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θ < e then f is a polynomial. In this paper, we investigate the 
analogous problem for the ring of polynomials over a finite 
field using the Polynomial Method in combinatorics.
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1. Introduction

Let N denote the set of positive integers and let N0 = N ∪ {0}. A strong form of a 
conjecture by Ruzsa is the following assertion. Suppose that f : N0 → Z satisfies the 
following 2 properties:

(P1) f(n + p) ≡ f(n) mod p for every prime p and every n ∈ N0;

(P2) lim sup
n→∞

log |f(n)|
n

< e.
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Then f is necessarily a polynomial. The original form allows the version of (P1) in which 
p is not necessarily a prime. Hall [11] gave an example constructed by Woodall showing 
that the upper bound e in (P2) is optimal. The reasoning behind this upper bound as well 
as the Hall-Woodall example is the (equivalent version of the) Prime Number Theorem 
stating that the product of primes up to n is en+o(n) and the fact that the residue class 
of f(n) modulo this product is determined uniquely by f(0), . . . , f(n −1) thanks to (P1). 
In 1971, Hall [10] and Ruzsa [15] independently proved the following result.

Theorem 1.1 (Hall-Ruzsa, 1971). Suppose that f : N0 → Z satisfies (P1) and

lim sup
n→∞

log |f(n)|
n

< e− 1

then f is a polynomial.

The best upper bound was obtained in 1996 by Zannier [18] by extending earlier work 
of Perelli and Zannier [17,13]:

Theorem 1.2 (Zannier, 1996). Suppose that f : N0 → Z satisfies (P1) and

lim sup
n→∞

log |f(n)|
n

< e0.75

then f is a polynomial.

In fact, the author remarked [18, pp. 400–401] that the explicit upper bound e0.75

was chosen to avoid cumbersome formulas and it was possible to increase it slightly. The 
method of [18] uses the fact that the generating series 

∑
f(n)xn is D-finite over Q (i.e. 

it satisfies a linear differential equation with coefficients in Q(x)) [13, Theorem 1.B] then 
applies deep results on the arithmetic of linear differential equations [4,6].

This paper is motivated by our recent work on D-finite series [3] and a review of 
Ruzsa’s conjecture. From now on, let F be the finite field of order q and characteristic p, 
let A = F [t], and let K = F(t). We have the usual degree map deg : A → N0 ∪ {−∞}. 
A map f : A → A is called a polynomial map if it is given by values on A of an element of 
K[X]. For every n ∈ N0, let An = {A ∈ A : deg(A) = n}, A<n = {A ∈ A : deg(A) < n}, 
and A≤n = {A ∈ A : deg(A) ≤ n}. Let P ⊂ A be the set of irreducible polynomials; 
the sets Pn, P<n, and P≤n are defined similarly. The superscript + is used to denote 
the subset consisting of all the monic polynomials, for example A+, A+

n , P+
≤n, etc. From 

the well-known identity [14, pp. 8]:
∏
d|n

∏
P∈P+

d

P = tq
n − t

we have
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qn ≤ deg

⎛
⎜⎝ ∏

P∈P+
≤n

P

⎞
⎟⎠ < 2qn (1)

for every n ∈ N. In view of the reasoning behind Ruzsa’s conjecture, it is natural to ask 
the following:

Question 1.3. Let f : A → A satisfy the following 2 properties:

(P3) f(A + BP ) ≡ f(A) mod P for every A, B ∈ A and P ∈ P;

(P4) lim sup
deg(A)→∞

log deg(f(A))
deg(A) < q.

Is it true that f is a polynomial map?

Note that (P3) should be the appropriate analogue of (P1): over the natural numbers, 
iterating (P1) yields f(n + bp) ≡ f(n) mod p for every n, b ∈ N0 and prime p. On the 
other hand, over A, due to the presence of characteristic p, iterating the congruence 
condition f(A + P ) ≡ f(A) mod P for A ∈ A and P ∈ P is not enough to yield (P3). 
By the following example that is similar to the one by Hall-Woodall, we have that the 
upper bound q in (P4) cannot be increased. Fix a total order ≺ on A such that A ≺ B

whenever deg(A) < deg(B). We define g : A → A inductively. First, we assign arbitrary 
values of g at the constant polynomials. Let n ∈ N, B ∈ An, and assume that we have 
defined g(A) for every A ∈ A with A ≺ B such that:

g(A) ≡ g(A1) mod P for every A,A1 ≺ B and prime P | (A−A1).

