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1. Introduction

1.1. Notation

We adhere to standard notation and terminology concerning permutations. We write 
Sn for the symmetric group on the symbols {1, 2, . . . , n}, and we multiply permutations 
from right to left. The number of cycles in π ∈ Sn is denoted by �(π). For a composition 
α = (α1, . . . , αm) of n, we write Cα for the conjugacy class of Sn consisting of all 
permutations whose disjoint cycles are of lengths α1, . . . , αm. Elements of Cα are said 
to be of cycle type α. Permutations of cycle type (k, 1, 1, . . . , 1) are called k-cycles, with 
2-cycles more commonly referred to as transpositions. We typically suppress cycles of 
length 1 when writing permutations in disjoint cycle notation. Thus (i j) denotes a 
transposition in Sn, with the value of n to be understood from context.

For any list of integers β = (β1, β2, . . .) with finite support, let |β| =
∑

k βk and let 
�(β) be the number of nonzero entries of β. In particular, for π ∈ Cα ⊂ Sn we have 
|α| = n and �(α) = �(π).

For an integer partition l and a set of indeterminates x = (x1, . . . , xn), we write 
hl(x), el(x) and sl(x), respectively, for the complete, elementary, and Schur symmetric 
polynomials indexed by l. We adopt the convention that each of these polynomials is 0 
when l is not a partition.

The ring of formal power series in indeterminates x = (x1, . . . , xm) over the ring R
is denoted by R[[x]]. If f ∈ R[[x]] and i = (i1, . . . , im) is a list of nonnegative integers, 
then we write [xi] f for the coefficient of the monomial xi = xi1

1 · · ·xim
m in f . We let Dx

denote the total derivative operator on R[[x]], namely Dx =
∑m

i=1 xi
∂

∂xi
.

1.2. Factorizations of permutations

A factorization of a permutation π ∈ Sn is a tuple f = (σ1, . . . , σr) where each 
σi ∈ Sn and π = σ1 · · ·σr. The σi are the factors of f . The number of factors, r, is 
the length of f , and is denoted by �(f). We will generally be less formal and write a 
factorization simply as the product of its factors. For instance,

(1 2 3)(4 6) · (2 4 6 5) · (1 4)(2 3)(5 6) (1)

is a factorization of (1 4 2)(3 6)(5) of length 3.
Let f be a factorization of π ∈ Sn. We define the class of f to be the cycle type 

of π, while the signature of f is the list β = (β2, β3, . . .), where βk is the total number 
of k-cycles amongst all factors. The depth of f , denoted by 〈f〉, is defined as

〈f〉 =
∑

(j − 1)βj .

j≥2
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This is the minimum total number of transpositions required to decompose all factors 
of f . Note that the depth of a factorization increases when an additional factor is inserted, 
except in the case where the extra factor is the identity. The factorization (1), above, is 
of class (3, 2, 1), signature (4, 1, 1, 0, . . .) and depth 9.

A factorization in Sn is transitive if the group generated by its factors acts transitively 
on {1, 2, . . . , n}. For instance, (1) is a transitive factorization in S6, whereas

(1 3 2)(5 6) · (2 4)(1 3) · (1 4)(5 6)

is not because {5, 6} is an invariant subset. It is not difficult to show that for every 
transitive factorization f of π ∈ Sn there is a unique nonnegative integer g such that

〈f〉 = n + �(π) − 2 + 2g. (2)

This g is called the genus of f . A factorization is of genus 0 precisely when it is transitive 
and has minimal depth among all factorizations of the same class. For this reason, genus 0 
factorizations are said to be minimal transitive.

Permutation factorizations have been studied for a long time in various guises. From 
an algebraic point of view, every question regarding factorizations is a question about the 
structure of the symmetric group, and there is a well-trodden bridge between factoriza-
tions and the representation theory of Sn. (See, for instance, [1,18,27,36].) Factorizations 
also have a geometric flavor, in the sense that they encode cellular decompositions of 
surfaces — that is, maps. (See [8,24,33] and the references therein.) The notions of transi-
tivity and genus of factorizations arise naturally from the geometric point of view, being 
equivalent to connectedness and genus of the associated maps.

1.3. Cycle factorizations

This paper is primarily concerned with the combinatorics of cycle factorizations, which 
are factorizations in which every factor is a cycle of some length. For example,

(1 3) · (2 4 5) · (1 2 3) · (2 5) · (3 6) · (1 2 3 4)

is a cycle factorization with signature (3, 2, 1, 0, . . .). A k-cycle factorization is a factor-
ization in which all factors are k-cycles.

The study of 2-cycle factorizations (i.e. factorizations into transpositions) dates back 
at least to Hurwitz, who used them to encode topologically inequivalent branched cov-
erings of the sphere. Hurwitz found [25] the following beautiful formula for the number 
of minimal transitive 2-cycle factorizations of any permutation π ∈ Sn of cycle type 
α = (α1, . . . , αm):

nm−3(n + m− 2)!
m∏ ααi

i

(αi − 1)! . (3)

i=1
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See [8,19] for modern derivations of Hurwitz’s formula and [37] for a reconstruction 
of Hurwitz’s original proof. More recently, the celebrated ELSV formula has extended 
this geometric connection to link the combinatorics of 2-cycle factorizations with the 
intersection theory of moduli spaces of curves; see [14,22,23,34].

Taking α = (n) in Hurwitz’s formula shows that there are nn−2 factorizations of the 
full cycle (1 2 · · · n) into n − 1 transpositions.1 This famous result is often attributed to 
Dénes [12], who proved it using a correspondence with labelled trees. More generally, it 
is known [26,35] that there are

n�−1�!∏
k βk!

(4)

minimal transitive factorizations of (1 2 · · · n) with signature β = (β2, β3, . . .) and length 
� = |β|.

Succinct counting formulae such as (3) and (4) do not exist for any other classes of 
cycle factorizations, even in the minimal transitive case. Nonetheless, there is evidence 
to suggest these factorizations have a rich combinatorial structure. (See Section 2.1.)

1.4. Inequivalent factorizations

There is a natural equivalence relation ∼ on the set of cycle factorizations, defined 
by stipulating that two such factorizations are equivalent if one can be obtained from 
the other by iteratively swapping adjacent, disjoint (and hence commuting) factors. For 
example,

(3 4 5) · (1 2) · (2 3 5) · (1 4) ∼ (1 2) · (3 4 5) · (1 4) · (2 3 5).

Although this relation can be extended to arbitrary factorizations in an obvious way, we 
emphasize that we have defined it only for cycle factorizations.

The principal focus of this paper is the combinatorics of equivalence classes of cycle 
factorizations under this relation. As such, we shall abuse terminology and henceforth 
refer to the class containing such a factorization f simply as the inequivalent factoriza-
tion f . Note that length, class, signature and depth are invariant under commutation of 
disjoint adjacent factors, so it is sensible to apply these terms to inequivalent factoriza-
tions.

Let us write c̃α ; β for the number of minimal transitive inequivalent factorizations 
with signature β of any permutation of cycle type α. It is convenient to define, for each 
m ≥ 1, the generating series

Ψ̃m(x,q) =
∑
α,β

c̃α ; β
xα1

1 · · ·xαm
m

α1 · · ·αm
qβ , (5)

1 All factorizations of the full cycle are necessarily transitive.
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where the sum extends over all m-part compositions α = (α1, . . . , αm) and all finitely 
supported lists β = (β2, β3, . . .) of nonnegative integers. Throughout this article, the 
indeterminate qk is a marker for k-cycles and q = (q2, q3, . . .). Let Ψ̃m,k be the restriction 
of Ψ̃m to k-cycle factorizations, obtained by setting qk = 1 and qi = 0 for i �= k.

In comparison with their “ordinary” analogues, little is known about inequivalent 
factorizations, and all specific enumerative results are restricted to the minimal transi-
tive case. The first such results were obtained by Eidswick [13] and Longyear [29], who 
independently showed that there are

c̃(n) ; (n−1) = 1
n− 1

(
3n− 3
n− 2

)
inequivalent factorizations of the full cycle (1 2 · · · n) into n − 1 transpositions. (Note 
that these are necessarily minimal transitive.) Longyear’s approach involved commuting 
factorizations into canonical forms, leading to the functional equation

h = 1 + xh3 (6)

for the series h(x) = ∂
∂x Ψ̃1,2(x). This result was extended to k-cycle factorizations by 

Goulden and Jackson [18], who obtained Ψ̃1,k as a corollary of their work on Macdonald’s 
uλ symmetric functions. Springer [35] generalized Longyear’s canonical form and used 
a correspondence with trees to derive the following analogue of (4) for inequivalent 
factorizations of the full cycle:

c̃(n) ; β = (2n + �− 2)!
(2n− 1)!

∏
k βk!

. (7)

Inequivalent factorizations of permutations other than the full cycle were first studied 
by Goulden, Jackson and Latour [21], who showed that

Ψ̃2,2(x1, x2) = log
(

1 + x1x2h(x1)h(x2)
h(x1) − h(x2)

x1 − x2

)
, (8)

where h is defined by (6). Their derivation again employs commutation to canonical 
form, but also relies on a somewhat intricate inclusion–exclusion argument. Although 
not stated in [21], it is possible to extract coefficients from this series to obtain the 
following “inequivalent” analogue of (3) in the case where α has two parts (see Section 6
for details):

c̃(n,m) ; (n+m) = 2nm
n + m

∑
k≥0

(
3n

n− 1 − k

)(
3m

m− 1 − k

)
. (9)

Springer’s formula (7) was proved again in [2,26], where a simple functional equation 
for Ψ̃1 was derived from graphical models for inequivalent factorizations closely related 
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to those employed in this article (see Theorem 2.3). In [26] this approach was also 
used to yield a compact expression for Ψ̃2, generalizing the Goulden–Jackson–Latour 
series (8). These results will be restated in an alternative form and reproved below (see 
Theorem 2.4).

