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We exhibit a bijection between recently-introduced combina-
torial objects known as valid hook configurations and certain 
weighted set partitions. When restricting our attention to set 
partitions that are matchings, we obtain three new combi-
natorial interpretations of Lassalle’s sequence. One of these 
interpretations involves permutations that have exactly one 
preimage under the (West) stack-sorting map. We prove that 
the sequences obtained by counting these permutations ac-
cording to their first entries are symmetric, and we conjecture 
that they are log-concave. We also obtain new recurrence re-
lations involving Lassalle’s sequence and the sequence that 
enumerates valid hook configurations. We end with several 
suggestions for future work.
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1. Introduction

In 2012, Lassalle [17] introduced a sequence (Am)m≥1 defined by the recurrence rela-
tion
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Am = (−1)m−1Cm +
m−1∑
j=1

(−1)j−1
(

2m− 1
2m− 2j − 1

)
Am−jCj

and subject to the initial condition A1 = 1. Here, Cn = 1
n+1

(2n
n

)
is the nth Catalan 

number. The first few terms of this sequence, which has now come to be known as 
Lassalle’s sequence, are

1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616.

It is not at all obvious from the definition that the terms of Lassalle’s sequence should be 
positive. Indeed, Lassalle’s primary focus was to prove that the terms are positive and 
increasing, settling a conjecture of Zeilberger. This was reproven in [1], and the sequence 
was studied further in [7,15,22,23]. In particular, Josuat-Vergès found a combinatorial 
interpretation of Am in terms of certain weighted matchings; we briefly discuss this in 
Section 2. In a private communication with Lassalle, Novak pointed out that the numbers 
(−1)m−1Am are the classical cumulants of the standard semicircular law.

One of the primary purposes of this article is to provide three new combinatorial in-
terpretations of the numbers Am. The equivalence of these three interpretations follows 
from known results, but it is useful to have a variety of perspectives. The first interpre-
tation answers a very natural question concerning the (West) stack-sorting map, whose 
background we now review.

Throughout this article, the word permutation refers to a permutation of a finite set of 
positive integers. We write permutations as words. Let Sn denote the set of permutations 
of {1, . . . , n}. A permutation is called normalized if it is an element of Sn for some n.

In his seminal monograph The Art of Computer Programming, Knuth introduced an 
algorithm that “sorts” permutations through the use of a vertical “stack” [16]. West 
later studied a slight variant of this algorithm in his 1990 Ph.D. thesis [24]. Specifically, 
West studied the function s, known as the stack-sorting map, defined by the following 
procedure. Suppose we are given an input permutation π = π1 · · ·πn. At any point in time 
during the procedure, if the next entry in the input permutation is smaller than the entry 
at the top of the stack or if the stack is empty, the next entry in the input permutation 
is placed at the top of the stack. Otherwise, the entry at the top of the stack is annexed 
to the end of the growing output permutation. This algorithm terminates when the 
output permutation has length n, and s(π) is defined to be this output permutation. 
The following figure illustrates this procedure and shows that s(3142) = 1324.

We will not attempt to discuss all of the literature concerning the stack-sorting map. 
Instead, we state only some of the background information and refer the interested reader 
to [3,4,12].
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West called |s−1(π)| the fertility of the permutation π and computed the fertilities 
of a few very special types of permutations [24]. Bousquet-Mélou later studied so-called 
sorted permutations, which are permutations that have positive fertilities [5]. We say a 
permutation is uniquely sorted if its fertility is 1. A descent of a permutation π = π1 · · ·πn

is an index i ∈ {1, . . . , n − 1} such that πi > πi+1. Suppose π ∈ Sn has exactly k
descents. We show in Section 3 that π is uniquely sorted if and only if it is sorted and 
n = 2k + 1. In particular, there are no uniquely sorted permutations of even length. 
When considering uniquely sorted permutations of odd length, we are led to our first 
combinatorial interpretation of Lassalle’s sequence. Specifically, we will show that Ak+1

is precisely the number of uniquely sorted permutations in S2k+1.
One of the central notions concerning the stack-sorting map is that of a t-stack-

sortable permutation. This is simply a permutation π ∈ Sn such that st(π) = 123 · · ·n, 
where st denotes the tth iterate of s. Let Wt(n) denote the number of t-stack-sortable 
permutations of length n. It follows from Knuth’s work in [16] that W1(n) = Cn. West 
conjectured [24], and Zeilberger later proved [25], that

W2(n) = 2
(n + 1)(2n + 1)

(
3n
n

)
.

