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A metric graph is a geometric realization of a finite graph by
identifying each edge with a real interval. A divisor on a metric
graph Γ is an element of the free abelian group on Γ . The rank
of a divisor on a metric graph is a concept appearing in the
Riemann–Roch theorem for metric graphs (or tropical curves) due
to Gathmann and Kerber, and Mikhalkin and Zharkov. We define
a rank-determining set of a metric graph Γ to be a subset A of Γ

such that the rank of a divisor D on Γ is always equal to the rank
of D restricted on A. We show constructively in this paper that
there exist finite rank-determining sets. In addition, we investigate
the properties of rank-determining sets in general and formulate
a criterion for rank-determining sets. Our analysis is based on
an algorithm to derive the v0-reduced divisor from any effective
divisor in the same linear system.
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1. Introduction

In the past few years, people have been attracted to investigate the analogies and connections
among linear systems on algebraic curves, finite graphs, metric graphs and tropical curves [1,3,7,9,11].
In particular, a recent work of Hladký, Král and Norine [9] shows that the rank of a divisor D on
a graph equals the rank of D on the corresponding metric graph Γ . However, their result requires
that all the edges of Γ have length 1 and D is zero on the interiors of the edges. As an initial step of
this paper, we assert that these restrictions are not necessary by proving that for an arbitrary metric
graph Γ with a vertex set Ω and an arbitrary divisor D on Γ , the rank r(D) of D equals the Ω-
restricted rank rΩ(D) of D . This result motivates us into further investigations on the subsets of Γ

having such a property, to which we give the name rank-determining sets.
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1.1. Preliminaries

Throughout this paper, a graph G means a finite connected multigraph with no loop edges, and
a metric graph Γ means a graph having each edge assigned a positive length. Roughly speaking, a trop-
ical curve is a metric graph where we admit some edges incident with vertices of degree 1 having
infinite length [10,11]. We will expand our discussions within the framework of metric graphs, while
the conclusions also apply for tropical curves. (We abuse notation throughout this paper that the set
of points of a metric graph Γ is also denoted by Γ .)

Denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively. The genus g
of G is the first Betti number of G or the maximum number of independent cycles of G , which equals
#E(G) − #V (G) + 1.

We can also define vertices and edges on a metric graph Γ . We call Ω a vertex set of Γ and the
elements of Ω vertices, if Ω is a nonempty finite subset of Γ satisfying the following conditions:

(i) Γ \ Ω is a disjoint union of subspaces eo
i isometric to open intervals.

(ii) Let ei be the closure of eo
i . For all i, ei \ eo

i contains exactly two distinct points, which are both
elements of Ω . We call ei an edge of Γ , eo

i the interior of ei , and v ∈ eo
i an internal point of ei .

And we say that the two vertices in ei \ eo
i are two ends (or end-points) of ei or eo

i , while ei is an
edge connecting these vertices.

Clearly, Γ is loopless with respect to a vertex set Ω . By our definition of a vertex set, there might
be multiple edges between two vertices, which is not allowed in definitions of vertex sets by other
authors (see, e.g., [4]).

By identifying each edge with a closed interval, the connected subsets or subintervals are called
segments of Γ , which can be open, closed or half-open/half-closed. The boundary points of a segment
are called the ends (or end-points) of that segment. For any point v ∈ Γ , we define the degree of v ,
denoted by deg(v), to be the maximum number of disjoint open segments with one end at v . Note
that internal points always have degree 2, which means {v ∈ Γ : deg(v) �= 2} is a finite subset of all
vertex sets. We can refine any vertex set Ω by adding some internal points to Ω .

Throughout this paper, whenever we mention a vertex or an edge of a metric graph Γ , we always
assume a vertex set of Γ is predetermined, whether or not it is presented explicitly. Given a vertex set
of Γ , the genus of Γ can be computed just like in the graph case (note that the genus is independent
of how we choose vertex sets).

In addition, we transport the conventional notations for intervals onto metric graphs. For example,
let w1 and w2 be two vertices that are neighbors, e be one of the edges connecting them, and
v be an internal point e. Then (w1, w2) represents all the internal points of the edges connecting
w1 and w2. And to avoid confusion in case of multiple edges, e can be represented by [w1, v, w2].
We use dist(x, y) to denote the distance between two points x and y measured on Γ , and define the
distance between two subsets X and Y of Γ , denoted by dist(X, Y ), to be inf{dist(x, y), x ∈ X, y ∈ Y }.
If e′ is a segment, and x, y ∈ e′ , then we use diste′ (x, y) to denote the distance between x and y
measured on e′.

For simplicity of notation, if v is a point of a metric graph, sometimes we refer to the singleton {v}
by just writing v .

Baker and Norine [3] systematically explored the analogies between finite graphs and Riemann
surfaces in the context of linear equivalence of divisors. We give a series of definitions here following
their work. A divisor D on G is an element of the free abelian group Div G on the vertex set of G . We
can uniquely write a divisor D ∈ Div G as D = ∑

v∈V (G) D(v)(v), where D(v) ∈ Z evaluates D at v .
The degree of D is defined by the formula deg(D) = ∑

v∈V (G) D(v). A divisor D is called effective if
D(v) � 0 for all v ∈ V (G). We denote the set of all effective divisors on G by Div+ G , and the set
of all effective divisors of degree s on G by Divs+ G . Provided a function f : V (G) → Z, the divisor
associated to f is given by

D f =
∑

v∈V (G)

∑

e=w v∈E(G)

(
f (v) − f (w)

)
(v),
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and called principal. It is easy to see that the principal divisors have degree 0. For two divisors D
and D ′ , we say that D is linearly equivalent to D ′ or D ∼ D ′ if D − D ′ is principal. And we defined
the linear system associated to a divisor D to be the set |D| of all effective divisors linearly equivalent
to D . The rank of a divisor D , denoted by rG(D), is an integer defined as, rG(D) = −1 if |D| = ∅, and
rG(D) � s � 0 if and only if |D − E| �= ∅ for all E ∈ Divs+ G . When it is clear that D is defined on G , we
usually omit the subscript and write r(D) instead of rG(D). Note that the rank of a divisor is invariant
under linear equivalence.

Analogously, for a metric graph (or a tropical curve) Γ , elements of the free abelian group DivΓ on
the set of points of Γ are called divisors on Γ . We can define the degree of a divisor and the notion
of effective divisors in a similar way. A rational function f on Γ is a continuous, piecewise linear
real function with integer slopes. The order ordv f of f at a point v ∈ Γ is the sum of the outgoing
slopes of all the segments emanating from v . Any rational function f has an associated divisor ( f ) :=∑

v∈Γ ordv f · (v). We say ( f ) is principal for all rational functions f , and define linear equivalence
relations and linear systems as on graphs. Also, we may define the rank rΓ (D) of a divisor D on Γ .
Explicitly, rΓ (D) = −1 if |D| = ∅, and rΓ (D) � s � 0 if and only if |D − E| �= ∅ for all E ∈ Divs+ Γ . We
may omit the subscript and use r(D) to represent the rank of a divisor D , when there is no confusion
that D is defined on Γ . (For a more detailed introduction to these concepts on metric graphs, the
reader should refer to Section 1 of [7].)

Remark 1.1. In the classical Riemann surface case, the linear system |D| associated to a divisor D
is the r(D)-dimensional projective space of a (r(D) + 1)-dimensional vector space. However, |D| is
a finite set in the finite graph case and a polyhedral complex in the metric graph case [7]. We give
analogous definitions of rank r(D) in these cases, even if r(D) should no longer be interpreted as
a dimension.

For a divisor D on Γ , let supp D = {v ∈ Γ | D(v) �= 0} and supp |D| = ⋃
D ′∈|D| supp D ′ . We call

supp D the support of D and call supp |D| the support of |D|. Note that even though supp D is always a
finite subset of Γ , supp |D| is not in general.