Although inequivalent factorizations were initially studied as a combinatorial curiosity, 
we will witness surprisingly close structural ties between them and their “ordinary” 
cousins. Recently, inequivalent factorizations have also appeared in the physics literature 
in connection to quantum chaotic transport (see Section 4.4).

2. Survey of results

Our results on inequivalent factorizations can be separated into two distinct, but not 
wholly disjoint, categories: (1) general relationships with other classes of factorizations, 
and (2) specific enumerative results.

The bulk of our technical effort has been dedicated to the enumeration of minimal 
transitive inequivalent factorizations. While we have substantially extended all previous 
work along these lines, we believe the relationships we have uncovered between various 
classes of factorizations (both proven and conjectured) are of greater fundamental interest 
than our specific enumerative results. As such, we have organized the article to emphasize 
these connections.

In this section we present a high level summary of our work, deferring various technical 
details until later. We hope this affords the reader a glimpse at the grand structure of 
transitive factorizations.

2.1. Connections with other classes of factorizations

For a composition α = (α1, . . . , αm) of n, let Fα,g(r) denote the number of (transitive) 
genus g factorizations of length r of any π ∈ Cα. Let Pα,g(r) be the number of these which 
are proper, by which we mean that no factor is the identity permutation. We stress that 
Fα,g(r) and Pα,g(r) count factorizations into permutations of arbitrary cycle structure, 
as opposed to inequivalent factorizations which are cycle factorizations.

Since the removal of identity factors does not alter depth or transitivity, every genus 
g factorization of class α can be built by inserting identity factors into a unique proper 
factorization of the same class and genus. In this way we obtain

Fα,g(r) =
∑
k

(
r

k

)
Pα,g(k) (10)

for all nonnegative integers r. Since each factor of a proper factorization contributes at 
least 1 to depth, (2) implies that Pα,g(k) = 0 whenever k > n + m − 2 + 2g. Thus the 
right-hand side of (10) is polynomial in r. We therefore extend the definition of Fα,g(r)
to all values of r by identifying it with this polynomial.
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Transitive factorizations of specified length have been studied only in genus 0, in which 
case they correspond with a class of planar maps known as constellations. Bousquet-
Mélou and Schaeffer have counted constellations via an ingenious bijective decomposition 
into decorated trees, showing in [8] that2

Fα,0(r) = r((r − 1)n− 1)(m−3)

m∏
i=1

αi

(
rαi − 1

αi

)
, r ≥ 2, (11)

where x(k) = x(x − 1)(x − 2) · · · (x − k + 1) for k ≥ 0 and x(−k) = 1/(x + k)(k). Since 
both sides are polynomial in r and equality holds for all r ≥ 2, we conclude that (11) is 
a polynomial identity.

A monotone factorization (also called a primitive factorization) is a 2-cycle factoriza-
tion whose factors weakly increase from left to right with respect to greatest element. 
That is, factorization (a1 b1) · (a2 b2) · · · (ar br) is monotone when 1 ≤ ai < bi ≤ n for 
all i and b1 ≤ b2 ≤ · · · ≤ br. For instance,

(2 3) · (3 4) · (1 4) · (3 4) · (4 5)

is a minimal transitive monotone factorization of (1 2 3)(4 5). Monotone factorizations 
of the full cycle were initially studied by Gewurz and Merola [16], who showed they 
are counted by the Catalan numbers. Matsumoto and Novak [30,31] later initiated 
a more general study in connection with the expansion of certain matrix integrals. 
A thorough “cut–join” analysis was given in [17], where the structure of transitive 
monotone factorizations was shown to closely parallel that of general 2-cycle factor-
izations.

For any π ∈ Cα, let Mα,g be the number of genus g monotone factorizations of π, and 
let C̃α,g(r) be the number of inequivalent genus g factorizations of π of length r. Then 
we have the following relationship between factorizations of fixed genus and their proper, 
inequivalent, and monotone variants.

Theorem 2.1. For any composition α and any g ≥ 0,

(−1)|α|+�(α) Mα,g =
∑
r≥0

(−1)rC̃α,g(r) =
∑
r≥0

(−1)rPα,g(r) = Fα,g(−1).

Note that the rightmost equality in Theorem 2.1 is obtained simply by evaluating (10)
at r = −1. Thus the true content of the theorem is the other equalities, which will be 
established in Section 3 as consequences of somewhat more general results. In particular, 
Theorem 3.1 describes the connection between proper and inequivalent factorizations 
(which comes by way of the Cartier–Foata commutation monoid and which remains 

2 Hurwitz’s formula (3) can be obtained as an “extremal” case of (11). See [8] for details.
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valid when controlling for the signature β of the factorization) and Theorem 3.3 provides 
the link between monotone and inequivalent factorizations (for which we provide both 
combinatorial and algebraic proofs).

Interestingly, the relationship between Mα,g and Pα,g(r) can also be deduced by com-
paring the works of Matsumoto/Novak [30,31] and Collins [11, Theorem 2.4], where enu-
merations of monotone and proper factorizations, respectively, appear in the asymptotic 
expansion of integrals over the unitary group. We also note that, while the appearance 
of Fα,g(−1) in Theorem 2.1 is reminiscent of Stanley’s evaluation of the chromatic poly-
nomial (to count acyclic orientations), we are not aware of any combinatorial meaning 
of Fα,g(−k) in general.

From Theorem 2.1 we can immediately recover the following beautiful counting for-
mula for minimal transitive monotone factorizations, originally due to Goulden, Guay-
Paquet and Novak [17]. (During the preparation of this article we discovered that 
Chapuy [10] has independently arrived at this result in essentially the same manner.)

Corollary 2.2. (See [17, Theorem 1.1].) For any composition α = (α1, . . . , αm) of n, we 
have

Mα,0 = (2n + 1)(m−3)
m∏
i=1

αi

(
2αi

αi

)
,

where x(k) = x(x +1) · · · (x +k− 1) and x(−k) = 1/(x −k)(k) for nonnegative integers k.

Proof. Take g = 0 in Theorem 2.1 and set r = −1 in (11) to evaluate Fα,0(−1). �
In the case α = (n), Corollary 2.2 yields the Catalan number M(n),0 = 1

n

(2n−2
n−1

)
, in 

accordance with Gewurz and Merola’s early result [16].

2.2. Minimal transitive inequivalent factorizations

Central to our study of inequivalent factorizations is a new graphical model of them 
as alternating maps. These are embeddings of directed graphs in orientable surfaces such 
that the edges encountered on a cyclic tour around any vertex alternate in direction. 
Clearly every vertex of an alternating map is either a leaf or has even total degree, and the 
out-directed and in-directed leaves are precisely the sources and sinks, respectively. Fig. 1
shows a preliminary example of the following correspondence, which will be established 
in Section 4.

Theorem 2.3. Let α = (α1, . . . , αm) be an m-part composition of n and let π ∈ Sn be 
of cycle type α. Inequivalent genus g factorizations of π with signature β = (β2, β3, . . .)
are in one-to-one correspondence with acyclic alternating genus g maps with m labelled 
faces in which
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Fig. 1. An alternating map satisfying the conditions of Theorem 2.3, with g = 0, m = 3, (α1, α2, α3) =
(4, 2, 1) and (β2, β3, . . .) = (6, 1, 0, . . .).

(a) every vertex is a source, a sink, or has even total degree ≥ 4,
(b) face i contains αi sources and αi sinks, with one source distinguished, and
(c) there are βk vertices of degree 2k, for k ≥ 2.

In Section 5 we employ this correspondence to give compact expressions for the min-
imal transitive generating series Ψ̃m in cases m = 1, 2, 3. (See Theorem 2.4 below.) The 
real novelty here is our expression for Ψ̃3, since Ψ̃1 and Ψ̃2 have been found previously 
in different but equivalent forms [2,26,35]. We have restated these results for complete-
ness and unification. Both will be proved in Section 5 as introductory examples of our 
methods.

Theorem 2.4. Let φ ∈ Q[q][[x]] be the unique solution of

φ = x(1 −Q(φ))−2, (12)

where Q is defined by

Q(z) =
∑
k≥2

qkz
k−1. (13)

Set

S(φ) = 1 −Q(φ)

P (φ) = 1 −Q(φ) − 2φQ′(φ).

Then we have

DxΨ̃1 = φ1S1 (14)

DxΨ̃2 = φ1φ2

(
S1

P1
− S2

P2

)
Q1 −Q2

(φ1 − φ2)(φ1S1 − φ2S2)
(15)

Ψ̃3 = 2φ1φ2φ3

3∑
i=1

1
Pi

∏
j �=i

Qi −Qj

(φi − φj)(φiSi − φjSj)
, (16)

where φi = φ(xi, q), Qi = Q(φi), Si = S(φi) and Pi = P (φi).
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The similarity between expressions (14)–(16) is suggestive of a common form for Ψ̃m, 
valid for all m. Finding such a form remains a topic for future study, as our methods 
become impractical for m ≥ 4 and the ad hoc nature of our derivations in cases m = 1, 2, 3
sheds little light on the matter. We also note that although Ψ̃3 is obviously symmetric 
in the φi, we have found no symmetric function expansion that is remotely as concise as 
the “alternating” form given above.