It follows from a general result of Backelin, West, and Xin [2] that

Wt(n) ≤ (t + 1)2n

(see [4, Theorem 3.4]). For several years, this was the best known upper bound for Wt(n)
when t ≥ 3; it is still the best known upper bound when t ≥ 5. The first author [12]
improved these bounds when t = 3 and t = 4, showing that

W3(n) < n2 · 12.53296n and W4(n) < n5 · 21.97225n.

Recently, he found a polynomial-time algorithm for computing the numbers W3(n) [9].
In her study of sorted permutations, Bousquet-Mélou mentioned that it would be 

interesting to obtain a method for computing the fertility of any given permutation. This 
was achieved (in greater generality) in [11] using new combinatorial objects called “valid 
hook configurations.” Roughly speaking, a valid hook configuration of a permutation 
π is a configuration of L-shaped “hooks” that connect points in the plot of π subject 
to certain restrictions. When we speak of a valid hook configuration on n points, we 
simply mean a valid hook configuration of some permutation of length n. The theory 
of valid hook configurations was the key ingredient used in [12] in order to obtain the 
above-mentioned upper bounds for W3(n) and W4(n).

We lack a thorough understanding of valid hook configurations; as a consequence, 
several questions concerning the stack-sorting map remain out of reach. Therefore, one 
of the other main purposes of this paper is to study these new objects. In Section 3, we 
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review the major definitions and results concerning valid hook configurations. Our pre-
sentation differs slightly from that given in [11] and [12]. Because those two papers focus 
on using valid hook configurations to prove other results, they define these structures in 
fairly technical terms. In contrast, our approach in the current paper is meant to eluci-
date the constructions and aid comprehension. We also discuss valid hook configurations 
of uniquely sorted permutations. This allows us to obtain our second interpretation of 
Lassalle’s sequence. Namely, Ak+1 is the number of normalized valid hook configurations 
on 2k + 1 points that use exactly k hooks.

Our final interpretation of Lassalle’s sequence, given in Section 4, states that Ak+1
counts the number of decreasing binary plane trees with some specific properties. The 
advantage of viewing Lassalle’s sequence in terms of trees is that we will be able to 
easily detect a simple recursive combinatorial construction that builds objects counted 
by Lassalle’s sequence from smaller such objects.

In order to prove that these objects are counted by Lassalle’s sequence, we actually 
establish a bijection from the set of normalized valid hook configurations on n points to 
the set P̃c(n + 1) defined in Section 2. This is done in Section 5. The bijection provides 
an interesting new way of viewing valid hook configurations. We will show that when 
n = 2k + 1, the preimage of the set M̃c(2k + 2) (also defined in Section 2) under this 
map is the set of normalized valid hook configurations on 2k+1 points that use exactly k
hooks, proving our second new combinatorial interpretation of Lassalle’s sequence. The 
first and third interpretations then follow from the second interpretation and known 
results.

We also show that the sequences (Ak+1(�))2k+1
�=1 are symmetric, where Ak+1(�) denotes 

the number of uniquely sorted permutations in S2k+1 with first entry �. This is interesting 
since we expect the stack-sorting map to output permutations that are in some sense 
“close” to the identity permutation. In other words, one should expect permutations 
with large fertilities to start with small numbers. On the other hand, one should expect 
permutations with low fertilities to start with large numbers. The symmetry in the 
sequences (Ak+1(�))2k+1

�=1 says that a fertility of 1 is not too big and not too small. 
This actually makes perfect sense because 1 is the average fertility of a permutation. 
To conclude Section 4, we show that Ak+1(�) also counts uniquely sorted permutations 
according to another statistic that we call the eye of the permutation.

