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1. Introduction

Let K be a field, S a Nn-graded K-algebra and M a finitely generated Zn-graded 
S-module. The Stanley depth of M , denoted sdepthS M , is a combinatorial invariant of M
which was introduced by Apel in [1] and has attracted the attention of many researchers 
[12,13,4,30,8]. We refer the reader to the survey of Herzog [11] for an introduction to this 
subject.

One line of research on the Stanley depth was motivated by a conjecture of Stanley 
from 1982 [39, Conjecture 5.1], which states that depthS M ≤ sdepthS M , see also [9, 
Remark 5.2] and [38, p. 149]. In the following, we refer to this inequality as Stanley’s 
inequality. Thus, a mayor aim of this study is to establish relations between the depth 
and the Stanley depth. At a first glance, one might not expect any deep connection 
between them, at these invariants seem to be very different in nature. On the one hand, 
we have the depth, which is an algebraic invariant (homological in nature), and on 
the other hand we have the Stanley depth, which is a purely combinatorial invariant. 
Nevertheless, several parallel results for the depth and the Stanley depth have been found, 
see for example [34,6,14,19,36]. A counterexample to the original Stanley conjecture was 
recently given by Duval, Goeckner, Klivans and Martin in [8]. However, there still seems 
to be a deep and interesting connection between these two invariants, which is yet to be 
fully understood.

The Stanley depth is defined in terms of certain combinatorial decompositions of the 
module M , which are called Stanley decompositions. It is also worth mentioning that 
these Stanley decompositions have a separate life in applied mathematics. Sturmfels and 
White [40] have shown that Stanley decompositions may be used to describe finitely 
generated graded algebras, for example rings of invariants under some group action. 
Recently this has found applications in the normal form theory for systems of differential 
equations (see Murdock [27], Murdock and Sanders [28], Sanders [35]).

Most of the research on the Stanley depth concentrates on the particular case of a 
module of the form I/J for two monomial ideals J � I in the polynomial ring S =
K[X1, . . . , Xn]. In this paper we will also work in this setting. For the sake of simplicity, 
we restrict this introduction to the case of modules of the form S/I (most of the results 
are later proven in a more general setup).

The lcm-lattice LI of an ideal I ⊂ S is the lattice of all least common multiples of 
subsets of the (minimal) generators of I, ordered by divisibility, see Gasharov et al. [10]. 
It is a finite atomistic lattice that is known to encode a lot of information about I. In 
particular, it encodes the structure of the minimal free resolution of S/I over I and thus 
determines the Betti numbers and the projective dimension of S/I [10, Theorem 3.3]. 
More precisely, what is shown in [10] is the following: Let I ⊂ S and I ′ ⊂ S′ be two 
monomial ideals. Then, given a free resolution of S/I and a surjective join-preserving 
map LI → LI′ which is bijective on the atoms, one can construct a free resolution of 
S′/I ′ by a certain relabeling procedure. In particular, the projective dimension of S′/I ′ is 
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Fig. 1. The lcm-lattices of the two monomial ideals from Example 1.1.

bounded above by the projective dimension of S/I. In this paper we obtain the analogous 
statement for the Stanley depth.

Theorem (Corollary of Theorem 4.5). Let I ⊂ S and I ′ ⊂ S′ be two proper monomial 
ideals in two polynomial rings in n resp. n′ variables. If there exists a surjective join-
preserving map δ : LI → LI′ , such that δ−1(0̂) = {0̂}, then

n− sdepthS S/I ≥ n′ − sdepthS′ S′/I ′.

By 0̂ we denote the minimal elements of the lattices. In view of this result, we de-
fine the Stanley projective dimension, spdimS M , analogously to the Stanley depth (cf. 
Definition 2.3). In particular, it easily follows that spdimS S/I = n − sdepthS S/I.

Example 1.1. For S = K[x, y] and S′ = K[x, y, z, v] consider the two ideals

I := 〈x3, x2y, xy2, y3〉 ⊂ S and

I ′ := 〈yzv, xzv, xy2v, x2y2z〉 ⊂ S′.

Their lcm-lattices are depicted in Fig. 1. We define a map δ : LI → LI′ by setting 
δ(x2y2) = xy2zv, δ(xy3) = δ(x2y3) = x2y2zv, and every other monomial in LI is 
mapped to the monomial in LI′ which is at the same place in Fig. 1.

This map is join-preserving and surjective, so Theorem 4.5 applies. It is clear 
that sdepthS S/I = 0 and so spdimS S/I = 2 − sdepthS S/I = 2. It follows that 
spdimS′ S′/I ′ = 4 − sdepthS′ S′/I ′ ≤ 2, or equivalently that sdepthS′ S′/I ′ ≥ 2.

Theorem 4.5 has a number of important consequences. First of all, it shows that two 
ideals with isomorphic lcm-lattices have the same Stanley projective dimension. Thus, 
this invariant is determined by the isomorphism type of the lcm-lattice. In particular, the 
lcm-lattice of an ideal is invariant under polarization. Hence Theorem 4.5 generalizes the 
main result of [16], where we showed that the Stanley projective dimension is invariant 
under polarization.

Next, we present a simple and uniform proof for upper bounds on the Stanley pro-
jective dimension (i.e. lower bounds on the Stanley depth) in terms of the number of 
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generators in Proposition 5.2. We also characterize the extremal case and prove that 
Stanley’s inequality holds for ideals with pdimS S/I = k − 1, where k is the number 
of generators of I. As another application we study generic deformations in Proposi-
tion 5.5 and the forming of colon ideals in Proposition 5.8. The latter allows us to give 
in Corollary 5.9 a uniform proof that both depth and Stanley depth are bounded by the 
dimensions of the associated prime ideals. Moreover, in Proposition 5.12 we show that for 
studying the Stanley depth one may always assume that the ideal under consideration 
is generated in a single degree.

We further identify some operations on ideals, e.g. passing to the radical, that yield 
surjective join-preserving maps on the lcm-lattice, so we obtain inequalities for the Stan-
ley projective dimension in these cases. As all our proofs rest on Theorem 4.5 and we 
showcase an analogous result for the usual projective dimension (Theorem 4.9), we ob-
tain the same bounds as for the usual projective dimension. While these results are 
well-known, it is relevant that we obtain uniform proofs for both depth and Stanley 
depth, thus explaining the observed parallel behavior.

In the way of studying the relation of ideals to their lcm-lattices, we also get a result 
of independent interest. In Theorem 3.4 we give a complete description of the class of all 
monomial ideals with a given lcm-lattice. This result also allows the easy construction 
of monomial ideals with a prescribed lcm-lattice, which we consider very useful for the 
study of examples. Theorem 3.4 extends results obtained in [24] to the (more general) 
case of not necessarily atomistic lattices, which is needed for our applications to both 
depth and Stanley depth.

Finally, the fact that both the projective dimension and the Stanley projective di-
mension are determined by the lcm-lattice allows us further to formulate open questions 
about the depth and the Stanley depth completely in terms of finite lattices. So one can 
try to apply notions and techniques from this field to approach these questions. In the last 
section we indicate some of these ideas. In particular, this enables us to reduce the study 
of infinitely many monomial ideals to finitely many finite lattices. This paves the way to 
computations. In several computational experiments, we have classified all lcm-lattices 
of ideals I with up to five generators and found that the projective dimension and the 
Stanley projective dimension of S/I coincide for these lattices; this is presented in [18].

In another follow-up paper [21], the second author applied Theorem 4.5 to show that 
many questions about the Stanley depth can be reduced to a very special class of ideals. 
In particular, Stanley’s inequality holds for ideals with up to seven generators and for 
quotients of the polynomial ring by ideals with up to six generators.

2. Preliminaries

2.1. Finite lattices and semilattices

Let us recall some definitions and facts about finite lattices and semilattices. We refer 
the reader to [7] for more background information. A join-semilattice L is a partially 
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ordered set (L, ≤) such that, for any P, Q ∈ L, there is a unique least upper bound 
P ∨ Q called the join of P and Q. A lattice is a join-semilattice L with the additional 
property that for any P, Q ∈ L, there is a unique greatest lower bound P ∧Q called the 
meet of P and Q.

