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In a previous paper, we studied an overpartition analogue 
of Gaussian polynomials as the generating function for 
overpartitions fitting inside an m × n rectangle. Here, we 
add one more parameter counting the number of overlined 
parts, obtaining a two-parameter generalization 

[
m+n

n

]
q,t

of Gaussian polynomials, which is also a (q, t)-analogue of 
Delannoy numbers. First we obtain finite versions of classical 
q-series identities such as the q-binomial theorem and the 
Lebesgue identity, as well as two-variable generalizations of 
classical identities involving Gaussian polynomials. Then, by 
constructing involutions, we obtain an identity involving a 
finite theta function and prove the (q, t)-log concavity of [
m+n

n

]
q,t

. We particularly emphasize the role of combinatorial 
proofs and the consequences of our results on Delannoy 
numbers. We conclude with some conjectures about the 
unimodality of 

[
m+n

n

]
q,t

.
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1. Introduction

Gaussian polynomials (or q-binomial coefficients) are defined by

[
m + n

n

]
q

= (q)m+n

(q)m(q)n
,

where (a)k = (a; q)k :=
∏k

j=1(1 − aqj−1) for k ∈ N0 ∪ {∞}. They are the generating 
functions for partitions fitting inside an m × n rectangle, i.e. with largest part ≤ m and 
number of parts ≤ n. In our previous paper [9], we studied an overpartition analogue [
m+n
n

]
q

of these polynomials as the generating function for the number of overpartitions 
fitting inside an m × n rectangle. We recall that an overpartition is a partition in which 
the last occurrence of each distinct number may be overlined [8], the eight overpartitions 
of 3 being

(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

In this paper, we add a variable t counting the number of overlined parts in our over 
q-binomial coefficients and define

[
m + n

n

]
q,t

:=
∑
k,j≥0

p(m,n, k,N)tkqN ,

where p(m, n, k, N) counts the number of overpartitions of N , with k overlined parts, 
fitting inside an m × n rectangle. We call these two-variable polynomials 

[
m+n
n

]
q,t

over-(q, t)-binomial coefficients or (q, t)-over-Gaussian polynomials. If we set t = 0, mean-
ing that no part is overlined, we obtain the classical q-binomial coefficients, and if we set 
t = 1 we obtain the over q-binomial coefficients of [9]. As we shall see in Section 2, the 
polynomials 

[
m+n
n

]
q,t

are also (q, t)-analogues of the Delannoy numbers D(m, n) [6].
Again, by conjugation of the Ferrers diagrams, it is clear that

[
m + n

n

]
q,t

=
[
m + n

m

]
q,t

.

Most of our results of [9] easily generalize to this new setting. Moreover, the new 
variable t also allows us to do more precise combinatorial reasoning. Therefore in this 
paper we mainly focus on combinatorial proofs, which turn out to be very powerful and 
often simpler than q-theoretic proofs.

The limiting behavior of over-(q, t)-binomial coefficients is interesting, with

lim
n→∞

[
n

j

]
= (−tq)j

(q) ,

q,t j
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as when n tends to infinity, the restriction on the size of the largest part (or equivalently 
the number of parts) disappears. From this limiting behavior, we expect natural finite 
versions of identities in which overpartitions naturally arise. In this direction, we consider 
finite versions of classical q-series identities. For example, we prove a finite version of the 
q-binomial theorem.

Theorem 1.1. For every positive integer n,

∑
k≥0

[
n + k − 1

k

]
q,t

zkqk = (−tzq2; q)n−1

(zq)n
. (1.1)

By taking the limit as n → ∞, we find that

∑
k≥0

(−tq)k
(q)k

zkqk = (−tzq2)∞
(zq)∞

.

Replacing z by z/q and t by −t/q gives the q-binomial theorem.
We also prove a finite version of a special case of the Rogers–Fine identity.

Theorem 1.2. For a positive integer n,

∑
k≥0

[
n + k − 1

k

]
q,t

zkqk =
∑
k≥0

zkqk
2+k(−tzq2; q)k
(zq)k+1

([
n− 1
k

]
q,t

+ tzq2k+2
[
n− 2
k

]
q,t

)
.

By taking the limit as n → ∞, we obtain

∑
k≥0

(−tq)k
(q)k

zkqk =
∑
k≥0

zkqk
2+k(−tzq2; q)k(−tq)k

(q)k(zq)k+1

(
1 + tzq2k+2) ,

which is the case a = 1 of the Rogers–Fine identity [10]

∑
k≥0

(−tq)k
(aq)k

zkqk =
∑
k≥0

akzkqk
2+k(−tzq2/a; q)k(−tq)k

(aq)k(zq)k+1

(
1 + tzq2k+2) .

We also prove the following very curious identity, which contains a truncated theta 
function.

Theorem 1.3. For each nonnegative integer n,

n∑
k=0

(−1)k
[
n

k

]
q,1

=
{

0 if n is odd,∑n/2
j=−n/2(−1)jqj2 if n is even.
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This identity is interesting in several aspects. First of all, it is not clear at all how the 
cancellation occurs. The proof is reminiscent of Franklin’s proof of Euler’s pentagonal 
number theorem [5, Theorem 1.6]. Secondly, it also resembles Zagier’s “strange” identity 
[19]:

∑
k≥0

(q)k = −1
2
∑
k≥1

χ(k)q(k2−1)/24.

In our case, by taking the limit as n goes to infinity, we obtain the “formal” identity

∑
k≥0

(−1)k (−q)k
(q)k

=
∑
k∈Z

(−1)kqk
2
.

Here by “formal” identity, we mean that the left-hand side does not converge as a power 
series in q. Thirdly, in a q-theoretic sense, Theorem 1.3 is equivalent to

∑
|j|≤n

(−1)jqj
2

= 2
n−1∑
j=0

j∑
k=0

(−1)jqk(k+1)/2
[
2n− k

j

]
q

[
j

k

]
q

+ (−1)n
n∑

k=0

qk(k+1)/2
[
2n− k

n

]
q

[
n

k

]
q

.

Lastly, the involution to prove Theorem 1.3 implies the following identity.

Corollary 1.4. For each positive integer n, we have

1 +
n∑

k=1

(−q)k
([

n

k

]
q,1

+
[
n− 1
k − 1

]
q,1

)
=

∑
|j|≤�(n+1)/2�

(−1)jqj
2
.

Corollary 1.4 is a finite version of a special case of Alladi’s weighted partition theorem 
[1].