In Section 5, we exploit the structures of valid hook configurations in order to obtain a 
recurrence relation that generates the numbers −kn(−1) = |P̃c(n)| (defined in Section 2). 
It turns out that the same recurrence with different initial conditions generates the 
Lassalle numbers An. Finally, we end with several open problems and suggestions for 
future work.

2. Lassalle’s sequence and free probability

In this section, we review the combinatorial interpretation of Lassalle’s sequence that 
Josuat-Vergès found. Let P(n) denote the collection of partitions of the set {1, . . . , n}. 
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If ρ ∈ P(n), we say two distinct blocks B and B′ of ρ form a crossing if there exist 
i, k ∈ B and j, � ∈ B′ such that either i < j < k < � or i > j > k > �. The crossing graph
G(ρ) is the graph whose vertices are the blocks of ρ in which two blocks are adjacent if 
and only if they form a crossing. We say a partition ρ ∈ P(n) is connected if G(ρ) is a 
connected graph. Let Pc(n) denote the set of connected partitions in P(n). A matching
is a set partition in which every block has exactly 2 elements. Let M(n) denote the set 
of matchings in P(n), and put Mc(n) = M(n) ∩ Pc(n).

In free probability theory, the free counterpart of the classical Poisson law is known 
as the free Poisson law. It is characterized by the fact that all of the free cumulants are 
equal to a single parameter λ > 0, known as the rate. The free Poisson law also appears 
in random matrix theory in relation to Wishart matrices [19]. The nth moment is given 
by

mn(λ) =
n∑

k=1

λkN(n, k),

where N(n, k) = 1
n

(
n
k

)(
n

k−1
)

is a Narayana number. Define the classical cumulants kn(λ)
of the free Poisson law by

∑
n≥1

kn(λ)z
n

n! = log

⎛
⎝1 +

∑
n≥1

mn(λ)z
n

n!

⎞
⎠ .

Let TG(x, y) denote the Tutte polynomial of a finite simple graph G (see [15] for the 
definition of the Tutte polynomial of a graph). Josuat-Vergès has proven that

kn(λ) = −
∑

ρ∈Pc(n)

(−λ)#ρTG(ρ)(1, 0), (1)

where #ρ is the number of blocks of ρ (see [15, Theorem 7.1]). A source in a directed 
graph is a vertex with in-degree 0. We will make use of the following theorem due to 
Greene and Zaslavsky.

Theorem 2.1 ( [14]). Fix a vertex v in a simple graph G. The number of acyclic orien-
tations of G in which v is the unique source is TG(1, 0).

We can apply this theorem to the crossing graph of a partition ρ ∈ Pc(n) to see 
that TG(ρ)(1, 0) is the number of acyclic orientations of G(ρ) such that the block of ρ
containing the element n is the only source. Let P̃c(n) be the set of ordered pairs (ρ, α), 
where ρ ∈ Pc(n) and α is an acyclic orientation of G(ρ) whose only source is the block 
containing n. According to (1), we have1

1 Although the free Poisson law is usually defined for λ > 0, Josuat-Vergès’ proof does not rely on the 
positivity of λ.
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Fig. 1. The plot of the permutation 2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16.

−kn(−1) =
∣∣∣P̃c(n)

∣∣∣ . (2)

By studying the cumulants of the q-semicircular law, Josuat-Vergès also proved that

Am =
∣∣∣M̃c(2m)

∣∣∣ , (3)

where M̃c(2m) is the collection of ordered pairs (ρ, α) ∈ P̃c(2m) such that ρ is a match-
ing.

3. Valid hook configurations

Valid hook configurations were introduced in [11,12] as a tool for computing fertilities 
of permutations. The reader wishing to compare our treatment with that given in [11,12]
should be aware that the definition given here is, strictly speaking, different from the 
one given in those two papers. Specifically, the valid hook configurations in those articles 
were originally defined so that some hooks have horizontal length 1. We have ignored 
these “small” hooks in our definition since they do not give any additional information 
relevant for our purposes. The reader who is seeing valid hook configurations here for 
the first time can ignore these remarks.

Let us begin the definition by choosing a permutation π = π1 · · ·πn with descents 
d1 < · · · < dk (we do not require π to be normalized). Our running example will be the 
permutation

2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16.