Every finite join-semilattice has a unique maximal element 1̂. Moreover, a finite join-
semilattice is a lattice if and only if it has a minimal element. So we can associate to 
every finite join-semilattice L a canonical lattice L := L ∪ {0̂} by adjoining a minimal 
element 0̂. All lattices and semilattices in the sequel will be assumed to be finite.

We say that an element a ∈ L covers another element b ∈ L, if b < a and there exists 
no other element c ∈ L, such that b < c < a. An element is called an atom if it covers 
the minimal element 0̂ in L. Equivalently, the atoms are the minimal elements of L (in 
the sense that there are no smaller elements). We call L atomistic, if every element can 
be written as a join of atoms.

A meet-irreducible element is an element which is covered by exactly one other element. 
This terminology is justified by noting that a is meet-irreducible if and only if a = b ∧ c

implies a = b or a = c for b, c ∈ L where the meet is taken in L. A join-preserving 
map δ : L → L′ is a map with δ(a ∨ b) = δ(a) ∨ δ(b) for all a, b ∈ L. Note that every 
join-preserving map preserves the order.

2.2. The lcm-lattice and lcm-closed subsets

Let S = K[X1, . . . , Xn] be a polynomial ring. A monomial m ∈ S is a product 
of powers of variables of S. In particular, 1K is a monomial, but 0K is not. We write 
Mon(S) for the set of monomials of S. Note that Mon(S) forms a K-basis of S.

Recall from [10] that the lcm-lattice LI of a monomial ideal I ⊂ S is the set of all 
least common multiples of subsets of the minimal set of generators of I, together with 
a minimal element 0̂ which is usually identified with 1K and regarded as the lcm of the 
empty set. For our scope, we need to modify this notion in several ways. First, we need 
to consider non-minimal generating sets, second we need a reasonable replacement of the 
lcm-lattice for a pair J � I of ideals, and finally we want that our modified definition 
yields isomorphic lattices for all principal ideals, including the unit ideal. To this end we 
give the following definition.

Definition 2.1. We call a finite set G ⊂ Mon(S) of monomials lcm-closed, if the least 
common multiple (lcm) of every non-empty subset of G is also contained in G.

The lcm-closure of a finite set G ⊂ Mon(S), denoted by L(G) ⊂ Mon(S), is defined 
as the set of all monomials that can be obtained as the least common multiple (lcm) of 
some non-empty subset of G.

Note that G ⊂ L(G) and that G = L(G) if and only if G is lcm-closed. Every 
lcm-closed set G can be regarded as a join-semilattice, where the order is given by 
divisibility and the join is the lcm. We will often consider the associated lattice G :=
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G ∪ {0̂} of an lcm-closed set G, where 0̂ is an additional minimal element. The element 
0̂ could be regarded as the lcm of the empty set, but we do not identify 0̂ with 1K.

Note that if I � S, I �= 〈0〉 is a proper monomial ideal, then LI = L(G(I)), where 
G(I) is a minimal generating set of I.

Remark 2.2. (1) Following [10], for I = S we get LI = {1K}, but L(G(I)) = {0̂, 1K}. 
While this difference is minor, we think that the latter is in fact a more convenient 
definition of the lcm-lattice of S. For example, the lcm-lattice of S should be isomorphic 
to the lcm-lattice of a principal ideal.

(2) The associated lattice G of an lcm-closed set G ⊂ Mon(S) is atomistic if and only 
if the minimal elements of G form the minimal set of generators of some monomial ideal 
(in fact, 〈G〉). So in general, G could be regarded as an lcm-lattice associated to a not 
necessarily minimal set of generators of 〈G〉. The reason why we consider non-minimal 
generating sets is that we are going to consider maps of lcm-lattices. Even if we start 
with a minimal set of generators of some monomial ideal, its image might not be minimal 
anymore.

2.3. Stanley depth and maps changing it

Consider the polynomial ring S endowed with the multigraded structure. Let M be 
a finitely generated graded S-module, and let λ be a homogeneous element in M . Let 
Z ⊂ {X1, . . . , Xn} be a subset of the set of indeterminates of S. The K[Z]-submodule 
λK[Z] of M is called a Stanley space of M if λK[Z] is free (as K[Z]-submodule). A Stanley 
decomposition of M is a finite family

D = (K[Zi], λi)i∈I

in which Zi ⊂ {X1, . . . , Xn} and λiK[Zi] is a Stanley space of M for each i ∈ I with

M =
⊕
i∈I

λiK[Zi]

as a multigraded K-vector space. This direct sum carries the structure of an S-module 
and has therefore a well-defined depth. The Stanley depth sdepth M of M is defined to 
be the maximal depth of a Stanley decomposition of M .

In the same fashion we introduce the following definition.

Definition 2.3. The Stanley projective dimension spdimS M of M is the minimal projec-
tive dimension of a Stanley decomposition of M .

Note that spdimS M = n − sdepthS M by the Auslander–Buchsbaum formula. While 
this definition might seem redundant, it turns out that our results (for example, see 
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Theorem 4.5) are more naturally stated in terms of the Stanley projective dimension. 
Further, Stanley’s inequality is equivalent to the following:

pdim M ≥ spdim M. (�)

The original Stanley conjecture [39] stated that (�) holds for all finitely generated mod-
ules. As mentioned above, this was recently disproved by Duval et al. [8].

In the proof of our main result we use a certain type of poset maps which was first 
introduced in [16]. Before we recall the definition, let us introduce a notation. For a, g ∈
Nn with a ≤ g, we define

ρg(a) := #{j ∈ [n] : aj = gj}.

Definition 2.4. [16, Definition 3.1] Let � ∈ Z and n, n′ ∈ N. A monotonic map φ : Nn →
Nn′ is said to change the Stanley depth by � with respect to g ∈ Nn and g′ ∈ Nn′ , if it 
satisfies the following two conditions:

(1) φ(g) ≤ g′.
(2) For each interval [a′, b′] ⊂ [0, g′], the (restricted) preimage φ−1([a′, b′]) ∩ [0, g] can be 

written as a finite disjoint union 
⋃

i[ai, bi] of intervals, such that

ρg(bi) ≥ ρg′(b′) + � for all i.

Those maps were profusely studied in [16]. For the reader’s convenience we recall a 
key result, which motivates the above definition and is used in the sequel.

Proposition 2.5 ([16, Proposition 3.3]). Let n, n′ ∈ N, S = K[X1, . . . , Xn] and S′ =
K[X1, . . . , Xn′ ] be two polynomial rings and let J ′ � I ′ ⊂ S′ be monomial ideals. Consider 
a monotonic map φ : Nn → Nn′ and let Φ : S → S′ be the map defined by Φ(Xa) = Xφ(a). 
Set I := Φ−1(I ′), J := Φ−1(J ′). Choose g ∈ Nn and g′ ∈ Nn′ , such that every minimal 
generator of I and J divides Xg, and every minimal generator of I ′ and J ′ divides Xg′ . 
If φ changes the Stanley depth by � ∈ Z with respect to g and g′, then

(i) I and J are monomial ideals, and
(ii) sdepthS I/J ≥ sdepthS′ I ′/J ′ + �.

3. Labelings and lcm-closed sets

In this section we present several results on lcm-closed sets that are later needed for the 
proof of the main results of this paper. Throughout the section, let S = K[X1, . . . , Xn]
be a fixed polynomial ring.

A labeling of a finite lattice L is a map w : L → Mon(S), i.e. an assignment of a 
monomial to each element of L. Now, for a finite lcm-closed set G ⊂ Mon(S) we define a 
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labeling wG : G → Mon(S) as follows: For the minimal and maximal elements 0̂, ̂1 ∈ G, 
we define wG(0̂) := gcd{p ∈ G} and wG(1̂) := 1K. For every other m we set

wG(m) := 1
m

gcd{p ∈ G : p > m}.

This labeling was introduced in [24, Eq. (3.3)]. It satisfies the following inversion formula:

Proposition 3.1. For m ∈ G it holds that

m =
∏
q∈G
q�m

wG(q).

Note that the formula for m = 0̂ evaluates to 1K, but 0̂ �= 1K.

Proof. In [24, Proposition 3.6], Mapes proves that this formula holds for the minimal ele-
ments of G, under the additional assumption that G is atomistic. However, the argument 
given there actually shows the formula in the generality claimed here. �

The next corollary gives a characterization of a lcm-closed sets of squarefree monomials 
in terms of wG.

