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A lattice path is a path on lattice points (points with integer
coordinates) in the plane in which any step increases the x- or
y-coordinate, or both. A rook step is a proper horizontal step east
or vertical step north. A bishop step is a proper diagonal step of
slope 1 (to the northeast). A spider step is a proper step of finite
slope greater than 1 (in a direction between north and northeast).
A lattice path is Catalan if it starts at the origin and stays strictly
to the left of the line y = x − 1. We give abstract formulas for
the ordinary generating function of the number of lattice paths
with a given right boundary and steps satisfying a natural slope
condition. Explicit formulas are derived for generating functions of
the number of Catalan paths in which all rook steps and some (or
all) bishop or spider steps are allowed finishing at (n,n). These
generating functions are algebraic; indeed, many satisfy quadratic
equations.

© 2012 Elsevier Inc. All rights reserved.

1. Paths and boundaries

Let S be a subset of N×N, where N is the set of non-negative integers. An S-path from the point
(n0,m0) to the point (n,m) is a sequence of pairs (called steps) (a1,b1), (a2,b2), . . . , (ak,bk) from S
such that

(n0 + a1 + a2 + · · · + ak,m0 + b1 + b2 + · · · + bk) = (n,m).

The steps (a,0) and (0,a), a > 0, are called rook steps, the steps (a,a), a > 0, are called bishop steps,
and the steps (a,b), b > a > 0 are called spider steps. Let an,m be the number of S-paths from the
origin (0,0) to the point (n,m). Then an,m is finite if and only if (0,0) /∈ S. If (0,0) /∈ S, then a simple
argument yields the following bivariate generating function
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A(x, y) =
∞∑

n,m=0

an,mxn ym = 1

1 − ∑
(a,b)∈S xa yb

.

In the rest of this paper, we shall always assume that (0,0) /∈ S. Examples of S-paths are clas-
sical lattice paths (S = {(1,0), (0,1)}), rook paths (S = {(a,0), (0,a): a > 0}), and queen paths (S =
{(a,0), (0,a): a > 0} ∪ {(a,a): a > 0}).

We can represent an S-path (a1,b1), (a2,b2), . . . , (ak,bk) from (n0,m0) to (n,m) geometrically by
the union of the line segments

(n0,m0), (n0 + a1,m0 + b1), (n0 + a1,m0 + b1), (n0 + a1 + a2,m0 + b1 + b2), . . . ,

(n0 + a1 + a2 + · · · + ak−1,m0 + b1 + b2 + · · · + bk−1), (n,m),

so that an S-path is a piecewise-linear path. We call the points

(n0,m0), (n0 + a1,m0 + b1), (n0 + a1 + a2,m0 + b1 + b2), . . . ,

(n0 + a1 + a2 + · · · + ak−1,m0 + b1 + b2 + · · · + bk−1), (n,m),

the nodes of the path.
Let s be a non-decreasing sequence (si)0�i<∞ of positive integers. An S-path starting from (0,0)

has (right) boundary s if as a piecewise-linear path, it lies strictly to the left of the union of the line
segments

(s0,0), (s1,1), (s1,1), (s2,2), (s2,2), (s3,3), . . . ,

or, equivalently, every node of the S-path of the form (x, i) satisfies x < si .
An S-path is Catalan if it starts at the origin (0,0) and has right boundary (1,2,3, . . .). When a

Catalan {(0,1), (1,0)}-path is rotated clockwise by 45 degrees, one obtains a Dyck path. Thus, Catalan
S-paths may be considered as Dyck paths with more types of steps.

A set S satisfies the slope condition for the boundary s if for every pair (a,b) with b �= 0 in S, and
every index i,

si+1 > si − 1 + a/b, si+2 > si − 1 + 2a/b, . . . , si+b > si − 1 + a,

or, equivalently, an S-path can touch or cross the boundary s only at a horizontal step. For the Catalan
boundary (i + 1), the slope condition specializes to the simpler condition: for each step (a,b) ∈ S,

either b = 0 or b � a, in other words, S contains only rook, queen, or spider steps.
Almost all the results in this paper are about Catalan S-paths (with S satisfying the slope condi-