The presence of Dx in (14) and (15), and its absence in (16), is not well understood 
combinatorially. However, we shall see below that this situation closely parallels known 
results regarding ordinary cycle factorizations.

Theorem 2.4 can be specialized to obtain generating series for inequivalent k-cycle 
factorizations. The restriction to Ψ̃1,k and Ψ̃2,k is routine, while the evaluation of Ψ̃3,k

rests on technical lemmas which we have relegated to Appendix A. The results are given 
in Section 6.

Of course, we can further restrict our attention to inequivalent factorizations into 
transpositions. For m ≤ 3 we obtain simple expressions for Ψ̃m,2 as special cases of 
Ψ̃m,k, see Corollary 6.2. But we have also used a specialization of Theorem 2.3 to obtain 
a compact form for Ψ̃4,2, currently the only result available for m = 4.

Theorem 2.5. Let φ ∈ Q[[x]] be the unique solution of φ = x(1 − φ)−2, namely

φ(x) =
∑
n≥1

1
n

(
3n− 2
n− 1

)
xn.

Letting φi = φ(xi) and ei ≡ ei(φ1, φ2, φ3, φ4), we have

Ψ̃4,2 = 6(Dx + 1)
4∑

i=1

φi

1 − 3φi

∏
j �=i

φj

(φi − φj)(1 − φi − φj)

+ 12e4(4 − 4e1 + 3e2)∏
i(1 − 3φi)

∏
i<j(1 − φi − φj)

. (17)

The derivation of equation (17) is given in Section 6.2. As with Ψ̃m, we have not been 
able to deduce a universal form of Ψ̃m,2 valid for all m.

2.3. Minimal transitive cycle factorizations

More important than the enumerative content of Theorem 2.4 is its striking similarity 
with analogous results for ordinary cycle factorizations.

Let cα ; β be the number of minimal transitive cycle factorizations with signature β of 
any permutation with cycle type α. In accordance with (5), set
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Ψm(x,q) =
∑
α,β

cα ; β
1
|β|!

xα1
1 · · ·xαm

m

α1 · · ·αm
qβ (18)

for m ≥ 1.
Closed form expressions for Ψm are known only when m = 1 or m = 2. The case 

m = 1, which corresponds to factorizations of the full cycle, is well understood both 
bijectively [35] and algebraically while the case m = 2 was treated in [26] using a graph-
ical decomposition for cycle factorizations. It transpires that both series can be neatly 
expressed in terms of the unique solution w ∈ Q[q][[x]] of

w = xeQ(w), (19)

where Q is defined as in (13). Letting T (w) = 1 − wQ′(w), the results of [26] can be 
rewritten as

DxΨ1 = w1, (20)

DxΨ2 = w1w2

(
1
T1

− 1
T2

)
Q1 −Q2

(w1 − w2)2
, (21)

where wi = w(xi, q), Qi = Q(wi), and Ti = T (wi) for i = 1, 2. We note in passing that 
the explicit formula (4) for c(n) ; β is readily derived from (19) and (20) by Lagrange 
inversion.

We now invite the reader to compare (14) and (15) with (20) and (21). The connection 
is strong enough that we have used (16) to model the following conjectural form for Ψ3.

Conjecture 2.6. With the same notation as in (19)–(21), we have

Ψ3 = w1w2w3

3∑
i=1

1
Ti

∏
j �=i

Qi −Qj

(wi − wj)2
.

We have tested this conjecture against sufficient data to be confident in its truth. In 
fact, we are certain it can be proved by generalizing the graphical constructions in [26], 
but we feel that the insight gained by such a proof is unlikely to be worth working 
through the technical details to obtain it. Ultimately, new methods will be required to 
shed further light on the nature of this connection between inequivalent and ordered 
factorizations.

Let Ψm,k be defined analogously to Ψ̃m,k. Then it is straightforward to verify that 
Hurwitz’s formula (3) is equivalent to

Ψm,2(x) = Dm−3
x

m∏
i=1

wi

1 − wi
, m ≥ 1. (22)

For arbitrary k, closed form expressions for Ψm,k are known only when m ≤ 3. These 
were found by Goulden and Jackson [20], and Conjecture 2.6 does indeed specialize to 
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their results. (Verifying this fact in the case m = 3 is best done using Lemmas A.1
and A.2 of Appendix A.)

Note that the passage from (16) to Conjecture 2.6 is essentially effected by setting 
S ≡ 1 and replacing φ with w and P (φ) with T (w). This same correspondence appears 
upon implicit differentiation of the defining equations (12) and (19), which yields

x
∂w

∂x
= w

T
and x

∂φ

∂x
= φS

P
. (23)

These relations indicate that S and P are not as arbitrary as they may at first appear.

Remark 2.7. In comparing (16) to Conjecture 2.6, the reader will observe an extra fac-
tor of 2 that is not explained by the substitutions described above. The second author 
and G. Chapuy are currently working on a unified framework for inequivalent and or-
dered cycle factorizations which would explain this factor and many other aspects of the 
connection observed above. These results will be reported elsewhere.

3. Relationships with other classes of factorizations

Let In, Pn and Mn, respectively, be the sets of all inequivalent, proper, and monotone 
factorizations in Sn. (See Section 2.1 for the relevant definitions.) In this section we shall 
develop connections between these sets. In doing so, it will be convenient to view them 
as monoids under concatenation. Thus we consider each of them to contain the empty 
factorization, denoted by 1, which is a factorization of the identity permutation 1 ∈ Sn.

Let f = (σ1, . . . , σr) be any factorization. Let Π (f) denote the target permutation 
σ1σ2 · · ·σr, and extend this definition so that Π acts linearly on formal sums of factor-
izations. Note that Π (f) is well defined for inequivalent factorizations f . Let β(f) be the 
signature of f , with β(1) = 0. Similarly define the signature β(σ) or any permutation σ. 
Clearly β(fg) = β(f) + β(g), where fg is the concatenation of factorizations f and g.

3.1. Inequivalent and proper factorizations

Let Cn be the set of all nontrivial cycles in Sn, and let C∗
n be the set of all words on 

this alphabet. Every permutation in Sn can be viewed as an element of C∗
n by listing its 

nontrivial disjoint cycles in increasing order of least element, with the identity permuta-
tion corresponding with the empty word. Every proper factorization f ∈ Pn is also then 
associated with an element of C∗

n by concatenating the words of its factors. In particular, 
this restricts to a natural one-to-one correspondence between C∗

n and the set of all cycle 
factorizations in Sn (including the empty factorization).

On C∗
n we have the equivalence relation ∼ induced by allowing commutations of adja-

cent disjoint cycles, and the quotient C∗
n/∼ is naturally identified with In. Let f �→ [f ]

be the canonical projection of C∗
n onto In, extended linearly to all of QC∗

n. For example,
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[
2(1 2)(3 4) + (3 4)(1 2)

]
= 3

[
(1 2)(3 4)

]
.

In the following proof, elements of Sn, Pn and In should be viewed as words on C∗
n (and 

their projections).

Theorem 3.1. In QSn[[q]] we have

( ∑
σ∈Sn

qβ(σ)σ
)−1

=
∑
f∈Pn

Π (f) (−1)�(f)qβ(f) =
∑
f∈In

Π (f) (−1)�(f)qβ(f). (24)

Moreover, the rightmost identity continues to hold if Pn and In are restricted to contain 
only transitive factorizations of any fixed genus.

Proof. Let In be the subset of In consisting of all nonempty words on Cn whose letters 
commute pairwise. Then the Cartier–Foata theorem [9] yields the following identity in 
QIn[[q]]:

(
1 +

∑
f∈In

(−1)�(f)qβ(f)f
)−1

=
∑
f∈In

qβ(f)f.

Note that (−1)�(f)qβ(f) = (−q)β(f) for f ∈ In. Moreover, each f ∈ In corresponds with 
a distinct σ ∈ Sn of the same signature. Thus[( ∑

σ∈Sn

(−q)β(σ)σ
)−1

]
=

∑
f∈In

qβ(f)f. (25)

On the other hand, expansion in QC∗
n[[q]] gives

( ∑
σ∈Sn

qβ(σ)σ
)−1

=
∑
k≥0

(−1)k
(∑
σ �=1

qβ(σ)σ
)k

=
∑
f∈Pn

(−1)�(f)qβ(f)f. (26)

Together, (25) and (26) yield the QIn[[q]] identity[( ∑
σ∈Sn

qβ(σ)σ
)−1

]
=

[ ∑
f∈Pn

(−1)�(f)qβ(f)f

]
=

∑
f∈In

(−1)�(f)qβ(f)f. (27)

Now the image of (27) under Π is precisely (24), since clearly Π ([f ]) = [Π (f)]. Also 
notice that the rightmost identity in (27) continues to hold when we restrict Pn and In
to include only transitive factorizations, since a proper factorization is transitive if and 
only if its induced cycle factorization is transitive. The same is therefore true of (24). 
We can further restrict to any particular genus simply by discarding all terms with 
inappropriate signatures. �
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Example 3.2. Consider the word (1 5)(2 4)(3 5) ∈ C∗
5 . The corresponding inequivalent 

factorization (i.e. equivalence class) in I5 is

f = {(1 5) · (2 4) · (3 5), (2 4) · (1 5) · (3 5), (1 5) · (3 5) · (2 4)},

There are precisely five factorizations in P5 which project to f , namely

(1 5) · (2 4) · (3 5) (1 5)(2 4) · (3 5)

(2 4) · (1 5) · (3 5) (1 5) · (2 4)(3 5)

(1 5) · (3 5) · (2 4)

Each factorization in the first column contributes (−1)3q3
2 f to the middle sum of (27), 

while those in the second column contribute (−1)2q3
2 f . The total contribution is therefore 

−q3
2 f , which matches the contribution (−1)3q3

2 f that f makes to the right-hand sum 
of (27). �

We note that it is straightforward to “combinatorialize” the proof of Theorem 3.1, 
but in doing so one is effectively recreating the proof of the Cartier–Foata identity.