Corollary 3.2. Let G ⊂ Mon(S) be a finite lcm-closed set. Then G contains only square-
free monomials if and only if wG(m) is squarefree for every m ∈ G and gcd(wG(m),
wG(m′)) = 1K for all m, m′ ∈ G, m �= m′.

Proof. If the given conditions are satisfied, then all elements of G are squarefree, since by 
Proposition 3.1 every element of G is a product of different monomials wG(m) for some 
m ∈ G. On the other hand, if every element of G is squarefree, then in particular the 
lcm of all elements is a squarefree monomial. But this is the product of all the wG(m), 
so the claimed properties follow. �

We now come to our first key result, which in particular gives a complete description 
of those pairs (L, w : L → Mon(S)) that come from a monomial ideal and extends 
Theorem 3.2 and Proposition 3.6 in [24] to not necessarily atomistic lattices.

Definition 3.3. A labeling w : L → Mon(S) (on a finite lattice L) is admissible if it 
satisfies the following two conditions:

(a) gcd(w(a), w(b)) = 1K for incomparable a, b ∈ L.
(b) w(a) �= 1K if a ∈ L is meet-irreducible and w(1̂L) = 1K.

We consider two pairs (L, w) and (L′, w′) of finite lattices with labelings to be iso-
morphic if L ∼= L′ and the isomorphism maps w to w′.
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Theorem 3.4. The map G �→ (G, wG) is a bijection between the set of finite lcm-closed 
sets G ⊂ Mon(S), and the set of isomorphism classes of pairs (L, w : L → Mon(S))
where L is a finite lattice and w is a admissible labeling. The inverse map is given by 
mapping a pair (L, w) to the set

G(L,w) :=

⎧⎪⎪⎨
⎪⎪⎩
∏
b∈L
b�a

w(b) : a ∈ L

⎫⎪⎪⎬
⎪⎪⎭ . (3.1)

This theorem allows the very simple construction of ideals with a given lcm-lattice. 
Indeed, for a given lattice L one only needs to choose an admissible labeling. Moreover, 
considering the possible admissible labelings w : L → Mon(S) one gets an overview over 
the class of all monomial ideals with a fixed lcm-lattice.

Proof of Theorem 3.4. Let J denote the set of all finite lcm-closed subsets of Mon(S)
and let L the set of isomorphism classes of pairs (L, w) where L is a finite lattice and 
w : L → Mon(S) is a labeling. Moreover, let Lad ⊂ L denote the set where we assume 
the labeling to be admissible. We denote the two maps of the claim by f : J → L and 
g : L → J .

Proposition 3.1 shows that g ◦ f is the identity map, so in particular f is injective. 
Therefore, to prove the claim it is sufficient to show that the image of f is Lad, in other 
words we need to show that

(1) wG is admissible for each G ∈ J , and
(2) for each (L, w) ∈ Lad, there exists a G ∈ J with (L, w) ∼= (G, wG).

The first item is proven in Lemma 3.4 and Lemma 3.5 of [24]. Again, in [24] the result 
is only claimed for atomistic lattices, but the argument given there holds in our general 
setup.

For the second item, our candidate for G is G(L, w) as given by Equation (3.1). So we 
need to show that G is lcm-closed, L ∼= G(L,w) and (under this isomorphism), w = wG. 
In [24, Theorem 2.3] it is shown that L ∼= G(L,w) in the case that L is atomistic. 
However, the argument given there does not directly apply to the general situation, so 
we need a new proof.

Consider ψ : L → G defined by ψ(0̂) = 1K and

ψ(a) :=
∏
b∈L
b�a

w(b)

for a ∈ L, a �= 0̂. The labeling w being admissible implies that for each variable Xi such 
that Xi | ψ(1̂L), the set of a ∈ L such that Xi | w(a) forms a chain ai1 < ai2 < · · · < air . 
i
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Set airi+1 := 1̂L for 1 ≤ i ≤ n, where ri = 0 if Xi � ψ(1̂L). For a ∈ L let s(i, a) be 
the minimal index k, such that aik ≥ a. As a notation, for a monomial m ∈ Mon(S) we 
define ordi(m) to be the exponent of Xi in m. We extend this definition to G by setting 
ordi(0̂) := 0 for all i. Then

ordi(ψ(a)) = ordi(
s(i,a)−1∏

j=1
w(aij)). (3.2)

In particular, if ψ(a) | ψ(b), then s(i, a) ≤ s(i, b) for 1 ≤ i ≤ n, because of the inequality 
ordi(ψ(a)) ≤ ordi(ψ(b)).

Let a, b ∈ L. We claim that a ≤ b if and only if ψ(a) | ψ(b). It is clear from the 
definition that a ≤ b implies ψ(a) | ψ(b), so assume that ψ(a) | ψ(b). Every non-maximal 
element in a finite lattice is the meet of the set of meet-irreducible elements greater 
than or equal to it. So, in order to show a ≤ b, we may prove the following: Each 
meet-irreducible element m which is greater than or equal to b is also greater than or 
equal to a. So consider such an element m. As w(m) �= 1K, there exists an index i such 
that Xi | w(m).

Then there exists a k such that m = aik (where 1 ≤ k ≤ ri). Now b ≤ m implies 
that s(i, b) ≤ k. But as remarked above, the fact that ψ(a) | ψ(b) implies that s(i, a) ≤
s(i, b) ≤ k, hence m ≥ a.

It follows that ψ is injective, as ψ(a) = ψ(b) implies ψ(a) | ψ(b) | ψ(a) and thus 
a ≤ b ≤ a.

Further, we claim that ψ(a ∨b) equals the lcm of ψ(a) and ψ(b). For this, first note that 
P ≥ a ∨b if and only if P ≥ a and P ≥ b. This implies that s(i, a ∨b) = max(s(i, a), s(i, b))
for all i. Therefore

ordi(ψ(a ∨ b)) = max(ordi(ψ(a)), ordi(ψ(b))) = ordi(lcm(ψ(a), ψ(b)))

for all i, hence ψ(a ∨ b) = lcm(ψ(a), ψ(b)).
Summarizing, we have shown that ψ is an injective map L → G which preserves 

the join. The latter implies that G lcm-closed, i.e. G = L(G). Hence ψ induces an 
isomorphism L → G.

It remains to show that w(a) = wG(ψ(a)) for all a ∈ L. By definition of wG, we have 
to show that gcd(ψ(b) : b > a) = ψ(a)w(a) if a �= 0̂ and gcd(ψ(b) : b > a) = w(a) for 
a = 0̂. We handle both cases together by proving that

ordi(gcd(ψ(b) : b > a)) = ordi(ψ(a)) + ordi(w(a))

for each i. We compute

ordi(gcd(ψ(b) : b > a)) = min{ordi(ψ(b)) : b > a}
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= min{ordi(
s(i,b)−1∏

j=1
w(aij)) : b > a}

= ordi(
k−1∏
j=1

w(aij))

where k := min{s(i, b) : b > a}. We compute further:

k = min(s(i, b) : b > a) = min{min{j : aij ≥ b} : b > a}

= min{j : aij > a}

=
{
s(i, a) + 1 if a = ais(i,a),

s(i, a) otherwise.

Note that in the second case it holds that ordi(w(a)) = 0 (otherwise a = ais(i,a) because 
w is admissible).

Recall that ordi(ψ(a)) = ordi(
∏s(i,a)−1

j=1 w(aij)). So we conclude that

ordi(gcd(ψ(b) : b > a)) =

=
{

ordi(
∏s(i,a)−1

j=1 w(aij)) + ordi(w(ais(i,a))) if a = ais(i,a),

ordi(
∏s(i,a)−1

j=1 w(aij)) otherwise

= ordi(ψ(a)) + ordi(w(a)). �
4. Invariants and surjective join-preserving maps

This section contains the main results of this paper. They are presented in Subsec-
tion 4.2 and Subsection 4.3. Here we show that the Stanley depth, as well as the usual 
depth, are determined by the lcm-lattice. Subsection 4.1 contains several related tech-
nical results. We end with an example which shows that the Z-graded Hilbert depth is 
not determined by the lcm-lattice.

