p

n+s
2 ε

f ∗(b)
p | b ∈ supp(

̂Q d
n,n−s)} if p ≡ 1 mod 4,

{0, η(�)in−s p
n+s

2 ε
f ∗(b)
p | b ∈ supp(

̂Q d
n,n−s)} if p ≡ 3 mod 4,

if s > 0, where f ∗(x) is a function from supp(
̂Q d

n,n−s) to Fp , and

spec
(

Q d
n,n

) =
⎧⎨⎩ {η(�)p

n
2 ε

f ∗(b)
p | b ∈ Fn

p} if p ≡ 1 mod 4,

{η(�)in p
n
2 ε

f ∗(b)
p | b ∈ Fn

p} if p ≡ 3 mod 4,

where f ∗(x) is a function from Fn
p to Fp .

Proof. We first consider Q d
1,1(x) = dx2 and note that by [9, Theorem 5.33]

̂Q d
1,1(0) =

∑
x∈Fp

εdx2

p = η(d)G(η,χ1) (4.1)

where χ1 is the canonical additive character of Fp and G(η,χ1) is the associated Gaussian sum.
Consequently

̂Q d
1,1(b) =

∑
x∈Fp

εdx2−bx
p =

∑
x∈Fp

ε
d(x−b/(2d))2−b2/(4d)
p = ε

−b2/(4d)
p η(d)G(η,χ1).
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With [9, Theorem 5.15] we then obtain

̂Q d
1,1(b) =

⎧⎨⎩η(�)p
1
2 ε

−b2/(4d)
p if p ≡ 1 mod 4,

η(�)ip
1
2 ε

−b2/(4d)
p if p ≡ 3 mod 4.

With Lemma 4.2 we get the assertion for Q d
n,1 for arbitrary n. The general assertion then follows with

induction from Lemma 4.1. �
Remark 4.4. The multiplication of a quadratic function f by c, c ∈ F∗

p , causes a multiplication by c
of the elements in the associated diagonal matrix. Consequently, Theorem 4.3 implies that f and cf
have the same Fourier spectrum if and only if n − s is even or n − s is odd and c is a square in Fp .

Remark 4.5. Two quadratic functions Q d
n,n−s(x) = d1x2

1 + · · · + dn−sx2 and Q d′
n,n−s(x) = d′

1x2
1 + · · · +

d′
n−sx2 from Fn

p to Fp are equivalent, i.e. one can be obtained from the other by a coordinate transfor-

mation, if and only if η(�) = η(�′), where � = ∏n−s
i=1 di and �′ = ∏n−s

i=1 d′
i (see e.g. [9, Exercise 6.24]).

5. (Non)-weakly regular bent functions, examples

In this section we employ quadratic near-bent functions to construct both weakly regular and non-
weakly regular bent functions. We will present examples using both commonly used representations
of p-ary functions, functions from Fn

p to Fp and functions from Fpn to Fp . In the latter case, the
obtained bent functions will be functions from Fpn × Fp to Fp .

Let c0, . . . , cp−1 be nonzero elements of Fp , then by Theorem 4.3 the functions

fk(x) = ckx2
1 + x2

2 + · · · + x2
n−1, 0 � k � p − 1, (5.1)

are near-bent functions from Fn
p to Fp , all with the set of linear structures Λ = {(0, . . . ,0,a) | a ∈ Fp}.

By Observation 3.1 the set{
fk(x) + kxn

∣∣ 0 � k � p − 1
}

(5.2)

is a set of near-bent functions for which the supports of the Fourier transforms are pairwise disjoint.
The function given as in Theorem 2.1 is then bent. By Theorem 4.3, the signs of the Fourier coefficients
of the functions fk given by (5.1) are the same if and only if all ck , 0 � k � p − 1, have the same
quadratic character. By the description of the Fourier spectrum in Theorem 2.1, the constructed bent
function is then weakly regular if and only if η(c0) = η(c1) = · · · = η(cp−1). We emphasize that the
vast majority of these bent functions are non-weakly regular.

