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1. Introduction

An extension to superspace of the theory of symmetric functions, originating from 
the study of the supersymmetric generalization of the trigonometric Calogero-Moser-
Sutherland model, was developed in [1,3–5]. In this superspace setting, the polynomials 
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f(x, θ), where (x, θ) = (x1, . . . , xN , θ1, . . . , θN ), not only depend on the usual commut-
ing variables x1, . . . , xN but also on the anticommuting variables θ1, . . . , θN (such that 
θiθj = −θjθi, and θ2

i = 0). Natural generalizations of the monomial, power-sum, ele-
mentary and homogeneous symmetric functions, as well as of the Schur [2,13], Jack and 
Macdonald polynomials have been studied. To illustrate the surprising richness of the 
theory of symmetric functions in superspace, we could mention that there is even an 
extension to superspace of the original Macdonald positivity conjecture.

The ring QSym of quasisymmetric functions, which can be seen as a refinement of the 
ring of symmetric functions, was introduced in [10] while its Hopf algebra structure was 
studied in [7]. The ring QSym has many applications to symmetric function theory such 
as the elegant expansion of Macdonald polynomials in terms of fundamental quasisym-
metric functions [12]. The Hopf dual of QSym, the ring of noncommutative symmetric 
functions NSym, was defined in [9].

In this article, we undertake to extend to superspace the rich connection between 
symmetric function theory and quasisymmetric functions. As a first step in this direction, 
the goal of this article is twofold: (1) extend to superspace the well-known Hopf algebra 
structure of the ring of symmetric functions and (2) introduce the ring of quasisymmetric 
functions in superspace sQSym and understand its Hopf algebra structure as well as its 
Hopf dual, the ring of noncommutative symmetric functions in superspace sNSym.

To obtain the Hopf algebra structure of the ring Λ of symmetric functions in super-
space turns out to be relatively straightforward. We can give explicitly the coproduct on 
the basis of power-sum, elementary and homogeneous symmetric functions. Less trivial 
to obtain are formulas for the coproduct on the Schur functions in superspace sΛ and s̄Λ, 
which we derive from Cauchy-type identities. We then use these formulas to show that 
the ring of symmetric functions in superspace is a cocommutative and self-dual Hopf 
algebra. The action of the antipode S on these various bases is obtained by relating S
to a certain well understood involution ω on Λ.

The ring of quasisymmetric functions in superspace sQSym is obtained naturally 
from QSym by allowing each variable xi to be paired with an anticommuting variable 
θi (which gives rise to the concept of dotted composition). The coproduct in sQSym, 
the main ingredient needed to obtain its Hopf algebra structure, is defined as in the 
non-supersymmetric case by establishing a correspondence between the splitting of two 
alphabets and the tensor product sQSym ⊗ sQSym. The product, coproduct and an-
tipode is then given explicitly on the basis of monomial quasisymmetric functions in 
superspace, with the formulas being somewhat more complicated than in the usual case 
due to the presence of anticommuting variables. We define two families of fundamental 
quasisymmetric functions in superspace but, as discussed in Section 5.5, we will relegate 
their study to a forthcoming article [8] given the intricacies of the combinatorics at play.

Finally, we introduce the ring of noncommutative symmetric functions in superspace 
sNSym as the Hopf dual of sQSym. Just as in the usual quasisymmetric case, it has a 
multiplicative basis dual to the monomial quasisymmetric functions in superspace. We 
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show how the projection of sNSym onto Λ is still compatible with the inclusion of Λ
into sQSym (see Corollary 6.7).

2. Hopf algebras

We give a brief overview of Hopf algebras based on [6,11,14].
In the following, we consider K to be a field of characteristic 0 (that we will later 

always take to be Q).
An associative algebra (H, m, u) is a K-algebra H with a K-linear multiplication (or 

product) m : H⊗H → H and a K-linear unit map u : K → H such that

m ◦ (m⊗ 1) = m ◦ (1 ⊗m) : H⊗H⊗H → H ,

m(u(k) ⊗ a) = ka and m(a⊗ u(k)) = ak
(2.1)

for any a ∈ H and k ∈ K. For simplicity, we often write the product of a and b as ab
instead of m(a ⊗ b).

We say that f : H → H′, where (H′, m′, u′) is another associative algebra over K, is 
an algebra morphism if

f ◦m = m′ ◦ (f ⊗ f) and f ◦ u = u′ (2.2)

A coassociative algebra (H, Δ, ε) is a K-algebra H with a K-linear comultiplication 
(or coproduct) Δ : H → H⊗H and a K-linear counit ε : H → K such that

(Δ ⊗ 1) ◦ Δ = (1 ⊗ Δ) ◦ Δ : H → H⊗H⊗H ,

(ε⊗ 1) ◦ Δ(a) = 1 ⊗ a and (1 ⊗ ε) ◦ Δ(a) = a⊗ 1
(2.3)

for any a ∈ H. We say that f : H → H′, where (H′, Δ′, ε′) is another coassociative 
algebra over K, is a coalgebra morphism if

Δ′ ◦ f = (f ⊗ f) ◦ Δ , and ε = ε′ ◦ f (2.4)

A bialgebra (H, m, u, Δ, ε) is an associative algebra (H, m, u) together with a coasso-
ciative algebra (H, Δ, ε) such that either (i) Δ and ε are algebra morphisms or (ii) m

and u are coalgebra morphisms. A bialgebra H is said to be graded if it has submodules 
H0, H1, . . . such that

• H =
⊕

n≥0 Hn

• HiHj ⊆ Hi+j

• Δ(Hn) ⊆
⊕

i+j=n Hi ⊗Hj

If H0 has dimension 1 over K, we say moreover that H is connected.
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Finally, a bialgebra H is said to be a Hopf algebra if there exists a K-linear map 
(antipode) S : H → H such that

m ◦ (S ⊗ 1) ◦ Δ = u ◦ ε = m ◦ (1 ⊗ S) ◦ Δ (2.5)

We will need the following theorem.

Theorem 2.1. Every graded connected bialgebra H is a Hopf algebra with unique antipode 
defined recursively by the conditions S(1) = 1 and

S(a) = −
n−1∑
i=0

S(bi)cn−i whenever Δ(a) = a⊗ 1 +
n−1∑
i=0

bi ⊗ cn−i (2.6)

for a ∈ Hn, n ≥ 1, and bi, ci ∈ Hi.

Two Hopf algebras H and H′ are dually paired by a K-bilinear map 〈·, ·〉 : H′⊗H → K

whenever

〈fg, a〉 = 〈f ⊗ g,Δ(a)〉 , 〈f, ab〉 = 〈Δ′(f), a⊗ b〉 ,

〈1, a〉 = ε(a) , 〈f, 1〉 = ε′(f) , and 〈S′(f), a〉 = 〈f, S(a)〉 (2.7)

for any f, g ∈ H′ and a, b ∈ H. In the previous equation, the pairing 〈·, ·〉 : (H′ ⊗H′) ⊗
(H⊗H) → K is defined as the composition of maps

H′ ⊗H′ ⊗H⊗H 1⊗τ⊗1−−−−−→ H′ ⊗H⊗H′ ⊗H 〈·,·〉⊗〈·,·〉−−−−−−→ K(1 ⊗ 1) → K (2.8)

where the last map simply sends 1 ⊗1 to 1 and where the twist map τ : H′⊗H → H⊗H′

will be taken in this article to be such that

τ(f ⊗ a) = (−1)deg(f) deg(a)a⊗ f (2.9)

whenever H and H′ are graded bialgebras and f and a are homogeneous elements.1 Note 
that this amounts to

〈f ⊗ g, a⊗ b〉 = (−1)deg(f) deg(a)〈f, a〉〈g, b〉 (2.10)

A non-degenerate pairing satisfying (2.7) always exists if H is graded and each of its 
homogeneous component is finite dimensional. When H is dually paired to itself we say 
that H is self-dual.