We also study q-log concavity properties. In [7], Butler showed that q-binomial coef-
ficients are q-log concave, namely that for all 0 < k < n,

[
n

k

]2

q

−
[

n

k − 1

]
q

[
n

k + 1

]
q

has non-negative coefficients as a polynomial in q. Actually, Butler [7, Theorem 4.2]
proved a much stronger result, namely that

[
n

k

] [
n

�

]
−

[
n

k − 1

] [
n

� + 1

]
(1.2)
q q q q
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has non-negative coefficients as a polynomial in q for 0 < k ≤ � < n. Here we prove that 
over-(q, t)-binomial coefficients satisfy a generalization of this property, and therefore are 
also (q, t)-log concave.

Theorem 1.5. For all 0 < k ≤ � < n,

[
n

k

]
q,t

[
n

�

]
q,t

−
[

n

k − 1

]
q,t

[
n

� + 1

]
q,t

has non-negative coefficients as a polynomial in t and q.

Our proof is again combinatorial, as we construct an injection to show the non-
negativity. The q-log concavity of q-binomial coefficients and of Sagan’s q-Delannoy 
numbers [16], as well as the log-concavity (and therefore unimodality) of Delannoy num-
bers follow immediately from the proof of Theorem 1.5, as we shall see in Section 6.

The remainder of this paper is organized as follows. In Section 2, we study basic prop-
erties of over-(q, t)-binomial coefficients and give connections with Delannoy numbers. 
Then in Section 3, we study finite versions of the q-binomial theorem, a special case of the 
Rogers–Fine identity and the Lebesgue identity. In section 4, we focus on two-variable 
generalizations of classical identities involving binomial coefficients. Then in Section 5, 
we give the involution proof of Theorem 1.3. In Section 6, we prove Theorem 1.5 by con-
structing an injection and study its implications. In Section 7, we conclude with some 
observations and conjectures concerning the unimodality of the over-(q, t)-binomial co-
efficients 

[
m+n
n

]
q,t

.

2. Basic properties and connection to Delannoy numbers

The Delannoy numbers [6] D(m, n), also sometimes called Tribonacci numbers [4], are 
the number of paths from (0, 0) to (m, n) on a rectangular grid, using only East, North 
and North–East steps, namely steps from (i, j) to (i + 1, j), (i, j + 1), or (i + 1, j + 1). 
Let Dm,n be the set of such paths. For a path p ∈ Dm,n, we define the weight of each of 
its steps pk as

wt(pk) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if it goes from (i, j) to (i + 1, j),
i, if it goes from (i, j) to (i, j + 1),
i + 1, if it goes from (i, j) to (i + 1, j + 1).

Then we define the weight wt(p) of p to be the sum of the weights of its steps, and d(p)
to be the number of North–East steps in p. By mapping North–East steps to overlined 
parts, we obtain a bijection between Ferrers diagrams of overpartitions fitting inside a 
m × n rectangle and Delannoy paths from the origin to (m, n). Therefore, we can see 
that over-(q, t)-binomial coefficient are generating functions for Delannoy paths.
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Proposition 2.1. For non-negative integers m and n,

[
m + n

n

]
q,t

=
∑

p∈Dm,n

td(p)qwt(p).

In this sense, we can say that over-(q, t)-binomial coefficients are (q, t)-analogues of 
Delannoy numbers, which generalize the q-Delannoy numbers introduced by Sagan [16]
(after exchanging t and q),

Dq(m,n) =
∑

p∈Dm,n

qd(p).

In particular when q = t = 1 we have

[
m + n

n

]
1,1

= D(m,n).

A different q-analogue of Delannoy numbers has been given by Ramirez in [14].
Most of our results of [9] generalize to the new setting with the additional variable t. 

It is sufficient to keep track of the number of overlined parts in the original proofs. Here 
we present two of them which have an interesting connection with Delannoy numbers. 
Now we give an exact formula for 

[
m+n
n

]
q,t

.

Theorem 2.2. For non-negative integers m and n,

[
m + n

n

]
q,t

=
min{m,n}∑

k=0

tkq
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
. (2.1)

Proof. As in [9], let G(m, n, k) denote the generating function for overpartitions fitting 
inside an m × n rectangle and having exactly k overlined parts. We have

G(m,n, k) = q
k(k+1)

2

[
m

k

]
q

[
n + m− k

n− k

]
q

= q
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
.

Since G(m, n, k) is non-zero if and only if 0 ≤ k ≤ min{m, n}, we have

[
m + n

n

]
q,t

=
min{m,n}∑

k=0

tkG(m,n, k) =
min{m,n}∑

k=0

tkq
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
. �

The case t = 0 gives the classical formula for Gaussian polynomials and the case t = 1
corresponds to Theorem 1.1 in [9]. Lemma 3 in [3] is essentially another formulation of 
Theorem 2.2, but their proof is more complicated as it involves several q-series identities, 
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while ours is purely combinatorial. Moreover, when t = q = 1, we obtain the following 
classical formula for Delannoy numbers:

D(m,n) =
min{m,n}∑

k=0

(
n

k

)(
m + n− k

n

)
.

Note that using q-multinomial coefficients
[
a + b + c

a, b, c

]
q

:= (q)a+b+c

(q)a(q)b(q)c
,

we can rewrite (2.1) as

[
m + n

n

]
q,t

=
min{m,n}∑

k=0

tkq
k(k+1)

2

[
m + n− k

k,m− k, n− k

]
q

. (2.2)

In the same way, the analogues of Pascal’s triangle of [9] can also be generalized.

Theorem 2.3. For positive integers m and n, we have
[
m + n

n

]
q,t

=
[
m + n− 1

n− 1

]
q,t

+ qn
[
m + n− 1

n

]
q,t

+ tqn
[
m + n− 2

n− 1

]
q,t

, (2.3)

[
m + n

n

]
q,t

=
[
m + n− 1

n

]
q,t

+ qm
[
m + n− 1

n− 1

]
q,t

+ tqm
[
m + n− 2

n− 1

]
q,t

. (2.4)

Again t = 0 gives the classical recurrences for q-binomial coefficients, t = 1 gives 
Theorem 1.2 of [9], and t = q = 1 gives the classical recurrence for Delannoy numbers:

D(m,n) = D(m− 1, n) + D(m,n− 1) + D(m− 1, n− 1).

We also obtain (q, t)-analogues of two other classical formulas for Delannoy numbers. 
Recall that the basic hypergeometric series rφs are defined by

rφs(a1, a2, . . . , ar; b1, . . . , bs; q, z)

:=
∑
n≥0

(a1; q)n(a2; q)n · · · (ar; q)n
(q)n(b1; q)n · · · (bs; q)n

[
(−1)nqn(n−1)/2

]1+s−r

zn.