4.1. The structure of surjective join-preserving maps

In this Subsection we prove some structural results on surjective join-preserving maps; 
these will be needed in the sequel. The first two structural lemmata will be useful in 
Subsection 4.2.

Let δ : L → L′ be a surjective join-preserving map of finite lattices. We define δ† :
L′ → L as δ†(a) :=

∨
δ−1(a).
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Lemma 4.1. The map δ† has the following properties:

(1) δ ◦ δ† : L′ → L′ is the identity and δ† is (thus) injective.
(2) δ† is monotonic, i.e. a ≤ b implies δ†(a) ≤ δ†(b) for a, b ∈ L′.
(3) For α ∈ L and b ∈ L′, it holds that δ(α) ≤ b if and only if α ≤ δ†(b).

Proof. The first claim is immediate from the fact that δ preserves joins. For the second, 
note that δ(δ†(a) ∨δ†(b)) = δ(δ†(a)) ∨δ(δ†(b)) = a ∨b for any a, b ∈ L′. Thus δ†(a) ∨δ†(b)
is contained in the preimage of a ∨ b and hence δ†(a) ∨ δ†(b) ≤ δ†(a ∨ b). Now assume 
that a ≤ b. Then

δ†(a) ≤ δ†(a) ∨ δ†(b) ≤ δ†(a ∨ b) = δ†(b).

For the last claim, note that α ≤ δ†(b) implies δ(α) ≤ δ(δ†(b)) = b, and δ(α) ≤ b implies 
α ≤ δ†(δ(α)) ≤ δ†(b) (since δ† is monotonic). �
Lemma 4.2. Let G ⊂ Mon(S) and G′ ⊂ Mon(S′) be two finite lcm-closed sets of 
squarefree monomials in two polynomial rings. Assume that there exists a surjective join-
preserving map δ : G → G′ with δ−1(0̂) = {0̂} such that degwG(δ†(m′)) ≥ degwG′(m′)
for all m′ ∈ G′. Then there exists a ring homomorphism Ψ : S → S′ sending a subset 
of the variables injectively to the variables of S′ and the other variables to 1. This map 
satisfies Ψ(m) = δ(m) for m ∈ G.

Proof. As G and G′ consist only of squarefree monomials, it holds that all values of wG

and wG′ are squarefree and pairwise coprime by Corollary 3.2.
We define Ψ as follows: For every m′ ∈ G′, choose degwG′(m′) many variables di-

viding wG(δ†(m′)) and let them map bijectively to the variables dividing wG′(m′). The 
remaining variables of S are mapped to one. By construction, for m ∈ G it holds that

Ψ(wG(m)) =
{
wG′(m′) if m ∈ δ†(G′) and m = δ†(m′);
1 if m /∈ δ†(G′).

Using Proposition 3.1 we conclude that

Ψ(m) = Ψ(
∏
q∈G
q�m

wG(q)) =
∏
q∈G
q�m

Ψ(wG(q)) =
∏

q′∈G′

q′�δ(m)

wG′(q′) = δ(m),

where m ∈ G. For the third equality, we used part (3) of Lemma 4.1. Note that the last 
equality holds because δ(m) �= 0̂. �

The next two structural lemmata will be used in Subsection 5.1. Fix a meet-irreducible 
element a ∈ L and let a+ ∈ L denote the unique element covering it. We consider the 
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equivalence relation ∼a on L defined by setting a ∼a a+ and any other element is 
equivalent only to itself.

Lemma 4.3. There is a natural lattice structure on L/ ∼a, such that the canonical sur-
jection πa : L → L/ ∼a preserves the join. Moreover, if L is atomistic and a is not an 
atom, then L/ ∼a is atomistic.

Proof. Let b denote the equivalence class of an element b ∈ L. We define b ∨ c := b ∨ c. 
To show that this is well-defined we have to prove that b1 ∼a b2 and c1 ∼a c2 implies 
b1∨c1 ∼a b2∨c2. For this, we distinguish the cases that either b1 = b2 or {b1, b2} = {a, a+}
and similarly for c1, c2. One easily sees that each case is either trivial or follows from the 
observation that a ∨ b = a+ ∨ b for all b ∈ L, b �= a.

The ∨-operation on L/ ∼a inherits associativity, commutativity and idempotency 
from the join of L, cf. [7, Thm. 2.10]. Moreover, L/ ∼a inherits a minimal element from 
L, so it is in fact a lattice. It is clear that πa preserves this join. The last statement is 
also clear as πa is a bijection on the atoms. �
Lemma 4.4. Let L, L′ be finite lattices and δ : L → L′ a join-preserving map.

(1) If δ is not injective, then there exists a meet-irreducible element a ∈ L such that 
δ(a) = δ(a+).

(2) If δ(a) = δ(a+) for some meet-irreducible element a ∈ L, then δ factors through 
L/ ∼a.

Proof. (1) There exists a maximal element b ∈ L such that the pre-image of δ(b) has 
at least two elements, that is |δ−1(δ(b))| > 1. Choose another element b′ ∈ δ−1(δ(b)), 
b′ �= b. Then b′ < b by maximality, as δ(b ∨ b′) = δ(b) ∨ δ(b) = δ(b). It is easy to see that 
the interval [b′, b] is mapped to δ(b), so we may choose a ∈ L such that δ(a) = δ(b) and 
a is covered by b. We claim that this a is meet-irreducible. Assume to the contrary that 
there exists another element c �= b covering a. Then

δ(c) = δ(c ∨ a) = δ(c) ∨ δ(a) = δ(c) ∨ δ(b) = δ(c ∨ b)

As b < b ∨ c, it follows from our choice of b that c = c ∨ b and thus c > b, a contradiction.
(2) It is clear that δ factors though L/ ∼a set-theoretically, i.e. there exists a map 

δ̄ : L/ ∼a→ L′ such that δ = δ̄ ◦ πa. So we only need to show that δ̄ preserves the join. 
This is an easy computation:

δ̄(b ∨ c) = δ̄(b ∨ c) = δ(b ∨ c) = δ(b) ∨ δ(c) = δ̄(b) ∨ δ̄(c)

for b, c ∈ L. �
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4.2. Stanley projective dimension and surjective join-preserving maps

In this Subsection we prove the following theorem, which is the main result of this 
paper.

Theorem 4.5. Let H � G ⊂ Mon(S) and H ′ � G′ ⊂ Mon(S′) be four lcm-closed sets 
of monomials in two (possibly) different polynomial rings, such that 〈H〉 � 〈G〉, 〈H ′〉 �
〈G′〉. Assume further that there exists a surjective join-preserving map δ : G → G′ with 
δ−1(0̂) = {0̂} such that δ(H) = H ′. Then

spdimS〈G〉/〈H〉 ≥ spdimS′〈G′〉/〈H ′〉.

For monomial ideals J � I ⊂ S and J ′ � I ′ ⊂ S′, the theorem applies in particular 
to G := L(G(I) ∪ G(J)), H := L(G(J)), G′ := L(G(I ′) ∪ G(J ′)) and H ′ := L(G(J ′)). 
However, in general we do not assume that the sets G, H come from minimal sets of 
generators.

A particular case is if I ′ and J ′ are the polarizations of I and J , respectively. Therefore, 
the theorem is a generalization of the authors’ result on polarization [16, Theorem 4.4]. 
This does not diminish the importance of [16, Theorem 4.4], since it is required in the 
proof of Theorem 4.5. We give a small example to demonstrate that the assumption 
δ−1(0̂) = {0̂} is necessary.

Example 4.6. Let S = K[x, y], G = {1K, x, y, xy}, G′ = {x, y, xy} and H = H ′ = ∅. There 
is a surjective join-preserving map δ : G → G′ defined by mapping 1K to 0̂ and every 
other element to itself. It holds that δ−1(0̂) = {0̂, 1K} �= {0̂}, and indeed the conclusion 
of Theorem 4.5 does not hold:

spdimS〈G〉/〈H〉 = spdimS S = 0 � 1 = spdimS〈x, y〉 = spdimS〈G′〉/〈H ′〉.

Before we give the proof of Theorem 4.5 we prepare two lemmata.

