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finite permutations is obtained and it is shown that this bijection
specializes to a bijection between certain labellings of a given
tower diagram and reduced expressions of the corresponding
permutation.
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1. Introduction

It is well known that the symmetric group Sn on n objects is generated by the set {s1, s2, . . . , sn−1}
of all adjacent transpositions, with the usual notation. A product of these generators is called a
word. A basic problem raised via this observation is to determine the set of words which, when
multiplied, give the same permutation in Sn . A simple reduction is obtained by considering the
set of reduced words, words containing the minimal number of transpositions giving the permuta-
tion.

The study of reduced words is initiated by a work of Stanley [9] where he proved a formula
for the number of reduced words corresponding to the longest permutation. After Stanley’s alge-
braic proof, there appear several other combinatorial proofs by Edelman–Greene [3] and Lascoux–
Schützenberger [6].

There are also works that generalize this result of Stanley to an arbitrary permutation. Some of
which use balanced tableaux [4] of Edelman–Greene, RC-graphs [1] and plactification map [8], see
also [2].
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On the other hand, our approach is based on tower diagrams. By a tower diagram, we mean a
diagram in the first quadrant of the plane that consists of finitely many vertical strips with bottoms
on the x-axis, see Section 2 for a precise definition. An example of a tower diagram is shown be-
low.

The results of the paper can be summarized via the following diagram.

Next, we provide an explanation of the above diagram. In Section 2, we first define a special
labelling of tower diagrams, called standard tower tableau. Then we define the sliding and recording
algorithm (SR algorithm, for short) on all finite words over Z+ , not necessarily reduced. This algorithm
lets us slide words to the plane with the x-axis being the border, on reverse diagonal lines, subject
to certain conditions. As a result, when the algorithm terminates with a result, we obtain a standard
tower tableaux corresponding to the given word. Conversely, we introduce a reading function which
reads a word on Z

+ from each standard tower tableau.
In Section 3, we prove that the SR algorithm does not terminate if and only if the word is reduced,

which gives us the equality seen above. Therefore we obtain our first main result that there is a
bijection from the set of all reduced words to the set of all standard tower tableaux given by the
reading function and the SR algorithm. Moreover with this result, the sliding algorithm becomes an
algorithm which also tests if a given word is reduced or not. Another algorithm that can be used to
check reducibility is introduced by Edelman–Greene in [3]. They use a generalized RSK-algorithm to
associate a pair of tableaux to any word. Then the reducibility is detected by certain conditions on
the tableaux and, in some cases, one needs to use braid relations to check reducibility of a certain
tableau word.

The second main result of the paper establishes a connection between tower diagrams and permu-
tations, shown by dashed arrows in the diagram. This is done by showing that the sliding algorithm
associates the same tower diagram to two different reduced words if and only if the words are
braid related, that is, they correspond to the same permutation, see Theorem 4.1. In particular, any
given tower diagram T determines a unique permutation ωT , and vice versa, any permutation ω
determines a unique tower diagram Tω . Moreover we establish an explicit bijective correspondence
between

1. the set Red(ω) of reduced expressions of a given permutation ω and
2. the set STT(Tω) of standard tower tableaux of shape Tω .

The next question is to determine the set Red(ω) using the above bijection. It is possible to describe
all standard tower tableaux of a given shape by a recursive algorithm. We describe this in Section 4.
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Then the reduced words corresponding to a given set of standard tower tableaux is given by the
reading function. However, the algorithm, being recursive, is slow. A faster and systematic algorithm
that uses tower tableaux will be introduced in a sequel to this paper.

About the determination of the cardinality of Red(ω), we prove, in Sections 6 and 7, that our
construction can be used to determine the Rothe diagram of the permutation ω and vice versa the
Rothe diagram determines the tower diagram of ω. Therefore the above cardinality can be evaluated
by using the techniques in [8]. A remark about this construction is that although it is straight-
forward to determine the tower diagram from the given Rothe diagram, the converse is tricky. In
order to determine the Rothe diagram, we associate a virtual tower diagram to the permutation
and show that together with the tower diagram, the virtual tower diagram recovers the Rothe di-
agram.

However this observation does not mean that the two constructions, tower diagrams and Rothe
diagrams, are equivalent. A trivial observation is that any tower diagram corresponds to a permuta-
tion. On the other hand, Rothe diagrams cannot be chosen arbitrarily. Another important feature of
tower diagrams is that they unearth certain information regarding the reduced words that cannot be
read from the Rothe diagram.

An example of such an information is the existence of the natural word of a permutation, in-
troduced in Section 5. The natural word for a permutation is the reduced word which consists of
(strictly) increasing subsequences of consecutive integers in which the subsequence of the initial
terms of these sequences is strictly decreasing. This word comes canonically with the associated
tower diagram. As far as we know, no special attention was paid to the natural word previously.
This canonical word is already used crucially in Section 7 in relation with the problem of deter-
mination of the Rothe diagram from the tower diagram. More importantly, it will be the main
tool in the construction of the above mentioned algorithm in a sequel where we also introduce
a variation of the selection sort algorithm on reduced words. See [5] for the selection sort algo-
rithm.

2. Tower diagrams and tower tableaux

In this section, we introduce tower tableaux together with their basic properties. First, recall that
a sequence of non-negative integers τ = (τ1, τ2, . . . , τk) is called a weak composition of n if each term
τk of the sequence is non-negative and they sum up to n.

By a tower T of size k � 0 we mean a vertical strip of k cell cells of side length 1. On the other
hand, a sequence T = (T1,T2, . . .) of towers in which only finitely many towers has positive size is
called a tower diagram. We always consider the tower diagram T as located on the first quadrant of
the plane so that for each i, the tower Ti is located on the interval [i − 1, i] of the horizontal axis and
has size equal to the size of Ti .

Let T = (T1,T2, . . .) be a tower diagram and let Ti (resp. T j) be the first (resp. the last) tower of
T with non-zero size. Then we abbreviate T as T = (Ti, . . . ,T j).

Now let τi denote the size of the tower Ti . It is clear that the sequence τ = (τi, . . . , τ j) is a
weak composition of the size of T . Here the size of a tower diagram is defined by the sum of the
sizes of its towers. Conversely, it is natural to represent a weak composition τ = (τ1, τ2, . . . , τk) by a
tower diagram which consist of a sequence of towers T = (T1,T2, . . . ,Tk) with the size of Ti equal
to τi .

To any tower diagram T , one can associate a set, still denoted by T , consisting of the pairs of
non-negative integers with the rule that each pair (i, j) corresponds to the cell in T whose south-
east corner is located at the point (i, j) of the first quadrant. Such a set can also be characterized by
the rule that if (i, j) ∈ T then {(i,0), (i,1), . . . , (i, j)} ⊂ T . For the rest, we identify any cell with its
south-east corner.

Example. For the weak composition τ = (0,1,4,2,1,0,4) the corresponding tower diagram T and
the corresponding set T are given as follows.
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T = {
(2,0), (3,3), (3,2), (3,1), (3,0), (4,1), (4,0), (5,0), (7,3), (7,2), (7,1), (7,0)

}

Writing (n) for the trivial weak composition, we can think of any weak composition τ =
(τ1, τ2, . . . , τk) as a concatenation of trivial weak compositions

τ = (τ1) � (τ2) � · · · � (τk).

In a similar way, we can regard any tower diagram T = (Ti, . . . ,T j) as a concatenation of its towers
and write

T = (Ti) � (Ti+1) � · · · � (T j).

It is straightforward that the concatenation of towers can be generalized to the concatenation of two
tower diagrams provided that one tower lies completely on the right of the other one.

A basic operation to obtain new tower diagrams from old is to let some cells fly from the dia-
gram. The reason for this operation will become clear later when we introduce the reading word of a
labelled diagram. We define the flight as follows.

Definition 2.1. Let (i, j) be a cell in T .

i) The cell (i, j) lies on the diagonal line x + y = d if its main diagonal is a part of x + y = d, that is,
if d = i + j.

ii) The cell (i, j) is said to have a flight path in T if one of the following conditions is satisfied:
(F1) (Direct flight) The diagram T has no cell to the left of (i, j) lying on (and therefore above)

the diagonal x + y = i + j − 1. In this case the flight path of (i, j) in T is defined by

flightpath
(
(i, j),T

) := {
(i, j)

}
.

(F2) (Zigzag flight) Among all cells of the diagram T lying on the diagonal x + y = i + j − 1 and
to the left of (i, j), the one closest to (i, j), say (i′, j′), has a flight path and (i′, j′ + 1) ∈ T .
In this case the flight path of (i, j) in T is defined by

flightpath
(
(i, j),T

) := {
(i, j),

(
i′, j′ + 1

)} ∪ flightpath
((

i′, j′
)
,T

)
.

iii) If (i, j) has a flight path in T , let (i′, j′) be the minimum element in the flight path of (i, j) with
respect to the lexicographic order. Then the number i′ + j′ is called the flight number of the cell
(i, j), denoted by

flight#
(
(i, j),T

)
.

iv) The cell (i, j) is called a corner cell of T , if (i, j + 1) /∈ T and (i, j) has a flight path.
v) Let c = (i, j) be a corner cell in T . The tower diagram obtained from T by removing the corner

cell c is denoted by

c↖T .
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Remark.

1. One can easily observe that if two cells have the same flight number in T = (T1,T2,T3, . . .) then
they have the same flight number in (T2,T3, . . .). Thus if (i, j) and (i′, j′) are two cells in T with
(i′, j′) is lexicographically smaller, then both cells have the same flight number if and only if both
(i′, j′) and (i′, j′ + 1) lies in flightpath((i, j),T ).