1 This is the topologist’s twist map usually employed when the algebras come from homology or cohomol-
ogy [11]. We will see later that in our case the grading will be the fermionic degree.
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We should mention finally that, because we use the twist map (2.9), the antipode 
defined in (2.5) is a signed anti-homomorphism such that S(1) = 1 and S(ab) =
(−1)deg(a) deg(b)S(b)S(a) for all homogeneous elements a, b ∈ H.

3. Symmetric functions in superspace

We now present the main concepts of the theory of symmetric functions in superspace 
[1,3,4].

Definition 3.1. A superpartition Λ ∈ SPar is a pair of partitions (Λa; Λs) = (Λa, Λs) =
(Λ1, . . . , Λm; Λm+1, . . . , ΛN ), where Λa is a partition with m distinct parts and Λs is a 
usual partition (possibly including a string of 0’s a the end).

We will sometimes denote superpartitions using dotted partitions, where we dot the 
parts from Λa. For instance, (4, 3, 2; 4, 4, 3, 1, 1, 1), (4̇, 4, 4, 3̇, 3, 2̇, 1, 1, 1), and (4, 3, 2; 42,

3, 13) all denote the same superpartition.
Let Λ be a superpartition written as in Definition 3.1. The total degree of Λ is 

∑N
i=1 Λi

and is written |Λ|. Its fermionic degree (or sector) is m. We say Λ is a superpartition 
of (n|m) if its total degree is n and its fermionic sector is m. The length of Λ, denoted 
�(Λ), is equal to �(Λs) +m, where m is the fermionic degree of Λ and �(Λs) is the usual 
length of the partition Λs. The set of all superpartitions of (n|m) is denoted SPar(n|m). 
We also define SPar to be the set of all superpartitions.

Superpartitions can be represented by a Ferrers’ diagram where the dotted entries in 
the corresponding dotted partitions have an extra circle at the end. For instance, the 
superpartition (3, 1, 0; 2, 1) is represented by

�

�

�

(3.1)

The conjugate Λ′ of the superpartition Λ is the superpartition whose diagram is that of 
Λ reflected through the main diagonal. Conjugating the previous diagram gives

�
�

�
(3.2)

which means that the conjugate of (3, 1, 0; 2, 1) is (4, 2, 0; 1).
Before defining the ring of symmetric functions in superspace, we need to define the 

analogues of the monomial symmetric functions.
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3.1. Monomial symmetric functions

Let SParN be the set of superpartitions whose length is at most N . The functions 
mΛ(x1, . . . , xN ; θ1, . . . , θN ), Λ ∈ SParN , generalize the monomial symmetric functions. 
They are defined by

mΛ(x1, . . . , xN ; θ1, . . . , θN ) =
∑

σ∈SN

′
θσ(1) . . . θσ(m)x

Λ1
σ(1) . . . x

ΛN

σ(N), (3.3)

where the prime indicates that the sum is over distinct terms.

Example 3.2. If N = 3, we have m(2;3,1) = θ1x
2
1x

3
2x3 +θ1x

2
1x

3
3x2 +θ2x

2
2x

3
1x3 +θ2x

2
2x

3
3x1 +

θ3x
2
3x

3
1x2 + θ3x

2
3x

3
2x1

3.2. Ring of symmetric functions in superspace

It is known that

{mΛ(x1, . . . , xN ; θ1, . . . , θN )}Λ∈SParN

is a basis of the ring ΛN = Q[x1, . . . , xN ; θ1, . . . , θN ]SN of symmetric functions in super-
space in N variables, where SN is the symmetric group on N elements. Note that SN

acts diagonally on the two sets of variables, that is,

σ f(x1, . . . , xN ; θ1, . . . , θN ) = f(xσ(1), . . . , xσ(N); θσ(1), . . . , θσ(N)) (3.4)

for any σ ∈ SN and any f ∈ ΛN .
The monomial symmetric functions in superspace are stable with respect to the num-

ber of variables. This allows to consider the number of variables N to be infinite, or 
equivalently, to consider mΛ as the inverse limit of the monomial in a finite number 
of variables mΛ(x1, . . . , xN ; θ1, . . . , θN ). Given that ΛN is bi-graded with respect to the 
total degree and the fermionic degree, we can define the ring of symmetric functions in 
superspace as

Λ =
⊕

n,m≥0
Λn,m (3.5)

where

Λn,m =
{∑

Λ

cΛmΛ | cΛ ∈ Q, Λ ∈ SPar(n|m)
}

(3.6)

At times, it will also be convenient to use the simple grading with respect to the sum of 
the total degree and the fermionic degree:
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Λn =
⊕

j+k=n

Λj,k (3.7)

All the other important bases of the ring of symmetric functions have generalizations 
to superspace. We now describe the analogues of the elementary, homogeneous, and 
power sum symmetric functions. Later in the section, we will introduce the analogues of 
the Schur symmetric functions.

3.3. Elementary, homogeneous, and power sum symmetric functions

• The power-sum symmetric functions in superspace are pΛ = p̃Λ1 · · · p̃Λm
pΛm+1 · · · pΛ�

,

where p̃k =
N∑
i=1

θix
k
i and pr =

N∑
i=1

xr
i , for k ≥ 0, r ≥ 1; (3.8)

• The elementary symmetric functions in superspace are eΛ = ẽΛ1 · · · ẽΛm
eΛm+1 · · · eΛ�

,

where ẽk = m(0;1k) and er = m(∅;1r), for k ≥ 0, r ≥ 1; (3.9)

• The homogeneous symmetric functions in superspace are hΛ = h̃Λ1 · · · h̃Λm
hΛm+1

· · ·hΛ�
,

where h̃k =
∑

Λ	(n|1)(Λ1 + 1)mΛ and hr =
∑

Λ	(n|0) mΛ,

for k ≥ 0, r ≥ 1
(3.10)

Observe that when Λ = (∅; λ), we have that mΛ = mλ, pΛ = pλ, eΛ = eλ and hΛ = hλ are 
respectively the usual monomial, power-sum, elementary and homogeneous symmetric 
functions. Also note that if we define the operator d = θ1∂/∂x1 + · · ·+θN∂/∂xN

, we have

(k + 1) p̃k = d(pk+1) , ẽk = d(ek+1) and h̃k = d(hk+1) (3.11)

3.4. Scalar product

The scalar product that we will consider generalizes naturally the usual Hall scalar 
product. It is also best defined on power-sum symmetric functions.

Let 〈 〈 · , · 〉 〉 : Λ ×Λ → Z be defined as

〈〈 pΛ , pΩ 〉〉 = δΛΩ zΛs (3.12)

where zΛs = 1nΛs (1)nΛs(1)!2nΛs (2)nΛs(2)! · · · with nΛs(i) the number of parts of Λs equal 
to i. The monomial and homogeneous symmetric functions are dual with respect to that 
scalar product, that is,
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〈〈hΛ , mΩ〉〉 = δΛΩ (3.13)

We also define the endomorphism ω as the unique homomorphism such that

ω(pr) = (−1)r−1pr and ω(p̃�) = (−1)�p̃� (3.14)

for r = 1, 2, . . . and � = 0, 1, 2, . . . . The endomorphism ω is then easily seen to be an 
involution as well as an isometry of the scalar product (3.12), that is, 〈 〈ωf , ωg〉 〉 = 〈 〈f , g〉 〉
for all f, g ∈ Λ. It is known moreover that

ω(eΛ) = hΛ (3.15)

3.5. Schur functions in superspace

There are two genuine families of Schur functions in superspace, denoted sΛ and s̄Λ, 
which can be defined as generating sums of new types of tableaux. But because we will 
only need to use a few of their properties, we will simply define them (even though it is 
not very explicit) as special cases of Macdonald polynomials in superspace.