1.2. Overview of related work

As an analogue of the classical Riemann–Roch theorem on Riemann surfaces, Baker and Norine
formulated and proved the Riemann–Roch theorem for the rank of divisors on finite graphs [3]. We
define the canonical divisor on a graph G to be the divisor K given by K = ∑

v∈V (G)(deg(v) − 2)(v).

Theorem 1.2 (Riemann–Roch theorem for graphs). Let G be a graph of genus g and K the canonical divisor
on G. Then for all D ∈ Div G, we have

rG(D) − rG(K − D) = deg(D) + 1 − g.

Not long after, such an analogy was extended to metric graphs and tropical curves by Gathmann
and Kerber [7], by Hladký, Král and Norine [9], and by Mikhalkin and Zharkov [11]. For a metric graph
(or a tropical curve) Γ , we may also define the canonical divisor on Γ to be the divisor K given by
K = ∑

v∈Γ (deg(v) − 2)(v). Here deg(v) is the number of outgoing segments at a point v .

Theorem 1.3 (Riemann–Roch theorem for metric graphs and tropical curves). Let Γ be a metric graph (or
a tropical curve) of genus g and K the canonical divisor on Γ . Then for all D ∈ DivΓ , we have

rΓ (D) − rΓ (K − D) = deg(D) + 1 − g.

The following theorem, conjectured by Baker and proved by Hladký, Král and Norine [9], states
another important property about rank of divisors. For a graph G , by assigning all edges length 1, we
obtain a metric graph corresponding to G .
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Theorem 1.4 (Hladký, Král and Norine). Let Γ be the metric graph corresponding to a graph G. Let D be
a divisor on G. Let rG(D) be the rank of D on G, and rΓ (D) the rank of D on Γ . Then we have rG(D) = rΓ (D).

1.3. Main results in this paper

We introduce a new notion of rank here.

Definition 1.5. Let Γ be a metric graph and A a nonempty subset of Γ . Let Divs+ A be {E ∈
Divs+ Γ : supp E ⊆ A}.

(i) Define the A-restricted rank rA(D) of a divisor D ∈ Div Γ by rA(D) = −1 if |D| = ∅, and rA(D) �
s � 0 if and only if |D − E| �= ∅ for all E ∈ Divs+ A.

(ii) A is said to be a rank-determining set of Γ , if it holds for every divisor D ∈ Div Γ that r(D) =
rA(D).

One may also call rA(D) the rank of D restricted on A. Clearly, Γ itself is a rank-determining set
of Γ and we say it is trivial. Following the definition, any superset of a rank-determining set is also
rank-determining. It is natural to ask if all metric graphs have nontrivial rank-determining sets, or
more ambitiously, finite ones? One of the main results of this paper is the following theorem, which
gives an affirmative answer.

Theorem 1.6. Let Ω be a vertex set of a metric graph Γ . Then Ω is a rank-determining set of Γ .

It is easy to see that Theorem 1.6 generalizes Theorem 1.4 to all metric graphs Γ and all divisors D
on Γ . And since Divs+ Ω is always a finite set, this theorem also provides an algorithm for computing
the rank of a divisor on Γ .

There exist finite rank-determining sets other than vertex sets. In particular, we will prove the
following conjecture of Baker.

Theorem 1.7. Let Γ be a metric graph of genus g. Then there exists a finite rank-determining set of cardinality
g + 1.

Theorem 1.7 has a counterpart in the algebraic curve case, as stated in the following theorem. (See
Remark 3.13 for a sketch of the proof.)

Theorem 1.8 (R. Varley). For a nonsingular projective algebraic curve C , any set of g + 1 distinct points is
a rank-determining set.

The linear equivalence among divisors on Γ changes if we use a different metric. Actually, if
f : Γ → Γ ′ is a homeomorphism between two metric graphs Γ and Γ ′ , then by sending the sup-
porting points of a divisor on Γ to points on Γ ′ , f induces a push-forward map f∗ : DivΓ → Div Γ ′
between divisors on Γ and Γ ′ . Consider two linear equivalent divisors D1 and D2 on Γ . Then
f∗(D1) and f∗(D2) are not linearly equivalent in general. Example 1.9 shows a simple case that
rΓ (D) �= rΓ ′ ( f∗(D)). However, we state in Theorem 1.10 that rank-determining sets will not be af-
fected at all, even though their definition uses the notion of linear equivalence and linear systems.

Example 1.9. Let Γ and Γ ′ be two metric graphs with vertex sets {w1, w2, w3, w4} and {w5, w6, w7}
respectively (Fig. 1). Assume all edges have length 1. By contracting [w1, w2] ∪ [w2, w3], the union
of two edges of Γ , proportionally onto the edge e of Γ ′ , we get a piecewise-linear homeomorphism
f : Γ → Γ ′ between Γ and Γ ′ that is not an isometry. Let D = 2(w1) and D ′ = 2(w5). Then D ′ =
f∗(D) since f (w1) = w5. However, we observe that rΓ (D) = 0, while rΓ ′ (D ′) = 1. This is because the
support of |D| is [w1, w2] ∪ [w1, w3], which is a proper subset of Γ , and the support of |D ′| is the
whole metric graph Γ ′ .
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Fig. 1. Two divisors, D and D ′ , which are defined on two homeomorphic metric graphs Γ and Γ ′ respectively, and have different
ranks.

Theorem 1.10. Rank-determining sets are preserved under homeomorphisms.

In Section 2, we present an algorithm for computing the v0-reduced divisor linearly equivalent to
a given effective divisor on Γ . In Section 3, we investigate properties of rank-determining sets based
on this algorithm, which are generalized into a criterion (Theorem 3.17) for rank-determining sets,
from which Theorems 1.6, 1.7 and 1.10 easily follow. We also explore several concrete examples as
applications of the criterion.

2. From effective divisors to reduced ones

2.1. Reduced divisors

The notion of reduced divisors was adopted in [3] as an important tool in the proof of the Riemann–
Roch theorem for finite graphs. The definition of reduced divisors on finite graphs is based on the
notion of G-parking functions [12].

Let G be a finite graph. For A ⊆ V (G) and v ∈ A, the out-degree of v from A, denoted by
outdegA(v), is defined as the number of edges of G with one end at v and the other end in V (G) \ A.
Choose a vertex v0. We say a function f : V (G) \ {v0} → Z is a G-parking function based at v0 if

(i) f (v) � 0 for all v ∈ V (G) \ {v0}, and
(ii) every nonempty subset A of V (G) \ {v0} contains a vertex v such that f (v) < outdegA(v).

A divisor D ∈ Div G is called v0-reduced if the map v �→ D(v) restricted on V (G) \ {v0} is a G-
parking function based at v0. An important property of reduced divisors is stated in the following
proposition.

Proposition 2.1. (See [3, Proposition 3.1].) If we fix a base vertex v0 ∈ V (G), then for every D ∈ Div G, there
exists a unique v0-reduced divisor D ′ ∈ Div G such that D ′ ∼ D.

Proposition 2.1 is quite useful when dealing with equivalence classes of divisors, since we can
select a reduced divisor as a concrete representative for each equivalence class of divisors.

The notion of reduced divisors has been extended to metric graphs by several authors. In this
paper, we adopt the definition of reduced divisors on metric graphs as in [9], which follows closely
the definition of reduced divisors on finite graphs as discussed above. Other authors suggest to define
reduced divisors on metric graphs in more abstract ways [2,11], and it can be proved that these
definitions are all equivalent.