3.2. Inequivalent and monotone factorizations

We now establish a connection between In and Mn. We give two proofs of this 
result, one combinatorial and one algebraic, as we believe both provide insight into the 
underlying structure. Our combinatorial proof is an adaptation of a similar proof for 
semiclassical diagrams appearing in [4,5], where it is described using modifications of 
maps.

Theorem 3.3. In QSn[[u]] we have∑
f∈Mn

Π (f)u�(f) =
∑
f∈In

Π (f) (−1)�(f)(−u)〈f〉. (28)

This identity continues to hold if Mn and In are replaced with the subsets thereof con-
sisting of transitive factorizations of any fixed genus.

Combinatorial proof. Define the trace of a cycle factorization f = (σ1, · · · , σr) by

tr(f) := (max(σ1), . . . ,max(σr)) ∈ [n]r,

where max(σi) is the largest element of cycle σi. Then every inequivalent factorization 
(i.e. equivalence class) has a unique representative f whose trace is minimal in the usual 
lexicographic order. We identify In with the set of these canonical forms and define 
I : In −→ In as follows.
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If f is a monotone factorization, set I(f) = f . Now suppose f = (σ1, . . . , σr) is not 
monotone. Let σi be the leftmost factor such that max(σi) > max(σi+1), if it exists, and 
otherwise let σi be the leftmost factor that is not a transposition. Let m = max(σi). 
There are two cases to consider:

(1) If σi = (a m), then the minimality of tr(f) and the condition max(σi) > max(σi+1)
imply that σi and σi+1 do not commute and thus force σi+1 = (a b1 · · · bk) for some 
b1, . . . , bk < m. We modify f by multiplying the factors σi and σi+1 together, i.e.
define

I(f) = σ1 · · ·σi−1(a b1 · · · bk m)σi+2 · · ·σr.

(2) If σi = (a b1 · · · bk m), then we define

I(f) = σ1 · · ·σi−1(am)(a b1 · · · bk)σi+1 · · ·σr.

It is easy to check that tr(I(f)) is minimal and I(I(f)) = f . Thus I is an involution on 
In, and its fixed points are the monotone factorizations. Clearly Π (I(f)) = Π (f) and 
〈I(f)〉 = 〈f〉. When I(f) �= f we have �(I(f)) = �(f) ± 1, so that

Π (I(f)) (−1)�(I(f))(−u)〈I(f)〉 = −Π (f) (−1)�(f)(−u)〈f〉.

All factorizations that are not fixed points of I therefore cancel each other in the right-
hand sum of (28), which proves its equality to the left-hand sum. Moreover, transitivity 
and genus are clearly preserved by I, so (28) still holds when the sums are restricted by 
these conditions. �
Algebraic proof. Let J2, . . . , Jn be the Jucys–Murphy elements in QSn, defined by Jk =∑k−1

i=1 (i k). Then in QSn[[u]] we have

∑
f∈Mn

Π (f)u�(f) =
∑
ij≥0

ui2+···+inJ i2
2 J i3

3 · · ·J in
n =

n∏
i=2

(1 − uJi)−1.

Since the Ji commute, it follows that

∑
f∈Mn

Π (f)u�(f) =
( n∏
i=2

(1 − uJi)
)−1

=
(
1 +

n−1∑
k=1

(−u)kek(J2, . . . , Jn)
)−1

.

But it is well known that ek(J2, . . . , Jn) evaluates to the sum of all permutations in Sn

composed of n − k cycles; in other words, all σ ∈ Sn with 〈σ〉 = k. Thus∑
f∈Mn

Π (f)u�(f) =
( ∑
σ∈Sn

(−u)〈σ〉σ
)−1

.

Equation (28) now follows from (24) upon setting qk = (−u)k−1.
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That (28) continues to hold when restricted to transitive subsets of factorizations 
is a consequence of two elementary observations. First, rearranging the factors of a 
factorization preserves transitivity. Second, if f = (σ1, . . . , σr) is any factorization in Sn

and fi is a factorization of σi into the minimal number 〈σi〉 = n − �(σ) of transpositions, 
then f is transitive if and only if f1 · · · fr is transitive. We can further restrict (28) to 
any genus by selecting appropriate powers of u. �
3.3. Proof of Theorem 2.1

Fix any permutation π of cycle type α. By (2), every genus g factorization of π has 
depth d = |α| + �(α) − 2 + 2g. Restrict Theorem 3.3 to factorizations of genus g and 
extract the coefficient of πud to obtain

Mα,g = (−1)d
∑
f

(−1)�(f), (29)

where the sum extends over all genus g inequivalent factorizations f of π. This is the 
leftmost equality of Theorem 2.1. Setting q = 1 in Theorem 3.1 provides the middle 
equality.

3.4. Generating series for monotone factorizations

We conclude this section by restating the relationship between monotone and inequiv-
alent factorizations in terms of familiar generating series. For simplicity we will restrict 
our attention to the minimal transitive case, but the obvious analogues hold in any genus.

Let π be a fixed permutation of type α = (α1, . . . , αm). Then (29) identifies Mα,0 as 
the sum of (−1)�(f)+〈f〉 over all inequivalent minimal transitive factorizations f of π. 
But this is precisely the coefficient of 

∏
xαi
i /αi in the series Ψ̃m(x, q) evaluated at 

qk = (−1)k, since β(f) = (β2, β3, . . .) implies �(f) + 〈f〉 =
∑

k≥2 kβk.
Let us define

Ψ̂m(x) =
∑
α

Mα,0
xα1

1 · · ·xαm
n

α1 · · ·αm

in analogy with (5) and (18). Then we have the following algebraic connection between 
monotone and inequivalent factorizations.

Corollary 3.4. For all m ≥ 1,

Ψ̂m(x) = Ψ̃m(x,q)
∣∣∣
qk=(−1)k

.

This allows us to apply Theorem 2.4 to compute Ψ̂m for m ≤ 3. If we set qk = (−1)k
in (13) then (12) becomes φ = x(1 + φ)2, thereby identifying φ as the generating series 
of the Catalan numbers:
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φ(x) =
∑
n≥1

1
n + 1

(
2n
n

)
xn = 1 −

√
1 − 4x

2x
− 1.

Corollary 2.2 is readily seen to be equivalent to

Ψ̂m(x) = (2Dx + 1)(m−3)
m∏
i=1

2φi

1 − φi
, (30)

and indeed setting qk = (−1)k throughout Theorem 2.4 gives this result for m ≤ 3.
We have been unable to use Corollary 3.4 and (30) to deduce anything substantive 

about the structure of Ψ̃m. However, given the strength of the connections that we have 
established, comparison of (22) and (30) leads us to conjecture that Ψ̃m,2 may, too, be 
expressed “compactly” in terms of an (m − 3)-times iterated differential operator. This 
conjecture has motivated our search for the expression for Ψ̃4,2 which will be presented 
in Theorem 2.5 below.

4. Graphical models for inequivalent factorizations

In this section we establish Theorem 2.3 and then restate the result in a manner more 
convenient for our derivation of Theorem 2.4.

4.1. Shuttle diagrams and alternating maps

We begin with a nice visualization of a product (i1 j1)(i2 j2) · · · (irjr) of transposi-
tions in Sn, originally suggested in [15] (see also [7]). First, draw n horizontal arrows, 
directed from right to left and labelled from 1 to n. Then connect these arrows in pairs 
using r vertical lines (“shuttles”), with one shuttle between arrows ik and jk for each 
transposition (ik jk), and such that the right-to-left order of the shuttles matches that 
of the factors in the product. See Fig. 2a for an illustration.

Observe that the image of symbol i under the product is found by beginning at the 
tail of arrow i and tracing to the left, following shuttles whenever encountered, until the 
head of an arrow is reached. The label of this terminal arrow is the image of i.

This construction is easily extended to allow for products of cycles of any length: 
A k-cycle factor (i1 i2 · · · ik) is represented by a “multi-shuttle” joining arrows 
i1, i2, . . . , ik in cyclic order, as demonstrated in Fig. 2b. Thus we have a simple cor-
respondence between cycle factorizations and “shuttle diagrams”.

Let f be a cycle factorization. From its shuttle diagram, construct a labelled digraph 
Gf as follows: First, place a vertex at the tail and head of each arrow and assign each of 
these vertices the same label as the arrow. Note that the shuttles subdivide the arrows 
into segments. Assign each such segment the label and direction inherited from its arrow. 
Finally, contract each shuttle into a single vertex to obtain Gf . Fig. 3 illustrates this 
process.
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Fig. 2. (a) Visualizing the product (2 4)(1 3)(1 4)(2 3)(4 5) via a “shuttle diagram”. The image of 5 under 
the product is indicated by the dashed line. (b) General cycle factors are represented by “multi-shuttles”, 
illustrated here for the product (1 3 2 4) · (2 3) · (1 2 4).

