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Let G be a simple graph on n vertices, and let χG (λ) denote
the chromatic polynomial of G . In this paper, we define the
cyclic coloring complex, Δ(G), and determine the dimensions
of its homology groups for simple graphs. In particular, we
show that if G has r connected components, the dimension of
(n − 3)rd homology group of Δ(G) is equal to (n − (r + 1))

plus 1
r! |χ r

G (0)|, where χ r
G is the rth derivative of χG (λ). We also

define a complex Δ(G)C , whose r-faces consist of all ordered
set partitions [B1, . . . , Br+2] where none of the Bi contain an
edge of G and where 1 ∈ B1. We compute the dimensions of
the homology groups of this complex, and as a result, obtain the
dimensions of the multilinear parts of the cyclic homology groups
of C[x1, . . . , xn]/{xi x j | i j is an edge of G}. We show that when G is
a connected graph, the homology of Δ(G)C has nonzero homology
only in dimension n−2, and the dimension of this homology group
is |χ ′

G (0)|. In this case, we provide a bijection between a set of
homology representatives of Δ(G)C and the acyclic orientations of
G with a unique source at v , a vertex of G .

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Consider R = A/I where A = F [xS | S ⊆ {1, . . . ,n}], I is the ideal generated by {xU xT | U � T ,

T � U }, and F is a field of characteristic zero. Then consider the ideal KG generated by the monomials
xe1

X1
xe2

X2
. . . xel

Xl
, ei > 0, such that for all i, 1 � i � l + 1, Yi = Xi\Xi−1 does not contain an edge of G

(X0 = ∅ and Xl+1 = {1, . . . ,n}). Steingrímsson [10] calls KG the coloring ideal, since there is a bijection
between monomials of KG of degree r and colorings of G with r + 1 colors. He then notes that the
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quotient R/KG is the face ring of a simplicial complex, Λ(G). This complex is called the coloring
complex of G .

In 2005, Jonsson [5], showed that Λ(G) has the homology of a wedge of aG − 1 spheres, where
aG is the number of acyclic orientations of G . Stanley [9] showed that aG is (−1)nχG(−1), and Jon-
sson [5] concluded from this result that the dimension of the (n − 3)rd homology group of Λ is in
fact, (−1)nχG(−1) − 1.

In this paper we analyze the dimensions of the homology groups of the cyclic coloring complex,
Δ(G), of a simple graph G on n vertices. The r-simplices of Δ(G) are (r + 2)-chains [B1, . . . , Br+2],
where [B1, . . . , Br+2] is an ordered partition of {1, . . . ,n}, at least one of the Bi contains an edge of G ,
and 1 ∈ B1.

Section 3, we define the free coloring complex Δ(En) and compute the dimensions of the homol-
ogy groups of Δ(En). In particular, we will show that the dimension of the kth homology group of
Δ(En) is

( n−1
k+1

)
. This result follows from a result of Loday, but our proof will provide a set of homology

representatives for the homology groups of Δ(En) which will be needed in later proofs.
In Section 4, we prove that for a simple connected graph G on n vertices, the dimension of the

(n − 3)rd homology group of Δ(G) is n − 2 plus |χ ′
G(0)|, the absolute value of the linear term of the

chromatic polynomial. The key idea of the proof is to consider the complex Δ(G)C = Δ(En)/Δ(G).
We will show that Δ(G)C has nonzero homology only in dimension (n − 2) and the dimension of
this homology group is |χ ′

G(0)|. Further, if v is any vertex of G , Greene and Zaslavsky [2] showed
that |χ ′

G(0)| is the number of acyclic orientations of G having a unique source at v . We provide a
bijection between the acyclic orientations of G having a unique source at v and a set of homology
representatives of Δ(G)C .

Suppose G has r connected components and at least two edges. In Section 5, we will compute the
dimensions of the homology groups of Δ(G); in particular, we show that the dimension of the top ho-
mology group of Δ(G) equals 1

r! |χ r
G(0)| where χ r

G(λ) denotes the rth derivative of χG(λ). Further, we
compute the dimensions of the homology groups of Δ(G)C . From this we will deduce the dimensions
of the multilinear pieces of the cyclic homology groups of C[x1, . . . , xn]/{xi x j | i j is an edge of G}.

2. Cyclic coloring complex

Let G be a simple graph on n vertices. We begin by defining Steingrímsson’s [10] coloring complex
following the presentation in Jonsson [5].

Let (B1, . . . , Br+2) be an ordered partition of {1, . . . ,n} where at least one of the Bi contains an
edge of G , and let Λr be the set of ordered partitions (B1, . . . , Br+2).

Definition 2.1. The coloring complex of G is the sequence:

· · · → Vr
δr−→ Vr−1

δr−1−→ · · · δ1−→ V 0
δ0−→ V−1

δ−1−→ 0

where Vr is the vector space over a field of characteristic zero with basis Λr and

δr
(
(B1, . . . , Br+2)

) :=
r+1∑
i=1

(−1)i(B1, . . . , Bi ∪ Bi+1, . . . , Br+2).

Notice that δr−1 ◦ δr = 0. Then:

Definition 2.2. The kth homology group of Λ(G), Hk(Λ(G)) := ker(δk)/ im(δk+1).

In this paper, we will be considering the homology of the cyclic coloring complex Δ(G). In order
to define the cyclic coloring complex, we must define an equivalence relation on the elements of ±Λr .

Let σ ∈ Sr+2 be the (r + 2)-cycle (1,2, . . . , r + 2). Define Δr = ±Λr/ ∼, where ∼ is defined by
(B1, . . . , Br+2) ∼ (−1)r+1(Bσ(1), . . . , Bσ(r+2)). Let [B1, . . . , Br+2] denote the equivalence class contain-
ing (B1, . . . , Br+2). We will represent each equivalence class of Δr by the unique representative that
has 1 ∈ B1.
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Let

∂r
([B1, . . . , Br+2]

)

:=
r+1∑
i=1

(−1)i+1[B1, . . . , Bi ∪ Bi+1, . . . , Br+2] + (−1)r+3[B1 ∪ Br+2, B2, . . . , Br+1].

It is straightforward to check that ∂ is well-defined on equivalence classes. Thus, we have the
following definition.

Definition 2.3. The cyclic coloring complex of G , Δ(G), is the sequence

. . . → Cr
∂r−→ Cr−1

∂r−1−→ . . .
∂1−→ C0

∂0−→ C−1
∂−1−→ 0

where Cr is the vector space over a field of characteristic zero with basis Δr .

Notice that ∂r−1 ◦ ∂r = 0. So then:

Definition 2.4. The kth homology group of Δ(G), HCk(Δ(G)) := ker(∂k)/ im(∂k+1).

Part of the motivation for the definition of the cyclic coloring complex comes from cyclic homol-
ogy, and as we will see, one of our results gives the dimensions of the multilinear part of the cyclic
homology groups of the ring C[x1, . . . , xn]/{xi x j | i j is an edge of G}. See Loday [6] for more informa-
tion on cyclic homology.

It is interesting to note that there is a correspondence between hyperplane arrangements and
the coloring complex. Hersh and Swartz [4] use a special case of an idea of Herzog, Reiner, and
Welker [3] to describe this correspondence and use it to provide an alternative proof to the fact that
the homology of the Δ(G) equals a wedge of |χG(0)|−1 spheres. They further use the correspondence
to give a convex ear decomposition of the coloring complex. In a similar manner, the cyclic coloring
complex can be viewed as a hyperplane arrangement on the torus (R/Z)n . See Novik, Postnikov, and
Sturmfels [7] for more information on toric arrangements.

In several of our arguments, we will be considering the homology of the quotient of two cyclic
coloring complexes. We will define it here.

Consider the coloring complex of a graph G , Δ(G), and consider a subcomplex, Δ(I), of Δ(G).
Then Δ(G)/Δ(I) will consist of the partitions of Δ(G) where none of the Bi contains an edge of I .
Thus, we obtain the sequence of the complexes:

Δ(I) ↪→ Δ(G)
j−→ Δ(G)/Δ(I)

where j is the quotient map. From the homology of the pair (Δ(G),Δ(I)), this then induces the long
exact sequence:

· · · → HCk
(
Δ(I)

) i∗−→ HCk
(
Δ(G)

) j∗−→ HCk
(
Δ(G)/Δ(I)

) → ·· ·
where i∗ is the map induced by the inclusion Δ(I) ↪→ Δ(G) and j∗ is the map induced by the
quotient map j.