The Macdonald polynomials in superspace {P (q,t)
Λ }Λ can be defined as the unique 

basis of the space of symmetric functions in superspace such that

P
(q,t)
Λ = mΛ + smaller terms

〈〈P (q,t)
Λ , P

(q,t)
Ω 〉〉q,t = 0 if Λ �= Ω

(3.16)

where the triangularity is with respect to the dominance ordering on superpartitions and 
where the scalar product 〈〈·, ·〉〉q,t is defined on power-sum symmetric functions as

〈〈pΛ, pΩ〉〉q,t = δΛΩ q|Λ
a|zΛs

�(Λs)∏
i=1

1 − qΛs
i

1 − tΛ
s
i
, zλ =

∏
i≥1

ini(λ)ni(λ)! (3.17)

with m the fermionic degree of Λ and ni(λ) the number of parts equal to i in the 
partition λ.

Although the limiting cases q = t = 0 and q = t = ∞ of the scalar product 〈〈·, ·〉〉q,t
are degenerate and not well-defined respectively, the corresponding limiting cases of the 
Macdonald polynomials in superspace exist and are combinatorially very rich. We thus 
define the Schur functions in superspace sΛ and s̄Λ as:

sΛ = P
(0,0)
Λ and s̄Λ = P

(∞,∞)
Λ (3.18)

The following properties of the Schur functions in superspace can be found in [1,13].
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Proposition 3.3. Let s∗Λ and s̄∗Λ be the bases dual to the bases sΛ and s̄Λ respectively, that 
is, let s∗Λ and s̄∗Λ be such that

〈〈s∗Λ, sΩ〉〉 = 〈〈s̄∗Λ, s̄Ω〉〉 = δΛΩ (3.19)

Then

s∗Λ = (−1)
(m
2
)
ωs̄Λ′ and s̄∗Λ = (−1)

(m
2
)
ωsΛ′ (3.20)

where m is the fermionic degree of Λ.

The skew-Schur functions in superspace can be defined as in the non-supersymmetric 
case. Let sΛ/Ω and s̄Λ/Ω be defined such that

〈〈s∗Ω f, sΛ〉〉 = 〈〈f, sΛ/Ω〉〉 and 〈〈s̄∗Ω f, s̄Λ〉〉 = 〈〈f, s̄Λ/Ω〉〉 (3.21)

for all symmetric functions in superspace f .
We also define the analogs of the Littlewood-Richardson coefficients c̄ΛΓΩ and cΛΓΩ to 

be respectively such that

s̄Γ s̄Ω =
∑
Λ

c̄ΛΓΩ s̄Λ and sΓ sΩ =
∑
Λ

cΛΓΩ sΛ (3.22)

Note that it is immediate from the (anti-)commutation relations between the Schur 
functions in superspace that if Γ and Ω are respectively of fermionic degrees a and b, 
then c̄ΛΓΩ = (−1)ab c̄ΛΩΓ and cΛΓΩ = (−1)ab cΛΩΓ.

The well-known connection between Littlewood-Richardson coefficients and skew 
Schur functions extends to superspace.

Proposition 3.4. We have

sΛ/Ω =
∑
Γ

c̄Λ
′

Γ′Ω′ sΓ and s̄Λ/Ω =
∑
Γ

cΛΩΓ s̄Γ (3.23)

Furthermore, cΛΩΓ = cΛ
′

Γ′Ω′ (while we note that c̄ΛΩΓ �= c̄Λ
′

Γ′Ω′ in general).

4. The Hopf algebra of symmetric functions in superspace

In this section we show that the ring of symmetric functions in superspace Λ has a 
Hopf algebra structure which extends naturally that of the usual symmetric functions 
(see for instance [14] and [11]).
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4.1. Hopf algebra structure of Λ

As mentioned before, the ring Λ has a natural grading, called the fermionic degree, 
which counts the degree in the anticommuting variables of the functions. It is easy to 
check that

fg = (−1)abgf (4.1)

if f and g have fermionic degrees a and b respectively.
Extending what is usually done in the symmetric function case [15], we will identify 

Λ ⊗Q Λ (which from now on we will denote Λ ⊗ Λ for simplicity) with symmetric 
functions of two sets of variables (x1, x2, . . . ; θ1, θ2, . . . ) and (y1, y2, . . . ; φ1, φ2, . . . ), with 
the extra requirement that the variables θ and φ anticommute, that is, θiφj = −φjθi. 
This way, f ⊗ g corresponds to f(x; θ)g(y; φ) and Λ ⊗ Λ becomes an algebra with a 
product satisfying the relation

(f1 ⊗ g1) · (f2 ⊗ g2) = (−1)abf1f2 ⊗ g1g2 (4.2)

for f1, f2, g1, g2 ∈ Λ with g1 and f2 of fermionic degree a and b respectively.
The comultiplication Δ : Λ → Λ ⊗ Λ is defined as

(Δf)(x, y; θ, φ) = f(x, y; θ, φ) (4.3)

where as we just mentioned, f(x, y; θ, φ) is considered to be an element of Λ ⊗Λ. With 
this definition, the coproduct is immediately coassociative

(Δ ⊗ id) ◦ Δf = f(x, y, z; θ, φ, ϕ) = (id ⊗ Δ) ◦ Δf (4.4)

and an algebra morphism

Δ(fg) = Δ(f) · Δ(g) and Δ
(
u(1)

)
= Δ(1) = 1 ⊗ 1 (4.5)

since (fg)(x, y; θ, φ) = f(x, y; θ, φ)g(x, y; θ, φ) for all f, g ∈ Λ.
It is straightforward to check that the pi’s and p̃i’s are primitive elements, that is,

Δpi = pi ⊗ 1 + 1 ⊗ pi and Δp̃i = p̃i ⊗ 1 + 1 ⊗ p̃i (4.6)

The coproduct of the elementary and homogeneous symmetric functions also has a simple 
expression.

Proposition 4.1. We have

Δei =
∑

ek ⊗ e� and Δẽi =
∑

(ẽk ⊗ e� + e� ⊗ ẽk) (4.7)

k+�=i k+�=i
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and

Δhi =
∑

k+�=i

hk ⊗ h� and Δh̃i =
∑

k+�=i

(
h̃k ⊗ h� + h� ⊗ h̃k

)
(4.8)

Proof. The formulas for Δei and Δhi are well known [15]. We will use the operator d
that appears in (3.11) to derive the formulas for Δẽi and Δh̃i. On symmetric functions 
in superspace, the operator d can be defined as the unique linear operator such that

d(pk+1) = (k + 1) p̃k , d(p̃k) = 0 k = 0, 1, 2, . . . (4.9)

and such that

d(fg) = d(f)g + (−1)afd(g) (4.10)

whenever f is of fermionic degree a. We will now see that

Δ ◦ d = (d⊗ 1 + 1 ⊗ d) ◦ Δ (4.11)

The relation can be checked to hold when it acts on pi or p̃i by (4.6). Hence

Δ ◦ d(pΛ) = (d⊗ 1 + 1 ⊗ d) ◦ Δ(pΛ) (4.12)

for any Λ of length 1. Supposing by induction that (4.12) holds for pΛ with Λ of length 
n − 1, we have

Δ ◦ d(pΛpk) = Δ
(
d(pΛ)pk + (−1)mpΛd(pk)

)
= Δ

(
d(pΛ)

)
· Δ(pk) + (−1)mΔ(pΛ) · Δ

(
d(pk)

)
=

(
(d⊗ 1 + 1 ⊗ d) ◦ Δ(pΛ)

)
· Δ(pk) + (−1)mΔ(pΛ) · (d⊗ 1 + 1 ⊗ d) ◦ Δ(pk)