tion). We begin in Section 2 with a general combinatorial bijection (Lemma 1). From this bijection,
we derive a formula for the ordinary generating function of the number of Catalan S-paths ending at
(n,n) in terms of “offset diagonals” of the bivariate generating function A(x, y). We then use this for-
mula to obtain explicit formulas for paths with rook and bishop steps in Section 3 and rook, bishop,
and spider steps in Section 4. In Section 5, we put weights on steps and obtain generating functions
for step enumerators. It is natural to ask whether our methods extend to other periodic boundaries. To
do so seems to require new ideas; we describe briefly in Section 6 the case of the boundary (2i + 1)

to show where the difficulty lies.
Catalan rook paths have been studied earlier by Coker [1], Sulanke [8], and Woan [9] with different

methods. However, nothing seems to have been done on the other paths we considered, except for
the calculation of the number of paths for small n, as witnessed by several entries in OEIS, the On-Line
Encyclopedia of Integer Sequences.

2. A combinatorial bijection

Let s = (si) be a non-decreasing sequence of positive integers, AP(n,m) be the set of all S-paths
from (0,0) to (n,m), an,m = |AP(n,m)|, Path(n) be the set of S-paths from (0,0) to (sn − 1,n) with
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right boundary s, pn = |Path(n)|, and LHP(n) be the subset of S-paths in Path(n) such that the last
step is a horizontal step.

We begin with a combinatorial bijection. The idea behind the bijection was used in an earlier
paper [6].

Lemma 1. Suppose that S satisfies the slope condition for the boundary s and that S contains all proper
horizontal steps (a,0), a > 0. Then there is a bijection between AP(sn − 1,n) and the following union of three
disjoint subsets:

n−1⋃
m=0

[
Path(m) ×

sn−sm−1⋃
j=0

AP( j,n − m)

]
∪

n−1⋃
m=0

[
LHP(m) ×

sn−sm−1⋃
j=0

AP( j,n − m)

]
∪ Path(n).

Proof. Paths in AP(sn − 1,n) either have boundary s or not. Those having boundary s are mapped
onto themselves in the third subset Path(n).

Next consider S-paths from (0,0) to (sn − 1,n) which fail to have boundary s. We will decompose
these paths into an initial subpath and a final subpath. Let (d,m) be the first node on or to the right
of the boundary. Then 0 � m � n − 1 and sm � d � sn − 1. From the point (d,m), the path goes as
it wishes to the point (sn − 1,n), so that the set of final subpaths from (d,m) to (sn − 1,n) is in
bijection, by a translation, with the set AP(sn − d − 1,n − m).

There are more possibilities for the initial subpath from (0,0) to (d,m). By the slope condition, the
step to (d,m) is a horizontal step. As horizontal steps can be of any nonzero length, the node before
(d,m) was (c,m) for some c � sm − 1. There are two cases, according to whether this inequality is an
equality or not (the latter being only possible if sm > 1).

Case 1. c = sm − 1. The initial subpath consists of a path in Path(m), followed by the step (d − sm +
1,0), taking us to (d,m). In this case, the path is decomposed into an initial subpath in Path(m)

followed by a horizontal step of size d − sm + 1 and a final subpath which is in AP(sn − d − 1,n − m)

after a translation.

Case 2. c < sm −1. The last step in the initial subpath is a “long” horizontal step taking us from (c,m)

through the boundary to (d,m). We break up this long step into two shorter steps at (sm − 1,m).

Specifically, we take the path from (0,0) to (c,m), and add a horizontal step (sm − c − 1,0), so that
we now end at (sm − 1,m). We then continue with a step (d − sm + 1,0) which brings us through the
boundary to (d,m). In this case, the path is decomposed into an initial subpath in LHP(m) followed
by a horizontal step of size d − sm + 1 and a final subpath which is in AP(sn − d − 1,n − m) after a
translation.

In both cases, the decomposition is reversible and hence, bijective. This completes the proof of the
lemma. �

Lemma 1 implies immediately that

asn−1,n = pn +
n−1∑
m=0

pm(a0,n−m + a1,n−m + · · · + asn−sm−1,n−m)

+
n−1∑
m=0

∣∣LHP(m)
∣∣(a0,n−m + a1,n−m + · · · + asn−sm−1,n−m).

From now on we restrict to the case s0 = 1. Then p0 = 1 and |LHP(0)| = 0. For m � 1, we write
|LHP(m)| = pm − dm , where dm is the number of paths in Path(m) that end in a non-horizontal step.
By doing minor manipulations and setting d0 = 0, we obtain the following corollary.
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Corollary 2. Under the hypotheses in Lemma 1, if s0 = 1 then

a0,n + a1,n + · · · + asn−2,n + asn−1,n

= pn +
n−1∑
m=0

2pm(a0,n−m + a1,n−m + · · · + asn−sm−1,n−m)

−
n−1∑
m=0

dm(a0,n−m + a1,n−m + · · · + asn−sm−1,n−m).