Fig. 3. Creating a labelled digraph from a shuttle diagram by collapsing each shuttle to a single vertex. 
Labels of the edges incident to leaves coincide with the leaf labels and are omitted.

We now associate with f an alternating map Mf by specifying an embedding of Gf

in an orientable surface. Recall that such an embedding is fully determined by the cyclic 
order of edges around internal (non-leaf) vertices [32]. Each internal vertex of Gf arises as 
a collapsed shuttle. In particular, the shuttle corresponding to factor (i1 i2 · · · ik) yields 
a vertex v having k in-directed edges labelled i1, . . . , ik and k out-directed edges labelled 
the same. The map Mf is obtained by insisting that these edges are arranged around 
v so that, when listed in counter-clockwise order, their labels are (i1, i1, i2, i2, . . . , ik, ik)
with alternating directions (out, in, out, . . .). Fig. 4 illustrates this local embedding rule. 
Notice that the planar embeddings in Fig. 3 obey this rule, making them the alternating 
maps associated with the given factorizations.

Clearly the factors of f can be recovered from Mf . However, we cannot generally 
determine the order of the factors, so the transformation f �→ Mf is not fully reversible. 
Fortunately, it fails to be injective in a very convenient manner.
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Fig. 4. Local embedding rules for vertices arising from the transposition (a b) and 3-cycles (a b c). These 
rules have been observed in the planar embeddings of Fig. 3.

Lemma 4.1. Mf = Mf ′ if and only if f ∼ f ′.

Proof. The equivalence class of a factorization f = (σ1, . . . , σr) is uniquely determined 
by the multiset [σ1, . . . , σr] of factors and the relative orderings of the factors [σj :
σj(i) �= i] that move symbol i, for all i. But the factors moving i correspond with the 
shuttles incident with arrow i in the shuttle diagram of f , and the relative ordering of 
these shuttles is encoded by Mf . Indeed, their right-to-left order is that in which the 
corresponding vertices are encountered on the unique directed path in Mf that connects 
the two leaves labelled i by edges of the same label. �

We require one further preliminary result before proving Theorem 2.3.

Lemma 4.2. Every face of an alternating map contains an equal number of sources and 
sinks. If an alternating map is acyclic ( i.e. has no directed cycles) then each of its faces 
contains both a source and a sink.

Proof. Let F be a face of an alternating map. Recall that the boundary walk W of F is 
the closed walk traversing the boundary of F and keeping F on the right, relative to the 
direction of traversal.

The edges encountered along W are directed either forward (in the direction of W ) or 
backward, and the alternating condition implies that a change in direction occurs at a 
vertex w on W if and only if w is a source or a sink. In particular, the direction changes 
from forward to backward at a sink, and from backward to forward at a source. As a 
result, the segment of W beginning at any source r will be a forward-directed path from 
r to a sink, and the segment beginning at a sink s will be a backward-directed path from 
s to a source, etc. Therefore F contains the same number of sources as sinks. Moreover, 
if F contains neither a source nor a sink then W must be a directed closed walk, and 
therefore contains a directed cycle. �
4.2. Proof of Theorem 2.3

Let π ∈ Sn be of cycle type α = (α1, . . . , αm), and let f be a genus g cycle factorization 
of π of length r and signature β.

Clearly Mf is alternating. It is also acyclic, since (by construction) there exists a 
directed path from internal vertex u to internal vertex v if and only if the factor of 
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f corresponding to u appears to the right of the factor of f corresponding to v. This 
precludes the existence of both a directed path from u to v and one from v to u.

Lemma 4.2 guarantees every face of Mf contains at least one source. Choose any 
source r in a face F and suppose it has label i. As in the proof of Lemma 4.2, the boundary 
walk of F contains a directed path P from r to a sink s, followed by a reverse-directed 
path P ′ from s to a source r′. In fact, P is simply the path traversed when using the 
shuttle diagram of f to determine π(i), and P ′ is a backwards traversal of arrow π(i). 
Hence s and r′ both have label π(i). Repeating this argument, we conclude that the 
sources (and sinks) of face F have labels i, π(i), π2(i), . . . when listed in the direction 
of the boundary walk. In particular, the faces of Mf correspond with the cycles of π. 
Therefore Mf has �(π) faces.

Observe that Mf has 2n +
∑

k βk vertices, with n sources, n sinks, and βk vertices 
of degree 2k, k ≥ 2. Thus it has 1

2 (
∑

k 2kβk + 2n) = 〈f〉 + n +
∑

k βk edges. The 
Euler–Poincaré formula therefore shows Mf to be of genus 1

2 (2 − n + 〈f〉 − �(π)), which 
by (2) evaluates to the genus g of the factorization.

We now redecorate Mf to obtain a map satisfying the conditions of Theorem 2.3. 
First delete all edge labels from Mf , observing that the embedding rules make them 
recoverable from the labels of the sources/sinks. Let C1, . . . , Cm be a canonically ordered 
list of the cycles of π, with Ci of length αi, and let ci be the least element of Ci. For 
each i, find the unique source labelled ci, distinguish its position, and assign label i to 
the ambient face. We have seen that the label of any source determines the labels of 
all sources/sinks in the same face, so we can now delete the labels of all sources and 
sinks with no loss of information. This results in a map M′

f satisfying the conditions of 
Theorem 2.3. Since the passage from Mf to M′

f is reversible, Lemma 4.1 shows that 
the equivalence class of f can be uniquely recovered from M′

f . This completes the proof.

4.3. An undirected analog of Theorem 2.3

When we turn to counting factorizations in the next section, it will be more convenient 
to deal with undirected maps than acyclic alternating maps. Clearly the directions of all 
edges in an alternating map are determined by the direction of any one edge. The key to 
stripping edge directions lies in finding an appropriate analogue of the acyclic condition.

Let W be a walk in an orientable map. A corner of W is an ordered pair of consecutive 
edges of W . We say that a corner (e, e′) is odd if a path at vanishingly small distance to 
the right of W crosses an odd number of edges as it shadows W along e and e′. A corner 
is even if it is not odd. (See Fig. 5.)

With this definition in hand, we have the following restatement of Theorem 2.3.

Theorem 4.3. Let α = (α1, . . . , αm) be an m-part composition of n and let π ∈ Sn

be of cycle type α. Minimal inequivalent cycle factorizations of π with signature β =
(β2, β3, . . .) are in α2 · · ·αm-to-one correspondence with planar maps with m labelled 
faces in which
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Fig. 5. Corner (e1, e2) of walk W is odd, whereas (e2, e3) and (e3, e4) are even.

(a) every vertex is a leaf or has even degree ≥ 4,
(b) face i contains exactly 2αi leaves
(c) one leaf in face 1 is distinguished,
(d) there are a total of βk vertices of degree 2k, for all k ≥ 2, and
(e) every cycle has a positive even number of odd corners.

Genus g inequivalent cycle factorizations are in correspondence with genus g maps in 
the same fashion as above.

Proof. We describe a simple correspondence between the directed maps of Theorem 2.3
and the undirected ones described above. Given such an undirected map M, the distin-
guished leaf in face 1 is declared to be a source and its edge is directed accordingly, away 
from the leaf. This choice of direction is then propagated around each vertex of M in 
alternating fashion to obtain an alternating map M′. The fact that there are an even 
number of odd corners along every cycle ensures that no inconsistencies arise in doing 
so. Moreover, since the edges along a cycle in an alternating map must change direction 
at an odd corner, the fact that every cycle of M has at least one odd corner implies that 
M′ is acyclic. The sources in each face of M′ are readily identified, and one source in 
each of faces 2, 3, . . . , m is chosen to be distinguished in α2 · · ·αm ways. The remaining 
properties are in direct correspondence. �

A remark on condition (c) of Theorem 4.3 is warranted. Since face-labelled maps with 
m ≥ 3 faces have no nontrivial symmetries, a vertex in face 1 can be distinguished ar-
bitrarily, resulting in a 2α1α2 · · ·αm-to-one correspondence between factorizations and 
maps satisfying all conditions of the theorem except (c). This is not true in cases m = 1
and m = 2, since planar maps with one or two labelled faces can have nontrivial auto-
morphisms (such as rotational symmetry).

Example 4.4. To illustrate Theorem 4.3 let us reconstruct a factorization from the map M
shown in Fig. 6a. (For convenience we have indicated the orientations of boundary walks.) 
Note that M satisfies the conditions of the theorem, with parameters (α1, α2, α3) =
(4, 2, 1) and (β2, β3, . . .) = (6, 1, 0, . . .). It should therefore correspond with α2 · α1 = 2
inequivalent factorizations of the permutation (1 2 3 4)(5 6)(7).
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Fig. 6. Reconstructing a factorization from a map: Recovering edge directions and labels.

Fig. 7. Reconstructing of a factorization from a map: Recovering and ordering the factors.

Begin by directing all edges of M so as to make the distinguished leaf a source and 
the entire map alternating. This can be done uniquely. Then distinguish one source in 
each of faces 2 and 3. This can be done in α2 · α3 = 2 ways, one of which is shown in 
Fig. 6b.

Now label the leaves of face 1. Begin at the distinguished source, giving it label 1, and 
then assign labels 2, 2, 3, 3, 4, 4, 1 to the remaining leaves in the order in which they 
are encountered along the boundary walk. Repeat this labelling procedure in faces 2 
and 3 using label sets {5, 6} and {7}, respectively, and then remove face labels. See 
Fig. 6c.