We can express over-(q, t)-binomial coefficients using a basic hypergeometric series.

Proposition 2.4. For all m, n positive integers,

[
m + n

n

]
q,t

=
[
m + n

n

]
q
2φ1(q−n, q−m; q−n−m; q,−tq).
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Proof. We may assume m ≥ n, as otherwise we could consider the conjugate of Ferrers 
diagram of the overpartitions. Using the fact that

(q−n; q)k = (q; q)n
(q)n−k

(−1)kq
(k
2
)
−nk,

we derive that

2φ1(q−n, q−m; q−n−m; q,−tq) =
n∑

k=0

(q−n)k(q−m)k
(q)k(q−n−m)k

(−tq)k

= (q)n(q)m
(q)n+m

n∑
k=0

(q)m+n−kt
kqk(k+1)/2

(q)n−k(q)m−k(q)k

= (q)n(q)m
(q)n+m

[
m + n

n

]
q,t

as desired. �
By setting t = q = 1, we can recover the well-known formula for Delannoy numbers

D(m,n) =
(
m + n

n

)
2F1(−n,−m;−m− n;−1),

where 2F1 is a hypergeometric function.
Moreover, from [11, Appendix III.8] we have a transformation formula for the termi-

nating series

2φ1(q−n, b; c; q, z) = (c/b)n
(c)n

bn3φ1(q−n, b, q/z; bq1−n/c; q, z/c).

By setting b = q−m, c = q−n−m, and z = −tq, we find another expression for 
over-(q, t)-binomial coefficients.

Proposition 2.5. For all non-negative integers m and n,

[
m + n

n

]
q,t

=
min{m,n}∑

k=0

tkqk(k+1)/2(−1/t)k
[
m

k

]
q

[
n

k

]
q

.

By setting q = t = 1, we can obtain another well-known formula for Delannoy numbers

D(m,n) =
min{m,n}∑

2k
(
m

k

)(
n

k

)
.

k=0
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Actually, the bijection given in [8, Theorem 1.1] gives a combinatorial proof for Propo-
sition 2.5. As details are lengthy and we do not use this bijection later, we omit details 
here.

3. Finite versions of classical q-series identities

3.1. The q-binomial theorem

In this section we use the (q, t)-over-Gaussian polynomials 
[
m+n
n

]
q,t

to prove new finite 
versions of classical q-series identities. Recall the q-binomial theorem.

Theorem 3.1 (q-binomial theorem). For |t|, |z| < 1,

∑
k≥0

(t)k
(q)k

zk = (tz)∞
(z)∞

.

We start by giving two different finite versions of the q-binomial theorem involving 
over-(q, t)-binomial coefficients. We first prove combinatorially Theorem 1.1.

Proof of Theorem 1.1. Notice that zkqk generates a column of k non-overlined 1’s. We 
append the partition generated by 

[
n+k−1

k

]
q,t

to the right of these 1’s. Therefore, we 
find that the left-hand side of (1.1) is the generating function for the number of over-
partitions with largest part ≤ n and no overlined 1, where the exponent of z counts 
the number of parts and the exponent of t counts the number of overlined parts. It is 
clear that the right-hand side of (1.1) is the generating function that counts the same 
overpartitions. �

Moreover Proposition 3.1 of [9] can be easily generalized by keeping track of the 
number of overlined parts in the original proof, and gives another finite version of the 
q-binomial theorem.

Theorem 3.2 (Generalization of Proposition 3.1 of [9]). For every positive integer n, we 
have

(−tzq)n
(zq)n

= 1 +
∑
k≥1

zkqk

([
n + k − 1

k

]
q,t

+ t

[
n + k − 2
k − 1

]
q,t

)
.

By letting n tend to infinity, we obtain the following.

Corollary 3.3 (Generalization of Corollary 3.2 of [9]). Let p(n, k, �) be the number of 
overpartitions of n with k parts and � overlined parts. Then,

∑
p(n, k, �)zkt�qn = (−tzq)∞

(zq)∞
= 1 +

∑ zkqk(−t)k
(q)k

.

n,k,�≥0 k≥1
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Now replacing z by z/q and t by −t in the above gives the q-binomial theorem.

3.2. A special case of the Rogers–Fine identity

We now turn to the proof of Theorem 1.2, which uses Durfee decomposition.

Proof of Theorem 1.2. We first observe that for every positive integer n,

∑
k≥0

[
n + k − 1

k

]
q,t

zkqk =
∑
k≥0

zkqk
2+k(−tq2; q)k
(zq)k+1

[
n− 1
k

]
q,t

+
∑
k≥0

tzkqk
2+k(−tq2; q)k−1

(zq)k

[
n− 2
k − 1

]
q,t

.

The left-hand side is the generating function for the number of overpartitions with largest 
part ≤ n and no overlined 1, where the exponent of z counts the number of parts and 
the exponent of t counts the number of overlined parts, as in the proof of Theorem 1.1. 
Now we consider the Durfee rectangle of size (k + 1) × k, where k is the largest integer 
such that there are k parts larger than k. We can distinguish two cases according to 
whether the bottom-right corner of the Durfee rectangle is overlined or not. When it 
is not overlined, zkqk2+k generates the Durfee rectangle. Moreover, (−tzq2;q)k

(zq)k+1
generates 

the overpartition below the Durfee rectangle and 
[
n−1
k

]
q,t

generates the overpartition to 
the right of the Durfee rectangle. When the bottom-right corner of the Durfee rectangle 
is overlined, tzkqk2+k generates the Durfee rectangle. Since the parts below the Durfee 
rectangle are less then k + 1 in this case, they are generated by (−tzq2;q)k−1

(zq)k . Moreover, 
there could be no further overlined k + 1, so 

[
n−2
k−1

]
q,t

generates the overpartition to the 
right of the Durfee rectangle. By replacing k by k + 1 in the second sum, we obtain the 
desired identity. �
3.3. The Lebesgue identity

Finally we also have a generalization of Sylvester’s identity [17], which is a finite 
version of the Lebesgue identity. We define

S(n; t, y, q) := 1 +
∑
j≥1

(
t

[
n− 1
j − 1

]
q,t

(−tyq)j−1

(yq)j−1
yjqj

2
+
[
n
j

]
q,t

(−tyq)j
(yq)j

yjqj
2

)
.

Theorem 3.4 (Generalization of Theorem 3.4 of [9]). For any positive integer n,

S(n; t, y; q) = (−tyq)n
(yq)n

. (3.1)
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The new variable t allows us to deduce Lebesgue’s identity from Theorem 3.4.