In the Catalan case, where the boundary is (i + 1), the recursions in Corollary 2 can be combined
to obtain a formula for the ordinary generating function of pn. Let h be an integer and

P (t) =
∞∑

n=0

pntn, Q (t) =
∞∑

n=0

dntn, Dh(t) =
∞∑

n=h

an−h,ntn.

In general, Dh(t) is the generating function of S-paths starting at the lower left corner and ending in
the upper right corner in a rectangle where the height is h units “larger” than the width. In particular,
D0(t) is the diagonal of the bivariate generating function A(x, y) for S-paths.

To calculate the series Q (t), we observe that the slope condition for the Catalan boundary implies
that a non-horizontal step has slope at least 1. Hence if a path in Path(m) ends with a non-horizontal
step, then that step must be a bishop step (a,a) for some a > 0. Removing that bishop step yields a
path in Path(m − a). Conversely, if (b,b) ∈ S, every path in Path(m − b) extends to a path in Path(m)

with last step (b,b). Hence,

dm =
∑
a∈I

pm−a,

where I = {a: (a,a) ∈ S}. In terms of generating functions, this says that Q (t) = P (t)T (t), where

T (t) =
∑
a∈I

ta.

For rook paths, T (t) = 0, and for queen paths, T (t) = t
1−t .

Now take the recursions in Corollary 2 and multiply the n-th recursion by tn, obtaining

(a0,n + a1,n + · · · + an,n)t
n

= pntn + 2pn−1a0,1tn + 2pn−2(a0,2 + a1,2)t
n + · · · + 2p0(a0,n + a1,n + · · · + an−1,n)t

n

− dn−1a0,1tn − dn−2(a0,2 + a1,2)t
n − · · · − d0(a0,n + a1,n + · · · + an−1,n)t

n.

Summing over n we conclude that

D0(t) + D1(t) + D2(t) + · · ·
= P (t) + 2P (t)

(
D1(t) + D2(t) + · · ·) − Q (t)

(
D1(t) + D2(t) + · · ·).

Using the fact that Q (t) = P (t)T (t), we obtain the following theorem.

Theorem 3. If S contains all proper horizontal steps (a,0), a > 0, and satisfies the slope condition for the
boundary (i + 1), then

P (t) = D0(t) + D1(t) + D2(t) + · · ·
1 + (2 − T (t))(D1(t) + D2(t) + · · ·) .

Our method can be adapted to obtain the following theorem.
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Theorem 4. If S contains (1,0) and no other horizontal step and satisfies the slope condition for the boundary
(i + 1), then

P (t) = D0(t)

1 + D1(t)
.

Theorems 3 and 4 cover the extremes, where S contains exactly the unit horizontal step or all
horizontal steps to the right. Let H be a positive integer and, for a < H , let LHPa(n) be the subset of
those S-paths in Path(n) that end in a horizontal step (a,0).

Lemma 5. Let H be an integer greater than 1. Suppose that S satisfies the slope condition for the bound-
ary s and that S contains exactly the horizontal steps (a,0), 0 < a < H . Then there is a bijection between
AP(sn − 1,n) and the following union of three disjoint subsets:

n−1⋃
m=0

[
Path(m) ×

sn−sm−1⋃
j=sn−sm−H

AP( j,n − m)

]

∪
n−1⋃
m=0

[
H−1⋃
a=1

LHPa(m) ×
sn−sm−1⋃

j=sn−sm−H+a

AP( j,n − m)

]
∪ Path(n).

The proof of Lemma 5 is similar to the proof of Lemma 1, but we need to understand how the
restriction on the length of the horizontal steps affects the bijection. In the bijection, each path in
AP(sn − 1,n) is decomposed into an initial subpath ending at (sm − 1,m) for some m, a horizontal
step, and a final subpath. In Case 1, the only effect is that the possible starting points for the final
subpath are restricted. In Case 2, two proper horizontal steps are joined into one “long” horizontal
step. This can only be done if the sum of the length of the last step in the initial subpath and the
length of the adjoined horizontal step does not exceed H . This imposes restrictions on the length of
the last step as well as the starting point of the final subpath.