Next, assign label j to each edge of the boundary walk from sink j to source j, for 
all j. (Note that this is always a reverse-directed path.) See Fig. 6d, where we suppress 
labels of edges incident with leaves, as such edges share the label of their leaf.

Finally, label each internal vertex with the cycle obtained by listing the labels of its 
incident out-directed edges as they appear in counter-clockwise order around the vertex. 
Remove all leaves and edge labels to obtain an acyclic digraph whose nodes are labelled 
with cycles. (Fig. 7.) This digraph induces a partial order on its vertices, with u < v if 
there is a directed path from u to v. Choose any linear extension of this order and list 



G. Berkolaiko, J. Irving / J. Combin. Theory Ser. A 140 (2016) 1–37 23
Fig. 8. Two sets of curves occupying the same space and connecting the same sets of points but in a different 
order. The curves on the left “bounce” off each other, while the curves on the right cross over.

the vertices (cycles) from right to left accordingly; for instance,

(2 5 6) · (2 6) · (1 7) · (1 2) · (2 3) · (3 7) · (3 4).

Observe that this is indeed a factorization of (1 2 3 4)(5 6)(7).

4.4. Connections with mesoscopic physics

Interestingly, very similar maps arise in mesoscopic physics, when trying to evaluate 
statistical moments of electron transport through an irregularly shaped (or “chaotic”) 
cavity. One approach to the problem approximates the quantum probability of transmis-
sion through the cavity by a sum over all classical trajectories that could be taken by a 
billiard ball. A series of approximations reduces the problem to the enumeration of pairs 
of sets of curves possessing the properties described below.

Let {γj(t)}nj=1 and {γ′
j(t)}nj=1 be the two sets of curves parametrized by t ∈ [0, 1]. 

Then

(1) the curves connect the same sets of points but in a different order, specified by the 
permutation π,

γ′
j(0) = γπ(j)(0), γ′

j(1) = γj(1),

(2) the curves in one set occupy the same space as the curves in the other,⋃
j

γj([0, 1]) =
⋃
j

γ′
j([0, 1]).

To satisfy both conditions, the curves within each set must intersect, and it is the topo-
logically inequivalent configurations that are to be counted. An example of two sets of 
three curves satisfying the conditions with permutation π = (1 2 3) is given in Fig. 8. 
In [3] it was observed that leading order (in a sense we cannot describe here) configura-
tions are in one-to-one correspondence with minimal length inequivalent factorizations 
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Fig. 9. A graph (left) and its decomposition into its backbone and rooted trees (right).

of the full cycle (1 2 . . . n). For example, the configuration of Fig. 8 corresponds to the 
factorization (1 2 3) = (1 2) · (2 3); the reader will observe that the two sets of curves 
in the figure can be thought of as the two ways of going through the shuttle diagram 
(1 2) · (2 3).

This correspondence extends further. In fact, it was shown in [5] that all contributing 
configurations (“semiclassical diagrams”) satisfy conditions almost identical to those 
of Theorem 2.3 (corresp. Theorem 4.3), with the only difference being the absence of 
“acyclic” condition (corresp. condition (e) is relaxed to allow zero odd corners). The 
cycle type of the permutation π would correspond to the type of the physical quantity 
considered (linear vs nonlinear moments), while the order at which a diagram contributes 
is determined by the genus of the corresponding map. Since the result of the physics 
evaluation [5] coincides with a prediction obtained by integration over the unitary group, 
a rich connection between inequivalent factorizations and random matrix theory was 
expected and led us, via [30] and [11], to Theorem 2.1.

5. Enumeration of inequivalent factorizations

In this section we prove Theorem 2.4 by counting all corresponding maps according to 
Theorem 4.3. We address cases m = 1, 2, and 3 separately, although the general method 
in each case is the same. First we classify planar maps with m faces according to their 
“backbone structure”. We then generate all applicable maps by planting trees on these 
structures, using generating series to keep track of vertex degrees and the number of 
leaves in every face. Finally, we apply an algebraic filter to ensure the number of odd 
vertices with respect to every cycle is even and nonzero.

The backbone of a map is the map obtained by recursively removing all leaves. Reduc-
ing a graph to its backbone should be viewed as “removing rooted trees”, where we work 
with the convention that trees are always rooted at a leaf. This process is illustrated in 
Fig. 9.

The backbone structure of a map is obtained from its backbone by iteratively removing 
vertices of degree 2 and merging their incident edges. Note that this preserves the num-
ber of faces of the map. For planar maps with one or two faces, the backbone structures 
are degenerate, involving a single vertex and a loop, respectively. There are three pos-
sible planar backbone structures with three faces, as depicted in Fig. 10. The backbone 
structure of the map in Fig. 9 is the last structure of Fig. 10.
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Fig. 10. The possible planar backbone structures with m = 1, 2, and 3 faces.

5.1. Factorizations of full cycles (m = 1)

By Theorem 4.3, factorizations of the full cycle (1 2 · · ·n) are in one-to-one corre-
spondence with planted plane trees having 2n leaves in which every internal vertex has 
even degree ≥ 4.

Let ξ(s, q) be the generating function for such trees, with s marking non-root leaves 
and qk counting vertices of degree 2k. That is,

ξ(s,q) =
∑

c̃(n) ; β s2n−1qβ2
2 qβ3

3 · · · , (31)

where the sum extends over all n ≥ 1 and all lists β = (β2, β3, . . .) of nonnegative 
integers.

The vertex v incident with the root of a tree is either a leaf or a vertex of degree 2k, 
for some k ≥ 2. In the latter case, removal of v decomposes the tree into a list of 2k − 1
trees. This leads to the recursive relation

ξ = s + q2ξ
3 + q3ξ

5 + q5ξ
7 + · · · ,

or equivalently

s = ξ(1 −Q(ξ2)), (32)

where Q is defined as in (13). Squaring (32) and comparing with (12) gives

ξ2 = φ(s2). (33)

To obtain case m = 1 of Theorem 2.4, we note that (5), (31), (32), and (33) give

s2 ∂Ψ̃1

∂x

(
s2) = sξ = ξ2(1 −Q(ξ2)) = φ(1 −Q(φ)). (34)

Replacing s2 with x1 in (34) now yields (14).

5.2. Factorizations of permutation with two cycles (m = 2)

Theorem 4.3 associates factorizations of class (α1, α2) with certain two-faced planar 
maps. Every such map results from rooting trees on the vertices of a single cycle, and 
we will generate and count them in exactly this way.
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Consider the generating series

Φ2(s,q, δ) =
∑
M

s2α1
1

2α1
s2α2
2 δcqβ2

2 qβ3
3 · · · , (35)

where the sum runs over all two-face planar maps M satisfying conditions (a) through (d) 
of Theorem 4.3, and si marks leaves in face i, qk marks vertices of degree 2k, and δ marks 
odd corners inside face 1. We need not track odd corners in both faces of 2-face maps 
because a vertex is at an odd corner of one face if and only if it is at an odd corner of 
the other.

We wish to apply Theorem 4.3 to express Ψ̃2 in terms of Φ2. However, to enforce 
condition (e) of the theorem we must first remove all terms of Φ2 that are either of odd 
or zero degree in δ. This filtration is accomplished by regarding Φ2 as a power series over 
Q[δ] and letting the operator Δ : Q[δ] −→ Q defined by

Δf(δ) := f(δ) + f(−δ)
2

∣∣∣∣∣
δ=1

δ=0

= 1
2f(1) + 1

2f(−1) − f(0) (36)

act on its coefficients. Upon comparing (5) and (35), we then have

Ψ̃2(s2,q) = 2 ΔΦ2(s,q, δ) (37)

Let us now determine Φ2 by constructing all relevant maps. We begin with a cycle 
C embedded in the plane. Since the inner and outer faces of this map are interchange-
able, we may assume they have labels 1 and 2, respectively. To account for the circular 
symmetry of C, we shall fix one of its vertices and plant trees on the resulting rooted 
cycle C ′.

Let ξ be defined as before (see (31)), so that trees planted on C ′ in face i are recorded 
by ξi = ξ(xi, q). Since the vertices of C ′ begin with degree 2 and must have even degree 
≥ 4 after all trees are planted, a positive even number of trees must be planted at each. 
If C ′ has k vertices, then all maps that can arise in this way are generated by (νe+δνo)k, 
where

νe = q2(ξ2
1 + ξ2

2) + q3(ξ4
1 + ξ2

1ξ
2
2 + ξ4

2) + q4(ξ6
1 + ξ4

1ξ
2
2 + ξ2

1ξ
4
2 + ξ6

2) + . . .

= ξ2
1Q(ξ2

1) − ξ2
2Q(ξ2

2)
ξ2
1 − ξ2

2
(38)

accounts for plantings that result in an even corners inside C ′, and

νo = q2ξ1ξ2 + q3(ξ3
1ξ2 + ξ1ξ

3
2) + q4(ξ5

1ξ2 + ξ3
1ξ

3
2 + ξ1ξ

5
2) + · · ·

=
ξ1ξ2

(
Q(ξ2

1) −Q(ξ2
2)
)

2 2 (39)

ξ1 − ξ2
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accounts for plantings that result in an odd corner. Since the resulting maps have no 
symmetries, a leaf in face 1 can be distinguished arbitrarily. Said differently, each map 
with a distinguished leaf is generated with weight 1/�, where � is the total number of 
leaves in face 1, in accordance with (35). Since C can have any number of vertices, we 
have

Φ2(s,q, δ) =
∑
k≥1

1
k

(νe + δνo)k = log(1 − νe − δνo)−1, (40)

where the factor 1/k is present to undo the rooting of C ′.
From (37)–(40) we obtain

Ψ̃2(s2,q) = Φ2(s,q, 1) + Φ2(s,q,−1) − 2Φ2(s,q, 0)

= log
(

(1 − νe)2

(1 − (νe + νo))(1 − (νe − νo))

)

= log
( (

ξ2
1(1 −Q(ξ2

1)) − ξ2
2(1 −Q(ξ2

2))
)2

(ξ2
1 − ξ2

2)(ξ2
1(1 −Q(ξ2

1))2 − ξ2
2(1 −Q(ξ2

2))2)

)
.

