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For a labelled tree on the vertex set [n] := {1,2, . . . ,n}, define
the direction of each edge i j to be i → j if i < j. The indegree
sequence of T can be considered as a partition λ � n − 1. The
enumeration of trees with a given indegree sequence arises in
counting secant planes of curves in projective spaces. Recently
Ethan Cotterill conjectured a formula for the number of trees on [n]
with indegree sequence corresponding to a partition λ. In this
paper we give two proofs of Cotterill’s conjecture: one is “semi-
combinatorial” based on induction, the other is a bijective proof.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

For a labelled tree on the vertex set [n] := {1,2, . . . ,n}, define the direction of each edge i j as
i → j if i < j. The indegree sequence of T can be considered as a partition λ � n − 1. The problem of
counting labelled trees with a given indegree sequence was encountered by Ethan Cotterill [2] when
counting secant planes of curves in projective spaces. Write λ = 〈1m1 2m2 · · ·〉 if λ has mi parts equal
to i. Given λ = 〈1m1 2m2 · · ·〉 � n − 1, let k be the number of parts of λ, and aλ be the number of trees
on [n] with indegree sequence corresponding to λ. Cotterill [2, p. 29] conjectured the following result:

aλ = (n − 1)!2
(n − k)!1!m1 2!m2 · · ·m1!m2! · · · . (1.1)

Note that the above formula can also be written as

aλ = (n − 1)!
(n − k)! · (n − 1)!

1!m1m1!2!m2m2! · · · , (1.2)

in which the second factor on the right-hand side counts the number of partitions π of an (n − 1)-
element set of type λ, i.e., the block sizes of π are λ1, λ2, . . . . This suggests that it may help to
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Fig. 1. A tree T ∈ T3221, and φ(T ) = 8/569/37/24 ∈ Π3221.

prove (1.1) if we can find a map φ : Tλ → Πλ for any λ � n − 1, where Tλ is the set of trees on [n]
with indegree sequence λ, and Πλ is the set of partitions of [2,n] := {2,3, . . . ,n} of type λ. Richard
Stanley (personal communication) suggested that such a map φ can be defined as follows.

Given λ � n − 1 and T ∈ Tλ , we can consider T as a rooted tree on [n] with the root 1 “hung up”
(see Fig. 1). Now we label the edges of T such that each edge has the same label as the vertex right
below it. It is obvious that during the labelling each number in [2,n] is used exactly once. Putting
the labels of those edges which point to the same vertex into one block, we get a partition π ∈ Πλ .
Fig. 1 shows a tree T ∈ T3221, and φ(T ) = π = 8/569/37/24 ∈ Π3221. We put a bar over the label of
each edge to avoid confusion.

While the map φ gives a natural interpretation of the second factor in Eq. (1.2), one can easily
check that the preimage of φ is not unique: we can get the same partition by applying φ to differ-
ent trees. Let Tπ be the set of preimages of π ∈ Πλ under the map φ, i.e., Tπ = φ−1(π), and let
f (π) := |Tπ |. Then Tλ = ⋃

π∈Πλ
Tπ . Our main task is to prove the following theorem.

Theorem 1.1. Given λ � n − 1 and π ∈ Πλ , we have

f (π) = |Tπ | = (n − 1)!
(n − |π |)! ,

where |π | is the number of blocks of π .

In the remainder of this paper we give proofs of this result using two different approaches. In
Section 2, we give a “semi-combinatorial” proof based on induction on n. In Sections 3 and 4, we give
a bijective proof. Finally in Section 5, some further problems are raised.

2. A semi-combinatorial proof

In this section, we will give an inductive proof of Theorem 1.1.

Lemma 2.2. The value f (π) is independent of π ∈ Πλ , i.e., for any π1,π2 ∈ Πλ , we have f (π1) = f (π2).

Proof. Since the symmetric group of [2,n] is generated by adjacent transpositions {si: 2 � i � n − 1},
where si = (i, i + 1) is the function that swaps two elements i and i + 1, it suffices to show that
f (π1) = f (π2) for any π1,π2 ∈ Πλ such that by switching i and i + 1 in π2 we will get π1
(2 � i � n − 1). If i and i + 1 are in the same block of π1, then π1 = π2. The assertion is trivial
in this case. In the following, we will assume that i and i + 1 are in different blocks of π1.

In order to prove f (π1) = f (π2), we construct an involution ϕi : Tπ1 ∪ Tπ2 → Tπ1 ∪ Tπ2 . For any
tree T ∈ Tπ1 ∪ Tπ2 , consider the two vertices labelled i and i + 1.
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Fig. 2. A partition of the tree T .