The combinatorics of LHPa(m) is more complicated and there seems to be no direct analog of
Theorem 3.

3. Catalan rook and queen paths

Let P = {1,2, . . .}, the set of positive integers, and I ⊆ P. An I-queen path is an S-path where
S = {(a,0), (0,a): 0 < a < ∞} ∪ {(a,a): a ∈ I}. For example, a rook path is a ∅-queen path and a
queen path is a P-queen path. In this section, we show how the formula in Theorem 3 can be made
explicit for Catalan I-queen paths.

As in Section 2, let T (t) = ∑
a∈I ta. Then the bivariate generating function A(x, y) for the number

an,m of I-queen paths from (0,0) to (n,m) is given by

A(x, y) =
(

1 − x

1 − x
− y

1 − y
− T (xy)

)−1

.

The series Dh(t) can be calculated from A(x, y) using a standard method (see [3,4] or [7, Section 6.3]).
This method is based on the observation that Dh(t) is the coefficient of sh when A(s−1, st) is ex-
panded as a doubly infinite series in s. Let B(s, t) = A(s−1, st). Setting C = 1 − T (t) we have

B(s, t) =
(

C + 1

1 − s
− st

1 − st

)−1

= 1

1 + C
+

[
s( t−1

1+C )

1 + C − (C + Ct + 2t)s + (1 + C)ts2

]
.

Let α and β be the roots of the denominator in B(s, t) as a polynomial in s, with
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α = C + (C + 2)t + √
C2 − (2C2 + 4C + 4)t + (C + 2)2t2

2(1 + C)t

= C

1 + C
t−1 − 1

C(1 + C)
− 1 + C

C3
t + · · ·

and

β = C + (C + 2)t − √
C2 − (2C2 + 4C + 4)t + (C + 2)2t2

2(1 + C)t

= 1 + C

C
+ 1 + C

C3
t + · · · .

Next, we expand B(s, t) into a partial fraction, obtaining

B(s, t) = 1

1 + C
+ 1

(1 + C)

[
A

t(s − α)
+ B

t(s − β)

]
,

where

A = α

(1 + C)(α − β)
(t − 1), B = − β

(1 + C)(α − β)
(t − 1).

Since α is a proper Laurent series (that is, it has negative powers of t), β is a power series (that is,
it has no negative powers of t), and B(s, t) is a doubly infinite series in s, but not in t , the correct
expression is found by writing

B(s, t) = 1

1 + C
− A

(1 + C)tα(1 − sα−1)
+ B

(1 + C)ts(1 − s−1β)
.

From this it follows that

∞∑
h=0

Dh(t) = 1

1 + C
+ A

(1 + C)t(1 − α)
,

∞∑
h=1

Dh(t) = A

(1 + C)tα(1 − α)
.

Using Theorem 3, we conclude that

P (t) =
1

1+C + A
(1+C)t(1−α)

1 + (2−T )A
(1+C)tα(1−α)

= 1 + A
t(1−α)

1 + C + (2−T )A
tα(1−α)

.

We now have the tools to derive several explicit formulas in a uniform way. We begin with Catalan
rook paths. In this case, T (t) = 0, C = 1,

α = 1 + 3t + √
1 − 10t + 9t2

4t
, A = 1 − 10t + 9t2 + (1 + 3t)

√
1 − 10t + 9t2

4(9t − 1)
.

After some algebra, we obtain the following generating function.

Theorem 6 (Catalan rook paths).

P rook(t) = 1 + 3t − √
1 − 10t + 9t2

8t
.

Observe that P rook(t) equals β/2, so it readily follows that P rook(t) satisfies the quadratic equation
(in the variable y):

4ty2 − (1 + 3t)y + 1 = 0. (1)

Expanding the formula in Theorem 6 gives
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P rook(t) = 1 + t + 5t2 + 29t3 + 185t4 + 1257t5 + · · · .
The coefficients appear as sequence A059231 in OEIS. Using standard techniques (see, for example, [2,
Chapter VI]) we obtain the following asymptotic formula

prook,n ∼ 3
√

2

8
· 9n

√
πn3

.

The generating function P rook(t) was derived earlier by Coker [1] by showing that it satisfies Eq. (1). In
addition, Woan [9] found a three-term recurrence for prook,n and Coker [1] and Sulanke [8] expressed
prook,n as evaluations of Narayana polynomials.