Finally, (32), (33) and the substitution s2 = x yield

Ψ̃2(x,q) = log
(

(φ1S1 − φ2S2)2

(φ1 − φ2)(x1 − x2)

)
,

where φ and S are defined as in Theorem 2.4. It is now routine to verify (15) by differ-
entiating the above expression and simplifying with (23).

We remark in closing that the filtration Δ does not appear in the earlier derivation [26]
of this same result. The graphical model of inequivalent factorizations employed there was 
in some sense dual to the one used here, and the analogue of condition (e) of Theorem 4.3
was hidden. This is precisely what hindered earlier efforts to derive Ψ̃3(x, q) via that 
model.

5.3. Factorizations of permutations with three cycles (m = 3)

The three distinct backbone structures for three-face planar maps are shown in Fig. 11
along with their symmetry groups. (Note that we consider only orientation-preserving 
symmetries.) We shall refer to these structures as B1, B2, and B3, as indicated in the 
figure.

Every factorization of a permutation with three cycles corresponds to a map obtained 
by planting trees on the edges and vertices of some Bj . We will generate all relevant maps 
in this way, initially recording the number of odd corners with respect to all boundary 
walks and then filtering the results to enforce condition (e) of Theorem 4.3. As per our 
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Fig. 11. Planar backbone structures with three faces, along with their symmetry groups.

remarks following the theorem, we will in fact generate maps without a distinguished leaf 
and rely on the 2α1α2α3-to-one correspondence between factorizations and such maps.

To this end, let Φ3,j be the generating series for maps having backbone structure Bj

and satisfying conditions (a), (b), and (d) of Theorem 4.3. As before, leaves in face i

will be marked by si, vertices of degree 2k by qk, and δi will mark odd corners along the 
boundary of face i of the backbone.

An edge e of a backbone structure can support any number of vertices, each of which 
is at a corner of the boundary walks of the faces separated by e. The contribution of any 
such edge bordering faces a and b (which may be the same) is therefore

ε(a, b) = 1
1 − νe(a, b) − δaδbνo(a, b)

, (41)

where

νe(a, b) =
∑
j≥2

qjhj−1(ξ2
a, ξ

2
b ), νo(a, b) = ξaξb

∑
j≥2

q2hj−2(ξ2
a, ξ

2
b ). (42)

Note that these expressions are identical to (38) and (39).
Sums of this form will arise repeatedly in what follows, and Lemma A.3 (in Ap-

pendix A) shows how they are resolved into rational expressions involving Q and its 
derivatives. For example, applying Lemma A.3 to (42) and (41) results in

ε(a, b) =

⎧⎨⎩
ξ2
a−ξ2

b

ξ2
a(1−Qa)−ξ2

b (1−Qb)−δaδbξaξb(Qa−Qb) if a �= b

1
1−Qa−ξ2

aQ
′
a(1+δ2

a) if a = b,

where Qi = Q(ξ2
i ) and Q′

i = Q′(ξ2
i ). Notice that when δa = 1 we get ε(a, a) = 1/P (ξ2

a), 
where P is defined as in Theorem 2.4.

Consider backbone structure B1, which contains two vertices of degree three, each 
incident with three faces. To determine Φ3,1, we first find the contribution ν3(a, b, c) of 
a general vertex of degree 3 incident with faces a, b and c. Such a vertex is required to 
have even degree once all trees are planted, so an odd number of trees must be planted 
in exactly one or three of its incident faces. Therefore
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ν3(a, b, c) = e1(δaξa, δbξb, δcξc)
∑
j≥2

qjhj−2(ξ2
a, ξ

2
b , ξ

2
c )

+ e3(δaξa, δbξb, δcξc)
∑
j≥3

qjhj−3(ξ2
a, ξ

2
b , ξ

2
c ). (43)

Taking edges into account, we have

Φ3,1 = ν3(1, 2, 3)ν3(1, 3, 2)ε(1, 2)ε(2, 3)ε(3, 1).

Note that face labels have been assigned in only one way because of the full symmetry 
group.

Now consider structure B2. We regard its two vertices of degree 3 as being incident 
with three faces, two of which are identical, so that their analysis is identical to that 
above. Their contributions to Φ3,2 are therefore ν3(1, 2, 1) and ν3(1, 3, 1), where ν3 is 
given by (43). Since B2 has two symmetries, its faces may be labelled in 3!/2 = 3
distinct ways. But rather than summing over the three distinct label assignments we 
sum over all labellings and divide by the size of the symmetry group. This gives

Φ3,2 = 1
2

∑
{a,b,c}={1,2,3}

ν3(a, b, a)ν3(a, c, a)ε(a, b)ε(a, c)ε(a, a),

where the summation is over all permutations of {1, 2, 3}.
Finally, we consider structure B3, which contains only a vertex of degree 4. Despite 

this vertex being incident with only 3 distinct faces, we again consider a general vertex 
of degree 4 incident with faces a, b, c and d. For such a vertex to remain of even degree, 
an odd number of trees must be planted in 0, 2, or 4 of its corners, and an even number 
in the rest. The vertex contribution is therefore

ν4(a, b, c, d) =
∑
j≥2

qjhj−2(ξ2
a, ξ

2
b , ξ

2
c , ξ

2
d)

+ e2(δaξa, δbξb, δcξc, δdξd)
∑
j≥3

qjhj−3(ξ2
a, ξ

2
b , ξ

2
c , ξ

2
d)

+ e4(δaξa, δbξb, δcξc, δdξd)
∑
j≥4

qjhj−4(ξ2
a, ξ

2
b , ξ

2
b , ξ

2
d).

With the faces of B3 labelled as in Fig. 11, it contributes ν4(1, 2, 1, 3)ε(1, 2)ε(1, 3) to 
Φ3,3. Accounting for symmetries gives

Φ3,3 = 1
2

∑
{a,b,c}={1,2,3}

ν4(a, b, a, c)ε(a, b)ε(a, c).

We now sum the contributions of B1, B2, and B3, and filter the results by applying 
the operator Δ (defined in (36)) separately to δ1, δ2, and δ3. Comparing the definitions 
of Ψ̃3 and Φ3, we have
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Ψ̃3(s2,q) = 2Δ1Δ2Δ3(Φ3,1 + Φ3,2 + Φ3,3), (44)

where Δi is the Δ operator with respect to δi. Note that this is the correct filtration 
because every cycle in a three-face planar map is itself the boundary of some face of the 
backbone. (This is not true for maps with more than 3 faces. See Fig. 13 in Section 6.)

The computations are clearly too elaborate to carry out by hand, so we have relied 
extensively on Maple to evaluate and simplify (44). With considerable human guidance, 
Maple confirms the result to be the surprisingly compact expression (16).

We cannot yet satisfactorily explain the dramatic simplification of (44). None of the 
individual backbone contributions Φ3,1, Φ3,2, or Φ3,3 simplify in any appreciable way 
(either before or after filtration). Given the connections surveyed in Sections 2.1 and 2.3, 
we interpret this global simplification as strong evidence that transitive factorizations 
(in general) possess a rich unknown structure.

6. Enumeration of inequivalent k-cycle factorizations

In this section we consider the restriction of Theorem 2.4 to k-cycle factorizations 
and, even more specifically, to factorizations into transpositions. In the latter case we 
shall also describe how a specialization of our main graphical correspondence has been 
used to count factorizations of permutations containing four cycles.

6.1. Specializations

Theorem 2.4 is readily specialized to obtain generating series for inequivalent k-cycle 
factorizations of permutations with up to three cycles. Upon substituting qk = 1 and 
qi = 0 for i �= k throughout the theorem we arrive at the following result. Simplification 
to the forms below is straightforward in cases m = 1 and m = 2, but relies on Lemmas A.1
and A.2 of Appendix A in case m = 3.

Corollary 6.1. Let φ ∈ Q[[x]] be the unique solution of φ = x(1 − φk−1)−2, namely

φ(x) =
∑
i≥0

1
1 + i(k − 1)

(
1 + i(2k − 1)

i

)
x1+i(k−1),

and let φi = φi(xi). Then

DxΨ̃1,k = φ1(1 − φ1)

DxΨ̃2,k = 2(k − 1)φ1φ2hk−2(φ1, φ2)2∏
i(1 − (2k − 1)φk−1

i ) (1 − hk−1(φ1, φ2))

Ψ̃3,k = 2φ1φ2φ3G(G + G′)∏
(1 − (2k − 1)φk−1)

∏
(1 − h (φ , φ ))

,

i i i<j k−1 i j
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where in the formula for Ψ̃3,k we have let

G = s(k−3) − (2k − 1)s(k−2)2

G′ = s(k−2)2 − (2k − 1)s(2k−3,k−2)

with sl ≡ sl(φ1, φ2, φ3). �
Corollary 6.1 simplifies considerably when further specialized at k = 2. The result 

is the following generating series for inequivalent minimal transitive factorizations into 
transpositions. Although it is not immediately obvious, (8) is indeed equivalent to the 
form of Ψ̃2,2 given here.