Fig. 3. Map ϕi (left: 1 in Ai , right: 1 in Ai+1).

If vertices i and i + 1 are not adjacent, exchanging the labels of these two vertices will give us a
new tree T ′ . Let ϕi(T ) = T ′ .

If vertices i and i + 1 are adjacent, let Ti (resp. Ti+1) be the largest subtree containing vertex i but
not i + 1 (resp. containing i + 1 but not i). For j = i, i + 1, let T j = { j} ∪ A j ∪ B j , where A j (resp. B j)
is the sub-forest such that every edge between itself and vertex j is pointing away from j (resp.
pointing to j). (See Fig. 2.)

Considering the position of vertex 1, there are three cases:

Case 1: If vertex 1 is in either Ai or Ai+1, make all edges from Bi to vertex i point to vertex i + 1
instead, make all edges from Bi+1 to vertex i + 1 point to vertex i instead, and switch the vertex
labels i and i + 1 (at the same time the direction of the edge between i and i + 1 will be changed
automatically). Then we will get a new tree T ′ . Let ϕi(T ) = T ′ . (See Fig. 3.)

Case 2: If vertex 1 is in Bi , let B ′
i be the maximum subtree of Bi which contains vertex 1, and let

B ′′
i be Bi\B ′

i . Make all edges from B ′
i to vertex i point to vertex i + 1 instead, and switch the vertex

labels i and i + 1 (at the same time the direction of the edge between i and i + 1 will be changed
automatically). Then we will get a new tree T ′ . Let ϕi(T ) = T ′ . (See Fig. 4(1).)
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Fig. 4. Map ϕi (left: 1 in Bi , right: 1 in Bi+1 (impossible)).

Case 3: If vertex 1 is in Bi+1, both edges labelled ī and i + 1 are pointing to vertex i +1, i.e., i and i +1
are in the same block of π1 or π2, then we have a contradiction to the assumption. (See Fig. 4(2).)

From the definition of the map, we can easily check that φ(T ) and φ(T ′) only differ in the posi-
tions of i and i + 1, i.e., φ(T ′) is the same as φ(T ) after switching i and i + 1. Since ϕi(T ) = T ′ , we
have ϕi : Tπ1 ∪ Tπ2 → Tπ1 ∪ Tπ2 is well-defined, and ϕi(Tπ1) ∈ Tπ2 ,ϕi(Tπ2) ∈ Tπ1 . And by applying
ϕi again, we have ϕi(ϕi(T )) = T . Hence, ϕi is an involution with no fixed points. Hence, we have
|Tπ1 | = |Tπ2 |, i.e., f (π1) = f (π2). �
Proof of Theorem 1.1. Now with Lemma 2.2 we can prove Theorem 1.1 by induction on n, the number
of vertices.

Let λ = (λ1, λ2, . . . , λk) � n − 1, where λ1 � λ2 � · · · � λk � 1. Then what we need to show is that
for any π ∈ Πλ , we have f (π) = (n − 1)!/(n − k)!.
Base case: If n = 1, we have k = 0, λ = ∅, π = ∅, and f (π) = 1 = (n − 1)!/(n − k)!.
Inductive step: Assume that the theorem is true for n − 1 (� 1). Then consider the case for n.

If λ1 = 1, then λ = 〈1n−1〉, π = n/n − 1/ · · ·/2 and k = n − 1. In this case, each T ∈ Tπ is an
increasing tree, i.e., the label of any vertex is bigger than the label of its parent, i.e., the directions
of edges are pointing away from the root 1. Otherwise, there is at least one vertex with indegree at
least 2, contradicting that λ is the indegree sequence. Hence, we can do the bijection as in [3, §1.3] by
mapping T to a permutation of [2,n]. Or we can use the bijection between labelled trees and Prüfer
codes (see, for example, [1, §2.4], or a more generalized forest version [4, §5.3]). But while doing this
bijection, what we will get is a subset of all possible Prüfer codes, i.e., a subset of [n − 1] × [n − 2] ×
· · · × [2] × [1]. Both methods show that f (π) = (n − 1)! = (n − 1)!/(n − k)!.

Now suppose that λ1 � 2. By Lemma 2.2, we can assume without loss of generality, that both n
and n − 1 are in the same block B1 of π = {B1, B2, . . . , Bk}. Pick T ∈ Tπ . Since n is the largest label,
by the definition of π and Tπ , we know that vertices n and n − 1 are adjacent. By merging the edge
between n and n − 1 in T , and deleting the label n, we get a new tree T̃ with n − 1 vertices. There
are two possible cases:
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Case 1: If the indegree of vertex n − 1 in T is 0, then φ(T̃ ) = {B1\{n}, B2, . . . , Bk} =: π̃1.