2. We sometimes consider the flight path of a cell (i, j) as the trace of the south–east corner of
(i, j) on the plane. Hence by a flight path, we mean a zigzag line as seen in the examples below.

Example. We will consider the tower diagram T which corresponds to the weak composition τ =
(0,1,4,2,1,0,4) of the previous example. We first show that the only cells without a flight path are
(3,0), (4,0), (5,0), and (7,0), as the following diagrams illustrate respectively.

First observe that the cell (2,0) is the closest cell to (3,0) lying the diagonal x + y = 2, to the left
of (3,0). One can easily see that the cell (2,0) has a flight path which consists only of the cell (2,0)

itself. On the other hand, (2,1) does not belong to T and therefore (3,0) has no flight path in T .
Similar reasoning also applies to the cell (7,0).

The closest cell lying to the left of (4,0) on the diagonal x + y = 3 is (3,0). Now if (4,0) has
a flight path then it must contain the cell (3,1) and the flight path of (3,0). On the other hand
although (3,1) belongs to T , the cell (3,0) has no flight path, so (4,0) has no flight path in T .
A similar argument applied on the cell (5,0) shows that it has no flight path in T .

We now illustrate the flight paths of (3,1) and (4,1) by the following diagrams.

Here the flight paths are given by

flightpath
(
(3,1),T

) = {
(3,1)

}
,

flightpath
(
(4,1),T

) = {
(4,1), (3,2), (3,1)

}

whereas corresponding flight numbers are both equal to 4. Moreover (4,1) is a corner cell in T since
it is also a top cell.

One can easily check that the remaining cells in T also have flight paths. On the other hand,
among all of them, the cells (2,0), (3,3), (4,1) and (7,3) are the corner cells in T .

In the next lemma, we examine the relation between consecutive flights of cells. This technical
lemma will be used in Section 4. We postpone the proof of this lemma to Appendix A.

Lemma 2.2. Let T be a tower diagram and c1 = (i, j1) and c2 = (i, j2) be two cells in the tower Ti of T .
Assume that c1 and c2 have flight paths with respective flight numbers f1 and f2 . Then | f1 − f2| � | j1 − j2|.
Moreover if | j1 − j2| = 1 then | f1 − f2| = 1.
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Since one of our aims is to relate labelled tower diagrams to words, next we specify the kinds of
labelling that will be used through the rest of the paper.

Definition 2.3. Let T be a tower diagram of size n and f :T �→ [n] be a bijective map. Here we put
[n] = {1,2, . . . ,n}. Then

i) The set

T = {[
(i, j), f (i, j)

] ∣∣ (i, j) ∈ T
}

is called a tower tableau of shape T . In this case we write shape(T ) = T .
ii) Given a tower tableau T of size n and a ∈ [n], the set

T�a := {[
(i, j),b

] ∈ T
∣∣ b � a

}

is a (not necessarily tower) subtableau of cells in T whose labels are less then or equal to a.
iii) A tower tableau T of shape T is called a standard tower tableau if for each [(i, j),a] in T , the

tableau T�a is a tower tableau and moreover the cell (i, j) is a corner cell of the diagram
shape(T�a).

iv) The set of all standard tower tableaux of all shapes is denoted by STT.

Example. Let τ = (2,1,0,1). Then the standard tower tableaux of this shape are given as follows.

On the other hand, the labelling

of (2,1,0,1) is not a standard tower tableau since the cell labelled by 2 is not a corner cell of T�2.

Next we introduce the reading function

Read : STT → W
(
Z

+)

from the set of all standard tower tableaux to the set W(Z+) of all finite words over Z
+ as follows.

This definition justifies the choice of the standard labellings defined above.
Let R be a standard tower tableau of size n. Then for each k ∈ {1, . . . ,n} the cell labelled by k in R ,

say (ik, jk), is a corner cell in shape(R�k) and therefore it has a flight path in shape(R�k). We let

αk = flight#
(
(ik, jk), shape(R�k)

)
.

One can easily see that if (ik, jk) satisfies (F1) then αk = ik + jk otherwise αk = ik + jk − fk where fk
is the number of times that (F2) is used in the construction of flightpath((ik, jk), shape(R�k)). Finally
let

Read(R) := α1 · · ·αk · · ·αn.

We call the word Read(R) the reading word of R .
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Example. The reading words of the standard tower tableaux given in the previous example are listed
below.

4212, 2142, 2412, 4121, 1421, 1241, 1214, 2124.

For the rest of the paper, basically, we analyse the reading function and an inverse of it. We leave
this function alone until the end of Section 3.

3. Sliding and recording algorithm

The main tool in defining a function from the set W(Z+) of words to the set STT of all standard
tower tableaux is the sliding and recording algorithm that we shall define in this section.

As a preparation to the definition, we first introduce the basic move for the algorithm, called
sliding into a tower diagram. This is a way to enlarge a tower diagram by sliding a new cell into it. As
one would expect, the new cell will have a flight path which can be specified through sliding. We also
prove a couple of lemmas to clarify the relation between consecutive slides. In particular, we show
that the slide operation satisfies braid relations. We begin with the definition of the slide operation.

Definition 3.1. Let T = (T1,T2, . . .) be a tower diagram and α be a positive integer. In the following
we denote the sliding of α into T by

α↘T = α↘(T1,T2, . . .).

(S1) If T has no squares lying on the diagonal x + y = α − 1 then we put

α↘T := (T1, . . . ,Tα−1) � α↘(Tα, . . .).

(a) If T has no squares lying on the diagonal x + y = α then necessarily Tα = ∅ and for T ′
α =

{(α,0)}
α↘(Tα, . . .) = (

T ′
α, . . .

)
and α↘T := (

T1 · · ·Tα−1,T ′
α,Tα+1, . . .

)
.

(b) If (α,0) ∈ Tα and (α,1) /∈ Tα then the slide α↘T terminates without a result.
(c) If (α,0) ∈ Tα and (α,1) ∈ Tα then

α↘T := (T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .)

and α↘T terminates if and only if (α + 1)↘(Tα+1, . . .) terminates.
(S2) Suppose now that T has some squares lying on the diagonal x + y = α − 1 and let Ti be the first

tower from the left which contains such a square, which is necessarily (i,α − 1 − i) for some
1 � i < α. Then we put

α↘T := (T1, . . . ,Ti−1) � α↘(Ti, . . .).

(a) If (i,α − i) /∈ Ti then for T ′
i = Ti ∪ {(i,α − i)},

α↘(Ti, . . .) := (
T ′

i , . . .
)

and α↘T := (
T1 · · ·Ti−1,T ′

i ,Ti+1, . . .
)
.

(b) If (i,α − i) ∈ Ti and (i,α − i + 1) /∈ Ti then the slide α↘T terminates without a result.
(c) If (i,α − i) ∈ Ti and (i,α − i + 1) ∈ Ti then

α↘T := (T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .)

and α↘T terminates if and only if (α + 1)↘(Ti+1, . . .) terminates.

Therefore if the algorithm does not terminate then α↘T := T ∪ {(i, j)} for some square (i, j).
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Example. Let T = (T1,T2,T3,T4,T5,T6,T7) = (1,0,4,2,0,0,2) be the tower diagram shown below.

T =

The following figures illustrate 1↘T , 2↘T and 3↘T respectively.

For the sliding 1↘T , observe that T has no cells on x + y = 0. Here (1,0) ∈ T1 but (1,1) /∈ T1,
therefore by (S1)(b), the slide 1↘T terminates.

For the sliding 2↘T , observe that T1 is the first tower from the left which has a cell on x + y = 1.
Here (1,0) ∈ T1 but (1,1) /∈ T1. Therefore by (S2)(a), the sliding 2↘T creates a new cell (1,1) on top
of T1 which is indicated by a star in the above picture.

For the sliding 3↘T , observe that T has no cells lying on x+ y = 2, and (3,0) ∈ T3 and (3,1) ∈ T3.
Therefore by (S1)(c)

3↘T = (T1,T2,T3) � 4↘(T4,T5,T6,T7)

which is indicated by a zigzag line as above. Here the slide 4↘(T4,T5,T6,T7) also satisfies (S1)(c),
therefore

3↘T = (T1,T2,T3) � 4↘(T4,T5,T6,T7) = (T1,T2,T3,T4) � 5↘(T5,T6,T7).

Now 5↘(T5,T6,T7) satisfies (S1)(a), therefore sliding 3↘T creates a new cell (5,0) at the end which
is indicated by a star above.

The sliding of the numbers 4,5,6,7,8 and 9 on to T is illustrated by the following diagrams
respectively, where the stars represent the new cells created by the non-terminating slides. The veri-
fication is very similar to the one above and is left to the reader.

In the following we make precise the relation between sliding of a number and flight number
of a cell by proving that they are mutually inverse processes. The proof of this result relies on the
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observation that the flight path of a cell is travelled in the reverse direction by the slide of the flight
number. We give below the detailed proof of the first part and leave the proof of the second part.

Lemma 3.2. Let T be a tower diagram.

(a) If α is a positive integer such that α↘T = T ∪ {d} for some cell d, then d is a corner cell in α↘T and
moreover

flight#
(
d,α↘T

) = α.

(b) If c is a corner cell with flight number β , then

β↘(
c↖T

) = T .

Proof. (a) We consider the case that d = (i, j) is created by α↘T subject to either (S2)(a) or (S2)(c)
of Definition 3.1.

If d = (i, j) is created subject to (S2)(a) then d = (i,α − i) and no tower to the left of Ti contains
a cell on the diagonal x + y = α − 1. Therefore d in α↘T satisfies (F1) of Definition 2.1 i.e., it is a top
cell having a flightpath which consists only of itself. Hence its flight number in this tableau is also α.