Corollary 3.5 (Lebesgue’s identity). For |q| < 1,

∑
k≥0

(−tq)kqk(k+1)/2

(q)k
= (−tq2; q2)∞

(q; q2)∞
.

Proof. In (3.1), we replace q by q2, t by tq, and y by 1/q. Then, by taking the limit as 
n goes to infinity, we find that

(−tq2; q2)∞
(q; q2)∞

= 1 +
∑
j≥1

tq
(−tq3; q2)j−1(−tq2; q2)j−1

(q2; q2)j−1(q; q2)j−1
q2j2−j

+ (−tq3; q2)j(−tq2; q2)j
(q2; q2)j(q; q2)j

q2j2−j

= 1 +
∑
j≥1

tq
(−xq2)2j−2

(q)2j−2
q2j2−j + (−tq2)2j

(q)2j
q2j2−j

= 1 +
∑
j≥1

(−tq)2j−1

(q)2j−1

tq(1 − q2j−1)
1 + tq

q2j2−j + (−tq)2j
(q)2j

1 + tq2j+1

1 + tq
q2j2−j

= 1 +
∑
j≥1

(−tq)2j−1

(q)2j−1

(
1 − 1 + tq2j

1 + tq

)
q2j2−j

+ (−tq)2j
(q)2j

(
q2j − 1 − q2j

1 + tq

)
q2j2−j

= 1 +
∑
j≥1

(−tq)2j−1

(q)2j−1
q2j2−j + (−tq)2j

(q)2j
q2j2+j

=
∑
j≥0

(−tq)jqj(j+1)/2

(q)j
. �

Thus we can see Theorem 3.4 as a finite version of the Lebesgue identity. Two different 
finite versions were given by Rowell [15], and Alladi and Berkovich [3], respectively. Alladi 
[2] gave another proof of the Lebesgue identity in terms of partitions into distinct odd 
parts.

4. Generalizations of q-binomial coefficients identities

In this section, we prove two-variable generalizations of Gaussian polynomial identi-
ties. As a first example, by tracking the number of parts, one can easily see that the 
following identity [5, Eqn. (3.3.9)] holds:
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n∑
j=0

qj
[
m + j

j

]
q

=
[
n + m + 1
m + 1

]
q

, (4.1)

which is a q-analogue of the classical identity

n∑
j=0

(
m + j

j

)
=

(
n + m + 1
m + 1

)
.

By separating the overpartitions according to whether the smallest part is overlined or 
not, we can prove the following two-parameter generalization of (4.1).

Proposition 4.1. For positive integers m and n,

[
m + n + 1
m + 1

]
q,t

= 1 +
n∑

j=1
qj

([
m + j

j

]
q,t

+ t

[
m + j − 1

j − 1

]
q,t

)
.

By taking the limit when m → ∞, we also find that

(−tq)n
(q)n

= 1 +
n∑

j=1
qj

(
(−tq)j
(q)j

+ t
(−tq)j−1

(q)j−1

)
= 1 +

N∑
j=1

(−t)jqj

(q)j
.

By setting q = t = 1, we find that

D(m + 1, n) = 1 +
n∑

j=1
(D(m, j) + D(m, j − 1)) .

Secondly, we find an over-Gaussian polynomial generalization of the identity [5, Eqn. 
3.3.10]

h∑
k=0

[
n

k

]
q

[
m

h− k

]
q

q(n−k)(h−k) =
[
m + n

h

]
q

,

which is a q-analogue of the classical identity

h∑
k=0

(
n

k

)(
m

h− k

)
=

(
n + m

h

)
.

Proposition 4.2. For positive integers m, n ≥ h,

h∑
k=0

q(n−k)(h−k)

([
n

k

]
q,t

[
m

h− k

]
q,t

+ t

[
n− 1
k

]
q,t

[
m− 1

h− k − 1

]
q,t

)
=

[
m + n

h

]
q,t

.
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Proof. For an overpartition λ generated by the right-hand side, we consider the largest 
rectangle of the form (n − k) × (h − k) fitting inside the Ferrers diagram of λ, i.e. 
its Durfee rectangle of size (n − k) × (h − k). It is clear that such a k is uniquely 
determined, and as λ has at most h parts, k is between 0 and h. We have two cases 
according to whether the bottom right corner of the Durfee rectangle is overlined or 
not. In the case where it is non-overlined, the overpartition on the right side of the 
Durfee rectangle does fit inside a (m − h + k) × (h − k) rectangle and the overpartition 
below the Durfee rectangle is inside a (n − k) × k rectangle. The generating function of 
such partitions is q(n−k)(h−k)[n

k

]
q,t

[
m

h−k

]
q,t

. In the case where the bottom right corner is 
overlined, we can see that the overpartition on the right side should be inside a (m −
h + k) × (h − k − 1) rectangle and the overpartition below the Durfee rectangle fits 
inside a (n − k − 1) × k rectangle, the generating function of such partitions equals 
tq(n−k)(h−k)[n−1

k

]
q,t

[
m−1

h−k−1
]
q,t

. �
By setting q = t = 1 and m = m +h in Proposition 4.2, we find that for n, m ≥ h > 0,

D(m+n, h) =
h∑

k=0

(D(n− k, k)D(m + k, h− k) + D(n− k − 1, k)D(m + k, h− k − 1)) .

Finally, in [13], Prellberg and Stanton used the following identity

1
(x)n

=
n−1∑
m=0

([
n + m− 1

2m

]
q2m2 x2m

(x)m
+

[
n + m

2m + 1

]
q2m2+m x2m+1

(x)m+1

)

to prove that for all n, the power series coefficients of

(1 − q) 1
(qn)n

+ q

are non-negative.
By employing a combinatorial reasoning on Durfee rectangles, we can deduce an over-

partition version of this identity.

Theorem 4.3. For any positive integer n,

(−tzq)n
(zq)n

= 1 +
n−1∑
m=1

([
n + m− 1

2m

]
q,t

+ t

[
n + m− 2
2m− 1

]
q,t

)
z2mq2m2+2m (−tzq)m

(zq)m

+
n∑

m=1

[
n + m− 1
2m− 1

]
q,t

z2m−1q2m2−m (−tzq)m
(zq)m

+
n∑

m=1

[
n + m− 2
2m− 2

]
q,t

tz2m−1q2m2−m (−tzq)m−1

(zq)m−1
.