The plot of π is the graph displaying the points (i, πi) for 1 ≤ i ≤ n. Fig. 1 portrays the 
plot of our example permutation. We say a point (i, πi) is a descent top if i is a descent. 
Thus, the descent tops are precisely the points (d1, πd1), . . . , (dk, πdk

). In our example, 
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Fig. 2. Four placements of hooks that are forbidden in a valid hook configuration.
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Fig. 3. A valid hook configuration of 2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16.

the descent tops are (2, 7), (7, 11), and (9, 8). A hook of π is a sideways L shape that 
connects a point (i, πi) to a point (j, πj) such that i < j and πi < πj . The points (i, πi)
and (j, πj) are called the southwest endpoint and the northeast endpoint, respectively.

Definition 3.1. Let π = π1, . . . , πn be a permutation, and let d1 < · · · < dk be the 
descents of π. A valid hook configuration of π is a tuple H = (H1, . . . , Hk) of hooks of π
subject to the following restrictions:

1. For every i ∈ {1, . . . , k}, the southwest endpoint of Hi is the descent top (di, πdi
).

2. A point in the plot cannot lie directly above a hook.
3. Hooks cannot intersect each other except in the case that the northeast endpoint of 

one hook is the southwest endpoint of the other.

Fig. 2 shows four placements of hooks that are forbidden by conditions 2 and 3 in 
Definition 3.1. Fig. 3 shows a valid hook configuration of our example permutation. Note 
that the total number of hooks in a valid hook configuration of π is exactly k, the number 
of descents of π. We say a valid hook configuration is normalized if it is a valid hook 
configuration of a normalized permutation.

Each valid hook configuration of π induces a coloring of the points in the plot of π. 
To begin the process of coloring the plot, we first draw a “sky” over the entire diagram. 
Of course, we color the sky blue. Next, assign distinct colors other than blue to the k
hooks in the valid hook configuration.
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Fig. 4. The coloring induced by the valid hook configuration in Fig. 3. The colored points are represented 
with different shapes in order to make the diagram easier to understand in black and white.

There are k northeast endpoints of hooks, and these points remain uncolored. However, 
all of the other n −k points will be colored. In order to decide how to color a point (i, πi)
that is not a northeast endpoint, imagine that this point simply looks directly upward. 
If this point sees a hook when looking upward, it receives the same color as the hook 
that it sees. If the point does not see a hook, it must see the sky, so it receives the color 
blue. There is one caveat here: if (i, πi) is the southwest endpoint of a hook, then it looks 
around (on the left side of) the vertical part of that hook. Fig. 4 shows the coloring of the 
plot of our example permutation induced from the valid hook configuration from Fig. 3. 
Observe that the point (2, 7) is colored blue because this point looks around the first 
(green) hook and sees the sky. Similarly, (9, 8) is red because this point looks around the 
third (brown) hook and sees the second (red) hook.

To summarize, we started with a permutation π with exactly k descents. We chose a 
valid hook configuration of π by drawing k hooks according to the rules 1, 2, and 3 in 
Definition 3.1. This valid hook configuration then induced a coloring of the plot of π. 
Specifically, n −k points were colored, and k+1 colors were used (one for each hook and 
one for the sky). Let qi be the number of points colored the same color as the ith hook 
Hi, and let q0 be the number of points colored blue (sky color). Then (q0, q1, . . . , qk) is a 
composition of n −k into k+1 parts. We call a composition obtained in this way a valid 
composition of π. Let VHC(π) be the set of valid hook configurations of π. Let V(π) be 
the set of valid compositions of π.

Although we will not use this fact, it is good to be aware of Lemma 3.1 from [12], 
which states that the map VHC(π) → V(π) obtained by sending a valid hook con-
figuration to its induced valid composition is a bijection. The motivation for studying 
valid hook configurations comes from the following theorem concerning the fertility of a 
permutation.
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Theorem 3.2 ( [11]). Let π be a permutation with exactly k descents. The fertility of π
is given by the formula

|s−1(π)| =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Cqt ,

where Cj = 1
j+1

(2j
j

)
is the jth Catalan number.