Now if (i, j) is the cell created by α↘T subject to (S2)(c) of Definition 3.1, then no tower to the
left of Ti contains a cell on the diagonal x + y = α − 1. Furthermore (i,α − i) ∈ Ti , (i,α − i + 1) ∈ Ti
and

α↘T := (T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . . ,Tk).

In this case, d lies in (α + 1)↘(Ti+1, . . . ,Tk) and the size of (Ti+1, . . . ,Tk) is strictly less than the size
of T .

By induction on the size of the tower diagram, we may assume that d is a corner cell of (α +
1)↘(Ti+1, . . . ,Tk) and that its flight number in this tableau is (α + 1). Therefore the flight path of
d in (α + 1)↘(Ti+1, . . . ,Tk) contains some cells lying on x + y = α + 1 and let (i′, j′) ∈ Ti′ be the
lexicographically first among all such cells in this tableau. Hence no towers between Ti and Ti′ has a
cell lying on x + y = α + 1. Observe that

flightpath(d,T ) = flightpath
(
d, (α + 1)↘(Ti+1, . . . ,Tk)

) ∪ flightpath
((

i′, j′
)
,T

)

and that (i,α − i + 1) of Ti and (i′, j′) ∈ Ti′ lies in the same diagonal x + y = α + 1. Therefore by (F2)
of Definition 2.1

flightpath
((

i′, j′
)
,T

) = {(
i′, j′

)
, (i,α − i + 1)

} ∪ flightpath
(
(i,α − i),T

)
.

On the other hand flightpath((i,α − i),T ) = {(i,α − i)} by (F1) of Definition 2.1. Now (i,α − i) is the
lexicographically first cell in flightpath(d,T ). Therefore the flight number of d in T is α as desired.

We will skip the case defined by (S1)(a) and (b), since the related analysis is very similar. �
Our next aim is to describe the relations between consecutive slides. We state these result as two

separate lemmas. Because the proofs of the lemmas are technical and very long, we include them in
Appendix A.

The first lemma examines the case where the integers that are to be slided are far away from each
other.

Lemma 3.3. Let T = (T1, . . . ,Tk) be a tower diagram and α and β be positive integers satisfying |β −α| � 2.
Then either the equality

α↘(
β↘T

) = β↘(
α↘T

)

holds or both slides terminate.
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The remaining case is where the numbers that are to be slided are close to each other is given in
the following result.

Lemma 3.4. Let T = (T1,T2, . . .) be a tower diagram and α be a positive integer. Then either the equality

α↘(
(α + 1)↘

(
α↘T

)) = (α + 1)↘
(
α↘(

(α + 1)↘T
))

holds or both slides terminate.

Now we introduce a sliding and recording (SR) algorithm (sliding algorithm, for short) on the set
of finite words on Z

+ which produces a pair of tower tableaux of the same shape, whenever the
algorithm does not terminate. We shall prove that one of these tableaux is canonically determined by
the shape of the tableau whereas the other is standard. In particular, we shall obtain a criterion on
words to be in the image of the reading function defined in Section 2.

Definition 3.5. Let α = α1α2 · · ·αn be a word on Z
+ . Then SR (sliding and recording) algorithm on α

produces, if it does not terminate, two tower tableaux of the same shape, the sliding tableau S(α) and
the recording tableau R(α). These tableaux are obtained through a sequence of pairs of the same shape
tower tableaux

(S1, R1), (S2, R2), . . . , (Sn, Rn) = (
S(α), R(α)

)

where S1 = {[(α1,0),α1]} and R1 = {[(α1,0),1]}, and for 1 < k � n, Sk (and Rk) is obtained by sliding
αk over Sk−1 (and respectively Rk−1) by the following rule:

Let Tk−1 := shape(Sk−1) = shape(Rk−1). If α↘Tk−1 := Tk−1 ∪ {(i, j)} then we put

Sk := α↘Sk−1 = Sk−1 ∪ {[
(i, j), i + j

]}
, Rk := α↘Rk−1 = Rk−1 ∪ {[

(i, j),k
]}

.

Otherwise SR algorithm terminates without a result.
We denote the set consisting of all words on Z

+ on which SR algorithm does not terminate by

SRW
(
Z

+)
.

Example. Sliding and recording algorithm applied on the word α = 784 534 561 gives the following
tower tableaux S(α) and R(α), respectively.

S(α) = R(α) =

Let T = shape(S(α)) = shape(R(α)). Recall from the previous example that the only numbers
whose sliding into T do not terminates are 2, 3, 5, 7, 9 and any integer > 9. Below we illustrate
the sliding of these numbers into S(α) respectively. Note that for an integer k � 9 the sliding of k
into S(α) is obtained by adding [(k,0),k] to S . For finding the recording tableaux, on the other hand,
one only need to label the new cell in each tableaux by 10.
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Our next aim is to classify the sliding and recording tableaux. The classification of the sliding
tableaux is easy.

Lemma 3.6. For every α ∈ SRW(Z+), the sliding tableau S(α) is canonically determined by its shape. More-
over if α′ is another word in SRW(Z+) satisfying shape(S(α)) = shape(S(α′)) then α and α′ has the same
size and S(α) = S(α′).

Proof. The first statement follows from the definition of the sliding tableaux directly. Indeed, it is
clear that the cell (i, j) in S(α) has label i + j. For the second statement it is clear that two tableaux
have the same number of cells and so do the two words by the sliding algorithm. The other statement
follows from the fact that for any tower diagram the associated canonical tower tableau is unique. �

As the lemma shows, the sliding tableau is uniquely determined by the shape of the corresponding
recording tableau. Hence after this point, we will forget the sliding tableau and concentrate only on
the recording tableau.

Regarding the recording tableaux, the classification is done by standard labelling as follows.

Lemma 3.7. Let α = α1 · · ·αn be a word in SRW(Z+). Then R(α) is a standard tower tableau.

Proof. We will proceed by induction on the size of α. For any word of size one, the recording tableau
consists of only one labelled cell [(i,0),1] for some positive integer i, and clearly it is a standard tower
tableau. Suppose that the recording tableau for any word of size � n − 1 in SRW(Z+) is a standard
tower tableau. Let R(α) be the recording tableau of α = α1 · · ·αn ∈ SRW(Z+). Then α1 · · ·αn−1 is also
in SRW(Z+) and

R(α) = R(α1 · · ·αn−1) ∪ [
(i, j),n

]

for some cell (i, j). Here R(α1 · · ·αn−1) is a standard tower tableau by induction and moreover

R(α1 · · ·αn−1) = R(α)�n−1.

Now the definition of standard tower tableau asserts that for each 1 < k � n − 1, the cell labelled by k
is a corner cell in the diagram R(α1 · · ·αn−1)�k = R(α1 · · ·αk) and hence in R(α)�k . So we only need
to show that the cell [(i, j),n] is a corner cell of R(α)�n = R(α).

Let shape(R(α)<n) = T . Then

shape
(

R(α)
) = αn ↘ T = T ∪ {

(i, j)
}
,

where (i, j) is a corner cell in αn ↘ T by Lemma 3.2(a). Hence [(i, j),n] is a corner cell of R(α) as
required. �
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By the above results, we have obtained a function

R : SRW
(
Z

+) → STT

from the set SRW(Z+) of words on which the sliding algorithm does not terminate to the set STT
of all standard tower tableaux, defined by sending a word α to the corresponding standard tower
tableaux R(α).

Recall that we have also defined the reading function

Read : STT → W
(
Z

+)
.

By Lemma 3.2, it is clear that the compositions R ◦ Read and Read ◦ R are identity on the sets STT
and SRW(Z+), respectively. As a result, we obtain the following theorem.

Theorem 3.8. There is a bijective correspondence between

i) the set SRW(Z+) of words on which the sliding algorithm does not terminate and
ii) the set STT of all standard tower tableaux of all shapes

given by α �→ R(α) and R �→ Read(R).

4. Recording tableaux and reduced words

Our main result on standard tower tableaux is that they parametrize the reduced decompositions
of permutations. Finally we are ready to prove this result. More precisely, we prove that the set
SRW(Z+) of words on which the sliding algorithm does not terminate coincide with the reduced
words for permutations, see Theorem 4.3.

Note further that, the set STT of standard tower tableaux of all shapes has a natural partition
according to shapes. On the other hand, the set SRW(Z+) has a natural partition into classes according
to the corresponding permutation, as described below. The other main result of this section is that
the functions defined in Theorem 3.8 preserve these partitions.

Combining these two results, we conclude that a tower diagram determines a unique permutation.
Vice versa the set of all reduced decompositions of a permutation is in bijection with the set of all
standard tower tableaux of the unique shape determining the permutation we start with.

Now we argue to prove the above results. The symmetric group Sn is generated by the set of all
adjacent transpositions

S := {
si = (i, i + 1)

∣∣ 1 � i � n − 1
}

subject to the following Coxeter (or braid) relations:

i) si s j = s j si if |i − j| � 2
ii) si si+1si = si+1si si+1

iii) si si = 1

where 1 represents the identity permutation. For any w ∈ Sn , an expression w = si1 · · · sik is called a
word representing w . The length of the permutation w , denoted by l(w), is the minimum number of
transpositions in a word representing w .

Now if w = si1 · · · sik and l(w) = k then si1 · · · sik is said to be a reduced expression or a reduced
word for w .

To consider all finite permutations at once, we write

lim−→
n

Sn

for the direct limit of the groups Sn over all n.



O. Coşkun, M. Taşkın / Journal of Combinatorial Theory, Series A 120 (2013) 843–871 855
With this notation, there is a function

s[−] : W
(
Z

+) → lim−→
n

Sn

given by sending any word α = α1α2 · · ·αn over Z
+ to the permutation represented by the word

s[α] := sα1α2···αn = sα1 sα2 · · · sαn .