3. The homology of the free cyclic coloring complex

Let Δ(En) be the cyclic coloring complex of the complete graph with looped edges at each vertex.
Note that Δn−2(En) then consists of all ordered partitions [B1, . . . , Bn] of {1, . . . ,n} where |Bi | = 1 for
1 � i � r + 2. We will call this complex the free cyclic coloring complex.

Notice that the elements of Δr(En) are in bijection with the cyclic words [D1, . . . , Dr+2] where
Di ∈ C[x1, . . . , xn], and D1 . . . Dr+2 = x1 . . . xn with x1 ∈ D1. The multilinear part of the cyclic ho-
mology of C[x1, . . . , xn] is computed by only considering partitions [D1, . . . , Dr+2] where x1, . . . , xn
appear exactly once. Theorem 3.2.5 of Loday [6], describes the cyclic homology of C[x1, . . . , xn], and
it follows that:
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Theorem 3.1. (See Loday [6].) The dimension of the multilinear part of the kth cyclic homology group of
C[x1, . . . , xn] is

( n−1
k+1

)
.

This is equivalent to:

Theorem 3.2. The dimension of the kth homology group of Δ(En), HCk(Δ(En)), is
( n−1

k+1

)
.

We will provide a proof of this theorem that does not rely on Loday’s result, as our proof will
produce homology representatives for the groups HCk(Δ(En)) which we will need later.

Proof. The proof uses a spectral sequence argument. See Chow [1] for a nice introduction to spectral
sequences, and we follow his construction below.

Let

f
([B1, . . . , Br+2]

) = |B1|,
let Δm

r denote the chains in Δr where f ([B1, . . . , Br+2]) = m, and let Δ(Em
n ) denote the set of chains

{Δm
k | −1 � k � n − 2}. It is straightforward to see that f gives a filtration of each Δr(En) and that

∂ respects this filtration. Let Δ
(m)
r (En) = ⋃

m�i�n Δr(Ei
n) and let Cr,m be the vector space with basis

Δ
(m)
r (En). Then using our notation, E0

r,m = Cr,m/Cr,m+1. Notice that this means that E0
r,m is the vector

space with basis Δr(Em
n ) and Cr ∼= ⊕n

m=1 E0
r,m . Further, ∂ induces a map

∂0 :
n⊕

m=1

E0
r,m →

⊕
E0

r−1,m

where ∂0(E0
r,m) ⊆ E0

r−1,m for all values of r,m. Then one can define:

E1
r,m = HCr

(
E0

r,m

) = ker ∂0 : E0
r,m → E0

r−1,m

im ∂0 : E0
r+1,m → E0

r,m
.

Further, ∂ induces a map:

∂1 : E1
r,m → E1

r−1,m+1

and we can define:

E2
r,m = HCr

(
E1

r,m

) = ker ∂1 : E1
r,m → E1

r−1,m+1

im∂1 : E1
r+1,m−1 → E1

r,m
.

In our proof, we will see that El
r,m = E1

r,m for all values of r and m, and 2 � l � n, which means
HCr(Δ(En)) = ⊕

−1�r�n−2 E1
r,m .

Consider Δ(Em
n ). Notice that ∂0 must preserve |B1| = m, so the terms of ∂r which combine B1

and B2 as well as B1 and Br+2 vanish. Thus ∂0 is the same as the Hochschild homology boundary
map (without the wraparound term) on B2, . . . , Br+2. Further, notice that we can divide the chains of
Δ(Em

n ) into subsets determined by the elements of B1. Since we are looking at the chains of the free
coloring complex, the number of such subsets equals the number of ways of forming a subset of size
m −1 from a set of size n −1 (since 1 ∈ B1), i.e. there are

( n−1
m−1

)
subsets of Δ(Em

n ) where all elements
of a particular subset have the same B1.

Consider one such subset. All chains in this subset have the same first component B1, and
the elements of this subset are in bijection with the ordered partitions of the n − m element set
{1, . . . ,n} − B1. As noted above, the ∂0 map is the same as the Hochschild homology boundary
map without the wraparound term. Thus, the homology of this part of the mth graded piece of
the homology of Δ(En) equals the poset homology of the order complex of the Boolean algebra
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with n − m elements. Let {a1, . . . ,an−m} be the elements of {1, . . . ,n} − B1. It is well known that
this complex is Cohen–Macaulay with the homology of a sphere and a homology representative is∑

σ∈Sn−m
sgn(σ )[B1,aσ(1), . . . ,aσ(n−m)].

Consider ∂1(
∑

σ∈Sn−m
sgn(σ )[aσ(1), . . . ,aσ(n−m)]) and note

∂1([B1,a1, . . . ,an−m]) = [B1 ∪ a1,a2, . . . ,an−m] + (−1)n−m[B1 ∪ an−m,a1, . . . ,an−m−1].
It is a straightforward computation to show that

∂1
( ∑

σ∈Sn−m

sgn(σ )[B1,aσ(1), . . . ,aσ(n−m)]
)

= 0.

This same argument holds for ∂2, ∂3, etc. Thus, the spectral sequence collapses.
To determine the dimension of the kth homology group of Δ(En), we must relate k to m. Notice

that k = (n − 2) − (m − 1) and thus,
(

n − 1
m − 1

)
=

(
n − 1

n − 2 − k

)
=

(
n − 1
k + 1

)
. �

Let Tn denote a tree on n vertices. In the next section, we will show that for a connected graph G
and k � n − 3, the dimension of the kth homology group of Δ(G) equals the dimension of the kth
homology group of Δ(En). To show this, we need the following definitions and lemma.

Consider a tree Tn on n vertices. Let us assume that the root of the tree is labeled 1 and consider
labeling the other vertices with the numbers 2, . . . ,n so that each parent node has a smaller vertex
label than each of its children. Next, consider listing each edge of Tn by placing the smaller vertex
first and order the edges in lexicographic order. Note that this ordering forces the lth edge in the list
to always have the (l + 1)st vertex as the larger vertex.

Let Δ(T (0,l)
n ) be the complex formed by the chains [B1, . . . , Br+2] where none of the Bi contain

one of the first l edges. Also, let Δ(T (1,l)
n ) be the subcomplex of chains of Δ(T (0,l−1)

n ) where none
of the Bi contain one of the first l − 1 edges, but the lth edge is in the same Bi . Notice then that
Δ(T (0,l−1)

n )/Δ(T (1,l)
n ) = Δ(T (0,l)

n ) and the boundary map of Δ(T (0,l)
n ) will map the terms where one of

the first l edges is combined to zero.

Lemma 3.3. Given a tree on n vertices, for k � n − 3, the kth homology group of Δ(T (0,l)
n ) has dimension( n−(l+1)

(k+2)−(l+1)

)
.

Proof. We will prove the lemma by induction on l.
In the base case, we will determine a set of homology representatives for Δ(T (0,1)

n ). The key idea
of the general case of the proof will be to inductively create a set of homology representatives for the
complex Δ(T (0,l)

n ) and use them to compute the dimensions of the homology groups of Δ(T (0,l)
n ).

Consider the following exact sequence: Let us consider the base case. We have the long exact
sequence:

0 → HCn−2
(
Δ

(
T (1,1)

n
)) → HCn−2

(
Δ(En)

) → HCn−2
(
Δ

(
T (0,1)

n
))

→ HCn−3
(
Δ

(
T (1,1)

n
)) → HCn−3

(
Δ(En)

) → HCn−3
(
Δ

(
T (0,1)

n
))

→ HCn−4
(
Δ

(
T (1,1)

n
)) → ·· · .

Recall the proof of Theorem 3.2 above. In the proof, we used spectral sequences to divide the
chains of the free cyclic coloring complex based on the size of the first block of each chain. At each
level, we showed that the homology was concentrated at the top dimension and that the dimension
of the homology was equal to the number of subsets of the correct size. Further, we obtained one
homology representative for each subset.
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We can then show that the homology representatives of HCk(Δ(T (1,1)
n )) map injectively into the

set of homology representatives of HCk(Δ(En)). Since 1 is in the first block of every chain of Δ(En)

and the chains have length k + 2, the homology representatives of HCk(Δ(En)) are indexed by the
subsets of size (n − 1) − (k + 1) of the set {2, . . . ,n}. Since 12 is in the first block of every chain
of Δ(E(1,1)

n ) and the chains have length k + 2, the homology representatives of HCk(Δ(T (1,1)
n )) are

indexed by the subsets of size (n − 2) − (k + 1) of the set {3, . . . ,n}. Since these later representatives
are a subset of the former, the map from HCk(Δ(T (1,1)

n )) into HCk(Δ(En)) is injective for all values
of k.