Let Γ be a metric graph. If X is a subset of Γ with finitely many connected components, we use
Xc to denote the complement of X on Γ , X the closure of X , Xo the interior of X , and ∂ X the set
of boundary points of X . Note that ∂ X = ∂(Xc). In addition, if X is closed, then for v ∈ X , we define
the out-degree of v from X , denoted by outdegX (v), to be the number of segments leaving X at v , or
more precisely, the maximum number of internally disjoint segments of Xc with an open end at v .
Note that outdegX (v) = 0 for all v ∈ X \ ∂ X . For D ∈ DivΓ , we call a boundary point v of X saturated
with respect to X and D if D(v) � outdegX (v), and non-saturated otherwise.
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Definition 2.2. Fix a base point v0 ∈ Γ . We say that a divisor D is v0-reduced if D is non-negative
on Γ \ v0, and every closed connected subset X of Γ \ v0 contains a non-saturated point v ∈ ∂ X .

As a counterpart of Proposition 2.1, the following theorem asserts the existence and uniqueness of
a v0-reduced divisor in any equivalence class of Div Γ [9,11].

Theorem 2.3. (See [9, Theorem 10].) Let D be a divisor on a metric graph Γ . For any v0 ∈ Γ , there exists
a unique v0-reduced divisor D v0 that is linearly equivalent to D.

For any finite subset S of Γ , we denote by U S,v0 the connected component of Sc which contains
v0. In particular, if v0 ∈ S , then U S,v0 = ∅. We emphasize here that U S,v0 is connected and open,
while U c

S,v0
is closed and might have several connected components. We say that S is v0-minimal if

U c
S,v0

is connected and S equals the set of boundary points of U c
S,v0

.
Assume now that D is effective. To verify if D is v0-reduced, we do not need to go through all

closed connected subsets of Γ \ v0. The following lemma shows that we only need to consider finitely
many of them.

Lemma 2.4. Let v0 be a point of Γ and D an effective divisor on Γ . Then D is v0-reduced if and only if for any
subset S of supp D \ v0 , U c

S,v0
contains a non-saturated boundary point with respect to D.

Proof. First assume D is v0-reduced and consider a subset S of supp D \ v0. Then U c
S,v0

is a closed
subset of Γ which has finitely many components. Apply the defining property of v0-reduced divisors
to any of these components, and we obtain non-saturated boundary points on each of them.

Conversely, assume that for any subset S of supp D \ v0, U c
S,v0

contains a non-saturated point.
If D is not v0-reduced, then there exists a closed connected subset X of Γ \ v0, such that every
point of ∂ X is saturated with respect to X and D . Since outdegX (v) > 0 for all v ∈ ∂ X , it follows
that ∂ X ⊆ supp D \ v0. And since X ⊆ U c

∂ X,v0
, the edges leaving U c

∂ X,v0
must also be edges leaving X .

Therefore, for every v ∈ ∂U∂ X,v0 , we have

D(v) � outdegX (v) � outdegU c
∂ X,v0

(v).

This is equivalent to saying that U c
∂ X,v0

contains no non-saturated boundary points, which contradicts
our assumption. �

Lemma 2.4 tells us that to determine if an effective divisor D is v0-reduced, it suffices to consider
only the subsets of supp D \ v0. But the number of cases still grows exponentially with respect to
#{supp D}. For finite graphs, there is an elegant algorithm for verifying if a given function is a G-
parking function, which is adapted from an algorithm provided by Dhar [6] in the context of sandpile
models (see [5]). Here we naturally extend Dhar’s algorithm to metric graphs, as a consequence of
which we just need to test the points in supp D \ v0 one by one in order to judge whether an effective
divisor D is v0-reduced.

Algorithm 2.5 (Dhar’s algorithm for metric graphs).
Input: An effective divisor D ∈ Div+ Γ , and a point v0 ∈ Γ .
Output: A subset S of supp D \ v0.
Initially, set S0 = supp D \ v0, and k = 0.

(1) If Sk = ∅ or all the boundary points of U c
Sk,v0

are saturated with respect to D , set S = Sk and stop
the procedure.

(2) Let Nk be the set of all non-saturated boundary points of U c
Sk,v0

. Set Sk+1 = Sk \ Nk . Set k ← k + 1
and go to step (1).

Lemma 2.6. Run Dhar’s algorithm for an effective divisor D and a point v0 . Then D is v0-reduced if and only
if the output S is empty.
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Fig. 2. (a) A metric graph Γ and two effective divisors D1 and D2 on Γ . (b) Dhar’s algorithm for D1 and v0. (c) Dhar’s algorithm
for D2 and v0.

Proof. If S is nonempty, then all the boundary points of U c
S,v0

are saturated. Thus D is not v0-reduced
by Lemma 2.4.

Otherwise, S = ∅. For a subset S ′ of supp D \ v0, let Nk be such that Nk ∩ S ′ �= ∅ and Nk′ ∩ S ′ = ∅
for k′ < k. Note that S ′ ⊆ Sk . If v ∈ Nk ∩ S ′ , then v must be a non-saturated boundary point of U c

S ′,v0
,

since

D(v) < outdegU c
Sk ,v0

(v) � outdegU c
S′,v0

(v).

By Lemma 2.4, D is v0-reduced. �
Remark 2.7. The out-degrees are topological invariants, which implies that whether or not a divisor is
v0-reduced is preserved under homeomorphisms. If we let supp |D| be a subset of the defined vertex
set Ω , then Algorithm 2.5 reduces to a regular Dhar’s algorithm on the underlying finite graph G of
the metric graph Γ , where we require V (G) = Ω (edge lengths does not play a role here). This means
Algorithm 2.5 has O (#Ω) time complexity.

Remark 2.8. If an effective divisor D is not v0-reduced, then running Algorithm 2.5 for D and v0
can actually provide the unique “smallest” open neighborhood U S,v0 of v0 such that all its boundary
points are saturated with respect to D and U c

S,v0
. Intuitively, “saturated” may be think of as “ready

to move”. When all the boundary points are saturated, we can launch a “move” of D towards the
v0-reduced divisor linearly equivalent to D . This motivates to develop an algorithm of computing
reduced divisors (Algorithm 2.13), as will be discussed in the next subsection.

Example 2.9. Let Γ be a metric graph as illustrated in Fig. 2(a) with a vertex set {w1, w2, w3, w4}.
Let D1 = (v1) + (w3) + 2(w4) and D2 = 2(v1) + (v2) + (w3) + 2(w4). Run Dhar’s algorithm for D1
and v0. The dashed areas in Fig. 2(b) illustrate U Sk,v0 step by step. Initially, we have S0 = {v1, w3, w4}
and U c

S0,v0
= {v1} ∪ [w3, w4]. The set N0 of all non-saturated boundary points of U c

S0,v0
is {v1, w3}.

Then S1 = S0 \ N0 = {w4} and U c
S1,v0

= {w4}. Since w4 is a non-saturated point, we have N1 = {w4}
and S2 = ∅. Now U c

S2,v0
is the whole graph and we get the output S = ∅. Therefore D1 is v0-reduced.

We leave it to the readers to verify the output of Dhar’s algorithm for D2 and v0 is {v1, v2, w4} and
D2 is not v0-reduced (Fig. 2(c)).
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2.2. An algorithm for computing reduced divisors

Based on Dhar’s algorithm and the criterion from Lemma 2.6, we formulate an algorithm to derive
from an effective divisor D the unique v0-reduced divisor linearly equivalent to D .

Recall from [9] the notion of basic v0-extremal functions on Γ . We say a rational function f is a
basic v0-extremal function if there exist closed connected disjoint subsets Xmax( f ) and Xmin( f ) of Γ

such that:

(i) v0 ∈ Xmin( f );
(ii) Γ − Xmax( f ) − Xmin( f ) is the union of disjoint open segments of the same length;

(iii) f achieves its maximum on Xmax( f ) and its minimum on Xmin( f );
(iv) f has constant slope 1 from Xmin( f ) to Xmax( f ) on Γ − Xmax( f ) − Xmin( f ).