Our next aim is to relate this function with SR algorithm and the reading function. First, we show
that whenever the SR algorithm does not terminate on a pair of words α and β , then the recording
tableaux of α and β have the same shape if and only if they correspond to the same permutation
under s[?] . We state and prove this result as two separate theorems. We first have the following part.

Theorem 4.1. Let α = α1 · · ·αn and β = β1 · · ·βn be two words in SRW(Z+). If s[α] = s[β] then
shape(R(α)) = shape(R(β)).

Proof. We proceed by induction on the size of the words. One can easily prove the hypothesis for the
words of size � 3. So assume that hypothesis is true for the words of size � n − 1.

Since s[α] = s[β] , the words sα1 sα2 · · · sαn and sβ1 sβ2 · · · sβn must be related by a sequence of braid
relations. On the other hand, in order to prove the claim, it is enough to consider the case where they
are related by only one braid relation.

Now if αn = βn then we still have that the words sα1 sα2 · · · sαn−1 and sβ1 sβ2 · · · sβn−1 are braid re-
lated and by induction, shape(R(α1 · · ·αn−1)) = shape(R(β1 · · ·βn−1)). We denote the common shape
by T .

On the other hand, we have the equalities

R(α) = α
↘
n R(α1 · · ·αn−1) and R(β) = α

↘
n R(β1 · · ·βn−1).

Moreover these tableaux are determined by T and by the number αn . Therefore the shapes of
shape(R(β)) and shape(R(α)) are the same.

Next we assume that αn 
= βn . Then we have two cases:
Case 1. The words s[α] and s[β] are related by a single relation of the first type, that is, for some

1 � i, j � n − 1 satisfying |i − j| � 2, we have sαn−1 = si , sαn = s j and

s[α] = sα1 · · · sαn−2 si s j, s[β] = sα1 · · · sαn−2 s j si .

Let T = shape(R(α1 · · ·αn−2)). Observe that in order to prove our claim, it is enough to show that
the equality

j↘i↘T = i↘ j↘T

holds whenever |i − j| � 2. But this follows directly from Lemma 3.3.
Case 2. The words s[α] and s[β] are related by a single relation of the second type, that is, for some

1 � i � n − 1, sαn−2 = sαn = si , sαn−1 = si+1 and

s[α] = sα1 · · · sαn−3 si si+1si, s[β] = sα1 · · · sαn−3 si+1si si+1.

Let T = shape(R(α1 · · ·αn−3)). Observe that in order to prove our claim, it is enough to show that
the equality

i↘(i + 1)↘i↘T = (i + 1)↘i↘(i + 1)↘T

holds. But this follows from Lemma 3.4. �
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The next theorem provides the converse for the above theorem.

Theorem 4.2. Let α = α1 · · ·αn and β = β1 · · ·βn be two words in SRW(Z+). If shape(R(α)) = shape(R(β))

then s[α] = s[β] .

Proof. We argue by induction on the number of cells in R(α). Let

α = α1α2 · · ·αn, β = β1β2 · · ·βn

and assume the result for all words of length less than n.
Let cα (resp. cβ ) be the cell in R(α) (resp. R(β)) with label n. Note that by this choice, the cells

cα and cβ are corner cells in T := shape(R(α)).
There are several cases to consider. The easy case is when cα and cβ are the same cells in T . In

this case, by Lemma 3.2(a), we have the equalities

αn = flight#(cα,T ) = flight#(cβ,T ) = βn

and also since the shapes of R(α1 · · ·αn−1) and R(β1 · · ·βn−1) coincide, the induction hypothesis im-
plies that sα1···αn−1 = sβ1···βn−1 . Hence s[α] = s[β] , as required.

For the rest of the proof, we assume that the cells cα and cβ are different and that the cell cα is
on the left.

Let α′ = α1 · · ·αn−1. Then we have R(α′) = c↖
α (R(α)). There remains two cases to consider.

First, the cell cβ can be a corner cell in shapeR(α′). In this case, the flight path of cβ on the tower
Tx containing cα does not pass from the cell cα or the cell just above it. We illustrate this situation
with the following picture.

In particular, on the tower Tx , the distance between the flight paths of the cells cα and cβ is at
least 2. Therefore, in the first case, by Lemma 2.2, we get that |αn − βn| � 2. The same equality is
obtained also in the second case by an easy modification of the proof of Lemma 2.2.

Now since cβ is a corner cell in shape(R(α′)), there is a standard tower tableau of this shape (with
the cell cβ labelled by n − 1) with reading word γ such that γ = γ1γ2 · · ·γn−2βn . Moreover, by the
induction hypothesis, we have

s[γ ] = s[α′].
On the other hand, cα is a corner cell in shapeR(β ′) where β ′ = β1β2 · · ·βn−1. Hence there is a

standard tower tableau of this shape with reading word δ such that δ = δ1δ2 · · · δn−2αn . Again, by the
induction hypothesis, we have

s[δ] = s[β ′].
Now we have

shapeR(γ1γ2 · · ·γn−2) = c↖
β c↖

α T = c↖
α c↖

β T = shapeR(δ1δ2 · · · δn−2)

and hence, by the induction hypothesis, we get the equality

sγ1γ2···γn−2 = sδ1δ2···δn−2 .

Therefore using the above equalities, we obtain
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s[α] = s[α′]sαn = s[γ ]sαn = s[γ1γ2···γn−2]sβn sαn = s[δ1δ2···δn−2]sαn sβn = s[δ]sβn = s[β ′]sβn = s[β].

Hence the case is closed.
The final case is the one where cβ is not a corner cell in shapeR(α′). In this case, the flight path

of the cell cβ should pass from the cell cα . Indeed, the flight path of cβ cannot pass from a cell below
cα since, then cβ is a corner cell in shapeR(α′) as seen in the previous case. Also note that if the
flight path of cβ passes from the cell just above cα , then cβ cannot be a corner cell in T . Any other
cell above cα is also not possible since in this case the flight path of cβ will not be effected by the
removal of the cell cα . Thus the situation, in shapeR(α), is as follows.

Notice that in the above case, the cell cγ has a flight path, since the cell cβ is a corner cell and must
contain the flight path of cγ in its flight path. Thus by Lemma 2.2, we get that

∣∣flight#(cα,T ) − flight#(cγ ,T )
∣∣ = 1.

Also since the flight numbers of cγ and cβ are the same, we get
∣∣flight#(cα,T ) − flight#(cβ,T )

∣∣ = 1.

Therefore, although cβ is not a corner cell in R(α′), the cell cα is a corner in R(β ′) and also cγ is a

corner in c↖
α R(β ′). Thus we have the diagram

c↖
γ c↖

α c↖
β T .

Furthermore, if the flight number of cβ is i, then that of cα and cγ should be i + 1 and i, respectively.
Hence if u is a reduced word with recording tableau of the above shape, we get that

shape
(

R
(
u(i)(i + 1)(i)

)) = shape
(

R(β)
)
.

Since the last term βn of β is i, the word u(i)(i + 1)(i) is braid related to β by the first case.
On the other hand, it is clear that cγ is a corner cell in R(α′). Moreover when cγ is removed, cβ

becomes a corner cell of the new diagram c↖
γ c↖

α T and the flight number of cβ in this diagram is the
same as the flight number of cα in T . Thus we have the diagram

c↖
β c↖

γ c↖
α T

with the flight numbers of cβ, cγ and cα given respectively by i + 1, i and i + 1. Moreover we have

c↖
γ c↖

α c↖
β T = c↖

β c↖
γ c↖

α T

as tower diagrams. Thus we also have

shape
(

R
(
u(i + 1)(i)(i + 1)

)) = shape
(

R(α)
)

and hence u(i + 1)(i)(i + 1) is braid related to α by the first case. Now the result follows since
u(i + 1)(i)(i + 1) and u(i)(i + 1)(i) are also braid related. �

We have thus proved that each tower diagram determines a unique permutation and vice versa a
unique tower diagram is determined by a given permutation. The next result shows that the words
that we thus obtain are indeed reduced.
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Theorem 4.3. The sliding and recording algorithm does not terminate on the word α = α1α2 · · ·αn, that is,
α ∈ SRW(Z+) if and only if the word sα1 sα2 · · · sαn is a reduced expression for s[α] .

Proof. We will proceed by induction on the size of the words. For n = 1 both sides of the statement
follows directly. So suppose that both sides of the statement are true for all words of size n − 1 and
let α = α1α2 · · ·αn be a word on Z

+ .
We first assume that α ∈ SRW(Z+). Equivalently the SR algorithm does not terminate on α and

therefore it does not terminate the subword α1α2 · · ·αn−1, and by induction argument sα1 sα2 · · · sαn−1

is a reduced expression for s[α] · sαn . Therefore l(s[α] · sαn ) = n − 1 and l(s[α]) is either n or n − 2.
Now if sα1 sα2 · · · sαn is not a reduced expression then l(s[α]) < n and by previous argument it must

be equal to n − 2. So we have l(s[α]) < l(s[α] · sαn ) and hence s[α] · sαn has another reduced expression
say sα′

1
sα′

2
· · · sα′

n−1
Coxeter related to sα1 sα2 · · · sαn−1 where sα′

n−1
= sαn . Now by the previous theorem,

we have

S(α1α2 · · ·αn−2αn−1) = S = S
(
α′

1α
′
2 · · ·α′

n−2αn
)
.