By exactness,

dim HCk
(
Δ

(
T (0,1)

n
)) = dim HCk

(
Δ(En)

) − dim HCk
(
Δ

(
T (1,1)

n
))

=
(

n − 1
k − 1

)
−

(
n − 2
k − 1

)

=
(

n − 2
k − 2

)
.

The method described above explicitly determines a set of homology representatives of
HCk(Δ(T (0,1)

n )). Since the homology representatives of HCk(Δ(T (1,1)
n )) map injectively into the set

of homology representatives of HCk(Δ(En)), the homology representatives of HCk(Δ(T (0,1)
n )) are the

homology representatives of HCk(Δ(En)) where 1 and 2 are not in the same block.
For the general case, consider the long exact sequence:

0 → HCn−3
(
Δ

(
T (1,l+1)

n
)) → HCn−3

(
Δ

(
T (0,l)

n
)) → HCn−3

(
Δ

(
T (0,l+1)

n
))

→ HCn−4
(
Δ

(
T (1,l+1)

n
)) → HCn−4

(
Δ

(
T (0,l)

n
)) → HCn−4

(
Δ

(
T (0,l+1)

n
))

→ HCn−5
(
Δ

(
T (1,l+1)

n
)) → ·· · .

We will begin by showing that the homology representatives of HCk(Δ(T (1,l+1)
n )) map injectively

into the set of homology representatives of HCk(Δ(T (0,l)
n )). This will be trickier than in the base

case as we will have to determine the images of the homology representatives of HCk(Δ(T (1,l+1)
n ))

in HCk(Δ(T (0,l)
n )). Once we have established that the map from HCk(Δ(T (1,l+1)

n )) to HCk(Δ(T (0,l)
n ))

is injective, we will then use the fact that the above sequence is exact to deduce the dimension of
HCk(Δ(T (0,1)

n )).
By induction, assume that the dimension of HCk(Δ(T (0,l)

n )) is equal to
( n−(l+1)

(k+2)−(l+1)

)
, and that the

homology representatives are in bijective correspondence with the subsets of size (n − k − 2) from
the set {l + 2, . . . ,n}. In particular, given such a subset, A, the corresponding homology representative
would be the signed sum over the permutations of the numbers in the set {2, . . . , l + 1} ∪ AC , with
each term in the sum having 1 ∪ A in the first block.

Consider the long exact sequence:

0 → HCn−3
(
Δ

(
T (1,l+1)

n
)) → HCn−3

(
Δ

(
T (0,l)

n
)) → HCn−3

(
Δ

(
T (0,l+1)

n
))

→ HCn−4
(
Δ

(
T (1,l+1)

n
)) → HCn−4

(
Δ

(
T (0,l)

n
)) → HCn−4

(
Δ

(
T (0,l+1)

n
))

→ HCn−5
(
Δ

(
T (1,l+1)

n
)) → ·· · .

Let {a, l+2} be the (l+1)st edge in the ordering of the edges of Tn . Notice that HCk(Δ(T (1,l+1)
n )) is

isomorphic to HCk(Δ(T (0,l)
n−1 )), since we can relabel the chains of Δ(T (0,l)

n ) by mapping a to a ∪ (l + 2),

l + 2 to l + 3, . . . , n − 1 to n. So, we obtain the homology representatives of HCk(Δ(T (1,l+1)
n )) from

the homology representatives of HCk(Δ(T (0,l)
n−1 )) by using the same relabeling technique.

As in the base case, we now need to show that the homology representatives of HCk(Δ(T (1,l+1)
n ))

map injectively into the homology representatives of HCk(Δ(T (0,l)
n )). Consider a homology representa-

tive of HCk(Δ(T (1,l+1)
n )) and recall that it corresponds to a subset, A, of size (n−k−2) of {l+3, . . . ,n}.
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For l � 2, the first block of each term is 1 ∪ A, one block of each term is {a, l + 2}, and the homology
representative is the signed sum over all permutations of the block {a, l + 2}, the numbers in AC , and
the numbers {2, . . . , l + 1} − a. We will show that it is equivalent to the homology representative in
HCk(Δ(T (0,l)

n )) corresponding to the same subset.
It is not hard to show that when we apply the boundary map to the signed sum over all (k + 3)-

chains of Δ(T (0,l)
n ) where 1∪ A is in the first block, a is in a block of the chain before l +2, and all the

other numbers are in singleton blocks, the only remaining terms are ± the homology representative
corresponding to A in HCk(Δ(T (1,l+1)

n )) and ± the homology representative corresponding to the
subset in HCk(Δ(T (0,l)

n )). Since the image of the boundary map is modded out when computing
HCk(Δ(T (0,l)

n )), these two homology representatives must be equivalent in HCk(Δ(T (0,l)
n )).

By exactness and induction this means that

dim HCk
(
Δ

(
T (0,l+1)

n
)) = dim HCk

(
Δ

(
T (0,l)

n
)) − dim HCk

(
Δ

(
T (1,1)

n
))

=
(

n − (l + 1)

(k + 2) − (l + 1)

)
−

(
(n − 1) − (l + 1)

(k + 2) − (l + 1)

)

=
(

n − (l + 2)

(k + 2) − (l + 2)

)
. �

From this theorem we obtain the following corollary regarding the dimensions of the homology
groups of Δ(Tn).

Corollary 3.4. The dimension of HCk(Δ(Tn)) is equal to the dimension of HCk(Δ(En)).

Proof. Consider the chains of the free cyclic coloring complex, Δ(En), and apply the following spectral
sequence to Δ(En):

g
([B1, . . . , Br+2]

) =
{

1 [B1, . . . , Br+2] ∈ Δ(Tn),

0 otherwise.

Notice that the r-chains of Δ(En) which satisfy g([B1, . . . , Br+2]) = 0 are precisely the chains in which
none of the edges of Tn are in a block together.

By Lemma 3.3 we know that dim HCk(Δ(T (0,n−1)
n )) = ( 0

(k+2)−n

)
which is zero for k < n − 2 and 1

for k = n−2. So the homology is concentrated at the top degree and dim HCn−2(Δ(T (0,n−1)
n )) = 1. Fur-

ther, we know that the homology representative is mapped to zero by ∂1 by the proof of Lemma 3.2.
So the spectral sequence collapses and thus for k < n − 2, dim HCk(Δ(Tn)) = dim HCk(Δ(En)). �
4. The cyclic coloring complex of a connected simple graph

In this section, unless otherwise noted, we assume that G is a simple connected graph. Let χG(λ)

be the chromatic polynomial of G .
In this section, we will show that there is an interesting connection between the dimension of the

top homology of Δ(G) and the coefficient of the linear term of χG(λ).
Fig. 1 shows some simple connected graphs on 3 and 4 vertices along with their corresponding

chromatic polynomials and the dimensions of the homology groups of Δ(G). It also shows the alter-
nating sum of the dimensions of their homology groups. (We write the dimensions of the homology
groups of Δ(G) in the form

∑n−3
k=−1 dim HCk(Δ(G))qk+2.)

As we can see the alternating sum of the dimensions of the homology groups of Δ(G) equals the
absolute value of the linear term of the chromatic polynomial.

Lemma 4.1. Let G be a connected graph on n vertices. Then,

n−1∑
i=1

(−1)n−i+1 dim HCi−2
(
Δ(G)

) = ∣∣χ ′
G(0)

∣∣ = (−1)n+1χ ′
G(0).
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χG (λ) Homology Alt. Sum of Dimensions

λ2 − λ 2q2 + q 2 − 1 = 1

λ3 − 3λ2 + 2λ 3q2 + q 3 − 1 = 2

λ4 − 3λ3 + 3λ2 − λ 3q3 + 3q2 + q 3 − 3 + 1 = 1

λ4 − 3λ3 + 3λ2 − λ 3q3 + 3q2 + q 3 − 3 + 1 = 1

λ4 − 3λ3 + 3λ2 − λ 3q3 + 3q2 + q 3 − 3 + 1 = 1

λ4 − 4λ3 + 6λ2 − 3λ 5q3 + 3q2 + q 5 − 3 + 1 = 3

λ4 − 5λ3 + 8λ2 − 4λ 6q3 + 3q2 + q 6 − 3 + 1 = 4

Fig. 1. Chromatic polynomial of G and dimensions of the homology groups of Δ(G).