For every P ∈ P+
≤n, let RP ∈ A with deg(RP ) < deg(P ) such that B ≡ RP mod 

P . By the Chinese Remainder Theorem, there exists a unique R ∈ A with deg(R) <

deg

⎛
⎜⎝ ∏

P∈P+
≤n

P

⎞
⎟⎠ such that R ≡ f(RP ) mod P for every P ∈ P+

≤n. Then we define

g(B) := R +
∏

P∈P+
≤n

P.

It is not hard to prove that g satisfies Property (P3) (with g in place of f) and for every 
n ∈ N, B ∈ An, we have deg(g(B)) ∈ [qn, 2qn) by (1). This latter property implies that 
g cannot be a polynomial map.

Following Professor Ruzsa’s suggestion, we have:

Definition 1.4. Property (P3) is called the prime congruence-preserving condition. A map 
f : A → A with this property is called a prime congruence-preserving map.
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Our main result implies the affirmative answer to Question 1.3; in fact we can replace 

(P4) by the much weaker condition that deg(f(A)) is not too small compared to 
qdeg(A)

deg(A) :

Theorem 1.5. Let f : A → A be a prime congruence-preserving map such that

deg(f(A)) < qdeg(A)

27q deg(A) when deg(A) is sufficiently large. (2)

Then f is a polynomial map.

There is nothing special about the constant 1/(27q) in (2) and one can certainly 
improve it by optimizing the estimates in the proof. It is much more interesting to 
know if the function qdeg(A)/ deg(A) in (2) can be replaced by a larger function (see 
Section 4). There are significant differences between Ruzsa’s conjecture and Question 1.3
despite the apparent similarities at first sight. Indeed none of the key techniques in the 
papers [13,18] seem to be applicable in our situation. Obviously, the crucial result used 
in [18] that the generating series 

∑
f(n)xn is D-finite has no counterpart here. The 

proof of the main result of [13] relies on a nontrivial linear recurrence relation of the 
form cdf(n + d) + . . . + c0f(n) = 0. Over the integers, such a relation will allow one to 
determine f(n) for every n ≥ d once one knows f(0), . . . , f(n − 1). On the other hand, 
for Question 1.3, while it seems possible to imitate the arguments in [13] to obtain a 
recurrence relation of the form cdf(A + Bd) + . . . + c0f(A + B0) = 0 for A ∈ A with 
d ∈ N and B0, . . . , Bd ∈ A, such a relation does not seem as helpful: when deg(A)
is large, one cannot use the relation to relate f(A) to the values of f at smaller degree 
polynomials. Finally, the technical trick of using the given congruence condition to obtain 
the vanishing on [2M0, (2 + ε)M0] from the vanishing on [0, M0] (see [13, pp. 11–12] and 
[18, pp. 396–397]) does not seem applicable here.

The proof of Theorem 1.5 consists of 2 steps. The first step is to show that the 
points (A, f(A)) for A ∈ A belong to an algebraic plane curve over K, then it follows 
that deg(f(A)) can be bounded above by a linear function in deg(A). The second step, 
which might be of independent interest, treats the more general problem in which f is 
prime congruence-preserving and there exists a special sequence (An)n∈N0 in A such 
that deg(f(An)) is bounded above by a linear function in deg(An). Both steps rely 
on the construction of certain auxiliary polynomials; such a construction has played 
a fundamental role in diophantine approximation, transcendental number theory, and 
combinatorics. For examples in number theory, the readers are referred to [1,12] and the 
references therein. In combinatorics, the method of constructing polynomials vanishing 
at certain points has recently been called the Polynomial Method and is the subject 
of the book [9]. This method has produced surprisingly short and elegant solutions of 
certain combinatorial problems over finite fields [7,5,8].

Acknowledgments. We are grateful to Professor Imre Ruzsa for his interest and helpful 
suggestions. We wish to thank Dr. Carlo Pagano, Professor Umberto Zannier, and the 
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covery Grant RGPIN-2018-03770, a start-up grant at UCalgary, and the CRC tier-2 
research stipend 950-231716.

2. A nontrivial algebraic relation

We start with the following simple lemma:

Lemma 2.1. Let g : A → A and assume that there exists C1 ∈ N0 such that the following 
3 properties hold:

(a) g(A + BP ) ≡ g(A) mod P for every A, B ∈ A and P ∈ P.
(b) deg(g(A)) ≤ qdeg(A) − 1 for every A ∈ A with deg(A) > C1.
(c) g(A) = 0 for every A ∈ A≤C1 .

Then g is identically 0.