Lemma 4.7. Let J ⊂ I ⊂ S[Y ] = K[X1, . . . , Xn, Y ] be two squarefree monomial ideals. 
Let J ′ ⊂ I ′ ⊂ S be the images of J and I under the map sending Y to 1. Then we have

spdimS[Y ] I/J ≥ spdimS I ′/J ′.

This extends [5, Lemma 2.2], which shows only the case J = 〈0〉.

Proof. Let M := I/J and let M>0 ⊂ M be the S[Y ]-submodule of those elements having 
positive Y -degree. Every Stanley decomposition of M restricts to a Stanley decomposi-
tion of M>0, hence spdimS[Y ] M ≥ spdimS[Y ] M>0.

On the other hand, we have

M>0 = (I ∩ 〈Y 〉)/(J ∩ 〈Y 〉) ∼= (I : Y )/(J : Y ) = (I : Y ∞)/(J : Y ∞),



B. Ichim et al. / Journal of Combinatorial Theory, Series A 150 (2017) 295–322 309
where for the last equality we use that I and J are squarefree. But I : Y ∞ = I ′ ⊗S S[Y ]
and the same holds for J , hence M>0 ∼= I ′/J ′⊗S[Y ]. By [15, Proposition 5.1] we conclude 
that spdimS[Y ] M>0 = spdimS I ′/J ′ and the claim follows. �

The second lemma comprises the main part of the proof of the theorem.

Lemma 4.8. Let H � G ⊂ Mon(S) be two finite lcm-closed sets of squarefree monomi-
als, such that 〈H〉 � 〈G〉. Let m ∈ G be a fixed element. Then there exist two other 
finite lcm-closed sets of squarefree monomials H ′ � G′ ⊂ Mon(S[Y ]) in one additional 
variable Y , such that the following holds:

(1) There is an isomorphism δ : G → G′ of lattices, such that δ(H) = H ′ and for every 
c ∈ G it holds that

degwG′(δ(c)) :=
{

degwG(c) if c �= m,

degwG(c) + 1 if c = m.

(2) 〈H ′〉 � 〈G′〉 ⊂ S[Y ].
(3) spdimS[Y ]〈G′〉/〈H ′〉 = spdimS〈G〉/〈H〉.

Proof. Consider the map δ̃ : Mon(S) → Mon(S[Y ]) of monomials given by

δ̃(c) =
{
c if c | m,

Y · c if c � m.

We define G′ and H ′ as the images of G resp. H under this map. It is easy to see that δ̃
is injective and preserves the lcm of monomials. Thus H ′ � G′, both sets are lcm-closed, 
and δ̃ induces an isomorphism δ : G → G′. Moreover, it follows from the definitions that

wG′(m) = 1
m

gcd{p ∈ G′ : p > m} = Y · wG(m)

and wG′(δ(c)) = wG(c) for every other c ∈ G. Part (1) of the lemma is then proven. 
Part (2) follows straight from the fact that δ is monotonic.

(3) Let I := 〈G〉, J := 〈H〉, I ′ := 〈G′〉 and J ′ := 〈H ′〉. The inequality “≥” follows from 
Lemma 4.7, as J and I are the images of J ′ and I ′ under sending Y to 1. So we only need 
to prove the other inequality, which is equivalent to sdepthS[Y ] I

′/J ′ ≥ sdepthS I/J + 1. 
To simplify the notation, we set 0k := (0, . . . , 0) ∈ Nk and 1k := (1, . . . , 1) ∈ Nk for 
k ∈ N. After relabeling of the variables, we may assume that m = X1X2 · · ·Xl for some 
1 ≤ l ≤ n. Consider the map φ : Nl × Nn−l × N → Nl × Nn−l defined by

φ(h1, h2, x) :=
{

(h1, 0n−l) if x = 0,
(h , h ) if x > 0.
1 2



310 B. Ichim et al. / Journal of Combinatorial Theory, Series A 150 (2017) 295–322
It is easy to see that φ is order preserving, and we claim that it changes the Stanley 
depth by 1 with respect to 1n+1 ∈ Nn+1 and 1n ∈ Nn (see Definition 2.4).

To prove this claim, it is enough to consider the map ψ : Nk × N → Nk, defined by

ψ(h, x) :=
{

0k if x = 0;
h if x > 0,

where k := n − l. It is clear that φ = (idNl , ψ). One easily checks that

ψ−1(h) =
{
{(h, x) : x > 0} if h �= 0k;
{(w, 0) : w ∈ Nk} if h = 0k.

Consider an interval [a, b] ⊂ [0k, 1k]. It follows that

ψ−1([a, b]) ∩ [0k+1, 1k+1] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[(a, 1), (b, 1)] if a �= 0k;
[(0k, 0), (1k, 0)] ∪ [(0k, 1), (b, 1)] if a = 0k, b �= 0k, 1k;
[(0k, 0), (1k, 1)] if a = 0k, b = 1k;
[(0k, 0), (1k, 0))] if a = 0k, b = 0k.

In each case, the Stanley depth is increased (at least) by one. The only case that needs 
a closer look is the second. Here, ρ1k+1((1k, 0)) = k, but ρ1k

(b) < k, because b �= 1k, so 
this also increases the Stanley depth. Therefore ψ increases the Stanley depth (at least) 
by 1, and so does φ = (idNl , ψ) (cf. [16, Lemma 3.4]).

Next, let Φ : S[Y ] → S be map corresponding to φ, i.e. the linear map given on 
monomials by Φ(XaY b) = Xφ(a,b). We claim that I ′ = Φ−1(I), J ′ = Φ−1(J). Once we 
have proven this, part (3) follows from Proposition 2.5.

For this claim, it suffices to consider I and I ′. Note that Φ(G′) = G and thus 
I ′ ⊂ Φ−1(I), so we only need to prove the other inclusion. Let E ⊆ Nn be the set of 
exponents of the monomials in I. Consider a minimal element e = (h1, h2, x) ∈ φ−1(E). 
By minimality, it follows that x ∈ {0, 1}. There are two cases:

(i) If x = 1, then φ(e) = (h1, h2). This is clearly contained in E and it is indeed a 
minimal element of E, because if E contains a smaller element (h′

1, h
′
2) < (h1, h2), 

then (h′
1, h

′
2, 1) ∈ φ−1(h′

1, h
′
2) ⊂ φ−1(E), contradicting the minimality of e. Hence 

X(h1,h2) ∈ G and thus X(h1,h2)Y ∈ I ′.
(ii) If x = 0, then h2 = 0n−l. Again, (h1, 0n−l) is a minimal element of E, because 

otherwise (h′
1, 0n−l, 0) would be a smaller element in φ−1(E) as above. So again, 

X(h1,0n−l) ∈ G thus X(h1,0n−l) ∈ I ′.

So we conclude that I ′ ⊇ Φ−1(I) and thus I ′ = Φ−1(I). �
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Proof of Theorem 4.5. Polarization allows us to replace the sets G, H by lcm-closed sets 
of squarefree monomials H̃ � G̃, such that 〈H̃〉 � 〈G̃〉, G is isomorphic to G̃, and the 
isomorphism restricts to an isomorphism H ∼= H̃. Similarly, we may replace G′ and H ′

by lcm-closed sets of squarefree monomials H̃ ′ � G̃′ satisfying the same assumptions. 
By composing the map δ with the given isomorphisms of lattices we also obtain a map 

δ̃ : G̃ → G̃
′

satisfying the same assumptions as δ. Moreover, it is an easy corollary of 
[16, Theorem 4.3] that the Stanley projective dimension is invariant under polarization. 
Thus, we may assume that all involved monomial are squarefree.

Next, after repeated application of Lemma 4.8 to H and G we may also assume that

degwG(δ†(m)) ≥ degwG′(m)

for all m ∈ G′. Here, δ†(m) =
∨

δ−1(m) as defined in Section 4.1. It follows from 
Lemma 4.2 that 〈G′〉 and 〈H ′〉 are the images of 〈G〉 and 〈H〉 under a homomorphism 
sending some of the variables to 1. Here we use that δ(H) = H ′. Now the claim follows 
from Lemma 4.7. �
4.3. Projective dimension and surjective join-preserving maps

In this subsection, we provide the analogue of Theorem 4.5 for the usual projective 
dimension. Let I � S and I ′ � S′ be two monomial ideals, such that there exists a 
surjective join-preserving map δ : LI → LI′ . If we assume further that δ is bijective on 
the generators, then Theorem 3.3 of [10] immediately implies that

pdimS S/I ≥ pdimS′ S′/I ′. (4.1)

However, we would like to have a result in the same generality as Theorem 4.5. Thus, 
we point out the following extension of the inequality (4.1).