(4.2)
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Proof. The left-hand side of (4.2) is the generating function for the number of over-
partitions into parts ≤ n, where the exponent of z counts the number of parts and the 
exponent of t counts the number of overlined parts. We first note that such overpartitions 
have a Durfee rectangle either of size (m +1) × 2m or of size m × (2m − 1). If the Durfee 
rectangle is of size (m + 1) × 2m and the bottom right corner of Durfee rectangle is not 
overlined, z2mq2m2+2m generates the Durfee rectangle and the largest part below the 
Durfee rectangle is less than m +1, since otherwise there would be a Durfee rectangle of 
size (m +1) × (2m +1). Therefore, (−tzq)m

(zq)m generates the overpartition below the Durfee 

rectangle and 
[
n+m−1

2m
]
q,t

generates the overpartition to the right of the Durfee rectangle. 

If the bottom right corner of the Durfee rectangle is overlined, then t
[
n+m−2
2m−1

]
q,t

generates 
the overpartition to the right of the Durfee rectangle while other parts remain the same 
as before. Similarly, the second (resp. third) sum generates overpartitions having Durfee 
rectangle of size m × (2m − 1) and the corner of the Durfee rectangle is non-overlined 
(resp. overlined). Note that the largest part below the Durfee rectangle is less than m if 
the bottom right corner of Durfee rectangle is overlined. �

By taking the limit n → ∞ in (4.2), we find that

(−tzq)∞
(zq)∞

= 1 +
∞∑

m=1

(
(−tq)2m
(q)2m

+ t
(−tq)2m−1

(q)2m−1

)
z2mq2m2+2m (−tzq)m

(zq)m

+
∞∑

m=1

(−tq)2m−1

(q)2m−1
z2m−1q2m2−m (−tzq)m

(zq)m

+
∞∑

m=1

(−tq)2m−2

(q)2m−2
tz2m−1q2m2−m (−tzq)m−1

(zq)m−1

=
∞∑

m=0
z2mq2m2+2m (−tq)2m(−tzq)m

(q)2m(zq)m
(
1 + tzqm+1)

+
∞∑

m=1
z2m−1q2m2−m (−tq)2m−1(−tzq)m

(q)2m−1(zq)m
(
1 + tzq3m)

.

This can be viewed as an overpartition analogue of

(−zq)∞ =
∑
k≥0

zkqk(3k+1)/2(1 + zq2k+1) (−zq)k
(q)k

,

which becomes Euler’s pentagonal number theorem when z = −1.
Numerics suggest an overpartition analogue of the result of Prellberg and Stanton.
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Conjecture 4.4. For all positive integers n, the coefficients of

(1 − q) (−qn)n
(qn)n

+ q

are non-negative.

5. The involution proof of Theorem 1.3

We now prove Theorem 1.3, using an involution similar to Franklin’s proof of Euler’s 
Pentagonal Number Theorem.

For convenience, we allow non-overlined 0 as a part. Then, we can interpret the coef-
ficient of qN in

(−1)k
[
n

k

]
q,1

as the number of overpartitions of N into “exactly” k parts ≤ n − k with weight (−1)k. 
Let Ok,n be the set of above-mentioned overpartitions. For an overpartition λ ∈ Ok,n

with k ≤ n, let π be the overpartition below its Durfee square and by μ the conjugate of 
the overpartition on the right of the Durfee square. If the size of the Durfee square is d
(≤ k), then π has k− d parts and μ has less than N − k− d parts. Define s(π) to be the 
smallest nonzero part of π and s(μ) to be the smallest part of μ. Note that μ does not 
have 0 as a part. If there is no nonzero part in π or μ then we define s(π) = 0 or s(μ) = 0
accordingly. We also define s2(π) (resp. s2(μ)) to be the second smallest nonzero part of 
π (resp. μ).

We build a sign-reversing involution φ on On = ∪0≤k≤nOk,n as follows:

Case 1. If s(π) = s(μ) = 0, then φ(λ) = λ. This case is invariant under this map.
Case 2. (See Fig. 1.) If s(π) = 0 and s(μ) > 0 or s(π) > s(μ), φ(λ) is obtained by 

moving s(μ) below s(π). Then, the resulting partition is in Ok+1,n since it has 
now k + 1 parts and the size of the largest part is decreased by 1, and thus it 
does not violate the maximum part condition for Ok+1,n.

Case 3. If s(π) < s(μ),
Case 3.1 (see Fig. 2) if s2(π) = s(π) and s(π) is not overlined, we overline s(π)

and s2(π) and move s(π) to the right of s(μ),
Case 3.2 if s2(π) > s(π) or s(π) is overlined, φ(λ) is obtained by moving s(π)

to the right of s(μ).
In both cases, the resulting overpartition is in Ok−1,N .

Case 4. s(π) = s(μ). We have to consider different subcases according to whether s(π)
and s(μ) are overlined or not.
For convenience, we define χ(a) = 1 if a is an overlined part and χ(a) = 0 if a
is a non-overlined part.
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Fig. 1. The case 2 of the involution φ.

Fig. 2. The case 3.1 of the involution φ.

Case 4.1. If χ(s(μ)) = χ(s(π)) = 1, we move s(μ) below s(π) and un-overline 
both s(π) and s(μ). Note that the resulting overpartition is in Ok+1,n.

Case 4.2. If χ(s(μ)) = 1 and χ(s(π)) = 0, we move s(μ) below s(π). The result-
ing overpartition is in Ok+1,n.

Case 4.3. If χ(s(μ)) = 0 and χ(s(π)) = 1, we move s(π) to the right of s(μ) and 
this gives an overpartition in Ok−1,n.

Case 4.4. If χ(s(μ)) = χ(s(π)) = 0
Case 4.4.1. if s2(π) = s(π), then overline s2(π) and s(π) and move 

s(π) to the right of s(μ),
Case 4.4.2. if s2(π) > s(π) or s2(π) = 0, we move s(π) to the right of 

s(μ).
In both cases, this gives an overpartition in Ok−1,n.

Before proving that φ is an involution, here we give one example.

Example. For an overpartition (5, 5, 3, 2, 0) ∈ O5,10, the size of the Durfee square is 3, 
π = (2, 0), and μ = (2, 2). Thus, s(π) = s(μ) = 2. Since χ(μ) = 1, we move 2 in μ below 
s(π). As a result, we have a new overpartition with π = (2, 2, 0) and μ = (2), which gives 
the overpartition (4, 4, 3, 2, 2, 0) ∈ O6,10. Note that φ((4, 4, 3, 2, 2, 0)) = (5, 5, 3, 2, 0) ∈
O5,10 as we expected.