Proof. Otherwise, assume there is A ∈ A of smallest degree such that g(A) �= 0. We 
have D := deg(A) > C1. Since g(B) = 0 for every B ∈ A<D and since for every monic 
irreducible polynomial P of degree at most D there is some C such that A − CP has 
degree strictly less than D, we have

g(A) ≡ 0 mod
∏

P∈P+
≤D

P.

Since deg

⎛
⎜⎝ ∏

P∈P+
≤D

P

⎞
⎟⎠ ≥ qD and deg(g(A)) < qD, we must have g(A) = 0, a contradic-

tion. �
Proposition 2.2. Let f : A → A be as in Theorem 1.5. Then there exists a non-zero 
polynomial Q(X, Y ) ∈ A[X, Y ] such that Q(A, f(A)) = 0 for every A ∈ A.

Proof. Let N ∈ N such that deg(f(A)) < qdeg(A)

27q deg(A) for every A ∈ A with deg(A) ≥ N . 

Let M ≥ N be a large positive integer that will be specified later. Consider Q(X, Y ) ∈
A[X, Y ] of the form:

Q(X,Y ) =
∑

0≤i≤qM/3

∑
0≤j≤qM/(3M)

∑
0≤k≤9qM

cijkt
iXjY k

where cijk ∈ Fq. The number of unknowns cijk is greater than q2M+1.
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Put g(A) = Q(A, f(A)) for A ∈ A then g satisfies the congruence condition:

g(A + BP ) ≡ g(A) mod P for every A,B ∈ A and P ∈ P. (3)

We prove that with a sufficiently large choice of M , we have deg(g(A)) < qM for every 
A ∈ A with deg(A) ≤ M . Suppose deg(A) ∈ [N, M ] then we have:

deg(g(A)) < qM

3 + qM deg(A)
3M + 9qMqdeg(A)

27q deg(A) ≤ qM

since the function qx/x is increasing on [2, ∞). Now let C2 be a positive number that is 
at least the maximum of deg(f(A)) for A ∈ A<N . Hence for every A ∈ A<N , we have

deg(g(A)) ≤ qM

3 + NqM

3M + 9C2qM < qM

when M is sufficiently large.
Note that |A≤M | = qM+1. Therefore the condition g(A) = 0 for every A with deg(A) ≤

M is equivalent to the condition that the cijk’s satisfy a linear system of at most q2M+1

equations. Since the number of unknowns cijk is greater than the number of equations, 
there exist cijk not all zero such that g(A) = 0 for every A ∈ A with deg(A) < M .

Finally, if A ∈ A with D := deg(A) > M , we have

deg(g(A)) ≤ qM

3 + DqM

3M + MqD

3D < qD

since the function qx/x is increasing on [M, ∞). Therefore the map g : A → A satisfies 
all the conditions of Lemma 2.1 with C1 = M , we have that g(A) = 0 for every A ∈ A
and this finishes the proof. �
Corollary 2.3. Let f : A → A be as in Theorem 1.5. Then there exist C3, C4 > 0
depending only on q and f such that

deg(f(A)) ≤ C3 deg(A) + C4 for every A ∈ A \ {0}.

Proof. By Proposition 2.2, there exist n ≥ 0 and polynomials P0(X), . . . , Pn(X) ∈ A[X]
with Pn �= 0 such that:

Pn(A)f(A)n + Pn−1(A)f(A)n−1 + . . . + P0(A) = 0

for every A ∈ A. We must have n > 0 since otherwise P0(A) = 0 for every A would 
force P0 = 0 as well. Let C3 = max0≤i≤n deg(Pi) and let C4 be the maximum of the 
degrees of the coefficients of the Pi’s so that deg(Pi(A)) ≤ C3 deg(A) + C4 for every 
A ∈ A \ {0}. If deg(f(A)) > C3 deg(A) + C4 then deg(Pn(A)f(A)n) is greater than 
deg(Pn−1(A)f(A)n−1 + . . . + P0(A)), contradiction. �
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3. A result under a linear bound

In this section, we consider a related result in which the inequality (2) is replaced by 
a much stronger linear bound on deg(f(An)) where (An)n≥0 is a special sequence in A. 
Moreover, the next theorem together with Corollary 2.3 yield Theorem 1.5.

Theorem 3.1. Let f : A → A be a prime congruence-preserving map. Assume there exist 
U ∈ A with U ′ �= 0 (i.e. U is not the p-th power of an element of F̄ [t]) and positive 
integers C5 and C6 such that deg(f(Un)) ≤ C5n + C6 for every n ∈ N0. Then f is a 
polynomial map.