Definition 2.10. Let D be an effective divisor on Γ and S a subset of supp D \ v0 such that all the
boundary points of U c

S,v0
are saturated with respect to D . Let Ω be a fixed vertex set of Γ . We call

the following parameterizing process �D,S,v0 : [0,1] → Div+ Γ the v0-move of D with respect to S
and Ω:

(i) �
(0)
D,S,v0

= D .
(ii) Let J be the number of connected components of U c

S,v0
, and denote these components by X1

through X J .
For j = 1,2, . . . , J and t ∈ (0,1], let

d(t)
j = t · dist(X j, U S,v0 ∩ (Ω ∪ v0)),

P (t)
j = {p ∈ U S,v0 | dist(X j, p) = d(t)

j },

Q (t)
j = {q ∈ U S,v0 | dist(X j,q) � d(t)

j }, and

f (t)
j a basic v0-extremal function such that

Xmax( f (t)
j ) = X j , and ∂ Xmin( f (t)

j ) = P (t)
j .

(iii) �
(t)
D,S,v0

= D + ∑ J
j=1( f (t)

j ), for t ∈ (0,1].

Example 2.11. Let Γ be the same metric graph as in Example 2.9 and D = D2, as shown in Fig. 3. In
particular, we assign length 1 to all edges and let vi be the middle point of the corresponding edge
for i = 0,1,2,3,4. We know from Example 2.9 that the output S of Dhar’s algorithm for D and v0
is {v1, v2, w4}. Let us consider a v0-move �D,S,v0 . Note that U c

S,v0
has two connected components,

v1 and [v2, w4], which we denote by X1 and X2 respectively. We observe that d(t)
1 = d(t)

2 = 0.5t for

t ∈ (0,1]. And at the end of the move (t = 1), we get P (1)
1 = {w1, w2}, Q (1)

1 = [w1, v1, w2] \ v1,

P (1)
2 = {v3, v4, w3}, and Q (1)

2 = (w4, v3] ∪ (w4, v4] ∪ (v2, w3]. In addition, ( f (1)
1 ) = (w1) + (w2) −

2(v1) and ( f (1)
2 ) = (v3) + (v4) + (w3) − (v2) − 2(w4). Then we get �

(1)
D,S,v0

= D + ( f (1)
1 ) + ( f (1)

2 ) =
(v3) + (v4) + (w1) + (w2) + 2(w3).

The reader is suggested to go through the above example before reading the proofs of the following
statements.

Lemma 2.12. Let D be an effective divisor which is zero at v0 and �D,S,v0 a move of D. Denote supp(�
(t)
D,S,v0

)

by O (t) for t ∈ [0,1]. Then U O (t),v0
is non-expanding with respect to t. Moreover, U O (t),v0

evolves continuously
unless possibly undergoing an abrupt shrink at t = 1.

Proof. Let Q (t)
j be as defined in Definition 2.10 for t ∈ (0,1]. Let Q (0) = ∂U S,v0 and

Q (t) =
J⋃

j=1

Q (t)
j , for t ∈ (0,1].
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Fig. 3. A v0-move of D .

Clearly, Q (t) continuously expands with respect to t . For t ∈ [0,1), we have

U O (t),v0
= U O (0),v0

\ Q (t),

which means U O (t),v0
is non-expanding as t increases and its evolution is continuous. The case t = 1

is somehow special, since the continuous expansion of Q (t) might result in a hit at certain vertices
or v0. But we still have

U O (1),v0
⊆ U O (0),v0

\ Q (1).

This means that an abrupt shrink of U O (t),v0
might happen at t = 1. �

Based on making v0-moves iteratively, we propose the following algorithm to derive the v0-
reduced divisor linearly equivalent to an effective divisor D .

Algorithm 2.13.
Input: An effective divisor D ∈ Div+ Γ , and a point v0 ∈ Γ .
Output: The unique v0-reduced divisor D v0 linearly equivalent to D .
Initially, set D(0) = D , and i = 0.

(1) Run Dhar’s algorithm for D(i) and v0 with the output denoted by S(i) . If S(i) = ∅, then set D v0 =
D(i) and stop the procedure. In addition, we say that the procedure terminates at i. And for
convenience, we set D(t) = D(i) for all real numbers t > i. Otherwise, go to step (2).

(2) Define D(i+t) = �
(t)
D(i),S(i),v0

for t ∈ (0,1]. Set i ← i + 1, and go to step (1).

If the procedure in Algorithm 2.13 terminates at I , then by Lemma 2.6, D v0 is v0-reduced as
desired, and the evolution of D into D v0 is parameterized by D(t) , t ∈ [0, I]. The main goal of this
section is to prove such a procedure always terminates (Theorem 2.15), which means that we will
always get to a reduced divisor using finitely many moves.

Lemma 2.14. We have the following properties of the parameterizing procedure in Algorithm 2.13:

(i) D(t)(v0) is integer-valued, bounded, and non-decreasing with respect to t, and it can jump only when t is
an integer. In addition, there exists an integer I1 such that D(t)(v0) = D(I1)(v0) for all t � I1 .

(ii) For a non-negative integer i0 , let d = D(i0)(v0) and D(t)
0 = D(t) − d · (v0). Then for all real numbers

t � i0 , U
supp D(t)

0 ,v0
is non-expanding with respect to t. In particular, U

supp D(t)
0 ,v0

evolves continuously

unless possibly undergoing an abrupt shrink when t is an integer.
(iii) Denote Usupp D(t)\v0,v0

by U (t). For t � I1 , let K (t) = #{Ω ∩ U (t)}, which counts the number of vertices

in U (t) after D(t)(v0) reaches its maximum. Then K (t) is integer-valued, bounded, and non-increasing
with respect to t, and it can jump only when t is an integer. Furthermore, there exists an integer I2 � I1
such that K (t) = K (I2) for all t � I2 .
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Proof. Clearly D(t)(v0) is integer-valued. Note that v0 /∈ S(i) for any i, which implies that D(t)(v0) is
non-decreasing and can only change its value when t is an integer. Moreover, D(t)(v0) is bounded
from below by D(v0) and from above by deg (D), which guarantees the existence of the finite inte-
ger I1. Thus Property (i) holds.

D(i0)
0 has value 0 at v0. Thus by Lemma 2.12, for t � i0, U

supp D(t)
0 ,v0

is non-expanding, and evolves

continuously unless possibly undergoing an abrupt shrink when t is an integer. In particular, whenever
v0 is hit by a move, U

supp D(t)
0 ,v0

will always be empty afterwards. And Property (ii) is proved.

After D(t)(v0) reaches its maximum at t = I1, v0 will never be hit anymore. The above argument
implies that for t � I1, U (t) is non-expanding, and continuously evolves unless possibly undergoing
an abrupt shrink when t is an integer. It follows immediately that K (t) is integer-valued, and non-
increasing with respect to t , while it only possibly changes when t is an integer. Clearly K (t) is lower-
bounded by 0, which also implies the existence of I2 and finishes the proof of Property (iii). �
Theorem 2.15. The procedure in Algorithm 2.13 always terminates.

Proof. We proceed by induction on deg (D). Clearly Theorem 2.15 holds when deg D = 0 since this
implies that D = 0. Now suppose deg (D) > 0.

By Lemma 2.14(i), if D(I1)(v0) > 0, then D(t)(v0) > 0 for all t � 0 and the result follows by in-
duction (applied toD(I1) − (v0)). Now we assume D(I1)(v0) = 0. By Lemma 2.14(iii), there exists an
integer I2, such that K (t) = K (I2) for all t � I2. We let t � I2 in the remaining parts of the proof. Note
that U (t) might keep shrinking. However, such a shrink can never hit a vertex anymore, which also
means that U (t) evolves continuously for t � I2. Let X be a connected component of U (I2)

c . Let U0 be
a subset of U (I2) derived by removing the open segments with one end a boundary point of ∂U (I2)

and the other end a vertex or v0. By definition U0 is closed and connected, and U (I2) \ U0 is a union
of some disjoint open segments. Denote by E X the set of these segments. For e ∈ E X , we use we to
denote the end of e on X . We say e ∈ E X is obstructed at t if supp D(t) ∩ e �= ∅ or we is saturated with
respect to D(t) and X . Note that if an edge is obstructed at t , then it is obstructed at all t′ � t .