Let (i, j) be the cell in S which is obtained by sliding αn in to the diagram S(α′
1α

′
2 · · ·α′

n−2). Then
(i, j) must be a corner cell in S . On the other hand S(α1α2 · · ·αn−2αn−1αn) is obtained by sliding
another αn in to S but then this sliding must go through the corner cell (i, j) of S . But since the
top of (i, j) is empty in S this shows that the SR algorithm terminates for α1α2 · · ·αn−1αn which is a
contradiction.

We now assume that α = α1α2 · · ·αn /∈ SRW(Z+) and let k > 1 be the integer such that SR al-
gorithm does not terminate on α1α2 · · ·αk but it terminates on α1α2 · · ·αkαk+1. Therefore in SR
algorithm αk+1 is slided through some corner cell (i, j) of S(α1α2 · · ·αk). Therefore one can ob-
tain another word α′

1α
′
2 · · ·α′

k , on which SR algorithm produces the same tableau S(α1α2 · · ·αk) by
producing the cell (i, j) at the end and therefore α′

k = αk+1. On the other hand by the induction
argument sα1 sα2 · · · sαk and sα′

1
sα′

2
· · · sα′

k
are Coxeter related and so are sα1 sα2 · · · sαk sαk+1 · · · sαn and

sα′
1
sα′

2
· · · sα′

k
sαk+1 · · · sαn . Now the length of sα′

1
sα′

2
· · · sα′

k
sαk+1 · · · sαn is clearly less than or equal to

n − 2 since sα′
k
= sαk+1 . Hence the length of α1α2 · · ·αkαk+1 · · ·αn is less than or equal to n − 2 and it

is not reduced. �
Throughout the paper, we have introduced several functions. Together with the known functions

and relations, we obtain the diagram in the introduction. We repeat the diagram by using our nota-
tions.

Although the diagram is self-expository, there are several other results that we can draw from the
diagram.

Let ω ∈ Sn be a permutation and let α be a reduced word representing ω. Also let Tω be the shape
of the standard tower tableau R(α). We call Tω the shape of ω.

We denote by Red(ω) the set of all reduced words representing ω and by STT(ω) the set of all
standard tower tableau of shape ω.

With these notations, by Theorem 3.8, the reading function Read : STT → W (Z+) restricts to a
bijection
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Read : STT → RW.

Moreover, by Theorem 4.1 and Theorem 4.2, the bijection further specialize to a bijection

Read : STT(ω) → Red(ω)

as promised at the beginning of this section. Note that, in both cases the inverse is given by the
inverse of the reading function, that is, by the SR algorithm.

We state this result as a theorem, for future reference.

Theorem 4.4. Let ω be a permutation. Then the reading function and the SR algorithm are inverse bijective
correspondences between

1. the set Red(ω) of reduced expressions for ω and
2. the set STT(ω) of standard tower tableaux of shape ω.

As a corollary, we get the dotted connection shown in the above diagram.

Corollary 4.5. There is a bijective correspondence between

1. the set lim−→n
Sn of all finite permutations and

2. the set TD of all finite tower diagrams

given by ω → shape(ω).

To use the above bijection as a tool to describe reduced words for a given permutation ω, one
needs to know all standard tower tableaux of the determined shape. This can be done recursively, as
follows.

Let T = Tω be a tower diagram. We denote the set of all corner cells of T by C(T ). By the
definition of a standard tower tableaux and the reading function, any cell in C(T ) corresponds to a
terminal term in some reduced word in Red(ω). Therefore we have

STT(T ) =
⊔

c∈C(T ), R∈STT(T −c)

{
R ∪ {[c,n]}}.

It is clear that the above equality produces all standard tower tableaux of the shape T and hence,
applying the reading function, all reduced words for the permutation ω.

Notice that the above remark suggests to determine all standard tower tableaux by removing one
corner cell at a time. As it is, although the algorithm is very systematic, it is also slow. However
the advantage of our algorithm is that we determine the shape of the diagram at the beginning.
In a sequel to this paper, we will introduce a faster algorithm to determine the set of all reduced
expressions of a given permutation.

5. Natural word of a permutation

In this section, we introduce a canonical reduced word for any permutation. This word has several
nice properties and will be used in Section 7 in a crucial way.

We are still denoting by T an arbitrary tower diagram. The natural labelling T of T is the labelling
defined inductively as follows. If T contains a unique cell, then the unique labelling of T is natural.
Otherwise, if T contains n cells, we remove the cell on the top of the left most tower of T and
determine the natural labelling of the new diagram. Then we add the removed cell into its original
position with the label n.

In other words, we label T by 1,2, . . . ,n in the increasing manner starting from the bottom cell
of the right most tower and then by going first from bottom to top and then right to left. It is clear
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that the natural labelling of a tower diagram is standard and hence the word Read(T) is defined. We
call Read(T) the natural word for the diagram T . If T = Tω , then we write

ηT := ηω := Read(T)

and say that ηω is the natural word for ω.
The natural labelling of the tower diagram T = (2,1,0,1) is the tableau

and the corresponding natural word is η(2,1,0,1) = 4 2 1 2.
As an other example, consider the longest word ω0 in S4. The commonly used reduced expression

for ω0 is 3 2 1 3 2 3 and it is easy to see that the associated tower diagram and its natural labelling is
given by

Therefore the natural word for the longest permutation is 3 2 3 1 2 3. The natural word ηω can be
characterized by certain properties given below. Write the tower T as a concatenation

T =
k⊔

i=1

(Ti)

of its towers. Then the natural word ηω decomposes as

ηω =
k⊔

i=1

ηi

where ηi is the natural word of the tower Ti and we agree that when Ti is empty, the corresponding
natural word is also empty.

Now if |Ti | = ki > 0, then we have

ηi = i(i + 1) · · · (i + ki).

In particular, for each i, the word ηi is an increasing sequence of consecutive integers. On the other
hand, if we write ηi = η1

i η
2
i · · ·ηki

i then the sequence η1
1η

1
2 · · ·η1

s is strictly decreasing.
It is also clear that the properties characterize the natural word in the following sense. When a

tower diagram is given, then the above constructed word is the unique reading word associated to
the diagram with the specified properties. Therefore we have proved the following result.

Proposition 5.1. Let ω ∈ Sn be a permutation. Then there is a unique reduced expression η representing ω
such that the word η is a sequence η1η2 · · ·ηs of increasing subsequences where

1. each subsequence ηi is a sequence of consecutive integers and
2. the sequence of initial terms of ηi ’s is strictly decreasing.

Remark. There is another canonical choice for a standard labelling of a tower diagram where we
label the cells first from right to left and then bottom to top. For example, such labelling of the tower
diagram of the longest word in S4 is given as follows.
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Notice that the above labelling is also standard, by definition. In the above example, the reading word
of the tower tableau is 3 2 1 3 2 3. Note that this expression is the same as the commonly used one.

6. From Rothe diagrams to tower diagrams

In this section, we show how the tower diagram can be obtained from the corresponding Rothe
diagram. The idea is that when the Rothe diagram of a permutation is given, the corresponding tower
diagram can be determined by pushing all the nodes of the Rothe diagram to the top row and then
reflecting the resulting diagram on the top border of the Rothe diagram. In other words, to obtain the
tower diagram, we forget the gaps between the cells in the columns of the Rothe diagram. However,
we should note that, by Corollary 4.5, forgetting gaps is not very crucial in determining the permuta-
tion corresponding to the Rothe diagram. In the next section, we further prove that the tower diagram
determines the Rothe diagram.

To state the main result of this section, we first recall from [7] some basic facts concerning Rothe
diagrams. We begin by the definition. Let ω be a permutation in Sn . The Rothe diagram Dω of ω is
the set

Dω = {
(i, j)

∣∣ 1 � i, j � n, ω(i) < j, ω−1( j) < i
}
.

We sketch the set Dω as an n × n-array with the points in Dω marked with ◦. Another way to
determine the Rothe diagram Dω can be described as follows. Let D be an n × n-array with empty
cells. Mark the cell (i, j) with a cross if ω(i) = j and leave it empty otherwise. Then for each crossed
cell (i, j), mark the cells of the hook with vertex (i, j) by a dot. Now the pairs in Dω are those which
are left empty at the end of this process.

Example. Let ω = 214 635. Then the array D with marks is the following and the Rothe diagram Dω

of ω are given by the following diagrams.

Now let si = (i, i + 1) be a standard transposition. Next we determine the effect of multiplication
of ω by si on the Rothe diagram. Part of this result is stated in [4, Lemma 4.6]. We provide a complete
proof.

Let ω and si be as above and let ω̃ = ωsi . Let Dω(×) be the n × n-array marked with × as
described in the previous section. Then Dω̃(×) is obtained by applying si to the rows of Dω(×), by
definition. Recall that the length l = l(ω) of ω is equal to the size |Dω| of its Rothe diagram and also
that l(ω̃) = l(ω) ± 1. Thus |Dω̃| = |Dω| ± 1.

It is possible to determine Dω̃ more explicitly. There are two cases to consider. First assume that
the × in the i-th row is on the right of the one on the (i +1)-st as illustrated in the following picture.
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Here we leave a cell empty if we are not sure about its content with the given information. It is
easy to observe that the circled cell in the above diagram is contained in the Rothe diagram. Now
multiplication by si gives the following partial diagram.

Notice that this operation has no effect outside the rectangle determined by the crosses on the i-th
and (i + 1)-st row. Therefore we can concentrate on the following partial diagrams.

Now the circled cell in the first partial diagram is contained in the Rothe diagram Dω and the
empty cells of the first diagram may or may not be contained in Dω . On the other hand, the second
partial diagram shows that after applying si , the empty cells are moved to a lower row and their
contents are not changed, but the circled cell is moved to a lower row and the content is changed to
a dot. Therefore the only change in Dω after applying si is to remove the circled cell shown above
and to move the empty cells one row below. Therefore in this case, the length l(ω̃) of ω̃ is decreased.