Corollary 6.2. Let φ ∈ Q[[x]] be the unique solution of φ = x(1 − φ)−2, namely

φ(x) =
∑
n≥1

1
n

(
3n− 2
n− 1

)
xn.

Letting φi = φ(xi), we have

DxΨ̃1,2 = φ1(1 − φ1)

DxΨ̃2,2 = 2φ1φ2

(1 − 3φ1)(1 − 3φ2)(1 − φ1 − φ2)

Ψ̃3,2 = 6φ1φ2φ3(4 − 3φ1 − 3φ2 − 3φ3)
(1 − 3φ1)(1 − 3φ2)(1 − 3φ3)(1 − φ1 − φ2)(1 − φ2 − φ3)(1 − φ1 − φ3)

. �

It is cumbersome to extract coefficients from the series Ψ̃m,2 in the forms given above. 
However, a change of variables makes this task more palatable. Set g = φ/(1 − φ), or 
equivalently φ = g/(1 + g), so that the defining equation φ = x(1 − φ)2 becomes3

g = x(1 + g)3.

It is then easy to verify that

1
1 − 3φi

= xi

gi

∂gi
∂xi

and φiφj

1 − φi − φj
= gigj

1 − gigj
,

where φi = φ(xi) and gi = g(xi). Thus, for instance, Corollary 6.2 gives

3 Comparison with (6) identifies 1 + g with Longyear’s series h.
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D2Ψ̃2,2(x) = 2x1
∂g1

∂x1
x2

∂g2

∂x2

1
1 − g1g2

.

Lagrange inversion is now readily applied to extract the coefficient of xn
1x

m
2 on the 

right-hand side. The result is equation (9), given in the introduction, for the number of 
inequivalent minimal transitive 2-cycle factorizations of any permutation of cycle type 
(n, m). A similar but substantially more complicated expression can be derived for the 
coefficients of Ψ̃3,2.

6.2. Factorizations into transpositions of permutations with four cycles (m = 4)

There are several significant difficulties associated with applying our graphical ap-
proach to factorizations of permutations with more than three cycles. The most imme-
diate obstacle is that the number of distinct backbone structures increases very rapidly 
with the number of faces. A more subtle difficulty is that one can no longer guarantee 
condition (e) of Theorem 4.3 simply by verifying it on the boundary walks of faces; 
indeed, cycles are not necessarily face boundaries, as is clear in Fig. 13.

However, the situation is somewhat simpler if we restrict our attention to 2-cycle fac-
torizations. The internal vertices of the corresponding maps are then required to have 
degree 4, which imposes some simplifying restrictions on the backbones and the contribu-
tions of their components. This has allowed us to derive the following expression for Ψ̃4,2, 
again by generating all corresponding 4-face planar maps according to Theorem 4.3.

We now briefly describe our derivation of Theorem 2.5. The relevant backbone struc-
tures are shown in Fig. 12, along with the generators and sizes of their symmetry groups. 
As mentioned above, we must enforce condition (e) of Theorem 4.3 on more than just the 
boundaries of faces. For example, Fig. 13 shows the extra cycles that must be verified for 
the first structure of Fig. 12. It can be checked that three is the maximal number of ad-
ditional cycles one needs to consider for planar maps with four faces. The contributions 
of the edges and vertices of each backbone must account for these additional cycles.

For instance, the contribution of the top left edge of the structure shown in Fig. 13
is

ε(a, b) = 1
1 − νe(a, b) − δaδbδacδadνo(a, b)

.

This should be compared with (41). The four δ factors arise because the edge lies on the 
boundaries of faces a and b and also on the additional cycles ac and ad. Furthermore, be-
cause each vertex added to this edge must have degree four, the vertex contributions (42)
simplify to

νe(a, b) = ξ2
a + ξ2

b , νo(a, b) = ξaξb.

Note that we have suppressed the indeterminate q2 as it is redundant.
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Fig. 12. Backbone structures corresponding to 2-cycle factorizations of a permutation with 4 cycles, along 
with the generators and sizes of their symmetry groups.

Fig. 13. Additional cycles to be checked for compliance with condition (e) of Theorem 4.3. From left to right, 
we refer to these cycles as ab, ac and ad, since they are sums of the boundary walks of the named faces.
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The contribution of each vertex of a backbone structure is also greatly simplified by 
the fact that all vertices must end up with degree 4. Consider, for example, the top 
vertex of the structure in Fig. 13. Since this vertex has degree 3, it must support exactly 
one tree. This tree can lie in any of the three incident faces, so its contribution is

ν3 = δaδadξa + δbδacξb + δcδabξc.

The top vertex of the third diagram in Fig. 12 has degree 4, so it cannot support any 
trees; thus its contribution is

ν4 = δ12δ14,

since it is an odd vertex with respect to the cycles formed by adding boundary walks of 
faces 1, 2 and faces 1, 4, correspondingly.

In a similar manner we find the contribution of each diagram in Fig. 12. Upon summing 
the results, filtering, and simplifying (with the aid of Maple), we arrive at Theorem 2.5. 
This expression for Ψ̃4,2 is by far the simplest we have found, but it was only discovered 
by first conjecturing the general form and then guiding Maple to simplify toward such 
a result. We therefore caution that it is by no means clear it is a natural form for the 
series. It is best considered a hard won data point in our attempt to uncover the general 
structure of inequivalent factorizations.

In principle, it is possible to formalize our derivation of Ψ̃4,2 and “automate” the 
computation of Ψ̃m,2 for m > 4. This process would begin with parametrizing the possible 
backbone structures, say using Tutte’s axiomatization via triples of permutations [38,
28]. However, our experience suggests that the benefit would be very limited due to the 
rapidly increasing complexity (see also [6]) and consequent inability to effectively simplify 
the results. Even simplifying Ψ̃4,2 to the relatively compact form of Theorem 2.5 was a 
considerable undertaking.
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Appendix A. Technical lemmas

Throughout, we let V (x) =
∏

i<j(xi−xj) be the Vandermonde in the indeterminates 
x = (x1, x2, . . . , xm), and we write ‖A‖ for the determinant of a matrix A.

Lemma A.1. For indeterminates a = (a1, a2, a3), b = (b1, b2, b3), and z = (z1, z2, z3),
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3∑
i=1

1
zi

∏
j �=i

zi − zj
(ai − aj)(bi − bj)

= 1
z1z2z3V (a)V (b)

∥∥∥∥∥a1z1 a2z2 a3z3
z1 z2 z3
1 1 1

∥∥∥∥∥
∥∥∥∥∥b1z1 b2z2 b3z3

z1 z2 z3
1 1 1

∥∥∥∥∥ .
Proof. Direct expansion. �
Lemma A.2. For any positive integers p > q we have

1
V (x)

∥∥∥∥∥∥∥∥∥∥∥∥

xp
1 xp

2 · · · xp
m

xq
1 xq

2 · · · xq
m

xm−3
1 xm−3

2 · · · xm−3
m

xm−4
1 xm−4

2 · · · xm−4
m

...
...

. . .
...

1 1 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥
= s(p+1−m,q+2−m)(x).

Proof. This is the classical definition of the Schur polynomial. �
Lemma A.3. Let A(t) =

∑
i≥d ait

i−1 ∈ C[[t]]. For any positive integer m, and for any 
integer s ≥ 1 − d, we have

∑
i≥d

aihi−m+s(x1, . . . , xm) =
m∑
i=1

xs
iA(xi)∏

j �=i(xi − xj)
.

Moreover, for s ≥ 2 − d we have the following evaluation at xm = x1:

∑
i≥d

aihi−m+s(x1, . . . , xm−1, x1) = ∂

∂x1

m−1∑
i=1

xs
iA(xi)∏

j �=i(xi − xj)
.

Proof. Let x = (x1, . . . , xm). For every i ≥ d, let Bi be the m × m matrix with first 
row xs+i−1 and with r-th row xm−r, r > 1. Note that the condition s ≥ 1 − d ensures 
the entries in the first row of Bi are polynomial. Therefore Lemma A.2 gives detBi =
hs+i−m(x)V (x). Now consider the matrix

B =

⎡⎢⎢⎢⎢⎣
xs

1A(x1) xs
2A(x2) · · · xs

mA(xm)
xm−2

1 xm−2
2 · · · xm−2

m

xm−3
1 xm−3

2 · · · xm−3
m

...
...

. . .
...

1 1 · · · 1

⎤⎥⎥⎥⎥⎦ .

Since xs
jA(xj) =

∑
i≥d aix

s+i−1
j , we have

detB =
∑

detBi = V (x)
∑

aihs+i−m(x).

i≥d i≥d
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But expansion along the first row of B gives

detB =
m∑
i=1

(−1)i+1xs
iA(xi)Vi,

where Vi =
∏j,k �=i

j<k (xj−xk) is the Vandermonde in the variables {x1, . . . , xm} \{xi}. This 
proves the first statement of the lemma, since Vi/V (x) = (−1)i−1 ∏

j �=i(xi − xj)−1. The 
second statement follows by noting that hk(x1, . . . , xm−1, x1) = ∂

∂x1
hk+1(x1, . . . , xm−1). 

The restriction s ≥ 2 − d ensures that all expressions are formal power series. �
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