= (d⊗ 1 + 1 ⊗ d) ◦ Δ(pΛpk) (4.13)

where we assumed without loss of generality that Λ is of fermionic degree m. Similarly, 
since d(p̃k) = 0, we have again by induction that

Δ ◦ d(pΛp̃k) = Δ
(
d(pΛ)p̃k

)
= Δ

(
d(pΛ)

)
· Δ(p̃k)

=
(
(d⊗ 1 + 1 ⊗ d) ◦ Δ(pΛ)

)
· Δ(p̃k)

= (d⊗ 1 + 1 ⊗ d) ◦ Δ(pΛp̃k) (4.14)

Hence (4.12) holds for any superpartition Λ of length n, which proves (4.11) by induction.
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Using (3.11), we thus have

Δẽi = Δ ◦ d(ei+1) = (d⊗ 1 + 1 ⊗ d) ◦ Δ(ei+1) = (d⊗ 1 + 1 ⊗ d)
∑

k+�=i+1

ek ⊗ e�

=
∑

k+�=i+1

(ẽk−1 ⊗ e� + ek ⊗ ẽ�−1)

(4.15)

which proves the formula for Δẽi. The formula for Δh̃i can be deduced from that of 
Δhi+1 in exactly the same way. �

We now prove that Λ is a Hopf algebra. Define the counit ε : Λ → Q to be the 
identity on Λ0 and the null operator on Λn for n > 0, where we use the grading defined 
in (3.7). Since the counit is easily seen to be an algebra morphism, we have that Λ
is a bialgebra by (4.5). Furthermore, Λ is a graded bialgebra since Λ�Λn ⊆ Λ�+n and 
Δ(Λn) ⊆

⊕
k+�=n Λk ⊗ Λ�, the latter property being a consequence of (4.6). Moreover, 

Λ is connected given that Λ0 = Q. Therefore, from Theorem 2.1, Λ is automatically a 
Hopf algebra (the antipode will be described explicitly later).

In order to obtain the coproduct of the Schur functions in superspace, we now prove 
a proposition expressing how sΛ(x, y; θ, φ) splits into Schur functions in superspace of 
each alphabet. It relies on the use of the following Cauchy-type identities

∏
i,j

1
(1 − xiyj − θiφj)

=
∑
Λ

sΛ(x; θ)s∗Λ(y;φ) =
∑
Λ

s̄Λ(x; θ)s̄∗Λ(y;φ) (4.16)

which are consequences of the duality in Proposition 3.3 (see [1]).

Proposition 4.2. We have

sΛ(x, y; θ, φ) =
∑
Ω

sΛ/Ω(x; θ)sΩ(y;φ) and

s̄Λ(x, y; θ, φ) =
∑
Ω

s̄Λ/Ω(x; θ)s̄Ω(y;φ)
(4.17)

Proof. We will prove only the first formula since the other one can be proved in exactly 
the same way. Using (4.16), we have, on the one hand

∏
i,j

1
(1 − xizj − θiϕj)

∏
k,�

1
(1 − ykz� − φkϕ�)

=
∑
Λ

sΛ(x, y; θ, φ)s∗Λ(z;ϕ) (4.18)

and, on the other hand,
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∏
i,j

1
(1 − xizj − θiϕj)

∏
k,�

1
(1 − ykz� − φkϕ�)

=
∑
Ω,Γ

sΩ(x; θ)s∗Ω(z;ϕ)sΓ(y;φ)s∗Γ(z;ϕ)
(4.19)

Now, applying the endomorphism ω on the first equation of (3.22) gives

(−1)
(a
2
)
+
(b
2
)
s∗Γ′s∗Ω′ =

∑
Λ

(−1)
(c
2
)
c̄ΛΓΩs

∗
Λ′ ⇐⇒ (−1)abs∗Γs∗Ω =

∑
Λ

c̄Λ
′

Γ′Ω′s∗Λ (4.20)

where a, b and c are the fermionic degrees of Γ, Ω and Λ respectively. In the equivalence, 
we used the fact that

(
a

2

)
+

(
b

2

)
+ ab =

(
a + b

2

)
=

(
c

2

)
(4.21)

since c = a + b (otherwise c̄Λ
′

Ω′Γ′ = 0).
From (4.18) and (4.19), we thus get

∑
Λ

sΛ(x, y; θ, φ)s∗Λ(z;ϕ) =
∑

Ω,Γ,Λ

c̄Λ
′

Ω′Γ′sΩ(x; θ)sΓ(y;φ)s∗Λ(z;ϕ) (4.22)

where we used the relation

s∗Ω(z;ϕ)sΓ(y;φ) = (−1)absΓ(y;φ)s∗Ω(z;ϕ) (4.23)

Using Proposition 3.4 in (4.22) then gives

∑
Λ

sΛ(x, y; θ, φ)s∗Λ(z;ϕ) =
∑
Γ,Λ

sΛ/Γ(x; θ)sΓ(y;φ)s∗Λ(z;ϕ) (4.24)

which proves the proposition. �
The coproducts of sΛ and s̄Λ can now be given explicitly.

Corollary 4.3. We have

ΔsΛ =
∑
Ω

sΛ/Ω ⊗ sΩ and Δs̄Λ =
∑
Ω

s̄Λ/Ω ⊗ s̄Ω (4.25)

Or, equivalently by Proposition 3.4,

ΔsΛ =
∑
Ω,Γ

c̄Λ
′

Γ′Ω′ sΓ ⊗ sΩ and Δs̄Λ =
∑
Ω,Γ

cΛΩΓ s̄Γ ⊗ s̄Ω (4.26)
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Given that cΛ′

Γ′Ω′ = (−1)abcΛ′

Ω′Γ′ if a and b are the fermionic degrees of Γ and Ω
respectively, the previous corollary immediately implies that

τ ◦ Δf = Δf (4.27)

where the twist map τ : H⊗H → H⊗H is such that τ(g⊗ h) = (−1)ab(h ⊗ g) if g and 
h are respectively of fermionic degrees a and b (the topologist’s twist map introduced in 
Section 2). Hence Λ is a cocommutative Hopf algebra (in the topologist’s sense due to 
the extra signs).

4.2. The antipode and the involution ω

The Hopf algebra Λ has a unique antipode S : Λ → Λ which is such that S(a) = −a

if a is a primitive element by (2.6). Since power-sums, pi, p̃j for i ≥ 1 and j ≥ 0 are 
primitive generators of Λ, S can be defined by its action on the powers-sums:

S(pi) = −pi, S(p̃j) = −p̃j =⇒ S(pΛ) = (−1)�(Λ)pΛ (4.28)

since S(p̃Λ1 · · · p̃Λm
) = (−1)

(m
2
)
S(p̃Λm

) · · ·S(p̃Λ1) = (−1)m+
(m
2
)
p̃Λm

· · · p̃Λ1 = (−1)mp̃Λ1

· · · p̃Λm
. Note that the sign in the first equality stems from the fact that S is a signed 

anti-homomorphism, that is, that it satisfies the relation S(fg) = (−1)abS(g)S(f) for 
f, g ∈ Λ of fermionic degrees a and b respectively.

The antipode S connects with the involution ω in the following way.

Proposition 4.4. We have that

S(f) = (−1)m+nω(f) (4.29)

if f ∈ Λn,m.

Proof. From the definition of ω, we have

ω(pΛ) = (−1)|Λ|−�(Λs)pΛ (4.30)

The result thus holds since �(Λ) = �(Λs) + m and |Λ| = n imply that

(−1)m+nω(pΛ) = (−1)�(Λ)pΛ = S(pΛ) (4.31)

as we just saw in (4.28). �
Proposition 3.3 and (3.15) then immediately give
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Corollary 4.5. If Λ is a superpartition of total degree n and fermionic degree m, then the 
antipode S is such that

S(eΛ) = (−1)m+nhΛ , S(sΛ) = (−1)
(m+1

2
)
+ns̄∗Λ′ , and

S(s̄Λ) = (−1)
(m+1

2
)
+ns∗Λ′

(4.32)

where s∗Λ and s̄∗Λ are the dual bases to sΛ and s̄Λ respectively (see Proposition 3.3).