Proof. For the base case, we verify the lemma for all trees on n vertices. From Corollary 3.4,
dim HCk(Δ(Tn)) = ( n−1

k+1

)
. It is well known that

∑n−2
k=−1(−1)n−k−1

( n−1
k+1

) = 0, and thus

n−1∑
i=1

(−1)n−i+1 dim HCi−2
(
Δ(Tn)

) = 1.

The chromatic polynomial of a tree on n vertices is χTn (λ) = λ(λ − 1)n−1 and therefore |χ ′
G(0)| = 1.

By the definition of the Euler characteristic X , we have that

n−3∑
m=−1

(−1)n−m−1 dim HCm
(
Δ(G)

) = (−1)n+1 X
(
Δ(G)

)
.

Note that by a change of variables i = m + 2, this equation is equivalent to

n−1∑
i=1

(−1)n−i+1 dim HCi−2
(
Δ(G)

) = (−1)n+1 X
(
Δ(G)

)
.

It suffices to show that (−1)n+1 X(Δ(G)) = (−1)n+1χ ′
G(0).

Let e be an edge of the connected graph G . Notice that Δ(G) = (Δ(G −e)/(Δ(G −e)∩Δ(e)))∪Δ(e).
Lemma 1.3 of Jonsson [5], states that for a graph G with at least two edges, Λ(G − e) ∩ Λ(e) and
Λ(G/e) are isomorphic for any edge e of G . The same statement holds for the cyclic coloring complex
as well. (The proof is identical since the chains in the cyclic coloring complex are indexed by a subset
of the chains in his coloring complex.) So X(Δ(G)) = X(Δ(G − e)) − X(Δ(G/e)) + X(Δ(e)).

The proof will follow by induction on the edge e. Note that

(−1)n+1 X
(
Δ(G)

) = (−1)n+1(X
(
Δ(G − e)

)) − X
(
Δ(G/e)

) + X
(
Δ(e)

)
.
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Δ(e) is isomorphic to the complex Δ(En−1), and thus using a binomial identity, it follows that
X(Δ(e)) = 0. Since Δ(e) is disconnected, χ ′

e(0) = 0, and thus

(−1)n+1 X
(
Δ(G)

) = (−1)n+1(χ ′
G−e(0) − χ ′

G/e(0) + χ ′
e(0)

) = (−1)n+1(χ ′
G(0)

)
. �

Our next step will be to show that HCk(Δ(G)) = HCk(Δ(En)) for k < n − 3 and G , a connected
graph on n vertices. To prove this, we will need the following definition and lemma.

Notice that Δ(G) is a subcomplex of Δ(En). Let Δ(G)C = Δ(En)/Δ(G). Notice that the boundary
map of Δ(G)C maps partitions [B1, . . . , Br+2] where at least one of the Bi contains an edge of G to
zero.

Lemma 4.2. Let G be a connected graph on n vertices. The homology of Δ(G)C is nonzero only in dimension
n − 2.

Proof. The proof will follow by induction on n. For the base case, one can compute directly the
homology of all graphs on 2 and 3 vertices. The figure above shows these graphs along with the
corresponding homology of Δ(G)C .

So suppose then that the claim is true for all connected graphs on n − 1 vertices.
Consider a spanning tree, Tn , of G , and let e1 be an edge of G that is not in Tn . Let G1 be the

graph Tn ∪ e1, and let G1/e1 be the contraction of G1 along e1.
Notice that the chains of Δ(G1)

C are a subset of the chains of the complex Δ(Tn)C . The chains of
Δ(Tn)C not contained in the complex Δ(G1)

C are precisely the chains, [B1, . . . , Br+2], where the edge
e1 is in a Bi , but none of the edges of Tn are in a Bi . This complex is equivalent to Δ(G1/e1)

C and is
a subcomplex of Δ(Tn)C . Note that Δ(Tn)C /Δ(G1/e1)

C = Δ(G1)
C .

Now consider the following long exact sequence.

0 → HCn−2
(
Δ(G1/e1)

C ) → HCn−2
(
Δ(Tn)C ) → HCn−2

(
Δ(G1)

C )
→ HCn−3

(
Δ(G1/e1)

C ) → HCn−3
(
Δ(Tn)C ) → HCn−3

(
Δ(G1)

C )
→ HCn−4

(
Δ(G1/e1)

C ) → ·· · .
We are only concerned with proving that HCk(Δ(G1)

C ) = 0 for k < n − 2, so we ignore the begin-
ning of the sequence. Notice that we already calculated the dimensions of the homology groups of
Δ(Tn)C in Lemma 3.3. So we know that HCk(Δ(Tn)C ) = 0 for k < n − 2, and thus dim HCk(Δ(G1)

C ) =
dim HCk−1(Δ(G1/e1)

C ) for all k < n − 2. G1/e1 is the contraction of G1 along e1, so G1/e1 is a graph
on n − 1 vertices. By induction then, dim HCl(Δ(G1/e1)

C ) = 0 for all l < n − 3, and this implies that
dim HCk(Δ(G1)

C ) = 0 for k < n − 2.
Let e2 be an edge of G that is not in G1 (if none exists, then we are done), and let G2 = G1 ∪ e2.

Consider the long exact sequence:

0 → HCn−2
(
Δ(G2/e2)

C ) → HCn−2
(
Δ(G1)

C ) → HCn−2
(
Δ(G2)

C )
→ HCn−3

(
Δ(G2/e2)

C ) → HCn−3
(
Δ(G1)

C ) → HCn−3
(
Δ(G2)

C )
→ HCn−4

(
Δ(G2/e2)

C ) → ·· · .
From above, we know that dim HCk(G1) = 0 for k < n − 2, and thus

dim HCk
(
Δ(G2)

C ) = dim HCk−1
(
Δ(G2/e2)

C )
for k < n − 2. By induction, dim HCk−1(Δ(G2/e2)

C ) = 0 for k < n − 2. So we have that
dim HCk(Δ(G2)

C ) = 0 for k < n − 2.
We can continue in this manner, at the lth stage adding an edge el of G that is not an edge of Gl−1

and defining Gl := Gl−1 ∪ el . By using a long exact sequence similar to the one above (just change the
appropriate subscripts), we have that dim HCk(Δ(Gl)

C ) = 0 for k < n − 2. Repeat this argument until
Gl = G . �



604 S. Crown / Journal of Combinatorial Theory, Series A 116 (2009) 595–612
We will need this lemma to show that in general.

Lemma 4.3. For any simple connected graph G on n vertices, the dimension of HCk(Δ(G)) equals the dimen-
sion of HCk(Δ(En)) for k < n − 3. In particular, the dimension of HCk(Δ(G)) = ( n−1

k+1

)
.

Proof. Consider the following long exact sequence:

0 → HCn−2
(
Δ(G)

) → HCn−2
(
Δ(En)

) → HCn−2
(
Δ(G)C )

→ HCn−3
(
Δ(G)

) → HCn−3
(
Δ(En)

) → HCn−3
(
Δ(G)C )

→ HCn−4
(
Δ(G)

) → HCn−4
(
Δ(En)

) → HCn−4
(
Δ(G)C ) → ·· · .

We know from Lemma 4.2 that the only nonzero homology group of Δ(G)C is HCn−2(Δ(G)C ). So
for k � n − 3, HCk(Δ(G)C ) = 0. By exactness, for k < n − 3, dim HCk(Δ(G)) = F dim HCk(Δ(En)). By
Theorem 3.2, this means dim HCk(Δ(G)) = ( n−1

k+1

)
. �

We will now relate the dimension of the top homology group of Δ(G) to the coefficient of the
linear term of its chromatic polynomial.

Theorem 4.4. Let G be a simple, connected graph on n vertices. The dimension of HCn−3(Δ(G)) is (n − 2) +
|χ ′

G(0)|.