Theorem 4.9. Under the assumptions of Theorem 4.5, it holds that

pdimS〈G〉/〈H〉 ≥ pdimS′〈G′〉/〈H ′〉.

Sketch of the proof. The claim can be proven along the same lines as [10, Theorem 3.3], 
therefore we only sketch the necessary modification of the proof given there.

Theorem 3.3 of [10] is equivalent to our claim in the case that H = L(H̃) for a minimal
set H̃ of monomial generator of 〈H〉, G = L(H̃ ∪ {1K}), and the analogous assumptions 
on G′ and H ′.

The proof goes by considering the Taylor resolution of S/〈H〉. It can be “relabeled” 
to a resolution of S′/〈H ′〉, and it is shown that this relabeling maps the minimal free 
resolution of S/〈H〉 to a (generally non-minimal) free resolution of S′/〈H ′〉.

This proof can be extended to the situation 〈G〉 ⊆ S by considering the Taylor 
resolution of 〈G〉/〈H〉, cf [31, Def. 3.3.3]. One has to consider the Taylor resolution built 
from the given sets of generators G, H, G′, H ′, not from the minimal ones.
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Finally, if δ is not bijective on atoms, then we replace G′ by a multiset: If several 
elements of G are mapped to the same element of G′, then we include several copies of 
that element in the multiset, one for each preimage. Consequently, one then considers 
the Taylor resolution of 〈G′〉/〈H ′〉 with respect to this multiset of generators. This allows 
to argue as if δ were bijective on atoms. �
Corollary 4.10. Let J � I ⊂ S and J ′ � I ′ ⊂ S′ be four monomial ideals. Assume that 
L(G(I) ∪G(J)) ∼= L(G(I ′) ∪G(J ′)) and that this isomorphism restricts to an isomor-
phism LJ

∼= LJ ′ . Then it holds that

(1) spdimS I/J = spdimS′ I ′/J ′;
(2) pdimS I/J = pdimS′ I ′/J ′;
(3) sdepthS I/J − depthS I/J = sdepthS′ I ′/J ′ − depthS′ I ′/J ′.

In view of part (3) of the preceding corollary, one may ask how the quantity 
sdepthS S/I − depthS S/I behaves under surjective maps of the lcm-lattice. In general 
there is no inequality, as can be seen in the following example.

Example 4.11. Consider the maximal ideal I1 = 〈X1, . . . , Xk〉 ⊂ S = K[X1, . . . , Xk]. 
It is well-known that sdepthS S/I1 = depthS S/I1 = 0 and thus sdepthS S/I1 −
depthS S/I1 = 0.

Moreover, consider the ideal I2 := 〈x1···xk

xi
: 1 ≤ i ≤ k〉 ⊂ S. Its lcm-lattice consists 

only of k atoms, a maximal element and a minimal element. Thus every atomistic lattice 
L with k atoms can be mapped onto it, by mapping atoms to atoms, 0̂ to 0̂ and every 
other element to the maximal element of LI2 . This holds in particular for the lcm-lattice 
of the ideal 〈xk−1, xk−2y, . . . , xyk−2, yk−1〉 ⊂ K[x, y]. So it follows from Theorem 4.5 and 
Theorem 4.9 that spdimS S/I2 ≤ 2 and pdimS S/I2 ≤ 2. On the other hand, it holds 
that pdimS S/I2 ≥ 2 because I2 is not principal and spdimS S/I2 ≥ 2 by Proposition 5.2
below. So we can conclude that pdimS S/I2 = spdimS S/I2 = 2, hence sdepthS S/I2 −
depthS S/I2 = 0.

If now I ′ ⊂ S′ is an arbitrary monomial ideal with k minimal generators, then there 
are surjective maps LI1 → LI′ and LI′ → LI2 . Thus if sdepthS′ S′/I ′−depthS′ S′/I ′ �= 0, 
then this quantity is in general not monotonic under surjective maps. For example, one 
may take I ′ as any monomial ideal whose depth depends on the characteristic of the 
field.

As a final remark in this section, let us point out that the Z-graded Hilbert depth
is not determined by the lcm-lattice. The Z-graded Hilbert depth was introduced by 
Uliczka [41]. It gives an upper bound for both the Stanley depth and the usual depth 
and is defined as follows: For a Z-graded module M over a standard Z-graded polynomial 
ring S, the Z-graded Hilbert depth is the maximal depth of any Z-graded S-module with 
the same Z-graded Hilbert function as M . Usually, the Z-graded Hilbert depth is easier 
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to compute than the Stanley depth (see [33]). However, as the following example shows, 
the analogue of our main result Theorem 4.5 does not hold for this invariant:

Example 4.12. Let S = K[x1, x2, x3, x4] and consider the ideals I := 〈x1, x2, x3, x4〉 and 
J = 〈x3

1, x
2
2, x3, x4〉 in S. It is clear that the lcm-lattices of I and J are isomorphic, as 

both ideals are complete intersections. Moreover, the Z-graded Hilbert depth of I has 
been shown to be 4/2 = 2 in [41, Example 3.4]. On the other hand, the Hilbert series of 
J is

2T − T 3 − T 4 + 2T 6 − T 7

(1 − T )4 = T 6

(1 − T )4 + 2T + 2T 2 + T 3 + T 6

(1 − T )3 .

From the right hand side of the equation we can read off that the Z-graded Hilbert depth 
of J is at least 3 [41, Lemma 2.2]. Hence the Z-graded Hilbert depth is not determined 
by the isomorphism type of the lcm-lattice.

5. Applications

Theorems 4.5 and 4.9 are the sources for several applications to which this section 
is devoted. Essentially all inequalities for the Stanley projective dimension we derive 
in this section rely on Theorem 4.5. Using Theorem 4.9 one obtains with the same 
proof corresponding inequalities for the usual projective dimension. More generally, this 
holds for any invariant of an ideal or its lcm-lattice which satisfies the conclusion of 
Theorem 4.5. These are, for example, cardinality, length, width, breadth, order dimension 
and interval dimension of the lcm-lattice.

We will use Theorem 4.5 several times in this section, so it seems convenient to 
introduce a name for the maps satisfying its hypotheses. So we call a map δ : L →
L′ between finite lattices invariants-monotone if it is join-preserving, surjective, and 
δ−1(0̂) = {0̂}.

5.1. Bounds for the Stanley depth in terms of generators

For k ∈ N let B(k) denote the boolean lattice on k atoms, i.e. the lattice of subsets of 
a k-element set. Note that B(k) is the lcm-lattice of any ideal generated by k variables.

Remark 5.1. For every atomistic lattice L on k atoms, there exists an invariants-
monotone map δ : B(k) → L, which may be constructed as follows. Let δ map the 
atoms of B(k) bijectively on the atoms of L and set δ(0̂) = 0̂. For every other element 
a ∈ B(k) we set δ(a) := δ(a1) ∨ · · · ∨ δ(al) where a = a1 ∨ a2 ∨ · · · ∨ al is the unique (up 
to order) way to write a as a join of atoms.

First, we give a uniform proof of important results previously obtained by several 
authors providing bounds on the Stanley depth.
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Proposition 5.2. Let k > 1 and let I ⊂ S be a monomial ideal with k minimal generators. 
Let further mk := (Y1, . . . , Yk) ⊂ Sk := K[Y1, . . . , Yk] be the monomial maximal ideal on 
k generators. Then the following inequalities hold:

(1) 1 ≤ spdimS I ≤ spdimSk
mk = �k

2 �.
(2) 2 ≤ spdimS S/I ≤ spdimSk

Sk/mk = k.

Moreover, if I is a complete intersection, then the upper bounds are attained.

The assumption that k > 1 was introduced in order to avoid the zero module S/S. The 
upper bound for spdimS S/I was originally proven by Cimpoeaş [6, Prop. 1.2] and the 
upper bound for spdimS I was originally proven by Okazaki [29], resp. in the squarefree 
case by Keller and Young [23]. For a complete intersection I the Stanley depth of I was 
originally determined by Shen [37] and of S/I by Rauf [34].