Using valid hook configurations, one can also count preimages of a permutation π
under the map s according to certain statistics. For example, Corollary 5.1 in [11] provides 
a formula for the number of preimages of π with a given number of valleys. Theorem 5.2 
in the same paper gives a formula for the number of preimages with a prescribed number 
of descents.

One immediate application of Theorem 3.2 comes from Exercise 18 in Chapter 8 
of Bóna’s Combinatorics of Permutations [3], which asks for the maximum number of 
descents that a sorted permutation of length n can have. Recall that a permutation is 
called sorted if its fertility is positive. Suppose π = π1 · · ·πn is a sorted permutation with 
k descents. It follows from Theorem 3.2 that V(π) is nonempty. Since the elements of V(π)
are compositions of n −k into k+1 parts, we must have k+1 ≤ n −k. Thus, k ≤

⌊
n−1

2
⌋
. 

Using valid hook configurations, it is not difficult to construct sorted permutations of 
length n with 

⌊
n−1

2
⌋

descents. If n = 2k + 1, then Theorem 3.2 actually tells us that 
every sorted permutation of length n with k descents has fertility 1 (i.e., it is uniquely 
sorted). Indeed, the only valid composition of such a permutation is (1, 1, . . . , 1), so the 
fertility is 

∏k
t=0 C1 = 1.

On the other hand, suppose π is a uniquely sorted permutation of length n with k de-
scents. According to Theorem 3.2, we must have V(π) = {(1, 1, . . . , 1)}, where (1, 1, . . . , 1)
is a composition of n −k into k+1 parts that are all equal to 1. This proves the following 
proposition.

Proposition 3.3. Let π be a permutation of length n with k descents. The permutation π
is uniquely sorted if and only if it is sorted and n = 2k + 1.

As mentioned in the introduction, this proves that there are no uniquely sorted per-
mutations of even length.

Corollary 3.4. Uniquely sorted permutations in S2k+1 are in bijection with normalized 
valid hook configurations on 2k + 1 points with k hooks.

Proof. A uniquely sorted permutation in S2k+1 has a unique valid hook configuration, 
which must have k hooks. On the other hand, if we are given a normalized valid hook 
configuration on 2k + 1 points with k hooks, then the underlying permutation must be 
a sorted permutation in S2k+1 with k descents. By Proposition 3.3, this permutation is 
uniquely sorted. �
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Fig. 5. The uniquely sorted permutation 547621389 is built from the smaller uniquely sorted permutations 
547 and 62138.

Corollary 3.4 establishes the equivalence of our first two combinatorial interpretations 
of Lassalle’s sequence. We can describe uniquely sorted permutations (or equivalently, 
their valid hook configurations) via the following recursive combinatorial construction.

Begin by choosing two uniquely sorted permutations τ and μ such that τμ ∈ S2k

for some k. Make sure that the largest entry of τ is greater than the first entry of μ. 
Now form the permutation τμ(2k + 1). It might be easier to visualize this procedure by 
picturing valid hook configurations. Fig. 5 shows a uniquely sorted permutation with its 
valid hook configuration; the two permutations from which this larger permutation was 
formed are shaded separately. In general, if we are given a uniquely sorted permutation 
π = π1 · · ·π2k+1 ∈ S2k+1, it is easy to reobtain the two uniquely sorted permutations 
from which it was built. We first draw the unique valid hook configuration of the given 
permutation. The point (2k + 1, 2k + 1) must be a point in the plot, and it must be a 
northeast endpoint of a hook. The southwest endpoint of that hook is of the form (dr, πdr

)
for some descent dr. The two permutations from which π was built are τ = π1 · · ·πdr

and μ = πdr+1 · · ·π2k.
This recursive construction suggests a link with trees, which leads us to our third 

combinatorial interpretation of Lassalle’s sequence.

4. Decreasing plane trees

A decreasing plane tree is a rooted plane tree whose nodes are labeled with distinct 
positive integers such that every non-root node has a label that is smaller than the label 
of its parent. A rooted plane tree is called binary if each vertex has at most two children. 
If a vertex has exactly one child, we distinguish between whether this child is a left or 
right child. A labeled tree is called normalized if its set of labels is of the form {1, . . . , n}
for some n. See Fig. 6 for an example of a decreasing binary plane tree.