Proof. We begin by showing that
∑n−4

i=−1(−1)n−i−1 dim HCi(Δ(G)) = 2 − n. To make our compu-
tation easier, we perform a change of variables. Let m = i + 2. From Lemma 4.3, we know that
dim HCi(Δ(G)) = ( n−1

i+1

)
for i < n − 3. Thus, we must show that

n−2∑
m=1

(−1)n−m−1
(

n − 1
m − 1

)
= 2 − n.

Notice that

n−2∑
m=1

(−1)n−m+1
(

n − 1
m − 1

)
=

n−2∑
m=1

(−1)n−m+1
((

n − 2
m − 1

)
+

(
n − 2
m − 2

))
= −

(
n − 2
n − 3

)
= 2 − n.

From Lemma 4.1 we know that
∑n−1

i=1 (−1)n−i+1 dim HCi−2(Δ(G)) = |χ ′
G(0)|, which implies

dim HCn−3
(
Δ(G)

) = ∣∣χ ′
G(0)

∣∣ −
n−2∑
i=1

(−1)n−i+1 dim HCi−2
(
Δ(G)

) = ∣∣χ ′
G(0)

∣∣ + (n − 2). �

Greene and Zaslavsky [2] proved the following the theorem which relates the absolute value of the
linear coefficient of the chromatic polynomial to the number of acyclic orientations of a graph with a
unique source.

Theorem 4.5. (See Greene and Zaslavsky [2].) Let G be a graph and let v be a vertex in G. The number of acyclic
orientations of G having v as a unique source is equal to |χ ′

G(0)|.

So we then have the following corollary, similar to Corollary 1.8 of Jonsson [5].

Corollary 4.6. Let G be a simple, connected graph on n vertices. The dimension of HCn−3(Δ(G)) equals the
number of acyclic orientations of G having v as a unique source plus n − 2.
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As a result of the above proof, we obtain some interesting facts about the complex Δ(G)C , for a
connected simple graph G .

Theorem 4.7. The dimension of the (n − 2)nd homology group of Δ(G)C is |χ ′
G(0)|.

Proof. Consider the long exact sequence:

0 → HCn−2
(
Δ(G)

) → HCn−2
(
Δ(En)

) → HCn−2
(
Δ(G)C )

→ HCn−3
(
Δ(G)

) → HCn−3
(
Δ(En)

) → HCn−3
(
Δ(G)C ) → 0.

We know that dim HCn−2(Δ(G)) = 0, dim HCn−2(Δ(En)) = 1, dim HCn−3(Δ(G)) = (n − 2) +
|χ ′

G(0)|, dim HCn−3(Δ(G)C ) = 0, and HCn−3(Δ(En)) = n − 1. Then using exactness, it follows that
dim HCn−2 = |χ ′

G(0)|. �
It is interesting to notice that the elements of Δr(G)C are in bijection with the cyclic words

[D1, . . . , Dr+2] where Di ∈ C[x1, . . . , xn]/{xi x j | i j is an edge of G} and [D1, . . . , Dr+2] is an ordered
partition of x1, . . . , xn with x1 ∈ D1. Thus, we have the following corollary.

Corollary 4.8. For a connected simple graph G with n vertices, the dimension of the multilinear part of the
(n − 2)nd cyclic homology group of

C[x1, . . . , xn]/{xi x j | i j is an edge of G}
is |χ ′

G(0)|.

Since dim HCn−2(Δ(G)C ) = |χ ′
G(0)|, a natural question is whether there is a bijection between the

homology representatives of Δ(G)C and the acyclic orientations of G with a unique source.

Theorem 4.9. Given a connected graph G with n vertices, there is a bijection between the acyclic orientations
of G where 1 is a unique source and the homology representatives of Δ(G)C . In particular, each acyclic orien-
tation A, of G with 1 as a unique source corresponds to a signed sum of linear extensions of acyclic orientations
which can be obtained from A by a sequence of “sink to source” transformations.

Proof. Consider an acyclic orientation, A, of a connected simple graph G , on n vertices, with a unique
source at vertex 1. Let T (A) be the set of acyclic orientations which can be obtained from A by a finite
number (including zero) of “sink to source” transformations. Namely, if there is a sink at vertex v in
A, then flip the directions of the edges incident to v to create a source at v . Associate to A the sum

∑
A′∈T (A)

∑
π∈L(A′)

sgn(π)pi

where L(A′) is the set of linear extensions a1 . . .an of the acyclic orientation A′ with the restriction
that a1 = 1.

We must verify that the above sum is mapped to zero under the boundary map, ∂ , of Δ(G)C .
When we apply ∂ to the signed sum of permutations associated to an acyclic orientation of G , the
only terms in the result will be those chains that do not contain an edge of G in any of their blocks.

Consider such a term, [1,a2, . . . ,ai−1, lm,ai+2 . . . ,an−1], corresponding to the non-edge lm where
l,m �= 1. Notice that

∂
([1,a2, . . . ,ai−1, l,m,ai+2, . . . ,an−1]

)
and ∂

([1,a2, . . . ,ai−1,m, l,ai+2, . . . ,an−1]
)

will have the term [1,a2, . . . ,ai−1, lm,ai+2, . . . ,an−1] in the result. Since lm is not an edge of the
graph, G , there is no restriction on the order in which l and m appear in the signed sum as-
sociated to the acyclic orientation A. Thus, both of the chains above appear in the signed sum.
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Since they differ by a transposition, when we apply ∂ to them, the resulting terms with the chain
[1,a2, . . . ,ai−1, lm,ai+2 . . . ,an−1] must cancel.

Now consider a term [1m,a2, . . . ,an−1] in the image of the signed sum associated to A under ∂ ,
where 1m is not an edge of G . For the moment suppose m is not a sink of G , nor a sink in any of the
graphs we obtained from G by flipping edges. There are then at least two edges jm and mk connected
to m and directed j → m and m → k. Therefore, m cannot be in the second or last block of a chain
[1,a2, . . . ,an], since it must come after j and before k. If m is a sink of A′ , for some A′ ∈ T (A), then
there is another signed sum term in the signed sum of permutations associated to the given acyclic
orientation of G corresponding to m as a source. For m a sink, m must precede all of the vertices
with which it shares edges. So, to obtain the term [1m,a2, . . . ,an−1], m must have been in the second
block, i.e., ∂([1,m,a2, . . . ,an−1]) has as one of its terms the chain [1m,a2, . . . ,an−1]. However, since
there is a signed sum term corresponding to m as a source, this signed sum must contain the term
[1,a2, . . . ,an−1,m]. From an argument in an earlier proof, one can easily see that applying ∂ to the
later chain (with the appropriate signs), will cause the terms containing the chain [1m,a2, . . . ,an−1]
to cancel.

Now, we will show that the elements of the set of signed sums associated to the acyclic orienta-
tions of G having 1 as a unique source are linearly independent. Notice that the set of signed sums
corresponds to a partition of the elements of Sn−1, and in particular, no two signed sums have a term
in common. To see this, suppose two distinct acyclic orientations (with 1 as a unique source) have a
term in their signed sums in common (without loss of generality assume this term is not the signed
sum corresponding to initial orientations of the edges of A1 and A2). Then this term is a linear ex-
tension of A′

1 ∈ T (A1) and A′
2 ∈ T (A2) and thus A′

1 and A′
2. Note that A′

1 and A′
2 contain a source at

a vertex v ∈ G , v �= 1. By performing “source to sink” transformations on A′
1 and A′

2, it can be seen
that A1 and A2 must be equal, a contradiction.

Since we have a set of |χ ′
G(0)| linearly independent elements of HCn−2(Δ(G)C ), this set must

be a basis for HCn−2(Δ(G)C ). Notice also that the argument for linear independence implies that if
two signed sums are equal, then the acyclic orientations they correspond to must also be equal, i.e.
the map must be injective. Since the map is injective and dim HCn−2(Δ(G)C ) equals the number of
acyclic orientations of G with 1 as a unique source, this map must be a bijection. �
5. Homology of Δ(G) and Δ(G)C

As in the connected graph case, we will need some information about the homology groups of
Δ(G)C before we compute the dimension of the top homology group of Δ(G), where G is a dis-
connected graph with r connected components, C1, . . . , Cr , n vertices, and at least two edges (see
Fig. 2).