4.3. Self-duality

The scalar product on Λ defined in (3.12) can be extended to Λ ⊗Λ.

Definition 4.6. The ring Λ ⊗Λ has a scalar product defined as

〈〈f1 ⊗ g1, f2 ⊗ g2〉〉 = (−1)ab〈〈f1, f2〉〉〈〈g1, g2〉〉 (4.33)

for f1, f2, g1, g2 ∈ Λ with g1 and f2 of fermionic degree a and b respectively.

We should note that this is simply the pairing described in (2.8) in the case where 
H = H′ = Λ.

The following proposition implies that the Hopf algebra Λ is self-dual (in the topol-
ogist’s sense) given that the other conditions in (2.7) are trivially satisfied (the one 
involving the antipode follows from (4.28)).

Proposition 4.7. We have

〈〈Δf, g ⊗ h〉〉 = 〈〈f, gh〉〉 (4.34)

for f, g, h ∈ Λ.

Proof. It suffices to show that

〈〈ΔsΛ, s
∗
Ω ⊗ s∗Γ〉〉 = 〈〈sΛ, s

∗
Ωs

∗
Γ〉〉 (4.35)

From Corollary 4.3 and Proposition 3.4, we have that

〈〈ΔsΛ, s
∗
Ω ⊗ s∗Γ〉〉 = 〈〈

∑
Δ

sΛ/Δ ⊗ sΔ, s∗Ω ⊗ s∗Γ〉〉 = (−1)ab〈〈sΛ/Γ, s
∗
Ω〉〉 = (−1)abc̄Λ

′

Ω′Γ′ (4.36)

where a and b are the fermionic degrees of Ω and Γ respectively. On the other hand, if 
we use (4.20), we get

〈〈sΛ, s
∗
Ωs

∗
Γ〉〉 = (−1)abc̄Λ

′

Ω′Γ′ (4.37)

and the proposition follows. �
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We have thus proven the following proposition.

Proposition 4.8. The ring Λ of symmetric functions in superspace is a cocommutative 
and self-dual Hopf algebra (in the topologist’s sense).

5. The Hopf algebra of quasisymmetric functions in superspace

Before introducing the ring of quasisymmetric functions in superspace, we define our 
analogues of compositions.

Definition 5.1. A dotted composition (α1, α2, . . . , αl) is a vector whose entries either 
belong to {1, 2, 3, . . . } or to {0̇, 1̇, 2̇, . . . }. The length of α, denoted �(α), is the number 
of parts l of α. We define the sequence η = η(α) = (η1, . . . , η�(α)) by

ηi =
{

1 if αi is dotted,
0 otherwise.

(5.1)

We let |α| := α1 + · · · + αl be the total degree of α (in the sum, the dotted entries are 
considered as if they did not have dots on them). The number of dotted parts of α is 
called the fermionic degree of α. We write xαi

j whether αi is dotted or not.

The definition of the ring of quasisymmetric functions in superspace then extends 
naturally that of the usual quasisymmetric functions [10,11,14].

Definition 5.2. Let R(x, θ) be the ring of formal power series of finite degree in 
Q[[x1, x2, . . . , θ1, θ2, . . .]]. The quasisymmetric functions in superspace sQSym will be 
the Q-vector space of the elements f of R(x, θ) such that for every dotted compositions 
α = (α1, . . . , α�) with η = η(α) as in (5.1), all monomials θη1

i1
· · · θη�

i�
xα1
i1

· · ·xα�
i�

in f with 
indices i1 < · · · < i� have the same coefficient.

It is easy to see that sQSym is bigraded with respect of the total degree and the 
fermionic degree, that is,

sQSym =
⊕
n,m

sQSymn,m (5.2)

where sQSymm,n is the subspace of quasisymmetric functions in superspace of total 
degree n and fermionic degree m.

5.1. Monomial quasisymmetric functions in superspace

There is a natural basis of sQSym provided by the generalization of the monomial 
quasisymmetric functions to superspace.
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Definition 5.3. Let α be a dotted composition with �(α) = l. Then the monomial qua-
sisymmetric function in superspace Mα is defined as

Mα =
∑

i1<i2<···<il

θη1
i1
θη2
i2

· · · θηl

il
xα1
i1

· · ·xαl
il

(5.3)

where η = η(α).

Example 5.4. Restricting to four variables, we have

M3̇,1,2(x1, x2, x3, x4; θ1, θ2, θ3, θ4) = θ1x
3
1x2x

2
3 + θ1x

3
1x2x

2
4 + θ1x

3
1x3x

2
4 + θ2x

3
2x3x

2
4,

and

M3,1̇,2̇(x1, x2, x3, x4; θ1, θ2, θ3, θ4) = θ2θ3x
3
1x2x

2
3+θ2θ4x

3
1x2x

2
4+θ3θ4x

3
1x3x

2
4+θ3θ4x

3
2x3x

2
4.

For a dotted composition α, we will say that the term θη1
1 θη2

2 · · · θηl

l xα1
1 · · ·xαl

l is the
leading term of Mα. By symmetry, it is obvious that it suffices to know the coefficients 
of the leading terms that appear in a given f ∈ sQSym in order to get its full expansion 
in monomial quasisymmetric functions in superspace.

The ring of symmetric functions belongs to sQSym since the monomial symmetric 
function mΛ expands in the following way in terms of Mα’s:

mΛ =
∑

α : α̃=γ

(−1)σ(α)Mα (5.4)

where γ is the dotted composition (Λ̇a
1, . . . , Λ̇a

m, Λs
1, . . . , Λs

l ) obtained from Λ, and where 
α̃ = γ whenever the entries of α rearrange to γ. Finally, σ(α) is the sign of the permuta-
tion needed to reorder the dotted entries of α (read from left to right) to (Λ̇a

1, . . . , Λ̇a
m).

We will now see that sQSym is a also ring. For this purpose, we first need to understand 
how monomials in superspace multiply. Let α = (α1, . . . , αl) and β = (β1, . . . , βk) be two 
dotted compositions. The product rule is similar to the non-super case, with only the 
addition of a sign. We begin our explanation with the consideration of a typical product 
of two monomials Q1 and Q2 in MαMβ giving rise to a leading term:

Q1Q2 = (θη1
i1

· · · θη�

i�
xα1
i1

· · ·xα�
i�

)(θη
′
1

i′1
· · · θη

′
�′

i′
�′
xβ1
i′1

· · ·xβ�′
i′
�′

) = (−1)sθμ1
1 · · · θμr

r xγ1
1 · · ·xγr

r

for some sign s, where η = η(α), η′ = η(β) and μ = η(γ). Since θiθj = −θjθi, we must 
consider how the indices of the monomials combine to determine the sign s. If we let

S = S(α, β) = {(p, q)|αq is dotted in α, βp is dotted in β, and i′p < iq},

then it is easy to deduce that s = |S| since s is the number of pairs θiqθi′p which have to 
switch to θi′pθiq when we put the variables in increasing order. If h = iq = i′p and both 
αq and βp are dotted, then Q1Q2 = 0.
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The dotted composition γ is given by

γh =

⎧⎪⎪⎨
⎪⎪⎩
αq if h = iq, h �= i′p all p,
βp if h = i′p, h �= iq all q,
αq + βp if h = iq and h = i′p,

(5.5)

where in all cases, γh is dotted if either αq or βp is.
As in [14], we can encode the pair Q1, Q2 as a path. We make a �′ by � grid and label 

the rows by β and the columns by α. If both αq and βp are dotted, then place a dot 
in the cell in row p and column q. The path P in the (x, y) plane from (0, 0) to (�, �′)
with steps (0, 1), (1, 0), and (1, 1) is similar to the paths defined in [14, Section 3.3.1]. 
In our case, paths are not allowed to step diagonally over cells where both αq and βp

are dotted. The hth step of P will be horizontal if γh = αq, which is case one of (5.5), 
and it will be vertical if γh = βp, which is case two of (5.5). Finally it will be diagonal 
in the third case, where γh = αq + βp. The path P is in bijection with Q1 and Q2, 
and as such, the set of all paths determine all possible leading terms, or equivalently, all 
possible quasi-monomials that appear in the product. We denote the dotted composition 
corresponding to the path P by γ = Γ(P ). We call the set of all paths which can be 
obtained from α and β in this manner the set of (α, β) overlapping shuffles.