Case 2: If the indegree of vertex n − 1 in T is not 0, then there exists j ∈ [2,k] such that φ(T̃ ) =
{B1 ∪ B j\{n}, B2, . . . , B j−1, B j+1, . . . , Bk} =: π̃ j .

One can easily check that this is a bijection. Thus, f (π) = ∑k
j=1 f (π̃ j). By the induction hypothesis

we have

f (π) =
k∑

j=1

f (π̃ j) = ((n − 1) − 1)!
((n − 1) − k)! + (k − 1)

((n − 1) − 1)!
((n − 1) − (k − 1))! = (n − 1)!

(n − k)! ,

which proves the case for n.
Hence it follows by induction that Theorem 1.1 is true for all possible n. �

3. An “almost” bijective proof

The inductive proof in the former section makes Cotterill’s conjecture a theorem, but it does not
explain combinatorially why there is such a simple factor (n − 1)!/(n − k)!. In this section, we will try
to give a bijective proof to explain this fact.

First we will give some terminology and notation related to posets. Let S be a finite set. We use
ΠS to denote the poset (actually a geometric lattice) of all partitions of S ordered by refinement
(σ � π in ΠS if every block of σ is contained in a block of π ). In the following discussion we will
consider the case that S = [2,n].

Second, we will state the basic definitions. Given π ∈ Π[2,n] , recall that Tπ is the set of labelled
trees with preimage π under the map φ. Let B, B ′ be two subsets of [2,n]. We say that B � B ′
(resp. B < B ′) if and only if min B � min B ′ (resp. min B < min B ′). Given T ∈ Tπ and π = φ(T ), let
B = {b1,b2, . . . ,bt}< be a subset of one of the blocks of π . We define the Star corresponding to B to be
the subset of T that contains all vertices and edges with labels in the set B , and denote it as Star(B).
Induced by the ordering of the subsets of [2,n], we will also get an ordering of the stars. For Star(B),
there exists a unique vertex of T with some label, say c, such that the vertex c is attached to one of
the edges in Star(B), but c /∈ B . We call the vertex c the cut point of B , and denote it by c(B).

For T ∈ Tπ and σ � π , we define the decomposition of T with respect to σ = {B1, B2, . . . , Bk} to
be T = (

⋃k
j=1 Star(B j)) ∪ {vertex 1}, where Star(B j) are the stars corresponding to B j in T . In this

decomposition, the leaf-stars are the stars that do not contain any cut points, i.e., if you remove a
leaf-star from T , what’s left is still a connected tree.

For example, for the tree T in Fig. 1 we have φ(T ) = π = 8/569/37/24. Star({3,7}), Star({2,4})
and Star({8}) are all leaf-stars of T , and we have c({3,7}) = 1, c({2,4}) = 5, c({8}) = 5 and
c({5,6,9}) = 1.

Now we define a variant of the map φ, which turns out to be a bijection. For any σ =
{B1, B2, . . . , Bk} ∈ Π[2,n] , let T�σ = ⋃

π�σ Tπ . We define φσ : T�σ → [n]k−1 as follows.

1. Let T0 = T .
2. For i = 1,2, . . . ,k, let Star(B(i)) be the largest leaf-star in the decomposition of Ti−1 with respect

to σ\{B(1), B(2), . . . , B(i − 1)}. Then we remove Star(B(i)) and keep a record of the vertex it is
attached to, i.e., let ωi = c(B(i)), Ti = Ti−1\Star(B(i)).

Let φσ (T ) = ω := ω1ω2 · · ·ωk−1 ∈ [n]k−1. (We do not need to include ωk since it is always 1.)

Theorem 3.3. For any σ ∈ Π[2,n] , the map φσ is a bijection between T�σ and [n]|σ |−1 .

Proof. We now define the reverse procedure. Given σ = {B1, B2, . . . , Bk} ∈ Π[2,n] and ω = ω1ω2 · · ·
ωk−1 ∈ [n]k−1, set ωk = 1. Define the inverse map φ−1

σ : [n]k−1 → T�σ as follows. For i = 1,2, . . . ,k:

1. Let B(i) = {b1,b2, . . . ,bt}< be the largest block of σ\{B(1), B(2), . . . , B(i −1)} such that B(i) does
not contain any number in {ωi,ωi+1, . . . ,ωk−1}.
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Fig. 5. Two cases when attaching B(i) to ωi .

Fig. 6. A tree T ∈ T3221, with φ(T ) = 8/569/37/24 ∈ Π3221, σ = 8/7/6/59/3/24 ≺ π , and φσ (T ) = 59715.