Now we prove that this is true in general.
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Proposition 5.1. The map φ is an involution.

Proof. We need to prove that for every overpartition λ in On, we have φ(φ(λ)) = λ. 
Here also, we need to distinguish several cases.

Case 1. If s(π) = s(μ) = 0, then φ(λ) = λ, so φ(φ(λ)) = λ.
Case 2. If s(π) > s(μ),

Case 2.a. If s2(μ) > s(μ), then φ(λ) is obtained by moving s(μ) below s(π). 
Thus φ(λ) is in the case 3.2 and we obtain φ(φ(λ)) by moving s(μ)
back to its initial place. Therefore φ(φ(λ)) = λ.

Case 2.b. If s2(μ) = s(μ) and s(μ) is overlined, then φ(λ) is in the case 4.3 and 
φ(φ(λ)) = λ.

Case 2.c. If s2(μ) = s(μ) and s(μ) is non-overlined, then φ(λ) is in the case 
4.4.2 and φ(φ(λ)) = λ.

Case 3. If s(π) < s(μ),
Case 3.a. If s2(π) = s(π) and s(π) is not overlined, λ is in the case 3.1 and φ(λ)

is obtained by overlining s(π) and s2(π) and moving s(π) to the right 
of s(μ). Thus φ(λ) is in the case 4.1 and we obtain φ(φ(λ)) by moving 
s(π) back to its initial place and un-overlining s(π) and s2(π) again. 
Therefore φ(φ(λ)) = λ.

Case 3.b. If s2(π) = s(π) and s(π) is overlined, λ is in the case 3.2 and φ(λ) is 
obtained by moving s(π) to the right of s(μ). Thus φ(λ) is in the case 
4.2 and we obtain φ(φ(λ)) by moving s(π) back to its initial place. 
Therefore φ(φ(λ)) = λ.

Case 3.c. If s2(π) > s(π), λ is in the case 3.2, φ(λ) is in the case 2, and φ(φ(λ)) =
λ.

Case 4. If s(π) = s(μ),
Case 4.1. If χ(s(μ)) = χ(s(π)) = 1,

Case 4.1.a. If s2(μ) = s(μ), then φ(λ) is obtained by moving s(μ)
under s(π) and un-overlining both. Thus φ(λ) is in case 
4.4.1 and we get φ(φ(λ)) by moving s(μ) back to its ini-
tial place and overlining s(π) and s(μ) again. Therefore 
φ(φ(λ)) = λ.

Case 4.1.b. If s2(μ) > s(μ), then φ(λ) is in case 3.1 and φ(φ(λ)) = λ.
Case 4.2. If χ(s(μ)) = 1 and χ(s(π)) = 0,

Case 4.2.a. If s2(μ) = s(μ), then φ(λ) is obtained by moving s(μ)
under s(π). Thus φ(λ) is in case 4.3 and φ(φ(λ)) = λ.

Case 4.2.b. If s2(μ) > s(μ), then φ(λ) is in case 3.2 and φ(φ(λ)) = λ.
Case 4.3. If χ(s(μ)) = 0 and χ(s(π)) = 1,

Case 4.3.a. If s2(π) = s(π), then φ(λ) is obtained by moving s(π) to 
the right of s(μ). Thus φ(λ) is in case 4.2 and φ(φ(λ)) = λ.

Case 4.2.b. If s2(π) > s(π), then φ(λ) is in case 2 and φ(φ(λ)) = λ.
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Case 4.4. If χ(s(μ)) = χ(s(π)) = 0
Case 4.4.1. If s2(π) = s(π), then φ(λ) is obtained by overlining s2(π)

and s(π) and moving s(π) to the right of s(μ). Thus φ(λ)
is in case 4.1 and we get φ(φ(λ)) by moving s(π) back 
to its initial place and un-overlining s(π) and s(μ) again. 
Therefore φ(φ(λ)) = λ.

Case 4.4.2. If s2(π) > s(π), then φ(λ) is in case 2 and φ(φ(λ)) = λ.

Thus in every case, φ(φ(λ)) = λ. �
Now we are finally ready to prove Theorem 1.3.

Proof. From the sign reversing involution φ, we see that only square overpartitions sur-
vive after pairing λ ∈ On and φ(λ) ∈ On. Moreover, the square overpartition of j2 (with 
0 ≤ j ≤ �n/2	) is in Ok,n for k from j to n − j. Thus, the sum of weights is

n−j∑
k=j

(−1)k =
{

0, if n is odd,
(−1)j , if n is even,

as the summation runs over n − 2j + 1 consecutive integers from j. By considering 
overlined and non-overlined square overpartitions, we arrive at

n∑
k=0

(−1)k
[
n

k

]
q,1

=
{

0, if n is odd,
1 + 2

∑n/2
j=1(−1)jqj2 , if n is even,

as there is no overlined partition for the empty partition. �
A proof of Corollary 1.4 follows from the simple observation that the right-hand side 

of Corollary 1.4 corresponds to having exactly k positive parts in the involution instead 
of k non-negative parts.

Finally, by setting q = t = 1 in Theorem 1.3, we obtain the following.

Corollary 5.2. For all positive integers n,

n∑
k=0

(−1)kD(n− k, k) =

⎧⎪⎪⎨
⎪⎪⎩

0, if n is odd,
−1, if n ≡ 2 (mod 4),
1, if n ≡ 0 (mod 4).

6. (q, t)-log-concavity of the over q-binomial coefficients

In this section, we prove Theorem 1.5 by constructing an injection. Before starting the 
proof, we introduce some notation. Let P denote the set of overpartitions of non-negative 
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integers, and P(m, n) the set of overpartitions fitting inside a m × n rectangle. We also 
write #o(λ) for the number of overlined parts in λ and |λ| for the weight of λ (i.e. the 
sum of its parts).

Proof of Theorem 1.5. To prove Theorem 1.5, we want to find an injection φ from P(n −
k+1, k−1) ×P(n − � −1, � +1) to P(n −k, k) ×P(n − �, �), such that, if φ(λ, μ) = (η, ρ), 
then |λ| + |μ| = |η| + |ρ| and #o(λ) + #o(μ) = #o(η) + #o(ρ).

We generalize the proof in [7] to overpartitions. We define two maps A and L on P×P, 
and take φ to be the restriction of L ◦A to the domain P(n −k+1, k−1) ×P(n −� −1, � +1). 
We obtain the injectivity of φ by showing that

(i) A and L are involutions on P × P,
(ii) A 

(
P(n− k + 1, k − 1) × P(n− �− 1, � + 1)

)
⊂ P(n − k, k − 1) × P(n − �, � + 1),

(iii) L 
(
P(n− k, k − 1) × P(n− �, � + 1)

)
⊂ P(n − k, k) × P(n − �, �).