Let us begin with some notation. Let 1 be in C1 and for each component Ci pick a vertex vi in Ci .
Let G∗ be the graph G with edges between 1 and v2, 1 and v3, . . . , and 1 and vr . We will denote
this by G∗ = G ∪ 1v2 ∪ · · · ∪ 1vr . Let W be a subset of {v2, . . . , vr}, and let G∗

W be the graph obtained
from G∗ by contracting the edges 1vi for each vi in W .

Theorem 5.1. For n−2 � k > n− (2+r), HCk(Δ(G)C ) ∼= ⊕
|W |=(n−2)−k HCk(Δ(G∗

W )C ). For k � n− (2+r),

HCk(Δ(G)C ) = 0.

Proof. The proof will proceed by induction. We will begin with the base case r = 2. Let G1 be the
graph G ∪ 1v2 and let G2 be the graph (G ∪ 1v2)/1v2 where / denotes contraction. Notice that
Δ(G2)

C is a subcomplex of Δ(G)C and Δ(G)C /Δ(G2)
C = Δ(G1)

C . Thus, we obtain the following long
exact sequence:

0 → HCn−2
(
Δ(G2)

C ) → HCn−2
(
Δ(G)C ) → HCn−2

(
Δ(G1)

C )
→ HCn−3

(
Δ(G2)

C ) → HCn−3
(
Δ(G)C ) → HCn−3

(
Δ(G1)

C )
→ HCn−4

(
Δ(G2)

C ) → HCn−4
(
Δ(G)C ) → HCn−4

(
Δ(G1)

C ) → ·· · .
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Homology χG (λ)

5q5 + 13q4 + 12q3 + 5q2 + q λ6 − 4λ5 + 6λ4 − 3λ3

6q5 + 12q4 + 10q3 + 5q2 + q λ6 − 5λ5 + 10λ4 − 9λ3 + 3λ2

3q4 + 7q3 + 5q2 + q λ5 − 3λ4 + 2λ3

4q4 + 7q3 + 4q2 + q λ5 − 4λ4 + 5λ3 − 2λ2

7q5 + 13q4 + 10q3 + 5q2 + q λ6 − 6λ5 + 13λ4 − 12λ3 + 4λ2

Fig. 2. Some disconnected graphs and their homology.

The graphs G1 and G2 are connected so the homology of Δ(G1)
C and Δ(G2)

C is nonzero only in
dimensions n − 2 and n − 3, respectively. Thus, we must have that HCk(Δ(G)C ) = 0 for k � n − 3, and
the above long exact sequence simplifies to:

0 → HCn−2
(
Δ(G)C ) → HCn−2

(
Δ(G1)

C ) α−→ HCn−3
(
Δ(G2)

C ) → HCn−3
(
Δ(G)C ) → 0.

If h is a homology representative of HCn−2(Δ(G1)
C ), then the map α is defined to be ∂(h) where ∂

is the boundary map on the n − 2 chains of Δ(G)C . Notice that each chain in the homology represen-
tatives of Δ(G2)

C has 1v2 in its first block and so any homology representative is a linear combination
of such chains. The boundary map of Δ(G)C differs from the boundary map of Δ(G1)

C only in that
the boundary map of Δ(G)C allows 1 and v2 to be together in a block of a chain. Thus, ∂(h) must be
a signed sum of chains having 1v2 in the first block. We will show that this signed sum is zero and
hence the rank of α is zero.

We begin by trying to understand the homology representatives of G1 more deeply. Let A(G,1)

denote the set of acyclic orientations of G with 1 as a unique source. Recall from Theorem 4.9 that
the homology representatives of Δ(G1)

C and Δ(G2)
C are in bijection with the elements of A(G1,1)

and A(G2,1) respectively. It is clear that A(G1,1) and A(G2,1) are in bijection and that v2 is a source
in C2.

Let A be an acyclic orientation of G1, and suppose h is the homology representative of Δ(G1)
C

corresponding to A. Since v2 is a source vertex in C2, we must have that v2 precedes all of the
vertices with which it shares an edge in each term of h. We will show that for all terms in h having
the form [1, v2,a3, . . . ,an], the term [1,a3, . . . ,an, v2] occurs as well, with opposite sign.

If v2 is the only vertex of C2, then we are done because there is no relation preventing v2 from
appearing as the last block of a chain (since in this case, it only shares an edge with 1). In particular,
in this case we can find a chain (−1)n−2[1,a3, . . . ,an, v2] which after we apply h gives the chain
(−1)n−2(−1)n−1[1v2,a3, . . . ,an]. If v2 is not the unique vertex of C2, then note that there exists a
series of “sink to source” transformations of A where each vertex in C2 − {v2} is flipped exactly
once. This series of transformations gives an element A′ ∈ T (A′) where v2 is a sink. Consider the
signed sum of linear extensions corresponding to A′ and notice that this sum must contain the term
(−1)n−2[1,a3, . . . ,an, v2]. Thus, the rank of α is zero.
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By the exactness of the sequence,

HCn−2
(
Δ(G)C ) ∼= HCn−2

(
Δ(G1)

C ) = HCn−2
(
Δ

(
G∗)C )

and

HCn−3
(
Δ(G)C ) ∼= HCn−3

(
Δ(G2)

C ) = HCn−3
(
Δ

(
G∗\v2

)C )
.

We present the case for r = 3 here as well because it will demonstrate the second part of the state-
ment of the lemma.

Let G be a graph on n vertices with 3 connected components. Let G1 be G ∪ 1v3 and G2 be
(G ∪ 1v3)/1v3.

Now consider the following long exact sequence:

0 → HCn−2
(
Δ(G2)

C ) → HCn−2
(
Δ(G)C ) → HCn−2

(
Δ(G1)

C ) α1−→
HCn−3

(
Δ(G2)

C ) → HCn−3
(
Δ(G)C ) → HCn−3

(
Δ(G1)

C ) α2−→
HCn−4

(
Δ(G2)

C ) → HCn−4
(
Δ(G)C ) → HCn−4

(
Δ(G1)

C ) → ·· · .
We will show that the ranks of α1 and α2 are zero which will give, by exactness of the above se-

quence, that HCn−2(Δ(G)C ) ∼= HCn−2(Δ(G1)
C ), HCn−3(Δ(G)C ) ∼= HCn−3(Δ(G1)

C )
⊕

HCn−3(Δ(G2)
C ),

and HCn−4(Δ(G)C ) ∼= HCn−4(Δ(G2)
C ).

Note that since G1 and G2 have 2 connected components, we know that (n−2)nd homology group
of Δ(G1)

C is isomorphic to the (n − 2)nd homology group of Δ(G∗
1)

C and the (n − 3)rd homology
group of Δ(G2)

C is isomorphic to the (n − 3)rd homology group of Δ(G∗
2)

C (which is the same as the
(n − 3)rd homology group of Δ(G∗

v3
)C ). Since G∗

1 and G∗
2 are connected graphs where G∗

2 = G∗
1/1v3,

we can then use the same argument that was used in the case for r = 2 to show that the rank of
α1 equals zero (in the argument above replace G1 with G∗

1 and G2 with G∗
2). This implies then that

HCn−2(Δ(G)C ) ∼= HCn−2(Δ(G1)
C ) ∼= HCn−2(Δ(G∗)C ).

Now notice that HCn−3(Δ(G1)
C ) ∼= HCn−3(Δ(G∗

v2
)C ) and HCn−4(Δ(G2)

C ) ∼= HCn−4(Δ(G∗
v2,v3

)C ).
Since G∗

v2
and G∗

v2,v3
are connected graphs where G∗

v2
/1v3 = G∗

v2,v3
, we can use the same argument

that was used for the case r = 2 to show that the rank of α2 equals zero. Using exactness of the
sequence above, this implies that HCn−3(Δ(G)C ) ∼= HCn−3(Δ(G∗

v2
)C )

⊕
HCn−3(Δ(G∗

v3
)C ).

Now, by way of induction, assume the statement of the lemma holds for a graph with r − 1
connected components, at least two edges, and n vertices.

Let G1 be G ∪ 1vr and G2 be (G ∪ 1vr)\1vr .
Consider then the following exact sequence:

0 → HCn−2
(
Δ(G2)

C ) → HCn−2
(
Δ(G)C ) → HCn−2

(
Δ(G1)

C ) α1−→
HCn−3

(
Δ(G2)

C ) → HCn−3
(
Δ(G)C ) → HCn−3

(
Δ(G1)

C ) α2−→
HCn−4

(
Δ(G2)

C ) → HCn−4
(
Δ(G)C ) → HCn−4

(
Δ(G1)

C ) α3−→
.
.
.