Little seems to have been done on Catalan queen paths. For these paths,

T (t) = t

1 − t
, C = 1 − t

1 − t
= 1 − 2t

1 − t
, α = 1 + t − 4t2 + (1 − t)

√
1 − 12t + 16t2

2t(2 − 3t)
.

Theorem 7 (Catalan queen paths).

Pqueen(t) = (1 − t)(1 + t − 4t2) − (1 − t)2
√

1 − 12t + 16t2

2t(2 − 3t)2
.

Expanding Pqueen(t), we have

1 + 2t + 10t2 + 63t3 + 454t4 + 3539t5 + 29 008t6 + 246 255t7 + 2 145 722t8 + · · · .
The coefficients appear as sequence A175962 in OEIS. We also have the following asymptotic formula

pqueen,n ∼ (35 − 15
√

5)(3
√

5 − 5)1/2

2
√

2
· (2(3 + √

5))n

√
πn3

.

Note that 2(3 + √
5) ≈ 10.47, while the growth constant of Catalan rook paths is 9 and that of

classical Catalan paths is 4. From the formula for Pqueen(t), we deduce that it satisfies the quadratic
equation

t(2 − 3t)2 y2 − (
4t3 − 5t2 + 1

)
y + (1 − t)2 = 0.

We next consider Catalan I-queen paths where I is an initial segment of the positive integers. For
a positive integer r, let Sr = {(a,0), (0,a): 1 � a < ∞}∪{(a,a): 1 � a � r} and Pr(t) be the generating
function for Catalan Sr -paths. Our method yields the following formulas for small values of r:

P1(t) = 1 + 2t − t2 − √
(t − 1)(−1 + 11t − 7t2 + t3)

2t(t − 2)2
= 1 + 2t + 9t2 + 57t3 + 411t4 + · · · ,

P2(t) = 1 + 3t + t2 − √
1 − 10t − 5t2 + 2t3 + t4

2t(1 − t)(2 + t)2
= 1 + 2t + 10t2 + 62t3 + 448t4 + · · · ,

P3(t) = 1 + 2t − 2t2 − 2t3 − t4 − √
(t − 1)(−1 + 11t − 5t2 − 5t3 − 7t4 + t5 + t6 + t7)

2t(−2 + t + t2 + t3)2

= 1 + 2t + 10t2 + 63t3 + 453t4 + · · · .
The first (r + 1)-st terms of Pr(t) and Pqueen(t) agree, as expected. The coefficients of P1(t) and P2(t)
appear as sequences A175912 and A175939 in OEIS.

A natural question is to ask for the generating functions for Catalan paths in which both rook and
bishop steps have bounded length. As explained at the end of Section 2, the only cases that follow
readily from our theory are those where (1,0) is the only possible horizontal step. For a subset J in P,

let P1, J (t) be the generating function for the number of Catalan [{(1,0), (0,1)}∪{(a,a): a ∈ J }]-paths.
Using the same method as for Catalan I-queen paths, we obtain the following theorem.
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Theorem 8. Let J ⊆ P. Then

P1, J (t) =
1 − T J (t) −

√
[1 − T J (t)]2 − 4t

2t
,

where T J (t) = ∑
a∈ J ta .

When J = ∅ and J = {1}, we have the classical generating functions for Catalan and Schröder
paths. For J = {2}, J = {1,2}, and J = P = {1,2, . . .}, we have

P1,{2}(t) = 1 − t2 − √
1 − 4t − 2t2 + t4

2t
= 1 + t + 3t2 + 8t3 + 25t4 + · · · ,

P1,{1,2}(t) = 1 − t − t2 − √
1 − 6t − t2 + 2t3 + t4

2t
= 1 + 2t + 7t2 + 27t3 + 116t4 + · · · ,

P1,P(t) = 2t − 1 + √
1 − 8t + 12t2 − 4t3

2t(t − 1)
= 1 + 2t + 7t2 + 28t3 + 122t4 + · · · .

The first few coefficients of P1,{2}(t) and P1,{1,2}(t) appear as sequences A143330 and A175934 in
OEIS.

4. Catalan paths with queen and spider steps

For more general sets S of steps, the conditions necessary to perform calculations akin to those in
Section 3 are summarized in the following theorem.

Theorem 9. Assume S satisfies the slope condition for the boundary (i + 1) and that it contains either all
proper horizontal steps (a,0), a > 0, or exactly one horizontal step (1,0). If the generating function A(x, y) is
rational and T (t) is algebraic, then the generating function for Catalan S-paths is algebraic.