Let us start by defining A. Recall that we write overpartitions in weakly decreasing 
order. For a given overpartition pair (λ, μ) ∈ P ×P, we define I to be the largest integer 
satisfying

λI − μI+1 ≥
{
�− k + 1, if λI is not overlined,
�− k + 2, if λI is overlined,

(6.1)

where we define μi+1 = 0 if λi > 0, but the number of parts in μ is less than i + 1. If 
there is no such I, we define I = 0. Now we define

A(λ, μ) = (γ, τ),

where

γ := (μ1 + (�− k + 1), . . . , μI + (�− k + 1), λI+1, λI+2, . . .),

τ := (λ1 − (�− k + 1), . . . , λI − (�− k + 1), μI+1, μI+2, . . .).

Note that if λi (resp. μi), i ≤ I was overlined (resp. non-overlined) in λ (resp. μ), then 
λi − (� − k + 1) (resp. μi + (� − k + 1)) is overlined (resp. non-overlined) in τ (resp. γ).

Before defining L, let us introduce two maps S and C on P × P by

S(λ, μ) := (μ, λ) and C(λ, μ) := (λc, μc),

where λc is the conjugate of the overpartition λ. Then we define L as

L := S ◦ C ◦ A ◦ C ◦ S.
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We now want to verify that (i) is satisfied. Since S and C are involutions on P × P, 
we only need to show that A is an involution.

First of all, let us verify that A is well defined, i.e. if A(λ, μ) = (γ, τ) and (λ, μ) ∈
P × P, then γ and τ are also overpartitions. By definition, when considered separately, 
(μ1+(� −k+1), . . . , μI +(� −k+1)), (λI+1, λI+2, . . .), (λ1−(� −k+1), . . . , λI−(� −k+1))
and (μI+1, μI+2, . . .) are overpartitions so we only need to check that

μI + (�− k + 1) ≥
{
λI+1 if μI + (�− k + 1) is not overlined
λI+1 + 1 if μI + (�− k + 1) is overlined,

(6.2)

and

λI − (�− k + 1) ≥
{
μI+1 if λI − (�− k + 1) is not overlined
μI+1 + 1 if λI − (�− k + 1) is overlined.

(6.3)

Equation (6.3) is clear by (6.1). Let us turn to (6.2). By definition of I, we have

μI+2 + (�− k + 1) ≥
{
λI+1 + 1, if λI+1 is not overlined,
λI+1, if λI+1 is overlined.

If μI is not overlined, then μI ≥ μI+2, so

μI + (�− k + 1) ≥ λI+1.

If μI is overlined, then by definition of an overpartition μI ≥ μI+2 + 1, so

μI + (�− k + 1) ≥ λI+1 + 1.

This completes the verification of (6.2).
Now we want to check that A is an involution. Let (λ, μ) ∈ P×P and (γ, τ) = A(λ, μ). 

We want to show that A(γ, τ) = (λ, μ). By definition of I and A, the parts with indices 
≥ I + 1 of γ (resp. τ) are exactly the same as those of λ (resp. μ) and will therefore not 
be moved when we apply A again. Therefore the only thing left to check is that

γI − τI+1 ≥
{
�− k + 1, if γI is not overlined,
�− k + 2, if γI is overlined,

that is that

μI + (�− k + 1) − μI+1 ≥
{
�− k + 1, if μI is not overlined,
�− k + 2, if μ is overlined,
I
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which is clear by definition of an overpartition. Thus the I of (γ, τ) is the same as the 
one of (λ, μ), and A(γ, τ) = (λ, μ). The point (i) is proved.

Then, point (ii) is obvious from the definition of A.
Finally let us verify (iii). We have, by definition of S, C and A,

S
(
P(n− k, k − 1) × P(n− �, � + 1)

)
= P(n− �, � + 1) × P(n− k, k − 1),

C
(
P(n− �, � + 1) × P(n− k, k − 1)

)
= P(� + 1, n− �) × P(k − 1, n− k),

A
(
P(� + 1, n− �) × P(k − 1, n− k)

)
⊂ P(�, n− �) × P(k, n− k),

C
(
P(�, n− �) × P(k, n− k)

)
= P(n− �, �) × P(n− k, k),

S
(
P(n− �, �) × P(n− k, k)

)
= P(n− k, k) × P(n− �, �).

Thus (iii) is satisfied. �
Here we give an example to illustrate the map φ = L ◦ A = S ◦ C ◦ A ◦ C ◦ S ◦ A.

Example. When n = 10, k = 4, and � = 5, we consider the overpartition pair (λ, μ) ∈
P(7, 3) × P(4, 6), where

λ = (7, 6, 4), and μ = (4, 4, 3, 3, 2, 2).

Then, we see that

(λ, μ) A
−−→ ((6, 6, 4), (5, 4, 3, 3, 2, 2))
S
−−→ ((5, 4, 3, 3, 2, 2), (6, 6, 4))
C
−−→ ((6, 6, 4, 2, 1), (3, 3, 3, 3, 2, 2))
A
−−→ ((5, 5, 4, 2, 1), (4, 4, 3, 3, 2, 2))
C
−−→ ((5, 4, 3, 3, 2), (6, 6, 4, 2))
S
−−→ ((6, 6, 4, 2), (5, 4, 3, 3, 2)),

which is in P(6, 4) ×P(5, 5) as desired.

If we forbid overlined parts (i.e. if we set t = 0), the above proof becomes Butler’s 
proof of (1.2).

From Theorem 1.5, we can deduce several interesting corollaries.

Corollary 6.1. The over-(q, t)-binomial coefficients are (q, t)-log-concave, namely for all 
0 < k < n,
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[
n

k

]2

q,t

−
[

n

k − 1

]
q,t

[
n

k + 1

]
q,t

has non-negative coefficients as a polynomial in q and t.

By setting t = 0, we obtain Butler’s result on the q-log-concavity of q-binomial coef-
ficients.

Recall that we have shown that L is an injection from P(n −k, k−1) ×P(n − �, � +1)
to P(n − k, k) × P(n − �, �). From this we obtain the following.

Theorem 6.2. For all 0 < k ≤ � < n,
[
n

k

]
q,t

[
n

�

]
q,t

−
[
n− 1
k − 1

]
q,t

[
n + 1
� + 1

]
q,t

has non-negative coefficients as a polynomial in q and t.