Example 3. By the above arguments, the functions f0(x1, x2, x3, x4, x5) = x2
1 +x2

2 +x2
3 +x2

4, f1(x1, x2, x3,

x4, x5) = 2x2
1 + x2

2 + x2
3 + x2

4 + x5, f2(x1, x2, x3, x4, x5) = 2x2
1 + x2

2 + x2
3 + x2

4 + 2x5 are near-bent func-
tions from F5

3 to F3, for which supp( f̂ i) ∩ supp( f̂ j) = ∅ for 0 � i �= j � 3. With the construction of
Theorem 2.1 we obtain the bent function F from F6

3 to F3 of algebraic degree 4:

F (x1, x2, x3, x4, x5, y) = 2(y − 1)(y − 2) f0 + 2y(y − 2) f1 + 2y(y − 1) f2

= 2y2( f0 + f1 + f2) + 2y( f1 + 2 f2) + f0

= x2
1 y2 + x5 y + x2

1 + x2
2 + x2

3 + x2
4.

As η(1) �= η(2) in F3, the bent function F is non-weakly regular.

Example 4. Since in F5 we have η(2) = η(3), with the near-bent functions f0(x1, x2, x3) = 2x2
1 +

x2
2, f1(x1, x2, x3) = 2x2

1 + x2
2 + x3, f2(x1, x2, x3) = 2x2

1 + x2
2 + 2x3, f3(x1, x2, x3) = 3x2

1 + x2
2 + 3x3,
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f4(x1, x2, x3) = 3x2
1 + x2

2 + 4x3 from F3
5 to F5 we obtain with Theorem 2.1 the weakly regular bent

function F from F4
5 to F5 and algebraic degree 6,

F (x1, x2, x3, y) = 3x2
1 y4 + 3x2

1 y3 + 4x2
1 y + x3 y + 2x2

1 + x2
2.

Finally we point to constructing bent functions using near-bent functions from Fpn to Fp . We will ap-
ply our construction method to near-bent functions f (x) of the form (3.3). We recall that the space of
the linear structures of f (x) is Λ = Fp and observe that f (a) = 0 for a ∈ Λ. With Observation 3.1 we
can construct appropriate near-bent functions to apply Theorem 2.1. We will use that by Remark 4.4,
if f is a quadratic near-bent function from Fpn to Fp and c ∈ F∗

p , then f and cf have the same Fourier
spectrum if and only if n is odd or n is even and c is a square in Fp .

Example 5. Let p = 3, n = 5, f (x) = Trn(x32+1 − x3+1). For any c0, c1, c2 in F∗
3 the Fourier transforms

of the near-bent functions f0(x) = c0 f (x), f1(x) = c1 f (x) + x, f2 = c2 f (x) + 2x have pairwise disjoint
support, hence we can apply Theorem 2.1. Since n is odd every choice of c0, c1, c2 in F∗

3 yields
a weakly regular bent function from F35 × F3 to F3.

Example 6. Choose p = 3, n = 8, f (x) = Trn(x32+1 − x3+1). Applying Theorem 2.1 to f0(x) = c0 f (x),
f1(x) = c1 f (x)+x, f2 = c2 f (x)+2x for some c0, c1, c2 in F∗

3 yields a non-weakly regular bent function
whenever η(c0) = η(c1) = η(c2) does not hold (i.e. as p = 3, c0, c1, c2 are not all the same).

Remark 5.1. With the presented procedure of constructing bent from near-bent functions a broad
variety of (weakly regular and non-weakly regular) bent functions can be obtained.

1. The concept of equivalence can be utilized to generate a large diversity of near-bent functions
serving as building blocks for the construction. For example, one may compose the binomial f (x)
given as in (3.3) with a linearized permutation polynomial π(x). If π fixes Fp , e.g. if π has
coefficients in Fp , then the near-bent function f (π(x)) has again Fp as set of linear structures.

2. In the construction, for some of the near-bent functions Maiorana–McFarland near-bent functions
can be taken. Recall that the support of their Fourier transform can be chosen with an appropriate
choice of the involved mapping P (see Section 3). By this, one can expect new inequivalent bent
functions as some of the employed near-bent functions can be chosen without linear structure.

3. Finally the procedure can be applied recursively. After producing a bent function in dimension n,
in a first step, one can add one variable and obtain again a near-bent function in dimension
n + 1 as described in Example 1. This function can then serve as a building block for a next step
generating bent functions in dimension n + 2 and after l steps in dimension n + 2l.
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