We will give two examples of paths to which the theorem applies. We begin with the simple
example where S = {(1,0), (0,1), (1,2)}. The set S contains the unit horizontal and vertical step, as
well as the shortest spider step (1,2). It satisfies the slope condition for the Catalan boundary. We
can use Theorem 4 and the method in Section 3 to obtain the following formula:

P {(1,0),(0,1),(1,2)}(t) = 1 − √
1 − 4t − 4t2

2t(1 + t)
.

Expanding P {(1,0),(0,1),(1,2)}(t), we have

1 + t + 3t2 + 9t3 + 31t4 + 113t5 + 431t6 + 1697t7 + 6847t8 + · · · .
The coefficients occur as A052709 in OEIS. Also,

p{(1,0),(0,1),(1,2)},n ∼
√

4 − 2
√

2 · (2 + 2
√

2)n

√
πn3

.

Now let M = {(a,0), (0,a), (b, c): a > 0, 1 � b � c}. As well as rook and queen steps, the set M
contains all spider steps and is the largest set of steps that satisfies the slope condition for the Catalan
boundary. For these paths, the bivariate generating function is given by

AM(x, y) =
(

2 − x

1 − x
−

(
1

1 − xy

)(
1

1 − y

))−1

.

Using Theorem 3 and the method in Section 3, we obtain the following formula for the generating
function P M(t) for Catalan M-paths.



J.P.S. Kung, A. de Mier / Journal of Combinatorial Theory, Series A 120 (2013) 379–389 387
Theorem 10 (Catalan M-paths).

P M(t) = 3t2 − t − 1 + √
1 − 14t + 35t2 − 30t3 + 9t4

4t(3t − 2)
.

Expanding, we have

P (t) = 1 + 2t + 11t2 + 75t3 + 578t4 + 4791t5 + 41 657t6 + 374 728t7 + 3 458 073t8 + · · · .
From the formula, we deduce that P M(t) satisfies the quadratic equation

2t(3t − 2)y2 − (
3t2 − t − 1

)
y + (t − 1) = 0.

We also derive the asymptotic formula

pM,n ∼ ω
γ n

√
πn3

,

where γ and ω are algebraic numbers with γ = 11.0785 . . . and ω = 0.6968 . . . .

5. Step enumerators

Our methods can be used to calculate step enumerators of Catalan paths. Let S be a set of proper
steps. A weight w on S is a function S → A, where A is a commutative ring with identity. Usually,
we will take A to be the ring of polynomials with complex coefficients in many variables and assign
a variable as the weight of a step. If X is a set of S-paths, we define the step enumerator ew [X] by

ew [X] =
∑

(s1,s2,...,s j)∈X

w(s1)w(s2) · · · w(s j).

The following lemma (which is almost tautological) says that step enumerators are multiplicative.

Lemma 11. Let X be a set of paths which can be decomposed into the Cartesian product Y × Z so that each
path in X is the concatenation of a path in Y and a path in Z . Then

ew [X] = ew [Y ]ew [Z ].

Next, define Aw(x, y) and aw
n,m by the equation:

Aw(x, y) =
∞∑

n,m=0

aw
n,mxn ym =

(
1 −

∑
(a,b)∈S

w
(
(a,b)

)
xa yb

)−1

.

Then aw
n,m is the step enumerator of the set of all S-paths from (0,0) to (n,m) and Aw(x, y) is the

bivariate generating function of aw
n,m. In the same way as in Section 2, we define the generating

functions D w
h (t) and T w(t). Finally, let pw

n be the step enumerator for Catalan S-paths ending at
(n,n) and

P w(t) =
∞∑

n=0

pw
n tn.

The proofs of the two theorems in Section 2 can easily be modified using Lemma 11 to yield the
following weighted versions.
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Theorem 12.

(a) If S contains all proper horizontal steps (a,0), a > 0, S satisfies the slope condition for the boundary
(i + 1), and the same weight ρ is assigned to all horizontal steps (a,0) in S (regardless of length), then

P w(t) = D w
0 (t) + D w

1 (t) + D w
2 (t) + · · ·

1 + (1 + ρ − T w(t))(D w
1 (t) + D w

2 (t) + · · ·) .

(b) If S contains no horizontal step but (1,0) and it is assigned the weight ρ, then

P w(t) = D w
0 (t)

1 + ρD w
1 (t)

.