2. Attach the vertices in B(i) to ωi according to the following two cases:

Case 1: If bt > ωi , we connect vertices b1,b2, . . . ,bt and ωi such that the edges between
b1,b2, . . . ,bt−1,ωi and bt are all pointing to bt (see Fig. 5(1));

Case 2: If bt < ωi we simply connect b1,b2, . . . ,bt and ωi such that all edges between
b1,b2, . . . ,bt and ωi are all pointing to ωi (see Fig. 5(2)).

It is easy to see that after all k steps, we get a tree T := φ−1
σ (ω) ∈ T�σ . One can easily check that

φσ is a bijection. �
Example 3.4. For the tree T in Fig. 6, let σ = 8/7/6/59/3/24. We then have B(1) = {8},
ω1 = c(B(1)) = 5; B(2) = {6}, ω2 = c(B(2)) = 9; B(3) = {3}, ω3 = c(B(3)) = 7; B(4) = {7}, ω4 =
c(B(4)) = 1; B(5) = {2,4}, ω5 = c(B(5)) = 5; B(6) = {5,9}, ω6 = c(B(6)) = 1 (which we do not write).
Thus we have φ8/7/6/59/3/24(T ) = 59715 ∈ [9]5.

Proof of Theorem 1.1. Let g(σ ) = |T�σ |. From the bijection φσ : T�σ → [n]|σ |−1 we know that g(σ ) =
n|σ |−1. Recall from Section 2 that f (π) = |Tπ |. Since T�σ = ⋃

π�σ Tπ is a disjoint union, we have

∑
π�σ

f (π) = nk−1, for any σ ∈ Π[2,n]. (3.1)

It is now sufficient to prove that the unique solution of the above equations is f (π) = (n − 1)!/
(n − |π |)!, for any π ∈ Π[2,n] .

First, since Eq. (3.1) holds for any π,σ ∈ Π[2,n] such that π � σ , we have, by the poset structure
of Π[2,n] , that the solution f to Eq. (3.1) (valid for all σ ∈ Π[2,n]) is unique.

Second, let σ = {B1, B2, . . . , Bk}. Then the interval [σ , 1̂[2,n]] is isomorphic in an obvious way
to the lattice of partitions of the set {B1, B2, . . . , Bk}. Hence [π, 1̂[2,n]] ∼= Π[k] , where 1̂[2,n] is the
maximum element of Π[2,n] . Thus we have
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∑
π�σ

(n − 1)!
(n − |π |)! =

∑
τ∈Π[k]

(n − 1)!
(n − |τ |)!

=
k∑

j=1

S(k, j)
(n − 1)!
(n − j)!

= 1

n

k∑
j=1

S(k, j)n(n − 1) · · · (n − j + 1)

= nk−1,

where S(k, j) is the Stirling number of the second kind, i.e., the number of partitions of a k-set into j
blocks. The last equation follows from a standard Stirling number identity, see e.g., identity (24d) in
[3, §1.4]. Thus, (n − 1)!/(n − |π |)! is a possible solution to Eqs. (3.1).

Hence, by uniqueness, we have f (π) = (n − 1)!/(n − |π |)!. �
Remark. In fact, given Eq. (3.1), we can solve for f by using the dual form of the Möbius inversion
formula:

f (π) =
∑
σ�π

μ(π,σ )g(σ ),

where the coefficient μ(π,σ ) is the Möbius function of Π[2,n] , which can be calculated explicitly,
[3, Example 3.10.4].

4. The real bijective map

Although we gave a bijection φσ in Section 3, we needed to prove Theorem 1.1 by solving equa-
tions, and we still do not have a very good bijection that maps Tλ to a set of cardinality aλ for any
λ � n − 1.

Let φ′ : Tλ → Πλ × [n]k−1, T �→ (π,φπ (T )), where π = φ(T ). Since φπ is a bijection, we have
that φ′ is an injection. Let Ωπ := φπ (Tπ ). Then φ′(Tλ) = {{π} × Ωπ : π ∈ Πλ} =: (Π × Ω)λ . Thus,
φ′ : Tλ → (Π × Ω)λ is the bijection we are looking for.

Example 4.5. Assume π = {B1, B2}. For any T ∈ Tπ , we have φ′(T ) = (π,max{c(B1), c(B2)}), and
Ωπ = [n − 1], f (π) = n − 1.