To read a decreasing binary plane tree in in-order (sometimes called symmetric order), 
we first read the left subtree of the root, then the root, and finally the right subtree of 
the root. Each subtree is itself read in in-order. The in-order reading of the tree in Fig. 6
is 2635741. Let I(T ) denote the in-order reading of the decreasing binary plane tree T . 
The map I is a bijection from the set of normalized decreasing binary plane trees on n
vertices to the set Sn [3,21].
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Fig. 6. A (normalized) decreasing binary plane tree.
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Fig. 7. The left image shows a valid hook configuration of π = 547621389 along with some additional dotted 
lines. The hooks and dotted lines transform into the edges of the tree on the left, which is the unique 
decreasing binary plane tree with postorder π.

To read a decreasing binary plane tree in postorder, we first read the left subtree of the 
root, then the right subtree of the root, and finally the root. Each subtree is itself read 
in postorder. The postorder reading of the tree in Fig. 6 is 2356147. Let P (T ) denote the 
postorder reading of a decreasing binary plane tree T . It turns out that the stack-sorting 
map can be described in terms of in-order and postorder readings [3]. Specifically,

s = P ◦ I−1.

For example, s(2635741) = 2356147 = P (I−1(2635741)), where I−1(2635741) is the tree 
in Fig. 6.

The first author has shown [11] how to construct the decreasing binary plane trees 
whose postorders are equal to a given permutation π. We will not review this construction 
here. Instead, we simply discuss the mechanics of this construction in the (much simpler) 
specific case in which π is uniquely sorted. Refer to Fig. 7 for an illustration.

Suppose π = π1 · · ·π2k+1 is uniquely sorted, and draw its valid hook configuration. 
For each northeast endpoint (j, πj), consider the point (j − 1, πj−1). Draw a dotted line 
between these two points. Now replace each point (i, πi) with a vertex with label πi. 
“Unbend” each hook to transform it into a left edge. Similarly, transform each dotted 
line into a right edge. This produces the unique decreasing binary plane tree T with 
postorder π. Note also that I(T ) is the unique permutation in s−1(π).

For convenience, we say a decreasing binary plane tree T is lonely if no other decreasing 
binary plane tree has the same postorder as T . The normalized lonely trees on n vertices 
are precisely the decreasing binary plane trees whose postorders are uniquely sorted 
permutations in Sn. This provides our third combinatorial interpretation of Lassalle’s 
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sequence. More precisely, there are no normalized lonely trees with an even number of 
vertices, while there are precisely Ak+1 normalized lonely trees on 2k + 1 vertices.

It is possible to describe lonely trees without referring to permutations or the stack-
sorting map. The description is recursive and is essentially equivalent to the recursive 
construction of uniquely sorted permutations discussed at the end of the previous section. 
The proof that the construction has the desired properties amounts to combining the 
recursive construction of uniquely sorted permutations with the above bijection between 
uniquely sorted permutations and normalized lonely trees.

Given a decreasing binary plane tree T , we call the vertex that is read first in I(T )
the leftmost vertex of T . Suppose a is a vertex in T with two children. Let b be the left 
child of a. By the leftmost cousin of b, we mean the leftmost vertex in the right subtree 
of a. This is also the vertex that is read immediately after a in I(T ). The leftmost vertex 
of the tree in Fig. 6 has label 2. In that tree, the leftmost cousin of the vertex labeled 2
is the vertex labeled 3. Bousquet-Mélou [5] defined a decreasing binary plane tree to be 
canonical if every vertex that has a left child also has a right child and every left child 
has a label that is larger than the label of its leftmost cousin. We say a decreasing binary 
plane tree is full if every vertex has either 0 or 2 children.

Our alternative descriptions of lonely trees are as follows. Of course, a single vertex 
with a positive integer label is a lonely tree. A lonely tree with more than one vertex is 
a decreasing binary plane tree that consists of a root whose left and right subtrees are 
themselves lonely and that has the additional property that the left child of the root has 
a label that is larger than the label of its leftmost cousin. Alternatively, a lonely tree is 
simply a decreasing binary plane tree that is full and canonical.