By setting q = t = 1 in Theorems 1.5 and 6.2, we deduce the following result on 
Delannoy numbers.

Corollary 6.3. For all 0 < k ≤ � < n, we have

D(n− k, k)D(n− �, �) ≥ D(n− k + 1, k − 1)D(n− �− 1, � + 1),

D(n− k, k)D(n− �, �) ≥ D(n− k, k − 1)D(n− �, � + 1).

Now by setting � = k and n = n + k in Corollary 6.3 this yields the log-concavity of 
Delannoy numbers, which also implies their unimodality.

Corollary 6.4. For all n > k > 0, the Delannoy numbers D(n, k) satisfy

D(n, k)2 ≥ D(n + 1, k − 1)D(n− 1, k + 1),

D(n, k)2 ≥ D(n, k − 1)D(n, k + 1).

In particular, the Delannoy numbers D(n, k) are log-concave sequences.

Similarly, by setting q = 1 and t = q, in Theorems 1.5 and 6.2, we deduce the following 
result on Sagan’s q-Delannoy numbers.

Corollary 6.5. For all 0 < k ≤ � < n, we have

Dq(n− k, k)Dq(n− �, �) ≥ Dq(n− k + 1, k − 1)Dq(n− �− 1, � + 1),

Dq(n− k, k)Dq(n− �, �) ≥ Dq(n− k, k − 1)Dq(n− �, � + 1).

And by setting � = k and n = n + k in Corollary 6.5, we obtain the q-log-concavity 
of Sagan’s q-Delannoy numbers.
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Corollary 6.6. For all n > k > 0, Sagan’s q-Delannoy numbers Dq(n, k) satisfy that

Dq(n, k)2 −Dq(n + 1, k − 1)Dq(n− 1, k + 1)

and

Dq(n, k)2 −Dq(n, k − 1)Dq(n, k + 1)

have non-negative coefficients as polynomials in q. In particular Sagan’s q-Delannoy 
numbers Dq(n, k) are q-log-concave.

Moreover, we can also generalize Corollary 4.5 of [7] to over-(q, t)-binomial coefficients.

Corollary 6.7. For 0 ≤ k − r ≤ k ≤ � ≤ � + r ≤ n,

[
n

k

]
q,t

[
n

�

]
q,t

−
[

n

k − r

]
q,t

[
n

� + r

]
q,t

has non-negative coefficients as a polynomial in t and q.

Proof. The proof is similar to the one in [7]. By Theorem 1.5, all the terms of the 
telescoping sum

[
n

k

]
q,t

[
n

�

]
q,t

−
[

n

k − r

]
q,t

[
n

� + r

]
q,t

=
r−1∑
i=0

([
n

k − i

]
q,t

[
n

� + i

]
q,t

−
[

n

k − i− 1

]
q,t

[
n

� + i + 1

]
q,t

)

have non-negative coefficients. �
As usual, setting q = t = 1 yields some interesting result on Delannoy numbers.

Corollary 6.8. For 0 ≤ k − r ≤ k ≤ � ≤ � + r ≤ n,

D(n− k, k)D(n− �, �) ≥ D(n− k + r, k − r)D(n− � + r, � + r).

7. Unimodality conjectures

We now present a few conjectures and observations about the unimodality of 
over-(q, t)-binomial coefficients. Recall that a polynomial p(x) = a0 + a1x + · · ·+ arx

r is 
unimodal if there is an integer � (called the peak) such that

a0 ≤ a1 ≤ · · · ≤ a�−1 ≤ a� ≥ a�+1 ≥ · · · ≥ ar.
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It is well-known that Gaussian polynomials [18] and q-multinomial coefficients [5, The-
orem 3.11] are unimodal.

We extend this definition to polynomials in two variables. We say that a polynomial 
P (q, t) =

∑r
k=0

∑s
n=0 ak,nt

kqn is doubly unimodal if

(i) for every fixed k ∈ {0, . . . , r}, the coefficient of tk in P (q, t) is unimodal in q, that is 
there exists an integer � such that

ak,0 ≤ ak,1 ≤ · · · ≤ ak,�−1 ≤ ak,� ≥ ak,�+1 ≥ · · · ≥ ak,s,

(ii) for every fixed n ∈ {0, . . . , s}, the coefficient of qn in P (q, t) is unimodal in t, that 
is there exists an integer �′ such that

a0,n ≤ a1,n ≤ · · · ≤ a�′−1,n ≤ a�′,n ≥ a�′+1,n ≥ · · · ≥ ar,n.

Computer experiments suggest that the following conjectures are true.

Conjecture 7.1. For every positive integers m and n, the over-(q, t)-binomial coefficient [
m+n
n

]
q,t

is doubly unimodal.

Remark 1. By the formula (2.2) and using the fact that q-multinomial coefficients are 
unimodal, we can easily deduce that part (i) of the definition is satisfied. Therefore the 
challenging part of the conjecture is to prove that for every N , the coefficient of qN in [
m
n

]
q,t

is unimodal in t.

Conjecture 7.2. For every positive integers m and n, 
[
m+n
n

]
q,1 is unimodal in q.

Remark 2. Conjecture 7.1 doesn’t immediately imply Conjecture 7.2, as the peaks in q
are not the same for each tk. Therefore, even if they might be related, the two conjectures 
are of independent interest.

We illustrate our conjectures for m = n = 4 in Table 1.

Remark 3. Pak and Panova [12] recently proved that the classical q-binomial coefficients 
are strictly unimodal. Experiments show that it should also be the case for 

[
m+n
n

]
q,1, 

and for the coefficients of qN in 
[
m+n
n

]
q,t

(as a polynomial in t). However it is not the 

case for the coefficients of tk in 
[
m+n
n

]
q,t

(as a polynomial in q).
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Table 1
The coefficients of 

[8
4
]
t,q

.

n The coefficient of qn The coefficient of qn when t = 1
0 1 1
1 1 + t 2
2 2 + 2t 4
3 3 + 4t + t2 8
4 5 + 7t + 2t2 14
5 5 + 10t + 5t2 20
6 7 + 13t + 7t2 + t3 28
7 7 + 16t + 11t2 + 2t3 36
8 8 + 17t + 12t2 + 3t3 40
9 7 + 17t + 14t2 + 4t3 42
10 7 + 16t + 12t2 + 4t3 + t4 40
11 5 + 13t + 11t2 + 3t3 32
12 5 + 10t + 7t2 + 2t3 24
13 3 + 7t + 5t2 + t3 16
14 2 + 4t + 2t2 8
15 1 + 2t + t2 4
16 1 + t 2
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