Suppose αq and βp are both dotted and the path P lies above the (p, q) cell. Then P
took the vertical step over row p before taking the horizonal step over column q, meaning 
i′p < iq. The pair (p, q) is an element of S. Similarly, if P lies below, then (p, q) will not 
be an element of S. We have now verified the following proposition.

Proposition 5.5. Suppose α and β are dotted compositions. Then

MαMβ =
∑
P

sign(P )MΓ(P ) (5.6)

where the sum is over all (α, β) overlapping shuffles and where the sign of the path P is 
given by

sign(P ) = (−1)number of dots below the path P (5.7)

Example 5.6. Let α = (3̇, 2) and β = (4̇, 1).

�

3̇ 2

4̇

1

Then M3̇,2M4̇,1 = M3̇,2,4̇,1 +M3̇,6̇,1 +M3̇,4̇,2,1 +M3̇,4̇,3 +M3̇,4̇,1,2 −M4̇,3̇,2,1 −M4̇,3̇,3 −
M4̇,3̇,1,2 −M4̇,4̇,2 −M4̇,1,3̇,2
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5.2. Hopf algebra structure of sQSym

Now that we have established that sQSym is an algebra, we will show that it is a also 
a Hopf algebra. As we did earlier in the case of symmetric functions in superspace, we 
will identify sQSym⊗Q sQSym (which from now on will be denoted sQSym⊗ sQSym for 
simplicity) with quasisymmetric functions in two sets of variables (x1, x2, . . . ; θ1, θ2, . . . )
and (y1, y2, . . . ; φ1, φ2, . . . ), where x1 < x2 < . . . < y1 < y2 < . . . and θ1 < θ2 < . . . <

φ1 < φ2 < . . ., with the extra requirement that the variables θ and φ anticommute. This 
way, f ⊗ g corresponds to f(x; θ)g(y; φ) and sQSym ⊗ sQSym becomes an algebra with 
a product satisfying the relation

(f1 ⊗ g1) · (f2 ⊗ g2) = (−1)abf1f2 ⊗ g1g2 (5.8)

for f1, f2, g1, g2 ∈ sQSym with g1 and f2 of fermionic degree a and b respectively.
The comultiplication Δ : sQSym → sQSym ⊗ sQSym is defined as

(Δf)(x, y; θ, φ) = f(x, y; θ, φ) (5.9)

where as we just mentioned, f(x, y; θ, φ) is considered an element of sQSym ⊗ sQSym. 
Contrary to the symmetric functions in superspace case, it is not immediately obvious 
this time that the coproduct is coassociative given the ordering on the variables (see 
the corresponding discussion in [11] in the non-supersymmetric case). But we will see in 
Proposition 5.9 that it easily follows from the next proposition.

Given the dotted compositions α = (α1, . . . , αk) and β = (β1, . . . , β�), we define their
concatenation α · β to be the dotted composition (α1, . . . , αk, β1, . . . , β�).

Proposition 5.7. We have, for any dotted composition α = (α1 . . . , αl), that

Δ(Mα) =
∑

β·γ=α

Mβ ⊗Mγ =
l∑

k=0

Mα1,...,αk
⊗Mαk+1,...,αl

(5.10)

Proof. For any k ∈ {0, 1, · · · , l}, a monomial in Mα(x, y; θ, φ) is written uniquely in the 
form

θη1
i1

· · · θηk

ik
φ
ηk+1
j1

· · ·φηl

jl−k
xα1
i1

· · ·xαk
ik

y
αk+1
j1

· · · yαl
jl−k

= θη1
i1

· · · θηk

ik
xα1
i1

· · ·xαk
ik

φ
ηk+1
j1

· · ·φηl

il−k
y
αk+1
j1

· · · yαl
jl−k

with i1 < · · · < ik and j1 < · · · < jl−k. �
Example 5.8.

Δ(M2̇,1,3̇,4) = 1 ⊗M2̇,1,3̇,4 + M2̇ ⊗M1,3̇,4 + M2̇,1 ⊗M3̇,4 + M2̇,1,3̇ ⊗M4 + M2̇,1,3̇,4 ⊗ 1
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Proposition 5.9. The Q-algebra sQSym is a commutative graded connected Hopf alge-
bra. Moreover, it contains the ring of symmetric functions in superspace Λ as a Hopf 
subalgebra.

Proof. The coassociativity of the coproduct is proved by verifying (Δ ⊗ id) ◦ Δ = (id ⊗
Δ) ◦ Δ on the monomial basis. We have

(
(Δ ⊗ id) ◦ Δ

)
Mα =

l∑
k=0

ΔMα1,...,αk
⊗Mαk+1,...,αl

=
l∑

k=0

k∑
i=0

Mα1,...,αi
⊗Mαi+1,...,αk

⊗Mαk+1,...,αl
(5.11)

which shows the coassociativity since 
(
(id⊗Δ) ◦Δ

)
Mα obviously yields the same result.

The coproduct is an algebra morphism given that (fg)(x, y; θ, φ) = f(x, y; θ, φ)g(x, y;
θ, φ), for all f, g ∈ sQSym implies

Δ(fg) = Δ(f) · Δ(g) (5.12)

(the other condition in (2.2) is trivially satisfied).
The counit ε is as usual the identity on sQSym0,0 = Q and the null operator on the 

rest of sQSym. It is easily checked that ε is an algebra morphism. Defining the grading

sQSymn =
⊕

k+i=n

sQSymk,i (5.13)

it is also easy to see that sQSym is a graded and connected bialgebra. By Theorem 2.1, 
this implies that sQSym is a Hopf algebra.

Finally, to prove that Λ is a Hopf subalgebra of sQSym, we need to prove that when 
Δ is restricted to the subalgebra Λ ⊂ sQSym, it is equal to the coproduct Δ in Λ. It 
suffices to prove the claim on pi and p̃k for i ≥ 1 and k ≥ 0 since they generate Λ. Using 
(4.7) and Proposition 5.7, this is an immediate consequence of the fact that pi = Mi and 
p̃k = Mk̇. �
5.3. Partial orders on compositions

We will define two partial orders on dotted compositions. Given compositions α and 
β, we say that α covers β in the first partial order, written β � α, if we can obtain α by 
adding together a pair of adjacent non-dotted parts of β. The first partial order is the 
transitive closure of this cover relation. If β � α we say that β strongly refines α or that 
α strongly coarsens β.

The second partial order on dotted compositions is generated by the following covering 
relation: β � α if we can obtain α by adding together two adjacent parts of β, not both 
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Fig. 1. The poset on the left is all dotted compositions above (1, 1, ̇2, 1, 2) using the partial order (�). On 
the right the poset is again all dotted compositions above (1, 1, ̇2, 1, 2), but using the partial order (�).

parts dotted (note that adding together a dotted part with an non-dotted one yields 
a dotted part). If β � α we say this time that β weakly refines α or that α weakly 
coarsens β.