The other case where the × in the i-th row is on the left of the one on the (i + 1)-st is similar
to the above case and corresponds to the case where the length of ω̃ is increased. Therefore we have
proved the proposition below.

Proposition 6.1. Let ω be a permutation in Sn and let D be its Rothe diagram. Let si ∈ Sn be an adjacent
transposition. Let D ′ be the Rothe diagram of ωsi . Then

1. the equality l(ωsi) = l(ω) − 1 holds if and only if D ′ is obtained from D by first removing the element
(i,ω(i + 1)) of D and then interchanging the i-th and (i + 1)-st rows of D, and

2. the equality l(ωsi) = l(ω) + 1 holds if and only if D ′ is obtained from D by first interchanging the i-th
and (i + 1)-st rows of D and then adding the pair (i,ω(i)) to (the i-th row of ) the new diagram.

Now we are ready to show how the Rothe diagram determines the tower diagram. Let ω be a
permutation and α be a reduced expression representing ω. Let Tω (resp. Dω) be the tower (resp.
Rothe) diagram associated to ω. When there is no risk of confusion, we omit the subscripts. Write

T =
n⊔

i=1

(Ti) and D =
m⊔

j=1

D j

where the first sum (resp. second sum) is over the columns of T (resp. D) from left to right and
where Ti (resp. Di ) is the i-th column of T (resp. D). Finally we have the following correspondence,
as promised at the beginning of this section.

Theorem 6.2. Let ω,T and D be as above. Then n = m and for each 1 � i � n, we have |Ti| = |Di |.

Proof. We argue by induction on the length l = l(ω) of ω. The case l = 1 is trivial. We assume the
result for l − 1 and let ω be of length l. Let (i0, j0) be the lowest cell in the first non-empty column
of Dω as illustrated with a bullet in the following diagram.
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Now let s = si0 . Then we claim that l(ωs) = l − 1. Indeed, by the choice of i0, there is a cross just
below (i0, j0) and the cross on the i0-th row is on the right of this one. Thus by Proposition 6.1, the
Rothe diagram of Dωs is obtained by removing the cell (i0, j0) and possibly, moving some other cells
one row below and hence the length decreases. Thus by the induction hypothesis, the tower diagram
Tωs and the Rothe diagram Dωs satisfy the conclusion of the theorem. Thus

Tωs =
n⊔

i=1

(
T ′

i

)
and Dωs =

n⊔

i=1

D ′
j

where for each i, we have |T ′
i | = |D ′

i |. Now if we apply s once more to the Rothe diagram Dωs we will
obtain D . Furthermore j0 is the unique integer such that |D ′

j0
| 
= |D j0 | and we have |D ′

j0
| = |D j0 | + 1.

On the other hand, the first non-empty column of Tωs is T j0 , since the Rothe diagram of ωs has this
property. Thus the number of boxes on this column is i0 − j0. Therefore if we slide i0 to the tower
diagram Tωs , it will stop on the top of the tower T j0 , as required. �
7. From tower diagrams to Rothe diagrams

Given a permutation ω, we write Tω for the tower diagram of ω and nω for the natural word as-
sociated to Tω . In this section, we prove that it is possible to recover the Rothe diagram Dω from Tω .
Again, when there is no risk of confusion, we omit the subscripts. It follows from the previous section
that the tower diagram T determines the number of boxes on any given column of the Rothe dia-
gram. To recover the Rothe diagram, we need to determine the vertical positions of the boxes of the
non-empty columns. In order to achieve this, we introduce virtual sliding of words, the virtual tower
diagram and the complete tower diagram of a permutation.

Let α be a reduced word for the permutation ω. Write

α = α1α2 · · ·αl

as a product of transpositions where l is the length of ω. The virtual sliding algorithm is obtained by
extending the sliding algorithm to negative integers as follows. Recall that the sliding of α slides the
word α1α2 · · ·αl along the lines y = −x + α j as j runs from 1 to l where the line y = 0 is a border
for this sliding.

On the other hand, the virtual sliding of the word α slides the l-tuple (−αl,−αl−1, . . . ,−α1) along
the lines y = −x − α j as j runs from l to 1 and the border for this sliding is the line x = 0. We
agree that the rules of sliding explained in Section 3 also apply to the virtual sliding. The diagram
T − obtained at the end is called the virtual tower diagram of α.

Example. Let α = 3 452 312. Then the virtual tower diagram of T of α is given as follows.

Now we put the tower and the virtual tower diagrams of α together as follows.
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The above diagram is now called the complete tower diagram of α and we denote it by Υω =
(Tα,T −

α ).

Remark. It is easy to see that the virtual tower diagram for α is obtained from the tower diagram
of the reverse word α−1 of α by reflecting it along the line y = −x. Hence the results of the pre-
vious sections are also valid for virtual tower diagrams. In particular, the complete tower diagram is
uniquely determined by the permutation ω and conversely, the complete tower diagram determines
a unique permutation. However, since the virtual tower diagram is determined by the tower diagram,
arbitrary tower diagrams cannot be joined to give a complete diagram. This reflects the similar prop-
erty of the Rothe diagrams. This is the reason for not introducing the virtual sliding at the beginning:
we would like to have the freedom to chose the tower diagram.

Remark. Similar to Theorem 6.2, we can also prove that the virtual tower diagram of ω is obtained
by pushing all the nodes of the Rothe diagram to left and then reflecting everything on the left border
of the Rothe diagram. We leave the proof as an exercise to the interested reader.

Let Υ = (T ,T −) be a complete tower diagram. A standard labelling of Υ is a pair ( f , f −) of
functions where f is a standard labelling of the tower and f − is a standard labelling of the virtual
tower such that the reading word of f is reverse to the reading word of f − . In the particular case
where f is the natural label for the upper tower, we call the pair ( f , f −) the natural labelling of
the complete tower diagram. Moreover a complete tower diagram with a standard label is called a
standard complete tower tableau.

In the above example, the natural label for the word α = 3 452 312 is given as follows.

Observe, in the above virtual tower diagram, that the row just below the cell labelled by 1 is empty.
The next lemma states that this is true in general when the complete diagram has natural labels. It
is also easy to produce examples of other standard labelling for which the result does not hold. The
proof is deferred to Appendix A.

Lemma 7.1. Let (T , T −) be a natural complete tower tableau. Let C be the cell in T − with label 1. Then the
row just below the cell C is empty.

As in the case of Rothe diagrams, we want to determine the effect of the multiplication of ω by an
adjacent transposition si from the right on the complete tower diagram with natural labels. Actually
we only need to determine the effect of multiplication by the last term of the natural word η of ω.
We have the following result.
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Proposition 7.2. Let η = η1η2 · · ·ηl be the natural word for the permutation ω and let s = sηl . Then the
complete tower diagram of ωs is obtained from that of ω in two steps as follows.

1. From the natural tower tableau of ω, we remove the cell with label l.
2. From the natural virtual tower tableau of ω, we remove the cell labelled by 1 and slide the cells on the left

of this cell, if any exists, further to the next row.

Proof. The first step is trivial. Being the last term of the word, the removed cell is a corner. Therefore
the removal of the cell with label l corresponds to multiplication by sηl .

The second step, the effect on the virtual tower is less obvious. Let c be the cell in the virtual tower
tableau with label 1 and assume that it is on the j-th row. Thus removing ηl from η corresponds to
the removal of the cell c from the virtual tableau. Note that, by Lemma 7.1, the ( j + 1)-st row is
empty.

Now if there is no cell on the j-th row, then removal of the cell c will not effect the rest of the
diagram and we are done. Thus we assume that c is not the unique cell in its row. It is clear that
the only effect of the removal of c is on the remaining cells in the j-th row and the effect is to slide
these cells to the next row, as required. �

Finally we are ready to prove the main result of this section. First we explain the algorithm. Given
a complete tower diagram Υ = (T , T −) with natural labels. Let l be the size of T . Construct the set

I = {
(u, v):

([u, i], [v, j]) ∈ T × T −, i + j = l + 1
}

of pairs of cells from the complete tower diagram whose labels sum up to l + 1. Then for each
(u, v) ∈ I , construct the vertical shadow of the cell u and the horizontal shadow of the cell v . Observe
that these shadows intersect at the point (u1,−v2). We illustrate this below.

Finally construct the set

Rω = {
(u1,−v2): (u, v) ∈ I, u = (u1, u2), v = (v1, v2)

}
.

We call Rω the Rothification of the complete tower diagram of ω.

Example. The Rothification of the complete tower diagram in the previous example is the following
diagram. Note that we put bullets to distinguish the cells in the Rothification.

Now the permutation corresponding to the word α = 3 452 312 is ω = 451 263 and its Rothe diagram
is given by the following diagram. Again the cells of the Rothe diagram is marked with a bullet.
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The above example indicates that the Rothification of the complete tower diagram of ω might give
us the Rothe diagram of ω. Next we prove this.

Theorem 7.3. Let w be a permutation and let Υω be the complete tower diagram of ω with natural labels.
Then Rω = Dω .

Proof. We argue by induction on the length l of ω. The case l = 1 is trivial. Let η = η1η2 · · ·ηl be
the natural word of ω. Let ω̃ = ωsηl . Then it is clear that the natural word of ω̃ is η1η2 · · ·ηl−1. By
induction, the Rothification of the complete tower diagram of ω̃ is equal to the Rothe diagram of ω̃.
We obtain these diagrams as follows.