We claim that there exists e ∈ E X that never becomes obstructed. Otherwise, there exists an inte-
ger I3 such that for t � I3, the component of U (t)c corresponding to X has all its boundary points
saturated. Then one additional move from Algorithm 2.13 will result in a hit at a vertex, which con-
tradicts the minimality of K (I2) . So let e be an element of E X that never becomes obstructed. Then
we does not belong to any output S(i) of Dhar’s algorithm for D(i) when i � I2. So Algorithm 2.13 for
D(I2) terminates if and only if the algorithm for D(I2) −(we) terminates, and the induction applies. �
Remark 2.16. What should X look like in the above proof? Since X must contain non-saturated
boundary points with respect to D(I2) , there are only two possibilities. X can be a single non-vertex
point with D(I2)(X) = 1, or else X (I2) must contain a vertex on its boundary.

Remark 2.17. We know from the Riemann–Roch theorem that the rank of the divisor n · (v0) as
a function of n can be arbitrarily large. Hence given a divisor D (not necessarily effective) on Γ ,
there always exists a divisor D ′ which is non-negative on Γ \ v0 and linearly equivalent to D . In
particular, [9] presents an algorithm to construct such a divisor D ′ as the first step in the proof of the
existence part of Theorem 2.3 (Theorem 10 in [9]). By running Algorithm 2.13 for D ′ − D ′(v0) · (v0)

and v0, we can always obtain a v0-reduced divisor D ′′ linearly equivalent to D − D ′(v0) · (v0). Then
D ′′ + D ′(v0) · (v0) is a v0-reduced divisor linearly equivalent to D . This provides an alternative proof
of the existence part of Theorem 2.3.

Corollary 2.18. Let D be a divisor on Γ and |D| the linear system associated to D. For v0 ∈ Γ , let D v0 be the
unique v0-reduced divisor D v0 in |D|.

(i) If v0 ∈ supp |D|, then D v0 (v0) > 0.
(ii) If |D| �= ∅ and v0 /∈ supp |D|, then Usupp(D v0 ),v0 is nonempty and for all v ∈ Usupp(D v0 ),v0 , we have v /∈

supp |D| and D v0 is also v-reduced.
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Proof. If v0 ∈ supp |D|, let D ′ be an effective divisor such that D ′ ∈ |D| and D ′(v0) > 0. Applying
Algorithm 2.13 for D ′ and v0, we can derive D v0 . Note that D v0 (v0) � D ′(v0). Thus D v0 (v0) > 0.

If |D| �= ∅ and v0 /∈ supp |D|, then D v0 (v0) = 0, which means Usupp(D v0 ),v0 is nonempty. For all
v ∈ Usupp(D v0 ),v0 , clearly D v0 (v) = 0, and using Dhar’s algorithm, it is easy to see that D v0 is also
v-reduced. Moreover, we have v /∈ supp |D| by (i). �
Remark 2.19. In the sense of Corollary 2.18(ii), if X is a subset of Usupp D v0 ,v0 , then we may also say
D v0 is X-reduced.

Remark 2.20. Corollary 2.18 is what we are going to employ in the next section.

3. Rank-determining sets

We say a subset Γ ′ of a metric graph Γ is a subgraph of Γ if Γ ′ is connected and closed. Let Ω

be a vertex set of Γ . Then (Ω ∩Γ ′)∪ ∂Γ ′ (considered in Γ ) is automatically a vertex set of Γ ′ , which
we call the vertex set of Γ ′ induced by Γ . A tree on Γ is a subgraph of Γ with genus 0 (or equally
a contractible subgraph), and a spanning tree of Γ is a tree on Γ that is minimal among those which
contain all vertices of Γ . We call a point v a cut point in a metric graph if Γ \ v is disconnected.

3.1. A is a rank-determining set if and only if L(A) = Γ

Consider a point v in a metric tree T and an effective divisor D on T such that v ∈ supp D . Then
for all v ′ ∈ T , there exists an effective divisor D ′ such that D ′ ∼ D and v ′ ∈ supp D ′ . Actually since
all divisors on T of the same degree are linearly equivalent, we can let D ′ be any effective divisor
which has the same degree as D and has v in its support. This means that for a linear system |D|,
whenever we know v ∈ supp |D|, we know supp |D| = T . Now we want to generalize this observation
from a metric tree T to an arbitrary metric graph and from a singleton {v} to any subset of the metric
graph.

For a nonempty subset A of a metric graph Γ , we use L(A) to denote the maximal subset of Γ

such that L(A) ⊆ supp |D| whenever A ⊆ supp |D|. For simplicity of notation, we denote L(
⋃n

i=1 Ai)

by writing L(A1, A2, . . . , An). Note that we can always find a linear system whose support contains A
(for example, the support of the linear system associated to

∑
v∈Ω(v) is the whole graph Γ ). There-

fore we can write

L(A) =
⋂

supp |D|⊇A

supp |D|.

Obviously, A ⊆ L(A), and if A′ is a subset of L(A), then L(A, A′) = L(A). In case we want to empha-
size that A and all the linear systems are defined on Γ , we may write LΓ (A) in stead of L(A).

Proposition 3.1. Let A be a nonempty subset of Γ . The following are equivalent.

(i) L(A) = Γ .
(ii) If rA(D) � 1, then r(D) � 1.

(iii) A is a rank-determining set of Γ .

Proof. (i) ⇔ (ii). L(A) = Γ , if and only if A ⊆ supp |D| implies supp |D| = Γ , if and only if
|D − E ′

1| �= ∅ for all E ′
1 ∈ Div1+ A, implies |D − E1| �= ∅ for all E1 ∈ Div1+ Γ , if and only if rA(D) � 1

implies r(D) � 1.
(iii) ⇒ (ii). This follows directly from the definition of rank-determining sets.
(ii) ⇒ (iii). If |D| = ∅, then rA(D) = r(D) = −1. We will only consider the case |D| �= ∅ in the

following. Since A is a subset of Γ , it is easy to see that rA(D) � r(D) by definition. Therefore, to
prove A is a rank-determining set, it suffices to show that rA(D) � s implies r(D) � s for each integer
s � 0. The case s = 0 is trivial, since Div0+ A = Div0+ Γ = 0. And the case s = 1 is stated in (ii).



1786 Y. Luo / Journal of Combinatorial Theory, Series A 118 (2011) 1775–1793
Let k ∈ {0,1, . . . , s−1}. We claim that if rA(D − Ek) � s−k for all Ek ∈ Divk+ Γ , then rA(D − Ek+1) �
s − k − 1, for all Ek+1 ∈ Divk+1+ Γ . This can be proved by the following deduction:

rA(D − Ek) � s − k, ∀Ek ∈ Divk+ Γ

⇐⇒
∣∣D − Ek − E ′

s−k

∣∣ �= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′
s−k ∈ Divs−k+ A

⇐⇒
∣∣(D − Ek − E ′

s−k−1

) − E ′
1

∣∣ �= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′
s−k−1 ∈ Divs−k−1+ A, ∀E ′

1 ∈ Div1+ A
(
by (ii)

) �⇒
∣∣(D − Ek − E ′

s−k−1

) − E1
∣∣ �= ∅, ∀Ek ∈ Divk+ Γ, ∀E ′

s−k−1 ∈ Divs−k−1+ A, ∀E1 ∈ Div1+ Γ

⇐⇒
∣∣D − Ek+1 − E ′

s−k−1

∣∣ �= ∅, ∀Ek+1 ∈ Divk+1+ Γ, ∀E ′
s−k−1 ∈ Divs−k−1+ A

⇐⇒
rA(D − Ek+1) � s − k − 1, ∀Ek+1 ∈ Divk+1+ Γ.