Please see Fig. 1 for the two orders. When no parts are dotted, both covering relations 
become the covering relation on compositions described in [14] and [11].

5.4. Antipode

We now give the action of the antipode S : sQSym → sQSym explicitly on monomial 
quasisymmetric functions in superspace.

Let the reverse of a composition α = (α1, . . . , αk) be rev(α) = (αk, . . . , α1).

Proposition 5.10. Let α be a dotted composition. Then

S(Mα) = (−1)�(α)+
(mα

2
) ∑
γ � rev(α)

Mγ (5.14)

where mα is the fermionic degree of the dotted composition α.

Before proving the proposition, we give a few examples:

Example 5.11.

S(M1̇,3,2̇) = (−1)3+
(2
2
) (
M2̇,3,1̇ + M5̇,1̇ + M2̇,4̇

)
and

S(M3̇,2,2̇,1,1̇) = (−1)5+
(3
2
)(
M1̇,1,2̇,2,3̇ + M2̇,2̇,2,3̇ + M2̇,2̇,5̇ + M2̇,4̇,3̇ + M1̇,1,2̇,5̇ +

M1̇,3̇,2,3̇ + M1̇,3̇,5̇ + M1̇,5̇,3̇ + M1̇,1,4̇,3̇ + M1̇,1,2̇,5̇

)
.
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Proof. The proof proceeds by induction on � = �(α). It generalizes that of [7] (also given 
in [11]) in the quasisymmetric case.

We prove the base cases � = 0, 1 directly. For � = 0, we have S(M∅) = S(1) =
(−1)0Mrev(∅). For � = 1, we have from Proposition 5.7 that Mr and Mṙ are primitive 

elements. Therefore, S(Mr) = −Mr = (−1)1+
(0
2
)
Mr and S(Mṙ) = −Mṙ = (−1)1+

(1
2
)
Mṙ

and the result holds for � = 1.
For �(α) ≥ 2, we need to verify, by (2.6) and (5.10), that

S(Mα1,...,α�
) = −

�−1∑
i=0

S(Mα1,...,αi
) ·Mαi+1,...,α�

(5.15)

holds. By induction, this amounts to checking the following identity:

(−1)�(α)+
(mα

2
) ∑
γ � rev(α)

Mγ =
�−1∑
i=0

∑
β�αi,...,α1

(−1)i+1+
(mβ

2

)
Mβ ·Mαi+1,...,α�

(5.16)

We will see that most terms cancel two by two in the expansions of the products Mβ ·
Mαi+1,...,α�

in (5.16), and that those that do not cancel are exactly the Mγ ’s such that 
γ � rev(α) (with the right sign).

Unless β = ∅, the first part of β is of the form β1 = αi + αi−1 + · · ·αh where h ≤ i. 
Hence each term Mγ in the expansion of Mβ ·M(αi+1,...,α�) is such that its first entry γ1
has one of the possible three forms:

I. γ1 = αi + αi−1 + · · · + αh

II. γ1 = αi+1 + (αi + αi−1 + · · · + αh)
III. γ1 = αi+1

We will see that, for i = 1, . . . , � − 1, the terms of type I in the case i cancel with those 
of type II in the case i − 1, and that similarly, the terms of type I in the case i cancel 
with those of type III in the case i − 1.

Suppose that β and β′ are such that their only difference occurs in the first entry: β1 =
αi+αi−1+· · ·+αh (type I in case i) while β′

1 = αi−1+· · ·+αh (type II in case i −1). Since 
β1 = β′

1 +αi, the two paths Pγ and P ′
γ in Fig. 2 (representing type I and II respectively) 

produce the same dotted composition with signs given by (−1)i+1+
(mβ

2

)
sign(Pγ) and 

(−1)(i−1)+1+
(m′

β
2

)
sign(P ′

γ) respectively. If αi is not dotted, then mβ = m′
β and sign(P ′

γ) =
sign(Pγ) which means that the terms have opposite signs. Otherwise, αi is dotted which 
implies that mβ′ = mβ − 1 and sign(P ′

γ) = (−1)mβ−1 sign(Pγ) since there are mβ extra 
dots below the path P ′

γ . Using the fact that 
(
m−1

2
)

+ m − 1 =
(
m
2
)
, wet get again that 

the terms have opposite signs.
For the other case, suppose that β = (β1, · · · , βk) (type I in case i + 1) and 

β′ = (αi+1, β1, · · · , βk) (type III in case i). Then the two paths Pγ and P ′
γ in Fig. 3
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Fig. 2. Paths Pγ and P ′
γ of type I and II.

Fig. 3. Paths Pγ and P ′
γ of type I and III.

Fig. 4. Paths of type II and III.

(representing type I and II respectively) produce the same dotted composition with 

signs given by (−1)i+1
(mβ

2

)
sign(Pγ) and (−1)i+1+1

(m′
β

2

)
sign(P ′

γ) respectively. If αi+1

is not dotted then m′
β = mβ and sign(P ′

γ) = sign(Pγ) which means that the terms 
have opposite signs. Otherwise, αi+1 is dotted which means that m′

β = mβ + 1 and 
sign(P ′

γ) = sign(Pγ)(−1)−mβ since Pγ has mβ extra dots. The terms are again seen to 
have opposite signs.

We are left with the case i = � − 1 for type II and III (see Fig. 4) which corresponds 
to (−1)�+

(mα
2

)
MβM(α�), with β � (α�−1, . . . , α1). It is easy to see that those are exactly 

the γ’s such that γ � rev(α). �

5.5. Fundamental quasisymmetric functions in superspace

The fundamental quasisymmetric functions provide a very important basis of QSym
whose properties are reminiscent of those of Schur functions [11,14,16]. It is thus natural 
to look for their generalization to superspace. But just as there are two natural exten-
sions to superspace of Schur functions, sΛ and s̄Λ, there are two natural candidates to 
generalize the fundamental quasisymmetric functions. They are defined using the partial 
orders introduced in Section 5.3.
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Definition 5.12. The fundamental quasisymmetric function in superspace Lα is

Lα =
∑
β�α

Mβ (5.17)

while the fundamental quasisymmetric function in superspace L̄α is

L̄α =
∑
β�α

Mβ (5.18)

Example 5.13. We have

L3,4̇,2 = M3,4̇,2+M2,1,4̇,2+M1,2,4̇,2+M1,1,1,4̇,2+M3,4̇,1,1+M2,1,4̇,1,1+M1,2,4̇,1,1+M1,1,1,4̇,1,1

and

L̄2̇,2 = M2̇,2 + M0̇,2,2 + M2,0̇,2 + M1̇,1,2 + M1,1̇,2 + M0̇,1,1,2 + M1,0̇,1,2 + M1,1,0̇,2

+ M2̇,1,1 + M0̇,2,1,1 + M2,0̇,1,1 + M1̇,1,1,1 + M1,1̇,1,1 + M0̇,1,1,1,1

+ M1,0̇,1,1,1 + M1,1,0̇,1,1

The study of the functions Lα and L̄α turns out to be somewhat more involved than 
in the usual quasisymmetric case. For instance, the action of the antipode S on Lα and 
L̄α is not trivial while in QSym the antipode S acting on Lα is simply the element Lαt

(up to a sign), where αt is the composition whose corresponding ribbon is the transposed 
of that of α. In fact, S(Lα) and S(L̄α) are interesting bases in their own right just as 
one could say that their counterparts in Λ, ωsΛ and ωs̄Λ, are (except that in the latter 
case those bases are, from Proposition 3.3, essentially dual to the sΛ and s̄Λ bases). 
Because of the intricacies of the combinatorics at play, we will study the fundamental 
quasisymmetric functions in superspace in a forthcoming article [8] where we will see 
for instance that the products of Lα’s or L̄α’s are described using new types of shuffles 
(called weak and strong respectively), and that the Schur functions in superspace sΛ and 
s̄Λ expand naturally in terms of the Lα’s and L̄α’s respectively.