For every non-constant A ∈ A, let rad(A) denote the product of the distinct monic 
irreducible factors of A. For integers 0 ≤ m < n and non-constant U ∈ A, let Δm,n,U =
(Un − 1)(Un−1 − 1) . . . (Un−m − 1) and let dm,n,U = deg(rad(Δm,n,U )). We start with 
the following:

Lemma 3.2. Let U(t) ∈ A such that U ′ �= 0. Write δ = deg(U).

(a) There exist a positive constant C7(p, U) depending only on p and U and a positive 
constant C ′

7 depending on C7 such that for every n ≥ 1:

dn−1,n,U ≥ C7(p, U)n2 − C ′
7.

(b) Let 0 ≤ m < n be integers. There exist positive constants C8(p, U) depending only 
on p and U and C9(m, p, U) depending only on m, p, and U such that:

dm,n,U ≥ δ

(
1 − 1

p
+ 1

p2 − 1
p3

)
mn− C8(p, U)n− C9(m, p, U).

Proof. Since U ′ �= 0, it has only finitely many roots. For α ∈ F̄ that is not the value of 
U at any of those roots, we have |U−1(α)| = δ.

For part (a), dn−1,n,U is at least the number of the preimages under U of the roots 
of unity (in F̄∗) whose order is at most n. For each � with p � �, there are exactly ϕ(�)
roots of unity of order �. Since 

∑
�≤n,p��

ϕ(�) � n2, this proves part (a).

For part (b), dm,n,U is at least the number of the preimages under U of the roots of 
unity whose order divides n − i for some 0 ≤ i ≤ m. Define:

T = {0 ≤ i ≤ m : n− i �≡ 0 mod p2}

Ai = {ζ ∈ F̄∗ : ζn−i = 1} for each i ∈ T .

We have:
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dm,n,U ≥ δ|
⋃
i∈T

Ai| + OU (1) ≥ δ

⎛
⎝∑

i∈T

|Ai| −
∑

i,j∈T,i<j

|Ai ∩Aj |

⎞
⎠ + OU (1).

Note that |Ai| =
n− i

pk
where pk ‖ n − i. Let:

S0 =
∑

0≤i≤m

(n− i) = (2n−m)(m + 1)
2 ,

S1 =
∑

0≤i≤m,p|n−i

(n− i) = p
(�n/p� + �(n−m)/p�)(�n/p� − �(n−m)/p� + 1)

2 ,

S2 =
∑

0≤i≤m,p2|n−i

(n− i)

= p2 (�n/p2� + �(n−m)/p2�)(�n/p2� − �(n−m)/p2� + 1)
2 .

We have:

∑
i∈T

|Ai| = S0 − S1 + 1
p
(S1 − S2) =

(
1 − 1

p
+ 1

p2 − 1
p3

)
mn + Op(1)n + Om,p(1).

For i < j in T , we have Ai ∩Aj ⊆ {ζ : ζj−i = 1} hence |Ai ∩Aj | ≤ m. Overall, we have

dm,n,U ≥ δ

(
1 − 1

p
+ 1

p2 − 1
p3

)
mn + Op,U (1)n + Om,p,U (1)

and this finishes the proof. �
We will need the following result on S-unit equations over characteristic p:

Proposition 3.3. Let Γ ⊂ K∗ be a finitely generated subgroup of rank r and consider the 
equation x + y = 1 with (x, y) ∈ Γ × Γ. Then there exists a finite subset X of K∗ ×K∗

of cardinality at most p2r − 1 such that every solution (x, y) ∈ (Γ × Γ) \ (F̄ × F̄) has the 

form x = xpk

0 and y = yp
k

0 for some (x0, y0) ∈ X and k ∈ N0.

Proof. This is well-known; see [16] or [2, Proposition 2.6]. �
Proof of Theorem 3.1. Recall that we are given deg(f(Un)) ≤ C5n +C6. Let δ = deg(U). 
Let N , D1, and D2 be large positive integers that will be specified later. Consider the 
auxiliary function:

g(A) = P (A)f(A) + Q(A)
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where Q(X) ∈ A[X] (respectively P (X) ∈ A[X]) has degree at most D1/δ (respectively 
(D1 − C5)/δ) and each of its coefficients is an element of A with degree at most D2
(respectively D2 − C6). There are at least qD1D2/δq(D1−C5)(D2−C6)/δ many choices for 
the pair (P, Q). Note that g satisfies the congruence condition:

g(A + BC) ≡ g(A) mod C for every A,B ∈ A and C ∈ P.