Therefore, by applying the above deduction for k going from 0 through s − 1, we have:

rA(D) � s �⇒
rA(D − E1) � s − 1, ∀E1 ∈ Div1+ Γ �⇒ · · · �⇒
rA(D − Es−1) � 1, ∀Es−1 ∈ Divs−1+ Γ �⇒
rA(D − Es) � 0, ∀Es ∈ Divs+ Γ

⇐⇒
r(D) � s.

Thus (ii) is sufficient to make A a rank-determining set of Γ . �
3.2. Special open sets and a criterion for L(A)

By the definition of reduced divisors, we observe that by just knowing an effective divisor D is
v0-reduced, we can say something about Usupp D\v0,v0 . Actually it cannot be an arbitrary connected
open set. We define “special open sets” to describe these sets.

Definition 3.2. A connected open subset U of Γ is called a special open set on Γ if either U = ∅ or Γ ,
or every connected component X of U c contains a boundary point v such that outdegX (v) � 2. In
particular, we say Γ is trivial if U = ∅ or Γ . And we use SΓ to denote the set of all special open sets
on Γ .

Lemma 3.3 through 3.7 present some simple properties of special open sets.

Lemma 3.3. Let U be a connected open set on Γ , and D = ∑
v∈∂U (v). Then U is a special open set if and only

if D is U -reduced.

Proof. We just need to consider U nontrivial. And it follows directly by running Dhar’s algorithm for
D and any point v ∈ U . �
Lemma 3.4. For v0 ∈ Γ , if D is a v0-reduced divisor, then Usupp D\v0,v0 is a special open set.
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Proof. Let D ′ = ∑
v∈supp D\v0

(v). Since D is a v0-reduced divisor, D ′ must also be v0-reduced. Thus
Usupp D\v0,v0 is a special open set by Lemma 3.3. �
Lemma 3.5. Let Γ be a metric graph of genus g. If U is a nontrivial special open set on Γ , then U has genus
at least 1. In addition, every family of pairwise disjoint special open sets of Γ has at most g members.

Proof. Suppose U is a nontrivial special open set such that U is a tree. Then for every v ∈ ∂U ,
outdegU c (v) = 1, which contradicts the definition of special open sets. And it follows immediately
that Γ can sustain at most g disjoint nonempty special open set. �
Lemma 3.6. Let X be a nonempty connected subset of Γ , and |D| a linear system such that supp |D| ∩ X = ∅.
Then there exists a special open set U such that X ⊆ U ⊆ (supp |D|)c .

Proof. Let v ∈ X and D ′ be the v-reduced divisor in |D|. Then by Corollary 2.18 and Lemma 3.4,
Usupp D ′,v is a special open set with the desired properties. �
Lemma 3.7. Let D be a divisor on Γ and |D| the corresponding linear system. Then (supp |D|)c is a disjoint
union of finitely many nonempty special open sets.

Proof. Let v1 and v2 be two points in (supp |D|)c . Let D1 and D2 be elements of |D| that are v1-
reduced and v2-reduced, respectively. Let U1 = Usupp D1,v1 and U2 = Usupp D2,v2 . Then by Lemma 3.4,
U1 and U2 are special open sets. In addition, we have either U1 = U2 or U1 ∩ U2 = ∅ by Corol-
lary 2.18. Thus (supp |D|)c must be a disjoint union of nonempty special open sets. And we know
from Lemma 3.5 that there are only finitely many of them. �

Based on the notion of special open sets, we formulate a sufficient condition for v to belong
to L(A), as stated in the following theorem. (We will show in Theorem 3.17 that it is also a necessary
condition.)

Theorem 3.8. Let v ∈ Γ and let A be a nonempty subset of Γ . Then v ∈ L(A) if for all special open sets U
containing v, we have A ∩ U �= ∅. Moreover,

L(A) ⊇
⋂

U∈SΓ ,U∩A=∅
U c.

In addition, A is a rank-determining set if all nonempty special open sets intersect A.

Proof. Suppose |D| is a linear system such that A ⊆ supp |D|. Then by Lemma 3.6, for every v /∈
supp |D|, there exists a neighborhood U of v which is a special open set disjoint from supp |D|. Thus
if all special open sets containing v intersect A, then A ⊆ supp |D| implies v ∈ supp |D|, which means
v ∈ L(A). It follows immediately that

L(A) ⊇
⋂

U∈SΓ ,U∩A=∅
U c.

If all nonempty special open sets intersect A, then L(A) = Γ . Thus A is a rank-determining set by
Proposition 3.1. �
Proposition 3.9. Let U be a nonempty connected open proper subset of Γ such that U is a tree. Then U ⊆
L(∂U ).

Proof. ∂U is nonempty since U is a proper subset of Γ . Then by Lemma 3.5, for every v ∈ U , if U ′ is
a special open set containing v , then U ′ has genus at least 1 unless possibly U ′ is the whole graph.
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Thus U ′ must intersect ∂U , since any connected closed subset of U has genus 0. Therefore we have
v ∈ L(∂U ) by Theorem 3.8. �
Example 3.10. (a) Let Ω be an arbitrary vertex set of Γ . By Proposition 3.9, we immediately have
[wi, w j] ⊆ L(wi, w j) for two adjacent vertices wi and w j (note that it doesn’t matter whether there
are multiple edges between wi and w j ). Thus L(Ω) = Γ , which implies Ω is a rank-determining set
of Γ , as claimed in Theorem 1.6.

(b) Let A be a finite set formed by choosing one internal point from each edge. Then it is also easy
to show that A is a rank-determining set using Proposition 3.9.

Proposition 3.11. Let U be a nonempty connected open proper subset of a metric graph Γ such that U has
genus g′ . Let T be a spanning tree of U . Then U \ T is a disjoint union of g′ open segments. Choosing one point
from each of these segments, we get a finite set B of cardinality g′ . Then U ⊆ L(∂U , B)

Proof. If g′ = 0, then U ⊆ L(∂U ) by Proposition 3.9. Now we suppose g′ � 1. Consider a point v ∈ U .
If v /∈ L(∂U ), then there exists a special open set U ′ such that v ∈ U ′ and U ′ ⊆ U by Theorem 3.8.
We claim that U ′ ∩ B �= ∅, which implies v ∈ L(∂U , B).

Denote the g′ open segments of U \ T by e1, e2, . . . , eg′ . If U ′ ∩ T is not connected, then there must
exist some ei ⊆ U ′ \ T to make U ′ connected. Thus U ′ ∩ B �= ∅. Now suppose U ′ ∩ T is connected. By
definition of special open sets, every connected component of (U ′)c contains a boundary point with
out-degree at least 2, which means that there exists some ei ⊆ U ′ \ T having one end in ∂U ′ and the
other in U ′ ∩ T . Thus we also have U ′ ∩ B �= ∅. �
Remark 3.12. Theorem 1.7 can be deduced from Proposition 3.11 by the following argument. Let Γ

be a metric graph of genus g and T a spanning tree of Γ . Then Γ \ T is a disjoint union of g
open segments e1, e2, . . . , eg . Choose an arbitrary point v0 from T , and an arbitrary point vi from
ei for i = 1,2, . . . , g . Let A = {v0, v1, . . . , v g}. If v0 is not a cut point, then we can directly apply
Proposition 3.11 to Γ \ v0 and conclude that L(A) = Γ . Otherwise, applying Proposition 3.11 to each
connected component X of Γ \ v0 (note that the induced spanning tree of X is T ∩ X), we also get
L(A) = Γ . Therefore A is a rank-determining set of cardinality g + 1 as desired.