To obtain the Rothification of the complete tower diagram of ω̃, we use Proposition 7.2. Assume
that the cell with label l in the tower diagram T of ω is on the i-th column and the cell with label 1
in the virtual tower diagram T − of ω is on the row j. Then by the construction of the virtual tower
diagram, we have j = ηl and by Lemma 7.1, the row j + 1 is empty. Moreover the column i is the
first non-empty column of the tower diagram T and the height of this tower is j − x where x is the
number of empty columns on the left of the i-th column.

With these notation, the Rothification Rω̃ of ω̃ is obtained from Rω by removing the cell ( j, i)
from Rω and then moving the rest of the row j to the next row, which was empty.

On the other hand, by Proposition 6.1, the Rothe diagram Dω̃ is obtained from Dω by removing
the cell ( j,ω( j + 1)) and then interchanging the rows j and j + 1. Since Dω̃ = Rω̃ , we immediately
conclude that the j-th row of Dω̃ , and hence the j + 1-st row of Dω , are empty. Therefore to finish
the proof, we only need to show that the removed cell ( j,ω( j + 1)) coincides with the removed cell
( j, i), that is, we need to show that i = ω( j + 1). Indeed, with this equality, reversing the above steps
we obtain the desired equality.

To prove i = ω( j + 1), note that since i is the first non-empty column of T , we have ω(a) = a for
any a < i. Therefore the first non-empty row of the virtual tower diagram T − is the i-th row. Thence,
without loss of generality, we can assume that i = 1 and hence the height of the tower at 1 is j and
we are to prove that ω( j + 1) = 1. In this case, the natural word of ω contains only one copy of the
letter 1 and it ends with the sequence 12 · · · j. This means that the number 1 is moved only by the
sequence 12 · · · j and hence is at the j + 1-st place, that is, ω( j + 1) = 1, as required. �
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Appendix A. Proofs of the technical lemmas

Proof of Lemma 2.2. Let c1 be the lower cell. If the flight path of c1 has only one element, then the
flight path of c2 also has only element. Therefore the flight numbers of c1 and c2 are just the sum of
their coordinates and hence the result follows directly from our assumption.

Otherwise, let T
 be the first tower on the left of Ti to which one of c1 or c2 hits. Then there are
two possible cases illustrated with the following pictures.
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In the first case, both c1 and c2 make zigzag at T
 and hence visit the cells c′
1 and c′

2. Observe
that, in this case, the flight number of c′

i is equal to that of ci for i = 1,2. Thus the result follows
from induction on the number of towers on the left of the tower we begin with.

In the second case, the cell c1 makes zigzag and c2 passes through without a zigzag. In this case,
we may replace the tower T
 of T with T ′


 given by the following picture.

Now the new tableau T ′ has the cells c′
1 and c′

2 with flight paths. Here the flight numbers satisfies

flight#(c1,T ) = flight#
(
c′

1,T
) = flight#

(
c1′,T ′)

and

flight#(c2,T ) = flight#
(
c2′,T ′).

Moreover the distance between the cells c′
1 and c′

2 is | j1 − j2|. Again the result follows from induction
on the number of towers on the left of the tower.

Finally, in the special case where | j1 − j2| = 1, the second case above will never appear. Therefore
the difference between the flight numbers of c1 and c2 will never change, as required. �
Proof of Lemma 3.3. Without lost of generality we assume that β � α + 2. First consider the slides
β↘(α↘T ).

Case S1. We first assume that T has no squares lying on the diagonal x + y = α − 1. Then by the
definition, we have α↘T := (T1, . . . ,Tα−1) � α↘(Tα, . . .).

Case S1(a). If T has no squares lying on the diagonal x + y = α then necessarily (α,0) /∈ Tα and
we have α↘(Tα, . . .) := (T ′

α, . . . ,Tk) where T ′
α = {(α,0)} and it does not contain any square lying on

the diagonal x + y = β − 1. Hence

β↘(
α↘(T1, . . . ,Tα, . . .)

) = β↘(
T1, . . . ,T ′

α, . . .
) = (

T1, . . . ,T ′
α

) � β↘(Tα+1, . . .).

On the other hand, we have

α↘(
β↘(T1, . . . ,Tα, . . .)

) = α↘(
(T1, . . . ,Tα) � β↘(Tα+1, . . .)

)

= (
T1, . . . ,T ′

α

) � β↘(Tα+1, . . .).

Comparing the last two equations, we see that the required equality is satisfied.
Case S1(b). If (α,0) ∈ Tα and (α,1) /∈ Tα then the slide α↘T terminates without a result and so

the slide β↘(α↘T ) also terminates. Observe that, in this case, Tα has no square lying on the diagonal
x + y = β − 1 and this yields the equality

α↘(
β↘(T1, . . . ,Tα, . . .)

) = α↘(
(T1, . . . ,Tα) � β↘(Tα+1, . . .)

)
.

On the other hand the assumption on the integer α and the tower Tα forces the slide α↘(T1, . . . ,Tα)

to terminate. Therefore α↘(β↘T ) terminates as required.
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Case S1(c). If (α,0) ∈ Tα and (α,1) ∈ Tα then we have

α↘(T1, . . . ,Tα, . . .) = (T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .).

There are two cases to consider.
Case S1(c)(i). If the tower Tα has no square on the diagonal x+ y = β −1 then we have the equality

β↘(
α↘T

) = β↘(
(T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .)

)

= (T1, . . . ,Tα) � β↘(
(α + 1)↘(Tα+1, . . .)

)
.

On the other hand, we have

α↘(
β↘T

) = α↘(
(T1, . . . ,Tα) � β↘(Tα+1, . . .)

)

= (
(T1, . . . ,Tα) � (α + 1)↘

(
β↘(Tα+1, . . .)

))
.

Recall that (α,1) ∈ Tα but Tα has no square on the diagonal x+ y = β −1, i.e., (α,β −α −1) /∈ Tα .
This show that β − α − 1 > 1 and hence β − (α + 1) � 2.

On the other hand the number of cells in (Tα+1, . . .) is strictly less than that in T . Therefore,
by induction on the number of cells in a tower diagram, we can assume that either β↘((α +
1)↘(Tα+1, . . .)) = (α + 1)↘(β↘(Tα+1, . . .) or both slides terminate since β − (α + 1) � 2. Lastly, com-
paring α↘(β↘T ) and β↘(α↘T ) we see that either they are equal or both of them terminate.

Case S1(c)(ii). Now we suppose that the tower Tα has a square on the diagonal x+ y = β − 1. Then
this square must be (α,β − α − 1). If (α,β − α) /∈ Tα then we have

β↘(
α↘T

) = β↘(
(T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .)

) = (
T1, . . . ,T ′

α

) � (α + 1)↘(Tα+1, . . .)

where T ′
α = Tα ∪ {(α,β − α)}. On the other hand, we have

α↘(
β↘T

) = α↘((
T1, . . . ,T ′

α,Tα+1, . . .
) = (

T1, . . . ,T ′
α

) � (α + 1)↘(Tα+1, . . .)
)
.

Thus if the slide (α + 1)↘(Tα+1, . . .) terminates then both of the slides α↘(β↘T ) and β↘(α↘T )

terminate, and otherwise the resulting diagrams are the same.
Now if (α,β − α) ∈ Tα but (α,β − α + 1) /∈ Tα then the slide β↘T terminates and therefore the

slide α↘(β↘T ) also terminates. On the other hand, we have

β↘(
α↘T

) = β↘(
(T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .)

)

and it also terminates by the assumption on β and Tα .
Lastly we assume that (α,β − α) ∈ Tα and (α,β − α + 1) ∈ Tα . Then we have

β↘(
α↘T

) = β↘(
(T1, . . . ,Tα) � (α + 1)↘(Tα+1, . . .)

)

= (T1, . . . ,Tα) � (β + 1)↘
(
(α + 1)↘(Tα+1, . . .)

)

and

α↘(
β↘T

) = α↘(
(T1, . . . ,Tα) � (β + 1)↘(Tα+1, . . .)

)

= (T1, . . . ,Tα) � (α + 1)↘
(
(β + 1)↘(Tα+1, . . .)

)
.

It is clear that (β +1)− (α +1) � 2 and thus, by induction on the number of cells in a tower diagram,
we have either the equality

(β + 1)↘
(
(α + 1)↘(Tα+1, . . .)

) = (α + 1)↘
(
(β + 1)↘(Tα+1, . . .)

)

or that both slides terminate. Therefore either α↘(β↘T ) and β↘(α↘T ) are equal or both terminate
as required.

Case S2. Let (i,α − 1 − i) ∈ Ti be the first square of T , from the left, lying on the diagonal x + y =
α − 1. We have the following sub-cases:
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Case S2(a). If (i,α − i) /∈ Ti then we have

α↘T := (T1, . . . ,Ti−1) � α↘(Ti, . . .) = (
T1, . . . ,Ti−1,T ′

i ,Ti+1, . . .
)

where T ′
i = Ti ∪ {(i,α − i)}. Now since β � α + 2, none of the towers T1, . . . ,Ti−1,T ′

i contains a
square on the diagonal x + y = β − 1 and hence we obtain the equality

β↘(
α↘T

) = β↘(
T1, . . . ,Ti−1T ′

i ,Ti+1, . . .
) = (

T1, . . . ,T ′
i

) � β↘(Ti+1, . . .).

On the other hand, we have

α↘(
β↘T

) := α↘(
(T1, . . . ,Ti) � β↘(Ti+1, . . .)

) = (
T1, . . . ,T ′

i

) � β↘(Ti+1, . . .).

Hence if the slide β↘(Ti+1, . . .) terminates then both α↘(β↘T ) and β↘(α↘T ) terminate, and
otherwise the resulting diagrams are the same.