We have deg(g(Un)) ≤ D1n + D2 for every n. Hence there are at most

N∏
n=0

qD1n+D2+1 = q(D1N(N+1)/2)+D2(N+1)+N+1

possibilities for the tuple (g(1), g(U), . . . , g(UN )). Fix a small positive ε that will be 
specified later. Now we choose a large D1, then let:

N + 1 = 2 − ε

δ
D1 and D2 = δ

ε
N(N + 1),

so that

D1N(N + 1)
2 + D2(N + 1) + N + 1 = 1

δ
((εD1D2/2) + (2 − ε)D1D2 + (2 − ε)D1)

<
1
δ

(D1D2 + (D1 − C5)(D2 − C6)) .

By the pigeonhole principle, there exist two distinct choices of (P, Q) giving rise to the 
same tuple (g(1), . . . , g(UN )). Taking the difference, we conclude that there exist such 
P and Q so that g(U i) = P (U i)f(U i) + Q(U i) = 0 for 0 ≤ i ≤ N . For every n > N , we 
have g(Un) ≡ 0 mod rad(ΔN,n,U ). Recall the constants C8(p, U) and C9(N, p, U) from 

Lemma 3.2. Since 1 − 1
p

+ 1
p2 −

1
p3 >

1
2 , by choosing a sufficiently large D1 (which implies 

that N is sufficiently large) and sufficiently small ε, we have:

1 − 1
p

+ 1
p2 − 1

p3 − C8(p, U)
δN

>
N + 1

(2 − ε)N .

This implies that for all sufficiently large n, we have:

δ

(
1 − 1

p
+ 1

p2 − 1
p3

)
Nn− C8(p, U)n− C9(N, p, U) > δ

2 − ε
(N + 1)n + D2

= D1n + D2.

Since the right-hand side of the preceding inequality is at least deg(g(Un)) while the 
left-hand side is at most deg(rad(ΔN,n,U )) by Lemma 3.2, we have g(Un) = 0 for all 
sufficiently large n. Let N1 be such that g(Un) = 0 for every n ≥ N1.
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Now consider an arbitrary A ∈ A \ {0} then fix an integer M > deg(g(A)). We claim 
that there exists n ≥ N1 such that A −Un has an irreducible factor T of degree at least 
M ; once this is done we have that g(A) ≡ g(Un) = 0 ( mod T ), and this forces g(A) = 0, 
since the degree of T is strictly larger than the degree of g(A). To see why there exists 
such an irreducible factor T , let Γ denote the subgroup of K∗ generated by U , A, and all 
the irreducible polynomials of degree less than M . Since U is not the p-th power of an 
element in F̄ [t], there exists an irreducible polynomial in A whose exponent in the unique 
factorization of U is not divisible by p, i.e. v(U) �≡ 0 mod p where v is the associated 
discrete valuation. Therefore the set S := {n ≥ N1 : nv(U) − v(A) �≡ 0 mod p} is 
infinite and for every n ∈ S , we have Un/A is not the p-th power of an element in K. 
Let r denote the rank of Γ. Whenever A −Un = B has only irreducible factors of degree 
less than M , we have that (Un/A, B/A) is a solution of the equation x + y = 1 with 
(x, y) ∈ Γ × Γ. By Proposition 3.3, there can be at most p2r − 1 elements n ∈ S such 
that A −Un has only irreducible factors of degree less than M and this proves our claim.

Hence g(A) = 0 for every A ∈ A \ {0} and the congruence condition on g gives 
g(A) = 0 for every A ∈ A. Hence P (A)f(A) +Q(A) = 0 for every A ∈ A. We must have 
P (X) �= 0; since otherwise P (X) = Q(X) = 0. For all A ∈ A except the finitely many A
such that P (A) = 0, we have Q(A)/P (A) = −f(A) ∈ A. This implies that P (X) | Q(X)
in K[X], hence f is a polynomial map, as desired. �
4. A further question

As mentioned in the introduction, it is an interesting problem to strengthen 1.5 by 
replacing the function qdeg(A)/ deg(A) in (2) by a larger function. Let

dn := deg

⎛
⎜⎝ ∏

P∈P+
≤n

P

⎞
⎟⎠

which is the degree of the product of all monic irreducible polynomials of degree at most 
n. It seems reasonable to ask the following:

Question 4.1. Suppose f : A → A is a prime congruence-preserving map and there exists 
ε ∈ (0, 1) such that for all sufficiently large n, for all A ∈ A of degree n, we have

deg(f(A)) ≤ (1 − ε)dn.

Is it true that f is a polynomial map?
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