Remark 3.13. For readers who know some algebraic geometry, we sketch Varley’s proof of Theo-
rem 1.8 here (see [8, Chapter 4] for some terms used in this proof). Consider a nonsingular projective
algebraic curve C . First note that the rank r(D) of a divisor D on C has the same value as dim L(D)−1.
Recall that we say a point p ∈ C is a base point of a linear system |D| if p belongs to the support of
every element of |D|, i.e., p ∈ BL(|D|) where BL(|D|) = ⋂

D ′∈|D| supp D ′ which is called the base lo-
cus of |D|. Varley’s argument uses the fact that a point p ∈ C is a base point of |D| if and only if
r(D − (p)) = r(D). (Note that this is not true for metric graphs.) Take any set S of g + 1 distinct
points on C . To prove that S is a rank-determining set, it suffices to show that for a divisor D on C , if
r(D) � 0, then there exists a point p in S such that r(D − (p)) = r(D)−1. Let B = ∑

q∈BL(|D|)(q) which
is the full base locus divisor of |D|. Note that |B| = {B} since B cannot “move”. If deg(B) � g , then
there is a point p of S not contained in BL(|D|), which means r(D − (p)) = r(D)−1. If deg(B) � g +1,
then r(B) � 1 (by Riemann–Roch) which is impossible. The desired result follows by induction.

Example 3.14. Let Γ be a metric graph corresponding to K4 with a vertex set Ω being {w1, w2,

w3, w4} as shown in Fig. 4. Clearly Ω itself is a rank-determining set by Theorem 1.6. But a proper
subset of Ω can also be a rank-determining set. Note that [w1, w3]∪[w2, w3]∪[w4, w3] is a spanning
tree of Γ , which implies w3 ∈ L(w1, w2, w4) by Proposition 3.9. Thus {w1, w2, w4} is a rank-
determining set as desired. Let v1, v2, . . . , v6 be some internal points. It is also easy to see that
{w3, v1, v5, v6} and {v1, v3, v5, v6} are rank-determining sets by Proposition 3.11. We recommend
the reader to use Theorem 3.8 to verify that {v1, v2, v3, v4} is another rank-determining set, which is
not obvious at first sight.
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Fig. 4. A metric graph corresponding to K4.

Remark 3.15. We see from Example 3.14 that a proper subset of a vertex set can also be rank-
determining. Recall that a vertex cover is a set of vertices such that each edge is incident to at least
one vertex of the set. In fact, for every metric graph and a vertex set which does not allow multi-
ple edges, all vertex covers are rank-determining sets, following from Proposition 3.9. We may even
delete some points from a minimal vertex cover, while still keeping the set rank-determining. We will
discuss such a problem in general using the notion minimal rank-determining sets in Section 3.4.

Proposition 3.16. Let U be a special open set on Γ . Then there exists a divisor D such that supp |D| = U c.

Proof. We only need to consider U nontrivial. Assume (∂U )c has n connected components
X1, X2, . . . , Xn other than U . Let Ti be a spanning tree of Xi , i = 1,2, . . . ,n. Then Xi \ Ti is a dis-
joint union of gi open segments. Choosing one point from each of these segments, we get a finite
set Bi of cardinality gi . Let B = ⋃n

i=1 Bi and D = ∑
v∈∂U (v) + ∑

v∈B(v). Then by Proposition 3.11, we
have U c = ⋃n

i=1 Xi ⊆ L(∂U , B) ⊆ supp |D|. Therefore, to prove supp |D| = U c , it suffices to show that
D is U -reduced.

Let D ′ = ∑
v∈∂U (v). Then D ′ is U -reduced since U is a special open set. Thus by running Dhar’s

algorithm for D ′ and a point in U step by step and taking the set of non-saturated points in each step,
we can get a partition of ∂U by N ′

0, N ′
1, . . . , N ′

K−1. Note that for every Xi , there exists some N ′
k such

that either ∂ Xi is a subset of N ′
k or Xi connects points in ∂ Xi ∩ N ′

k and ∂ Xi ∩ N ′
k+1, i.e., ∂ Xi ∩ N ′

k and
∂ Xi ∩ N ′

k+1 are nonempty and ∂ Xi ⊆ N ′
k ∪ N ′

k+1. Therefore we may define a function λ : {1,2, . . . ,n} →
{1,2, . . . , K − 1} by λ(i) = k if ∂ Xi ∩ N ′

k �= ∅ and ∂ Xi ∩ N ′
k−1 = ∅. Let Nk = (

⋃
λ(i)=k Bi) ∪ N ′

k for k =
0,1, . . . , K − 1. Obviously these Nk ’s form a partition of ∂U ∪ B . Running Dhar’s algorithm for D and
a point in U step by step, we observe that the set of non-saturated points in each step is precisely
N0, N1, . . . , NK−1 in sequence. Therefore the output is empty, which means D is U -reduced. �

Now we come to the main conclusion of this subsection, which states that the condition in Theo-
rem 3.8 is both necessary and sufficient.

Theorem 3.17 (Criterion for L(A) and rank-determining sets). Let v ∈ Γ and let A be a nonempty subset of Γ .
Then v ∈ L(A) if and only if for all special open sets U containing v, we have A ∩ U �= ∅. Furthermore,

L(A) =
⋂

U∈SΓ ,U∩A=∅
U c.

In addition, A is a rank-determining set if and only if all nonempty special open sets intersect A.

Proof. We just need to prove that if v ∈ L(A), then all special open sets containing v must inter-
sect A.

Suppose for the sake of contradiction that there exists U ∈ SΓ such that v ∈ U and A ∩ U = ∅.
Then by Proposition 3.16, there exists a divisor D such that supp |D| = U c . Thus we have A ⊆ supp |D|,
which means that L(A) ⊆ supp |D|. But then v /∈ L(A). �
Example 3.18. Let Γ be a metric graph with a vertex set {w1, w2, w3} as shown in Fig. 5(a), and let
v1, v2, v3 be some internal points. Clearly [v1, v2] ⊆ L(v1, v2). The dashed areas of Fig. 5(b), U1, U2
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Fig. 5. (a) A metric graph with a vertex set {w1, w2, w3}. (b) Three examples of special open sets disjoint from {v1, v2}.

and U3, are three examples of special open sets disjoint from {v1, v2}. Hence we have L(v1, v2) =
[v1, v2] by Theorem 3.17. Now let us consider L(v1, v2, v3). We observe that any special open set
disjoint from {v1, v2, v3} must be a subset of U3, which implies L(v1, v2, v3) = U c

3.

3.3. Consequences of the criterion

Corollary 3.19. Let A be a nonempty subset of Γ . If Ac has n connected components X1, X2, . . . , Xn, then A
is a rank-determining set if and only if Xi ⊆ L(∂ Xi), for i = 1,2, . . . ,n.

Proof. For a point v ∈ Xi , if a special open set U containing v intersects A, then U must intersect ∂ Xi .
Thus by Theorem 3.17, A is a rank-determining set, if and only if all nonempty special open sets
intersect A, if and only if for all v ∈ Γ , if v ∈ Xi , then all special open sets U containing v intersect
∂ Xi , if and only if Xi ⊆ L(∂ Xi), for i = 1,2, . . . ,n. �
Corollary 3.20. Let Γ be a metric graph with a cut point v. Let Γ ′ be the closure of a connected component of
Γ \ v. Then for every nonempty subset A of Γ ′ , we have LΓ ′ (A) ⊆ LΓ (A).

Proof. For v ′ ∈ Γ ′ , if v ′ /∈ LΓ (A), then there exists U ∈ SΓ such that v ′ ∈ U and U ∩ A = ∅ by
Theorem 3.17. Then U ∩ Γ ′ ∈ S ′

Γ , which means v ′ /∈ LΓ ′ (A). �
Proposition 3.21. Let Γ be a metric graph with a vertex set Ω and A a finite rank-determining set of Γ .
Suppose there exists a point v in A which has degree m � 2 and is not a cut point of Γ . Let U v be an open
neighborhood of v such that (U v \ v) ∩ (Ω ∪ A) = ∅. Denote Γ − U v by Γ ′ . Then Γ ′ is a subgraph of Γ and
A \ v is a rank-determining set of Γ ′ .