We will illustrate Theorem 12 with the simple case S = {(1,0), (0,1), (1,2)}, where we impose
the weights w((1,0)) = w((0,1)) = ρ and w((1,2)) = σ . Then

P w
{(1,0),(0,1),(1,2)}(t;ρ,σ ) = 1 − √

1 − 4ρ2t − 4ρσ t2

2ρt(ρ + σ t)
.

Expanding P w
{(1,0),(0,1),(1,2)}(t;ρ,σ ), we have

1 + ρ2t + (
2ρ4 + ρσ

)
t2 + (

5ρ6 + 4ρ3σ
)
t3 + (

14ρ8 + 15ρ5σ + 2ρ2σ 2)t4

+ (
42ρ10 + 56ρ7σ + 15ρ4σ 2)t5 + · · · .

We next calculate generating functions for step enumerators of Catalan rook, queen, and M-
paths. We begin with enumerators for rook paths by the number of horizontal and vertical steps.
Let w((a,0)) = ρ and w((0,a)) = ν. Then

P w
rook(t;ρ,ν) = βw/(1 + ρ)

= 1 + (1 + ρ + ν)t − √
1 − 2[1 + ρ + ν + 2ρν]t + [1 + (ρ + ν)(2 + ρ + ν)]t2

2(1 + ρ)(1 + ν)t

where βw is the power-series root of the quadratic equation

(1 + ν)ty2 − [
1 + (1 + ρ + ν)t

]
y + (1 + ρ) = 0.

Expanding P w
rook(t;ρ,ν), we obtain

1 + ρνt + (
ρν + ρν2 + ρ2ν + 2ρ2ν2)t2

+ (
ρν + 2ρν2 + 2ρ2ν + ρν3 + ρ3ν + 7ρ2ν2 + 5ρ2ν3 + 5ρ3ν2 + 5ρ3ν3)t3 + · · · .

Setting ν = ρ, we obtain the generating function for enumerators of rook paths by the total number
of steps

P w
rook(t;ρ) = 1 + (1 + 2ρ)t − √

(1 − t)(1 − (1 + 2ρ)2t)

2t(1 + ρ)2
.

Rook-path enumerators by total number of steps have been studied earlier in Coker [1].
Moving on to queen paths, let a rook step have weight ρ and a bishop step have weight ω. Then

the generating function P w
queen(t;ρ,ω) is the power-series root of the quadratic equation

t
[
ρ + 1 − (ρ + ω + 1)t

]2
y2 − (1 − t)

[
1 − (ω − 2ρ)t − (ω + 2ρ + 1)t2]y + (1 − t)2 = 0.

Expanding P w
queen(t;ρ,ω), we have

1 + (
ρ2 + ω

)
t + (

ω + ω2 + 3ωρ2 + ρ2 + 2ρ3 + 2ρ4)t2 + · · · .
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For M-paths, we consider the simplest case, when all steps have the same weight ρ. The generat-
ing function P w

M(t;ρ) is the power-series root of the quadratic equation

(1 + ρ)t
[
(2ρ + 1)t − ρ − 1

]
y2 − [

(2ρ + 1)t2 − ρt − 1
]

y + (t − 1) = 0.

Expanding P w
M(t;ρ), we have

1 + (
ρ + ρ2)t + (

ρ + 3ρ2 + 5ρ3 + 2ρ4)t2

+ (
ρ + 5ρ2 + 17ρ3 + 27ρ4 + 20ρ5 + 5ρ6)t3 + · · · .

6. Other boundaries

Can our method for counting paths with Catalan boundaries be adapted to paths with other peri-
odic boundaries? To partially answer this question, consider S-paths with boundary (2i + 1), where S
is any set of steps that contains all proper horizontal steps and satisfies the slope condition for this
boundary. From the recurrence in Corollary 2, we arrive at the following expression for the generating
function for these paths:

P (t) =
∑∞

h=0 Dh(t) + ∑∞
h=1 D−h(t)

1 + (2 − T (t))[∑∞
h=0 Dh(t) + ∑∞

h=1 D−h(t) − ∑∞
n=0 an,2ntn] ,

where

D−h(t) =
∞∑

n=h

an+h,ntn and T (t) =
∑

(2a,a)∈S

ta.

Unfortunately, it seems hard to obtain a closed form for the series D−h(t) from the bivariate generat-
ing function A(x, y).
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