Case S2(b). If (i,α − i) ∈ Ti and (i,α − i + 1) /∈ Ti then the slides α↘(Ti, . . .) and α↘T terminate
without a result. Therefore the slide β↘(α↘T ) also terminates. Now if β↘T terminates then the
slide α↘(β↘T ) also terminates. Otherwise, we have

β↘T = (T1, . . . ,Ti) � β↘(Ti+1, . . .), α↘(
β↘T

) = α↘(
(T1, . . . ,Ti) � β↘(Ti+1, . . .)

)

but still α↘(β↘T ) terminates since (i,α − i) ∈ Ti but (i,α − i + 1) /∈ Ti .
Case S2(c). If (i,α − i) ∈ Ti and (i,α − i + 1) ∈ Ti then we have

α↘T := (T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .).

There are two more cases to consider.
Case S2(c)(i). If Ti has no square on the diagonal x + y = β − 1 then, we have

β↘(
α↘T

) = (T1, . . . ,Ti) � β↘(
(α + 1)↘(Ti+1, . . .)

)
.

On the other hand, we have

α↘(
β↘T

) := α↘(
(T1, . . . ,Ti) � β↘(Ti+1, . . .)

) = (
(T1, . . . ,Ti) � (α + 1)↘

(
β↘(Ti+1, . . .)

))
.

Recall that (i,α − i) ∈ Ti but Ti has no square on the diagonal x + y = β − 1, i.e., (i, β − i − 1) /∈ Tα .
This show that β − i − 1 > α − i and hence β − (α + 1) � 2.

On the other hand the number of cells in (Ti+1, . . .) is strictly less than that of T . Therefore,
by induction on the number of cells in a tower diagram, we can assume that either β↘((α +
1)↘(Ti+1, . . .)) = (α + 1)↘(β↘(Ti+1, . . .) or both slides terminate since β − (α + 1) � 2. Lastly, com-
paring α↘(β↘T ) and β↘(α↘T ) we see that either they are equal or both of them terminate.

Case S2(c)(ii). Now we suppose that Ti has a square on the diagonal x+ y = β −1. Then this square
must be (i, β − i − 1).

If (i, β − i) /∈ Ti then

β↘(
α↘T

) = β↘(
(T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .)

) = (
T1, . . . ,T ′

i

) � (α + 1)↘(Ti+1, . . .)

where T ′
i = Ti ∪ {(i, β − i)}. On the other hand, we have

α↘(
β↘T

) = α↘((
T1, . . . ,T ′

i ,Ti+1, . . .
) = (

T1, . . . ,T ′
i

) � (α + 1)↘(Ti+1, . . .)
)
.

Now if the slide (α + 1)↘(Ti+1, . . .) terminates then both of the slides α↘(β↘T ) and β↘(α↘T )

terminate, and otherwise the resulting diagrams are the same.
If (i, β − i) ∈ Ti but (i, β − i + 1) /∈ Ti then the slide β↘T terminates and therefore the slide

α↘(β↘T ) also terminates. On the other hand, we have

β↘(
α↘T

) = β↘(
(T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .)

)

and it also terminates by the assumption on β and Ti .
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For the last case, we assume that (i, β − i) and (i, β − i + 1) are in Ti . Then we have

β↘(
α↘T

) = β↘(
(T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .)

)

= (T1, . . . ,Ti) � (β + 1)↘
(
(α + 1)↘(Ti+1, . . .)

)

and also

α↘(
β↘T

) = α↘(
(T1, . . . ,Ti) � (β + 1)↘(Ti+1, . . .)

)

= (T1, . . . ,Ti) � (α + 1)↘
(
(β + 1)↘(Ti+1, . . .)

)
.

Thus, by induction, we have either the equality

(β + 1)↘
(
(α + 1)↘(Ti+1, . . .)

) = (α + 1)↘
(
(β + 1)↘(Ti+1, . . .)

)

or that both slides terminate and this gives the required result. �
Proof of Lemma 3.4. The case that T has no squares lying on the diagonal x + y = α − 1 (S1) can be
dealt with in the same manner as the case that T has some squares lying on the diagonal x + y =
α − 1 (S2), as illustrated in the proof of the previous lemma. Because of this reason in the following
we will just work on the case of (S2). Therefore, let Ti be the first tower from the left which contains
a square, necessarily (i,α − 1 − i), on the diagonal x + y = α − 1.

Case 1. If (i,α − i) /∈ Ti then α↘T = (T1, . . . ,Ti−1,T ′
i ,Ti+1, . . .) where T ′

i = Ti ∪ {(i,α − i)}. Now
since the cell {(i,α − i)} is the first cell of T , from the left, lying on the diagonal x + y = (α + 1) − 1,
we have that

(α + 1)↘
(
α↘T

) = (
T1, . . . ,Ti−1,T ′′

i ,Ti+1, . . .
)

where T ′′
i = Ti ∪{(i,α− i), (i,α− i +1)}. On the other hand, since T ′′

i is still the first tower containing
a cell on x + y = α − 1 and since {(i,α − i), (i,α − i + 1)} ⊂ T ′′

i we have

α↘(
(α + 1)↘

(
α↘T

)) = α↘(
T1, . . . ,Ti−1,T ′′

i ,Ti+1, . . .
)

= (
T1, . . . ,Ti−1,T ′′

i

) � (α + 1)↘(Ti+1, . . .).

Observe that since none of the towers T1,T2, . . . ,Ti of T contains a cell on the diagonal x + y =
(α + 1) − 1, we get

(α + 1)↘T = (T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .).

Moreover the assumption that (i,α − i) /∈ Ti yields the equality

(α + 1)↘(α↘(
(α + 1)↘T

) = (
T1, . . . ,T ′′

i

) � (α + 1)↘(Ti+1, . . .)

where T ′′
i = Ti ∪ {(i,α − i), (i,α − i + 1)}. Hence we have the desired result.

Case 2. If (i,α − i) ∈ Ti and (i,α + 1 − i) /∈ Ti then the slide α↘T (and therefore the slide α↘(α +
1↘(α↘T ))) terminates without a result. On the other hand since Ti is the first tower containing a
cell on x + y = (α + 1) − 1 and since (i,α + 1 − i) /∈ Ti we have

(α + 1)↘T = (
T1, . . . ,T ′

i , . . .
)

where T ′
i = Ti ∪ {(i,α + 1 − i)}. Now

α↘(
(α + 1)↘T

) = α↘(
T1, . . . ,T ′

i , . . .
) = (

T1, . . . ,T ′
i

) � (α + 1)↘(Ti+1, . . .)

since T ′
i contains both (i,α − i) and (i,α + 1 − i). On the other hand (i,α + 2 − i) /∈ T ′

i . Thus the slide
(α + 1)↘(T1, . . . ,T ′

i ) � (α + 1)↘(Ti+1, . . .) terminates and hence the slide (α + 1)↘(α↘((α + 1)↘T ))

also terminates as required.
Case 3. If (i,α − i) ∈ Ti and (i,α + 1 − i) ∈ Ti then α↘T = (T1 · · ·Ti) � (α + 1)↘(Ti+1, . . .).
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We first suppose that (i,α + 2 − i) ∈ Ti . Then, we have

α↘(
α + 1↘)(

α↘T
) = α↘(

α + 1↘)(
(T1, . . . ,Ti) � (α + 1)↘(Ti+1, . . .)

)

= α↘(
(T1, . . . ,Ti) � (α + 2)↘(α + 1)↘(Ti+1, . . .)

)

= (T1, . . . ,Ti) � (α + 1)↘(α + 2)↘(α + 1)↘(Ti+1, . . .).

On the other hand

(
α + 1↘)(

α↘(
α + 1↘)

T
) = (T1, . . . ,Ti) � (α + 2)↘(α + 1)↘(α + 2)↘(Ti+1, . . .).

Therefore, an induction argument on the number of towers gives the required result.
Next suppose that (i,α + 2 − i) /∈ Ti . Then we have α↘T = (T1 · · ·Ti) � (α + 1)↘(Ti+1, . . .). Now

the fact that Ti is the first tower of T containing (i,α − i) on the diagonal x+ y = (α +1)−1 and the
fact that (i,α +1− i) ∈ Ti but (i,α +2− i) /∈ Ti gives that the slide (α +1↘)(α↘T ) and that the slide
α +1↘T terminate. Therefore both the slide α↘(α +1↘(α↘T ) and the slide α +1↘(α↘(α +1↘T ))

terminate, as required. �
Proof of Lemma 7.1. Let D be the cell just below the cell C . Since the cell C is already filled, the cell
D can only be filled by a zigzag. We show that such a zigzag cannot exist in the virtual sliding of the
natural word.

By its definition, the natural word η of ω is a sequence of strictly increasing sequences
λ1, λ2, . . . , λk such that the subsequence of initial terms of λi is strictly decreasing. Therefore the
reverse word η̃ is a sequence of strictly decreasing sequences λ̃k, λ̃k−1, . . . , λ̃1 such that the subse-
quence of the terminal terms is strictly increasing. In particular, we observe that if j is a terminal
term for a subsequence λ̃l , then this is the last occurrence of j in η.

Observe also that the first block B of towers in the virtual tower, from top to bottom, is the block
containing the cell C . (Here by a block, we mean a connected component of the tableau T − .) Indeed
the cell C corresponds to the sliding of the first letter of λ̃k and the block B has top cell corresponding
to the last letter of λ̃k . Thus as well as the last letter, there can appear no smaller letter. But to have
a new block on the top of the block B , there is need for a slide of a smaller letter. Thus B is the first
block.

Notice that the same argument also proves that the cell D should be empty. Indeed since there
is no tower on the top of B , the only way to fill D is a slide of the last letter of λ̃k . But this letter
cannot appear again. �
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