Proof. Γ ′ is connected since v is not a cut point of Γ and U v \ v contains no vertices. Thus Γ ′ is
a subgraph of Γ .

Clearly U v \ v is a disjoint union of m open segments. Denote these open segments by
e1, e2, . . . , em . Note that the total number of ei ’s ends other than v may be strictly less than m
because of the existence of multiple edges.

Suppose A \ v is not a rank-determining set of Γ ′ . Then there exists U ′ ∈ SΓ ′ disjoint from A by
Theorem 3.17. Without loss of generality, we assume that m′ is an integer such that ei has an end
in U ′ for 1 � i � m′ and ei has no end in U ′ for m′ < i � m. Let U = U ′ ∪ (

⋃m′
i=1 ei). Obviously U

is a connected open set on Γ disjoint from A. We claim U ∈ SΓ . This is because if m′ < m, then
(
⋃m

i=m′+1 ei)∪ v may glue together some of the connected components of Γ ′ − U ′ into one connected
component of Γ − U while the out-degrees of those boundary points are unchanged, and if m′ = m,
then v itself forms a connected component of Γ − U and has out-degree at least 2. But this means A
is not a rank-determining set of Γ by Theorem 3.17, a contradiction. �
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Fig. 6. Two examples illustrating that edge contractions do not maintain rank-determining sets.

Remark 3.22. The converse proposition of Proposition 3.21 is not true. That is, A is not guaranteed to
be a rank-determining set of Γ by A \ v being a rank-determining set of Γ ′ . For example, let Γ be the
metric graph corresponding to K4 as shown in Fig. 4. Let Γ ′ = [w1, w2] ∪ [w2, w4] ∪ [w4, w1]. Then
{v5, v6} is a rank-determining set of Γ ′ . However {v5, v6, w3} is not a rank-determining set of Γ .

It is clear that special open sets are preserved under homeomorphisms since out-degrees are topo-
logical invariants. Thus Theorem 3.17 tells us that rank-determining sets are also preserved under
homeomorphisms (Theorem 1.10). The following theorem provides a more general description of this
fact.

Theorem 3.23. Let f : Γ → Γ ′ be a homeomorphism between two metric graphs Γ and Γ ′ . Let A be
a nonempty subset of Γ . Then LΓ ′ ( f (A)) = f (LΓ (A)). In particular, A is a rank-determining set of Γ if
and only if f (A) is a rank-determining set of Γ ′ .

For a closed segment e on a metric graph Γ , we say φe : Γ → Γ ′ is an edge contraction of Γ with
respect to e if φe merges together all the points in e into a single point while keeping every point in
Γ \ e unchanged. Clearly an edge contraction φe may change the topology of Γ . We now give some
examples which show that rank-determining sets may not be preserved under edge contractions.

Example 3.24. (a) Consider a metric graph Γ corresponding to K4 as in Example 3.14. An edge con-
traction with respect to [w2, w3] results in a new graph Γ ′ (Fig. 6(a)). Let v ′

1, v ′
2, v ′

3, v ′
4, w ′

1, w ′
4 and

w ′ be the points in Γ ′ corresponding to v1, v2, v3, v4, w1, w4 and [w2, w3], respectively. We know
that {v1, v2, v3, v4} is a rank-determining set of Γ . However, as shown in Fig. 6(a), U is a special
open set disjoint from {v ′

1, v ′
2, v ′

3, v ′
4}. Thus {v ′

1, v ′
2, v ′

3, v ′
4} is not a rank-determining set of Γ ′ .

(b) Now let Γ be the metric graph as in Example 3.18. By contracting [w1, w2], we get a new
graph Γ ′ (Fig. 6(b)). Let v ′

1, v ′
2, w ′

3 and w ′ be the points in Γ ′ corresponding to v1, v2, w3 and
[w1, w2], respectively. Note that w ′ ∈ LΓ ′ (v ′

1, v ′
2) by Corollary 3.20. Thus {v ′

1, v ′
2, w ′

3} is a rank-
determining set of Γ ′ . However, {v1, v2, w3} is not a rank-determining set of Γ .

3.4. Minimal rank-determining sets

Definition 3.25. We say that a rank-determining set A of Γ is minimal if A \ v is not a rank-
determining set for every v ∈ A.

It is easy to see from Proposition 3.9 that minimal rank-determining sets must be finite. In partic-
ular, the intersection of a minimal rank-determining set and an edge contains at most 2 points. We
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Fig. 7. Two examples of special open sets on the metric graph corresponding to K4.

have the following criterion for minimal rank-determining sets as an immediate corollary of Theo-
rem 3.17.

Proposition 3.26. Let A be a subset of a metric graph Γ . Then A is a minimal rank-determining set if and only
if

(i) all nonempty special open sets intersect A, and
(ii) for every point v ∈ A, there exists a special open set that intersects A only at v.

Example 3.27. Let us reconsider a metric graph corresponding to K4 as in Example 3.14. Let U1 =
Γ \ [w2, w4] and U2 = Γ \ [w3, w4] \ {v2}, shown as the dashed areas of Fig. 7. Then U1 and U2
are two special open sets. Let A1 = {w1, w2, w4} and A2 = {v1, v2, v3, v4}. By Example 3.14, A1 and
A2 are both rank-determining sets. We claim that they are actually minimal rank-determining sets.
Note that the points in A1,2 are symmetrically distributed. Thus by Proposition 3.26, to show they
are minimal, it only requires us to find some special open sets that intersect A1 or A2 at exactly one
point. We observe that U1 ∩ A1 = {w1} and U2 ∩ A2 = {v1}. Thus U1 and U2 are the desired special
open sets.

We’ve given a proof of Theorem 1.7 by showing constructively that a family of finite subsets of Γ ,
all having cardinality g +1, are rank-determining sets. Now we will prove that these rank-determining
sets are minimal.

Proposition 3.28. Let Γ be a metric graph of genus g and let T be a spanning tree of Γ . Denote the g disjoint
open segments of Γ \ T by e1, e2, . . . , eg . Choose arbitrarily a point v0 from T and a point vi from ei for
i = 1,2, . . . , g. Let A = {v0, v1, . . . , v g}. Then A is a minimal rank-determining set of Γ .

Proof. It suffices to find g + 1 special open sets U0, U1, . . . , U g such that Ui ∩ A = {vi} for i =
0,1, . . . , g by Proposition 3.26.

Let U0 = Γ \ {v1, . . . , v g}. Clearly U0 is connected and U0 ∩ A = {v0}. It is easy to see that U0 is
a desired special open set. Now let us find the remaining g special open sets as required. Without loss
of generality, we only need to find U1 for v1. Let ua and ub be the two ends of e1. Note that if x and
y are two points (not necessarily distinct) in T , then there exists a unique simple path (no repeated
points) on T connecting x and y, which we denote Λ

[x,y]
T . We observe that Λ

[ua,ub]
T ∩Λ

[ua,v0]
T ∩Λ

[ub,v0]
T

contains exactly one point, which we denote uc . Let U1 = U{uc ,v2,...,v g },v1 . Then U1 ∩ A = {v1} and a
connected component of U c

1 is either a single point in {v2, . . . , v g} or a closed subset X of Γ with uc

on its boundary such that outdegX (uc) = 2. Thus U1 is a special open set intersecting A only at v1. It
follows that A is a minimal rank-determining set of Γ . �

Our investigation shows that g + 1 appears to be an upper bound for the cardinality of minimal
rank-determining sets, which we formulate as a conjecture here.

Conjecture. Let Γ be a metric graph of genus g. Then every minimal rank-determining set of Γ has cardinality
at most g + 1.
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