Proof of Proposition 5.2. The Stanley depth of the maximal ideal mk was computed 
by Biró et al. in [4]. Moreover, the Stanley depth of K = Sk/mk is zero. Thus the 
values of the upper bounds are known. The inequalities spdimS I ≤ spdimSk

mk and 
spdimS S/I ≤ spdimSk

S/mk follow from Theorem 4.5, since by Remark 5.1 there exists 
an invariants-monotone map Lmk

= B(k) → LI .
If I is a complete intersection, then LI

∼= Lmk
, therefore spdimS I = spdimSk

mk and 
spdimS S/I = spdimSk

S/mk by Theorem 4.5.
For the lower bound, note that every ideal in n variables with more than one minimal 

generator has Stanley depth less than n. Moreover, if I has at least 2 generators, then 
there exists a monomial m in S \ I and two coprime monomials n1, n2 ∈ S such that 
mn1, mn2 ∈ I. This implies that S/I has an associated prime of height at least 2 and 
thus the Stanley depth of S/I is at most n − 2. �

In the next result we characterize the case of equality for the upper bound in part (2) 
of Proposition 5.2. Recall that monomial complete intersections can be characterized as 
those ideals I whose number of generators equals the projective dimension of S/I. In 
this sense, the last sentence of the following theorem extends the result on the Stanley 
depth of complete intersections [37].

Theorem 5.3. Let I ⊂ S be a monomial ideal with k > 1 minimal generators. Then the 
following are equivalent:

(1) LI
∼= B(k), i.e. I has the lcm-lattice of a complete intersection.

(2) pdimS S/I = k.
(3) spdimS S/I = k.

Moreover, if pdimS S/I = k − 1 then both S/I and I satisfy Stanley’s inequality (�).
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Proof. If LI
∼= B(k) then spdimS S/I = k by Proposition 5.2. Moreover, in this situa-

tion pdimS S/I = k because this is the projective dimension of a k-generated complete 
intersection. So we need to show that LI � B(k) implies that spdimS S/I ≤ k − 1 and 
pdimS S/I ≤ k − 1.

By Remark 5.1 there exists an invariants-monotone map B(k) → LI . As LI � B(k)
this map is not injective, so by Lemma 4.4 it factors through B(k)/ ∼a for some meet-
irreducible element a ∈ B(k). But the automorphism group of B(k) acts transitively 
on the set of meet-irreducible elements, so L := B(k)/ ∼a does not depend on a. If 
J is a monomial ideal (in some polynomial ring S′) whose lcm-lattice equals L, then 
the Theorems 4.5 and 4.9 imply that it suffices to prove spdimS′ S′/J ≤ k − 1 and 
pdimS′ S′/J ≤ k − 1.

We claim that we can choose

J = 〈x2
1, . . . , x

2
k−1, x1x2 · · ·xk−1〉 ⊂ K[x1, . . . , xk−1].

To see this, let us identify each element of B(k) by the set of atoms below it. Then—up 
to an automorphism—we have a = {1, . . . , k − 1}. The meet-irreducible elements of L
are the (k − 1)-subsets of [k] := {1, . . . , k} other than a, and the (k − 2)-subsets of a.

We can choose a labeling w as follows: Set w([k] \ {i}) = w(a \ {i}) = xi and all 
other elements of L are mapped to 1. This labeling is admissible, so by Theorem 3.4
the corresponding ideal has the desired lcm-lattice. Moreover, it is easy to see that 
the generators of this ideal are as claimed. Here, x2

i corresponds to the atom {i} for 
1 ≤ i ≤ k − 1 and x1x2 · · ·xk−1 corresponds to {k}.

Note that J is a monomial ideal in k − 1 variables, which implies that the claimed 
inequalities spdimS′ S′/J ≤ k − 1 and pdimS′ S′/J ≤ k − 1 hold trivially.

Now we turn to the last statement of the theorem. Assume that pdimS S/I = k − 1. 
We already showed that this implies that spdimS S/I �= k and thus spdimS S/I ≤ k−1 =
pdimS S/I. Further, it holds that pdimS I = k−2, and by the argument above it suffices 
to show that pdimS′ J ≤ k − 2. For this, we note that [11, Theorem 27] implies that 
sdepthS′ J > 0 and hence spdimS′ J ≤ k − 2. �
5.2. Deformations of monomial ideals

The notion of deformation of a monomial ideal was introduced by Bayer et al. [3] and 
further developed in Miller et al. [26]. In order to include the case of quotients I/J , we 
slightly extend the definition found in [26]. Recall that ordj(m) denotes the exponent of 
Xj in a monomial m ∈ Mon(S).

Definition 5.4. (1) Let G ⊂ Mon(S) be a finite set of monomials. A deformation of G is 
a set of vectors εg = (εg1, . . . , εgn) ∈ Nn for g ∈ G subject to the following conditions:

ordj(g) > ordj(h) =⇒ ordj(g) + εgj > ordj(h) + εhj and

ord (g) = 0 =⇒ εg = 0.
(5.1)
j j
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(2) Let J � I ⊂ S be two monomial ideals with (not necessarily minimal) generating 
sets GI and GJ . Let further ε be a deformation of the union GI ∪GJ . We set GI(ε) :=
{g · xεg : g ∈ GI} and GJ(ε) is defined analogously. Then we call the two ideals 
Iε := 〈GI(ε)〉 and Jε := 〈GJ(ε)〉 a common deformation of I and J . Note that the 
condition (5.1) implies that Jε � Iε.

Proposition 5.5. Let J � I ⊂ S be two monomial ideals and let Jε � Iε ⊂ S be a common 
deformation of I and J . Then sdepthS I/J ≥ sdepthS Iε/Jε and the same holds for the 
usual depth.

Proof. As noticed in [10], the map sending each deformed monomial g ·xεg to the corre-
sponding original monomial g induces an invariants-monotone map L(GI(ε) ∪GJ(ε)) →
L(GI ∪GJ), so the claim follows from Theorem 4.5 and Theorem 4.9, respectively. �

The most important deformations are the generic deformations. Let us recall the 
definition from [26].

Definition 5.6. (1) A monomial m ∈ S is said to strictly divide another monomial m′ ∈ S

if m | m′

xi
for each variable xi dividing m′.

(2) A monomial ideal I ⊂ S is called generic if for any two minimal generators m, m′

of I having the same degree in some variable, there exists a third minimal generator m′′

that strictly divides lcm(m, m′).
(3) A deformation of a monomial ideal I is called generic if the deformed ideal Iε is 

generic.

Corollary 5.7. If I ⊂ S is a monomial ideal such that depthS S/I = depthS S/Iε for 
some generic deformation of I, then sdepthS S/I ≥ depthS S/I (i.e. Stanley conjecture 
holds for S/I).

Proof. It was proven by Apel in [2] that sdepthS S/J ≥ depthS S/J for every generic 
monomial ideal J . So the claim follows from Proposition 5.5 by considering the generic 
deformation of I. �
5.3. Colon ideals and associated primes

In this subsection we consider colon ideals with respect to monomials. Both results 
of this section can be proven directly, but we would like to illustrate that they also 
follow from our main result. Moreover, our proof works uniformly for both depth and 
Stanley depth. The first result was originally proven by Seyed Fakhari in [36, Proposi-
tion 2.5].
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Proposition 5.8. Let J � I ⊂ S be two monomial ideals and let v ∈ Mon(S) be a 
monomial. Then

spdimS I/J ≥ spdim(I : v)/(J : v)

and the same holds for the projective dimension.

Proof. Let L := L(G(I) ∪G(J)) and L′ := L(G(J)). We consider the map

δ′ : L → Mon(S), m �→ m ∨ v

v
.

It is easy to see that δ′ preserves the join. We will show that the image δ′(L) generates 
I : v and similarly δ′(L′) generates J : v. Then we can extend δ′ to an invariants-
monotone map δ : L → δ′(L) by setting δ(0̂) := 0̂, so our claim follows from Theorem 4.5
(resp. Theorem 4.9).