Example 4.6. When λ = 〈1n−1〉, Πλ contains only the partition 0̂[2,n] = n/n − 1/ · · ·/2. As also pointed
out in the proof in Section 2, T0̂[2,n] is the set of all increasing trees on [n], in this case we have

Ω0̂[2,n] = [n − 1] × [n − 2] × · · · × [1], and for each T ∈ T0̂[2,n] and φ′(T ) = (π,ω), ω is the Prüfer code

of T .

Though it seems quite hard to find what Ωπ ’s are, there still exists a very good relation among
them.

Theorem 4.7. For any π1,π2 ∈ Π[2,n] , if π2 
 π1 , we have that for any T ∈ T�π2 , φπ2(T ) is a subsequence of
φπ1(T ). In particular, if π2 = φ(T ), we have φ′(T ) = (π2,ω) and ω is a subsequence of φπ1(T ).

Proof. It suffices to prove the assertion for all covering pairs. Assume that π2 ·
 π1. Thus there exist
two blocks B and B ′ of π1 which become one block in π2.

Assume φπ1(T ) = ω = ω1ω2 · · ·ωk−1, φπ2(T ) = ω′ = ω′
1ω

′
2 · · ·ω′

k−2 and ωk = ω′
k−1 = 1. Then there

exist 1 � r, s � k such that B and B ′ are removed from T at steps r and s, respectively, in process φπ1 .
Assume, without loss of generality, that r < s. Then it is easy to see that ω′

l = ωl for 1 � l < r.
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For step r in process φπ2 , there are two cases:

Case 1: If B < B ′ and Star(B ∪ B ′) is a leaf-star, then it must be that s = r + 1. At this step, we remove
Star(B ∪ B ′). Then ω′

r = ωs , ω′
l = ωl for r < l � k − 2.

Case 2: If B > B ′ , or Star(B ∪ B ′) is not a leaf-star, then we will remove Star(B ∪ B ′) at the step that
we remove Star(B ′) in the process φπ1 , i.e., ω′

l = ωl+1 for r � l � k − 2.

In both cases, we have that ω′ is a subsequence of ω, i.e., φπ2(T ) is a subsequence of φπ1(T ). �
Example 4.8. Let π = 8/569/37/24 and σ = 8/7/6/59/3/24, so π 
 σ . For the tree T in Fig. 6, we
have T ∈ T�σ , and φπ (T ) = 515, which is a subsequence of φσ (T ) = 59715.

By the proof of Theorem 4.7, for any σ ∈ Π[2,n] we can define a bijection from
⋃

π
σ Ωπ to
[n]k−1\Ωσ such that each sequence will be a subsequence of its image. Inductively using this bijec-
tion, we can find out all Ωσ ’s. But when |σ | gets larger and larger, it will become more and more
difficult to find out what this bijection is explicitly.

5. Remarks

We want to remark that the bijection we defined in Section 3 can be considered as a general-
ization of the Prüfer codes for labelled trees: instead of deleting (attaching) vertices one by one, we
are dealing with groups of vertices with respect to a partition of [2,n]. Moreover, the bijection φ′ to-
gether with Theorem 4.7 suggests a structure on the set of labelled trees {Tπ : π ∈ Π[2,n]} as a lattice
isomorphic to Π[2,n] under the map Tπ �→ π .

The following problems are still interesting to consider.

1. Given π ∈ Π[2,n] , Theorem 4.7 shows how to find Ωπ explicitly, i.e., Ωπ is the subset of [n]|π |−1

with sequences corresponding to its subsequences from Ωσ deleted, for any σ 
 π . For example,
let π = 45/3/2, we have

Ωπ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

11 12 �13� 14 �15�
21 22 �23� 24 �25�
31 32 �33� 34 �35�
41 42 43 �44� �45�
�51� �52� �53� �54� �55�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where 13,23,33,44 correspond to its subsequences 1,2,3,4 in Ω45/23, 15,25,53,45 correspond
to its subsequences 1,2,3,4 in Ω3/245, 51,52,35,54 correspond to its subsequences 1,2,3,4 in
Ω345/2, and 55 correspond to its subsequence ∅ in Ω2345.
However, the “corresponding relationship”, between sequences and its subsequences described
inductively in the proof of Theorem 4.7, depends highly on the set {σ ∈ Π[2,n]: σ 
 π}, and it is
not easy to describe in general. Hence, it would be nice if one can give a simple description of
this relationship, and use it to characterize Ωπ .

2. In the proof of Theorem 1.1 in Section 2, we mentioned that when λ = 〈1n−1〉, we can map an
increasing tree to a permutation of [2,n] [3, §1.3]. Is it possible to generalize this bijection to any
λ by mapping a tree in Tλ to (φ(T ), w), where w is a length k − 1 permutation of an (n − 1)-
element set?
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