HCn−(2+r)
(
Δ(G2)

C ) → HCn−(2+r)
(
Δ(G)C ) → HCn−(2+r)

(
Δ(G1)

C ) αr−1−→
HCn−(1+r)

(
Δ(G2)

C ) → HCn−(1+r)
(
Δ(G)C ) → HCn−(1+r)

(
Δ(G1)

C ) → 0

.

.

.

By the induction hypothesis, HCk(Δ(G2)
C ) is zero for k � (n − 1) − (2 + (r − 1)) = n − (2 + r)

and HCk(Δ(G1) is zero for k � n − (2 + (r − 1) = n − (r + 1). This implies then by exactness that
HCk(Δ(G)C ) = 0 for k � n − (2 + r).

Now we will show that the ranks of α1, . . . , αr−1 are zero which will give, by exactness of
the above sequence, that HCn−2(Δ(G)C ) is isomorphic to the homology group of HCn−2(Δ(G∗)C ),
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and for n − 2 � k > n − (2 + r), HCk(Δ(G)C ) ∼= ⊕
|W |=(n−2)−k HCk(Δ(G∗

W )C ). For k � n − (2 + r),

HCk(Δ(G)C ) = 0.
Note that since G1 and G2 have r − 1 connected components, we know that HCn−2(Δ(G1)

C ) is
isomorphic to HCn−3(Δ(G∗

1)
C ), and HCn−3(Δ(G2)

C ) is isomorphic to HCn−3(Δ(G∗
2)

C ). Since G∗
1 and

G∗
2 are connected graphs where G∗

2 = G∗
1/1vr , we can then use the same argument that was used in

the base case to show that the rank of α1 equals zero (simply replace 1v2 with 1vr in the argument).
By the induction hypothesis, we know that for n − 2 � k > n − (r + 1),

HCk
(
Δ(G1)

C ) ∼=
⊕

|W |=(n−2)−k

HCk
(
Δ

((
G∗

1

)
W

)C )
,

where W is a subset of {v2, . . . , vr−1}, since the r − 1 connected components of G1 are C1 ∪ Cr ∪ 1vr ,
C2, . . . , Cr−1. We also know that for n − 3 � k > (n − 1) − (r + 1), HCk(Δ(G2)

C ) ∼=⊕
|W |=(n−3)−k HCk(Δ((G∗

2)W )C ), where W is a subset of {v2, . . . , vr−1}, since the r − 1 connected
components of G2 are (C1 ∪ Cr)/1vr , C2, . . . , Cr−1.

Consider the map αl between HCn−(l+1)(Δ(G1)
C ) and HCn−(l+2)(Δ(G2)

C ). We know that

HCn−(l+1)

(
Δ(G1)

C ) ∼=
⊕

|W |=(n−2)−(n−(l+1))

HCn−(l+1)

(
Δ

((
G∗

1

)
W

)C )

=
⊕

|W |=l−1

HCn−(l+1)

((
Δ

(
G∗

1

)
W

)C )

and that

HCn−(l+2)

(
Δ(G2)

C ) ∼=
⊕

|W |=(n−3)−(n−(l+2))

HCn−(l+2)

(
Δ

((
G∗

2

)
W

)C )

=
⊕

|W |=l−1

HCn−(l+2)

(
Δ

((
G∗

2

)
W

)C )
.

So αl is the map between

⊕
|W |=l−1

HCn−(l+1)

((
Δ

(
G∗

1

)
W

)C )
and

⊕
|W |=l−1

HCn−(l+2)

(
Δ

((
G∗

2

)
W

)C )
.

In particular, αl is the boundary map ∂ with respect to HCn−(l+2)(Δ(G)C ). So it acts the same
as the boundary map with respect to HCn−(l+2)(Δ(G1)

C ) except that it allows 1 and vr to be in
the same block. Notice that in both direct sums we are choosing subsets W of size l − 1 from the
set {v2, . . . , vr−1}. Notice that G∗

2 = G∗
1/1vr , so a homology representative of HCn−(l+1)((Δ(G∗

1)W )C ),
which has 1 and the elements of W together in the first block of each of its terms, must map into
HCn−(l+2)((Δ(G∗

2)W )C ). Thus,

αk

( ⊕
|W |=l−1

HCn−(l+1)

((
Δ

(
G∗

1

)
W

)C )) =
⊕

|W |=l−1

αk
(

HCn−(l+1)

((
Δ

(
G∗

1

)
W

)C ))
,

and it suffices to show that the rank of

αl : HCn−(l+1)

((
Δ

(
G∗

1

)
W

)C ) → HCn−(l+2)

((
Δ

(
G∗

2

)
W

)C )
is zero for each W . Notice that for each W , (G∗

2)W = (G∗
1)W /vr . This implies then that we can use

the same argument that was used in the base case for r = 2 to show that the rank of αl is zero; in
that argument simply replace G1 with (G∗

1)W , G2 with (G∗
2)W , and v2 with vr .
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We know now that the rank of αl is zero. So by exactness, we know that

HCn−(l+1)

(
Δ(G)C ) ∼= HCn−(l+1)

(
Δ(G2)

C )⊕
HCn−(l+1)

(
Δ(G1)

C )
∼=

⊕
|U |=l−2

HCn−(l+1)

(
Δ

((
G∗

2

)
U

)C ) ⊕
|V |=l−1

HCn−(l+1)

(
Δ

((
G∗

1

)
V

)C )

∼=
⊕

|U |=l−2
U⊆{v2,...,vr−1}

HCn−(l+1)

(
Δ

(
G∗

U /vr
)C ) ⊕

|V |=l−1
V ⊆{v2,...,vr−1}

HCn−(l+1)

(
Δ

(
G∗

V

)C )

∼=
⊕

|W |=l−1
W ⊆{v2,...,vr }

HCn−(l+1)

(
Δ

(
G∗

W

)C )
.

Setting k = n − (l + 1) in the last formula gives the desired result. �
Using Theorem 4.9 together with the above theorem, it follows immediately that:

Corollary 5.2. The kth homology group of Δ(G)C has a set of homology representatives which are in bijection
with the set {A(G∗

W ,1) | |W | = n − 2 − k} where A(G∗
W ,1) is the set of acyclic orientations of G∗

W with
a unique source at 1.

From Theorem 5.1, we then obtain the following corollary about the dimensions of the homology
groups of Δ(G)C .

Corollary 5.3. For n − 2 � k > n − (2 + r) the dimension of HCk(Δ(G)C ) is
(

r − 1
(n − 2) − k

)
1

r!
∣∣χ r

G(0)
∣∣,

where χ r
G(λ) is the rth derivative of χG(λ). Further, for k � n − (2 + r), HCk(Δ(G)C ) = 0.

In order to prove this corollary, we will need the following lemma.

Lemma 5.4. Let G be a disconnected simple graph with r connected components. Let W be defined as in
Theorem 5.1. Then |χ ′

G∗
W

(0)| = |χ ′
G∗/{1v2,...,1vr }(0)|. Moreover, 1

r! |χ r
G(0)| = |χ ′

G∗/{1v2,...,1vr }(0)|.

Proof. Suppose G∗
W has m edges of the form 1vi where 1 � m � r − 1 and 2 � i � r and the other

r − 1 − m edges of the form 1vi are contracted. Also, recall the well-known result that if a graph has
r disconnected components, then the smallest power of λ in χG(λ) is λr . It is also well known that
for a graph, G , with r connected components, χG(λ) = χC1 ∗ · · · ∗ χCr .