By symmetry, we only consider L. It is clear that δ′(L) ⊆ I : v. For the other inclusion 
consider a monomial m ∈ I : v. Then there exists a generator g of I such that g | vm. 
Hence g ∨ v | vm and thus δ′(g) | m. So I : v is contained in the ideal generated by the 
image of δ′. �

As a consequence, we get the well-known bound on the depth and Stanley depth in 
terms of the height of associated prime ideals, see [11, Theorem 9].

Corollary 5.9. Let I ⊂ S be a monomial ideal. If I has an associated prime p ⊂ S of 
height p, then

spdimS S/I, pdimS S/I ≥ p;

spdimS I ≥ �p2�;

pdimS I ≥ p− 1.

Proof. This follows from the foregoing proposition, given the known values of spdim and 
pdim for monomial prime ideals. �

From the proof of Proposition 5.8 one can also extract the following lattice-theoretical 
statement, which might be of independent interest. As we do not use it, we omit the proof.

Proposition 5.10. Let L be a finite atomistic lattice and let p ∈ N. The following are 
equivalent:

(1) There exists an invariants-monotone map L → B(p) onto the boolean lattice on p
generators.

(2) There exists a monomial ideal I with L ∼= LI and I has an associated prime of 
height p.
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5.4. Ideals generated in a single degree

In this subsection we show that every finite atomistic lattice can be realized as lcm-
lattice of a monomial ideal, whose minimal generators all have the same degree.

Lemma 5.11. Let L be a finite lattice and let A ⊂ L be an antichain, i.e. a set of pairwise 
incomparable elements. Then there exists an lcm-closed set of monomials G ⊂ Mon(S)
such that L ∼= G and the monomials in G corresponding to the elements of A all have 
the same degree.

Proof. First, choose an admissible labeling w1 : L → Mon(S), where S is some poly-
nomial ring with sufficiently many variables. If the monomials ma =

∏
b�a w1(b) for 

a ∈ A (as in (3.1)) have all the same degree, then we are already done. Otherwise, let 
a1, a2, . . . , ar ∈ A be the elements whose monomials have the maximum degree among 
the monomials corresponding to A. We modify our w1 by setting

w2(m) :=
{
Xiw1(m) if m = ai,

w1(m) otherwise,

where the Xi are new variables. As A is an antichain, it follows from (3.1) that the 
degree of the monomials corresponding to a1, a2, . . . , ar ∈ A under w2 increases by r−1, 
while the degree of all other monomials corresponding to A increases by r. Hence after 
iterating this procedure finitely many times, all monomials corresponding to A have the 
same degree. �
Proposition 5.12. Let J � I ⊂ S be two monomial ideals. Then one can find monomial 
ideals J ′ � I ′ ⊂ S′ with L(G(I) ∪G(J)) ∼= L(G(I ′) ∪G(J ′)) where the isomorphism 
maps LJ to LJ ′ , such that one’s choice of the following holds:

(1) Either I ′ is generated in a single degree, or
(2) J ′ is generated in a single degree.

Proof. The set of minimal generators of I forms an antichain in L(G(I) ∪G(J)). Ap-
plying the foregoing Lemma 5.11 to it yields ideals J ′ ⊂ I ′ with the same lcm-lattice, 
where I ′ is generated in a single degree. On the other hand, applying the lemma to the 
antichain formed by the minimal generators of J results in J ′ being generated in a single 
degree. �
Remark 5.13. Note that our construction does in general not allow to assume that both 
ideals are generated in a single degree. However, if S = I (or more generally if one ideal 
is principal), then this is possible.
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5.5. Further applications

Finally, let us point out several results that also follow from our main result. The 
following result was originally proven in Ishaq [19]. See also Seyed Fakhari [36] for a 
different proof.

Proposition 5.14. Let J � I ⊂ S be two monomial ideals. Then

sdepthS

√
I/

√
J ≥ sdepthS I/J

and the same holds for the usual depth.

Proof. For a monomial m we write 
√
m for the product of the variables dividing m. 

Define G′(I) as {√m : m ∈ G(I)} and G′(J) similarly. Then G′(I) and G′(J) gen-
erate 

√
I and 

√
J . Moreover, the map m �→ √

m gives rise to an invariants-monotone 
map L(G(I) ∪G(J)) → L(G′(I) ∪G′(J)). So the claim follows from Theorem 4.5 and 
Theorem 4.9. �
Remark 5.15. There are several operations known on monomial ideals which do not 
change the lcm-lattice. In all these cases, the effect on depth and Stanley depth can be 
deduced from Theorem 4.5 and Theorem 4.9. We give references to several articles where 
these operations were previously studied:

– Polarization. However, we used this result (cf. [16]) in our proof of Theorem 4.5.
– Multiplication of an ideal by a monomial [6, Theorem 1.4].
– The quotient modulo a non-zerodivisor monomial [34, Theorem 1.1], and the exten-

sion of the polynomial ring by new variables [15, Prop. 5.1].
– The constructions in Propositions 5.1 and 5.2 of [16], which themselves are extensions 

of other results (Ishaq and Qureshi [20, Lemma 2.1], [5, Lemma 1.1], [37, Lemma 2.3]).
– Corollary 3.3 in Yanagawa [42] and the properties treated in Anwar and Popescu [32].

6. The Stanley projective dimension as an invariant of lattices?

In view of our main result, the Stanley projective dimension of an ideal depends only 
on its lcm-lattice. Hence one can interpret this number as a combinatorial invariant of 
the lattice itself. Let us make this precise.

Definition 6.1. Let L be an finite atomistic lattice. Choose an ideal I ⊂ S =
K[X1, . . . , Xn] such that LI

∼= L. We define

(1) pdimI L := pdim I,
(2) pdimQ L := pdimS/I,



320 B. Ichim et al. / Journal of Combinatorial Theory, Series A 150 (2017) 295–322
(3) spdimI L := spdim I and
(4) spdimQ L := spdimS/I.

Here, the subscripts Q and I stand for “quotient” and “ideal”. In particular, the subscript 
I is not the name of the ideal I involved in the definition.

Note that it trivially holds that pdimI L = pdimQ L −1 and that these invariants may 
depend on the underlying field K. On the other hand, spdimI L and spdimQ L clearly do 
not depend on the field (cf. [17, Remark 3.5]). Now, [1, Conjecture 2], [2, Conjecture 1]
and [11, Conjecture 64] can be formulated for lattices:

Conjecture 6.2. For all finite atomistic lattices L, it holds that

(1) spdimI L ≤ pdimI L,
(2) spdimQ L ≤ pdimQ L, and
(3) spdimI L ≤ spdimQ L − 1.

After a first version of this paper was posted on the arXiv, Duval, Goeckner, Klivans, 
and Martin [8] found a counterexample to the Stanley conjecture, which also disproves 
part (2) of this conjecture.1 Parts (1) and (3) are still open.

Remark 6.3. Part (1) of Conjecture 6.2 depends implicitly on the underlying field K. 
However, as it follows from Hochster’s formula [25, Corollary 5.12] that pdimSZ/I⊗Q ≤
pdimSZ/I ⊗ Z/pZ for any monomial ideal I ⊂ SZ := Z[X1, . . . , Xn] over the integers 
and any prime p, the characteristic 0 case of the conjecture implies it for all fields.

A natural question is how these new invariants relate to the usual invariants of lat-
tices. Proposition 5.2 can be interpreted in this way, where the number of generators k
corresponds to the width of the subposet of join-irreducible elements of L. Another step 
in this direction was taken by the second author together with S.A. Seyed Fakhari in 
[22], where we show that spdimI L and spdimQ L are bounded above by the length and 
by the order dimension of L.

One problem with the second part of Definition 6.1 is that one has to choose an 
ideal I. Remark that the invariants pdimI and pdimQ may be computed directly from L: 
It follows from the results in [10] that pdimQ L = pdimI L +1 = min{i : H̃i(Δ((0̂, m)L);
K) �= 0, m ∈ L} + 2, where Δ((0̂, m)L) denotes the order complex of the open interval 
(0̂, m)L ⊂ L. Motivated by this we pose the following question:

Question 6.4. Is there a purely lattice theoretic description of spdimI L and spdimQ L?

1 We refrain from deleting part (2) of this conjecture, because it is cited in the already published arti-
cle [18].
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