6. Noncommutative symmetric functions in superspace

The Hopf algebra NSym of noncommutative symmetric functions is dual to QSym. 
This duality can be extended to superspace given that sQSym is graded and that each 
of its homogeneous component is finite dimensional. In the following, we generalize to 
superspace the presentation of [11].

Definition 6.1. Let sNSym be the Hopf dual of sQSym with dual pairing 〈·, ·〉 : sNSym⊗
sQSym → Q. The Hopf algebra sNSym has a Q-basis {Hα} dual to the monomial 
quasisymmetric functions in superspace, that is, such that
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〈Hα,Mβ〉 = δαβ (6.1)

We call sNSym the ring of noncommutative symmetric functions in superspace.

Proposition 6.2. Let Hm = H(m) and H̃n = H(ṅ) for m ≥ 1 and n ≥ 0. We have that

sNSym ∼= Q〈H1, H2, . . . ; H̃0, H̃1, . . . 〉 (6.2)

the free associative algebra with noncommuting generators {H1, H2, . . . ; H̃0, H̃1, . . . } and 
coproduct defined by

ΔHn =
∑

i+j=n

Hi ⊗Hj and ΔH̃i =
∑

k+�=i

(
H̃k ⊗H� + H� ⊗ H̃k

)
(6.3)

Proof. Using the coproduct ΔMα =
∑

β·γ=α Mβ ⊗Mγ , we have by duality that

HβHγ = Hβ·γ (6.4)

This readily implies that Hα = Hα1 · · ·Hαl
where Hṙ := H̃r, which proves (6.2).

Since Hm and H̃n are dual to Mm and Mṅ respectively, we only need to know which 
products MαMβ can generate a term of the form Mm or Mṅ. From Proposition 5.5, we 
have

MaMb = Ma+b + Ma,b + Mb,a , MȧMb = M ˙(a+b) + Mȧ,b + Mb,ȧ and

MaMḃ = M ˙(a+b) + Ma,ḃ + Mḃ,a

(6.5)

By duality, (6.3) holds. �
Corollary 6.3. The algebra morphism π : sNSym → Λ defined by

π(Hm) = hm and π(H̃n) = h̃n (6.6)

is a Hopf algebra surjection such that

〈〈π(F ), g 〉〉 = 〈F, ι(g)〉 (6.7)

where ι : Λ → sQSym is the inclusion map, and where we are using our usual scalar 
product on Λ. The relationship between Λ, sQSym and sNSym is illustrated in Fig. 5.

Proof. Since Λ is generated by h1, h2, . . . ; ̃h0, ̃h1, . . . , the map π is automatically surjec-
tive. Comparing (4.8) and (6.3), we get that π is also a coalgebra morphism. The map π
is then a Hopf algebra morphism (that is, it respects the antipode) since any bialgebra 
morphism is a Hopf algebra morphism [11].
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Fig. 5. Relationship between Λ, sQSym and sNSym.

We will prove (6.7) by showing that it holds on the {Hα} and {mΛ} basis. Using 
(3.13) and the notation of (5.4), this is indeed the case since

〈〈π(Hα),mΛ 〉〉 = (−1)σ(α)δα̃γ = 〈Hα,
∑

α : β̃=γ

(−1)σ(β)Mβ〉 (6.8)

where we recall that γ = (Λ̇a
1 , . . . , Λ̇a

m, Λs
1, . . . , Λs

l ) is Λ considered as a dotted composi-
tion. �

Acknowledgments

We would like to thank one of the reviewers for pointing out that a sign was missing in 
the anti-homomorphism relation satisfied by the antipode. S.F. thanks the Universidad 
de Talca for its warm hospitality during three extended stays. This work was supported 
in part by the Simons Foundation (grant #359602, S.F.) and by FONDECYT (Fondo 
Nacional de Desarrollo Científico y Tecnológico de Chile) through the initiation grant 
#11140280 (M.E. P.) and regular grant #1170924 (L. L.).

References

[1] O. Blondeau-Fournier, P. Desrosiers, L. Lapointe, P. Mathieu, Macdonald polynomials in superspace 
as eigenfunctions of commuting operators, J. Comb. 3 (3) (2012) 495–562.

[2] O. Blondeau-Fournier, P. Mathieu, Schur superpolynomials: combinatorial definition and Pieri rule, 
SIGMA 11 (2015) 021, 23pp.

[3] P. Desrosiers, L. Lapointe, P. Mathieu, Classical symmetric functions in superspace, J. Algebraic 
Combin. 24 (2006) 209–238.

[4] P. Desrosiers, L. Lapointe, P. Mathieu, Orthogonality of Jack polynomials in superspace, Adv. Math. 
212 (2007) 361–388.

[5] P. Desrosiers, L. Lapointe, P. Mathieu, Evaluation and normalization of Jack superpolynomials, 
IMRN 23 (2012) 5267–5327.

[6] A. Doliwa, Hopf algebra structure of generalized quasi-symmetric functions in partially commutative 
variables, arXiv :1603 .03259.

[7] R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996) 1–25.
[8] S. Fishel, L. Lapointe, M.E. Pinto, Fundamental quasisymmetric functions in superspace, in prepa-

ration.

http://refhub.elsevier.com/S0097-3165(19)30031-7/bib42444C4D32s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib42444C4D32s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib424Ds1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib424Ds1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D31s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D31s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D32s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D32s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D33s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib444C4D33s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib44s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib44s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib45s1


170 S. Fishel et al. / Journal of Combinatorial Theory, Series A 166 (2019) 144–170
[9] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, J.-Y. Thibon, Noncommutative symmetric 
functions, Adv. Math. 112 (1995) 218–348.

[10] I. Gessel, Multipartite P -partitions and inner products of skew Schur functions, Contemp. Math. 
34 (1984) 289–301.

[11] D. Grinberg, V. Reiner, Hopf algebras in combinatorics, arXiv :1409 .8356.
[12] J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. 

Math. Soc. 18 (2005) 735–761.
[13] M. Jones, L. Lapointe, Pieri rules for the Schur functions in superspace, J. Combin. Theory Ser. A 

148 (2017) 57–115.
[14] K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions. 

Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux, SpringerBriefs in 
Mathematics, Springer, New York, 2013.

[15] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, 1995.
[16] R.P. Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics 2, vol. 62, 

Cambridge University Press, 1999.

http://refhub.elsevier.com/S0097-3165(19)30031-7/bib474B4C4C5254s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib474B4C4C5254s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib47657373656Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib47657373656Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4752s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib48484Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib48484Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4A4Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4A4Cs1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4C4D57s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4C4D57s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4C4D57s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib4Ds1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib53s1
http://refhub.elsevier.com/S0097-3165(19)30031-7/bib53s1

	Hopf algebra structure of symmetric and quasisymmetric functions in superspace
	1 Introduction
	2 Hopf algebras
	3 Symmetric functions in superspace
	3.1 Monomial symmetric functions
	3.2 Ring of symmetric functions in superspace
	3.3 Elementary, homogeneous, and power sum symmetric functions
	3.4 Scalar product
	3.5 Schur functions in superspace

	4 The Hopf algebra of symmetric functions in superspace
	4.1 Hopf algebra structure of Λ
	4.2 The antipode and the involution ω
	4.3 Self-duality

	5 The Hopf algebra of quasisymmetric functions in superspace
	5.1 Monomial quasisymmetric functions in superspace
	5.2 Hopf algebra structure of sQSym
	5.3 Partial orders on compositions
	5.4 Antipode
	5.5 Fundamental quasisymmetric functions in superspace

	6 Noncommutative symmetric functions in superspace
	Acknowledgments
	References