The proof will follow by induction on m. Suppose G∗
W has one edge of the form 1vi . (So G∗

W is the
graph G∗/{1v2, . . . ,1vi−1,1vi+1, . . . ,1vr}.) Without loss of generality, assume i = r. Then χG∗

W
(λ) =

χG∗
W −1vr (λ) − χG∗

W /1vr (λ) and therefore χ ′
G∗

W
(λ) = χ ′

G∗
W −1vr

(λ) − χ ′
G∗

W /1vr
(λ). Note that G∗

W − 1vr

is disconnected, so χ ′
G∗

W −1vr
(λ) does not have a constant term. Thus, |χ ′

G∗
W

(0)| = |χ ′
G∗

W /1vr
(0)| =

|χ ′
G∗/{1v2,...,1vr }(0)|. By Theorem 3 in [8], χG∗

W /1vr (λ) = χC1 (λ) ∗ · · · ∗ χCr (λ)/λr−1 = χG(λ)/λr−1. Thus,
1
r! |χ r

G(0)| = |χ ′
G∗

W /1vr
(0)| = |χ ′

G∗
W

(0)|.
By way of induction, assume that for G∗

W with m − 1 edges of the form 1vi , |χ ′
G∗

W
(0)| =

|χ ′
G∗/{1v2,...,1vr }(0)|. Suppose that G∗

W has m edges of the form 1vi not contracted and without loss
of generality suppose they are 1vr, . . . ,1vr−m+1. By deletion-contraction, we know that χG∗

W
(λ) =

χG∗
W −1vr−m+1 (λ) − χG∗

W /1vr−m+1 (λ), which implies that χ ′
G∗

W
(λ) = χ ′

G∗
W −1vr−m+1

(λ) − χ ′
G∗

W /1vr−m+1
(λ).

Since G∗
W − 1vr−m+1 is a disconnected graph, χ ′

G∗ −1v (0) = 0, and therefore |χ ′
G∗ (0)| =
W r−m+1 W
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|χ ′
G∗

W /1vr−m+1
(0)|. The graph G∗

W /1vr−m+1 has m − 1 edges, 1vr , . . . , 1vr−m+2, not contracted. By

induction then, |χ ′
G∗

W /1vr−m+1
(0)| = |χ ′

G∗/{1v2,...,1vr }(0)|. By Theorem 3 in [8], χG∗/{1v2,...,1vr } = λ(C1) ∗
· · · ∗ λ(Cr)/λ

r−1 = χG/λr−1. Therefore, 1
r! |χ r

G(0)| = |χ ′
G∗/{1v2,...,1vr }(0)|. �

Proof of Corollary 5.3. The second part of the statement has already been proven, so it suffices to
prove the first part of the statement.

In Theorem 5.1, we proved that for n − 2 � k > n − (2 + r),

HCk
(
Δ(G)C ) ∼=

⊕
|W |=(n−2)−k

HCk
(
Δ(G∗

W )C )
.

Suppose then that W is a subset of {v2, . . . , vr} of size (n − 2)−k. We must determine the dimension
of HCk(Δ(G∗

W )C ). Notice that G∗
W is a connected graph on n − ((n − 2) − k) = k + 2 vertices, so Theo-

rem 4.7 implies dim HCk(Δ(G∗
W )C ) = |χ ′

G∗
W

(0)|. From Lemma 5.4 then dim HCk(Δ(G∗
W )C ) = 1

r! |χ r
G(0)|

and thus dim HCk(Δ(G)C ) = ⊕
|W |=(n−2)−k

1
r! |χ r

G(0)| = ( r−1
(n−2)−k

) 1
r! |χ r

G(0)|. �
As with Theorem 3.2, there is an algebraic interpretation of the above theorem. Namely, no-

tice that the elements of Δr(G)C are in bijection with the cyclic words [D1, . . . , Dr+2] where
Di ∈ C[x1, . . . , xn]/I where I is the ideal generated by {xi x j | i j is an edge of G} and [D1, . . . , Dr+2]
is an ordered partition of x1, . . . , xn with x1 ∈ D1. So we have the following corollary.

Corollary 5.5. For n − 2 � k > n − (2 + r) the dimension of the multilinear part of the kth cyclic homology
group of C[x1, . . . , xn]/I is

( r−1
(n−2)−k

) 1
r! |χ r

G(0)|, where χ r
G(λ) is the rth derivative of χG(λ). Further, for k �

n − (2 + r), the dimension of the multilinear part of the kth cyclic homology group of C[x1, . . . , xn]/I equals
zero.

Using this fact, we are now able to prove the following theorem about the homology of Δ(G), for
a graph G on n vertices with r connected components. Notice that this theorem is a generalization of
Theorem 4.4. Also, in the following theorem we assume that G has at least two edges.

Theorem 5.6. Let G be a graph on n vertices with r connected components and at least two edges. Then the
dimension of the (n − 3)rd homology group of Δ(G) is 1

r! |χ r
G(0)| + (n − (r + 1)), where χ r

G(λ) is the rth
derivative of χG(λ). For k � n − (2 + r), the dimension of HCk(Δ(G)) equals

(
n − 1
k + 1

)
−

(
r

(n − 2) − k

)
+

(
r − 1

(n − 2) − (k + 1)

)
1

r!
∣∣χ r

G(0)
∣∣.

Further, for k < n − (r + 2), the dimension of HCk(Δ(G)) equals the dimension of HCk(Δ(En)).

Proof. We know the homology of Δ(G)C from Lemma 5.1. So consider the following exact sequence:

0 → HCn−2
(
Δ(G)

) φn−2−→ HCn−2
(
Δ(En)

) βn−2−→ HCn−2
(
Δ(G)C ) αn−2−→

HCn−3
(
Δ(G)

) φn−3−→ HCn−3
(
Δ(En)

) βn−3−→ HCn−3
(
Δ(G)C ) αn−3−→

HCn−4
(
Δ(G)

) φn−4−→ HCn−4
(
Δ(En)

) βn−4−→ HCn−4
(
Δ(G)C ) αn−4−→

.

.

.

HCk
(
Δ(G)

) φk−→ HCk(Δ(En)
βk−→ HCk

(
Δ(G)C ) αk−→

.

.

.
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We begin by showing that for n − 2 � k > (n − 2)+ r the rank of βk is
( r−1

(n−2)−k

)
, and from this we

will be able to deduce the dimensions of the homology groups of Δ(G).
Suppose n − 2 � k > (n − 2) + r. From Theorem 5.1 we know that HCk(Δ(G)C ) ∼=⊕
|W |=(n−2)−k HCk(Δ(G∗

W )C ). For each W , G∗
W is a connected graph where each term of each ho-

mology representative has the vertex 1 ∪ W in the first block. In particular, the first block then
corresponds to a subset of {2, . . . , r} of size (n − 2) − k. Recall that the homology representatives of
HCk(Δ(En)) are in one-to-one correspondence with the subsets, A, of {2, . . . , r} of size n − k − 2. In
particular, recall that each homology representative has 1 ∪ A in the first block of each chain and is
the signed sum over the permutations of {2, . . . , r}− A. This means then that a homology representa-
tive of HCk(Δ(En)), corresponding to the set A, is mapped to HCk(Δ(G∗

W )) where W = A. Therefore

there are
( r−1

(n−2)−k

)
homology representatives of HCk(Δ(En)) that are mapped to nonzero linearly

independent terms in HCk(Δ(G)C ) by βk .
Using the fact that the rank of βk is

( r−1
(n−2)−k

)
, the nullity of βk (which by exactness is the rank

of φk) is
( n−1

k+1

) − ( r−1
(n−2)−k

)
. We also know that the rank of βk+1 (which by exactness is the nullity

of αk+1) is
( r−1

(n−2)−(k+1)

)
. Then the rank of αk (which is the nullity of φk) is

( r−1
(n−2)−(k+1)

) 1
r! |χ r

G(0)| −( r−1
(n−2)−(k+1)

)
. Thus, for n − 2 � k > n − (r + 2), the dimension of HCk(Δ(G)) is

(
n − 1
k + 1

)
−

(
r − 1

(n − 2) − k

)
+

(
r − 1

(n − 2) − (k + 1)

)
1

r!
∣∣χ r

G(0)
∣∣ −

(
r − 1

(n − 2) − (k + 1)

)

=
(

n − 1
k + 1

)
−

(
r

(n − 2) − k

)
+

(
r − 1

(n − 2) − (k + 1)

)
1

r!
∣∣χ r

G(0)
∣∣.

Plugging in n − 3 into the above formula for k gives that the dimension of the top homology group
of HCk(Δ(G)) is 1

r! |χ r
G(0)| + (n − (r + 1)).

For k = n − (r + 2), HCk(Δ(G)C ) = 0, so the rank of βn−(r+2) = 0 and the nullity of βn−(r+2) =( n−1
n−(r+2)+1

)
. Thus,

dim HCn−(r+2)

(
Δ(G)

) =
(

n − 1
n − r − 1

)
+ 1

r!
∣∣χ r

G(0)
∣∣ − 1. �
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