5. The main bijection

Now that we have described our three combinatorial interpretations of Lassalle’s se-
quence and shown that they are in bijection with each other, we can move on to actually 
proving that these objects are counted by Lassalle’s sequence. This will follow as a con-
sequence of the following more general theorem. First, we need a short lemma and some 
observations about valid hook configurations.

Lemma 5.1. Let H be a valid hook configuration of a permutation π. Consider the coloring 
of the plot of π induced by H. If i1 < · · · < ir are indices such that (i1, πi1), . . . , (ir, πir)
are all given the same color, then πi1 < · · · < πir .

Proof. It suffices to prove the lemma in the case r = 2. Assume instead that πi1 > πi2 . 
There must be a descent d of π such that i1 ≤ d < i2 and πd > πi2 . Assume that d is 
chosen maximally subject to these conditions. There must be a hook whose southwest 
endpoint is (d, πd). The point (i2, πi2) lies below this hook while (i1, πi1) does not. This 
means that (i1, πi1) and (i2, πi2) cannot have the same color, which contradicts our 
hypothesis. �
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Suppose H is a valid hook configuration of a permutation π. There is a canonical 
decomposition of H that makes use of what we call the top hook. This is simply the hook 
whose northeast endpoint is farthest to the north. For example, the top hook in Fig. 3 is 
the hook with southwest endpoint (7, 11) and northeast endpoint (15, 15). The top hook 
separates H into two smaller valid hook configurations. We call these the sheltered and 
unsheltered pieces of H. Specifically, the sheltered piece consists of all of the points and 
hooks that lie strictly underneath the top hook. The unsheltered piece consists of all of 
the other points and hooks except for the northeast endpoint of the top hook and the 
top hook itself. Let HS denote the set of entries πi such that (i, πi) is in the sheltered 
piece. Define HU similarly for the unsheltered piece. In the example depicted in Fig. 3, 
we have

HS = {1, 4, 6, 8, 12, 13, 14} and HU = {2, 3, 5, 7, 9, 10, 11, 16}.

This decomposition of valid hook configurations will be crucial in our proof of Theo-
rem 5.3 below.

We are now ready to define our main bijection. Recall from Section 2 that P̃c(n) is 
the set of ordered pairs (ρ, α), where ρ is a set partition of {1, . . . , n} whose crossing 
graph G(ρ) is connected and α is an acyclic orientation of G(ρ) whose only source is the 
block containing 0. Let

VHC(Sn−1) =
⋃

π∈Sn−1

VHC(π)

denote the set of all normalized valid hook configurations on n − 1 points.
We define a map

Φ : VHC(Sn−1) → P̃c(n)

as follows. Let H be a valid hook configuration of a permutation π = π1 · · ·πn−1 ∈ Sn−1. 
Suppose H has k hooks (equivalently, π has k descents). As discussed in Section 3, H
induces a coloring of the plot of π. The k northeast endpoints of hooks in H remain 
uncolored in this coloring. However, for the purpose of this proof, let us actually color 
the northeast endpoints as well. We do this by giving the northeast endpoint of a hook 
the same color as that hook. We now obtain a coloring of the elements of {1, . . . , n − 1}
by giving πi the same color as the point (i, πi) for each i. For example, π1 must be blue 
(sky-colored) because the point (1, π1) must be blue. Let us also color the number n
blue. This yields a partition ρ of {1, . . . , n} into color classes. For each block B of this 
partition, let B̂ = {i : πi ∈ B, 1 ≤ i ≤ n − 1}.

We need to choose an acyclic orientation α of G(ρ). To do this, suppose we have an 
edge of G(ρ) with endpoints B and B′. In other words, B and B′ are blocks of ρ that form 
a crossing. If min B̂ < min B̂′, orient this edge from B to B′. If min B̂′ < min B̂, orient 
the edge from B′ to B. This defines the acyclic orientation α, so put Φ(H) = (ρ, α).
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Fig. 8. An illustration of Example 5.2. The map Φ sends the valid hook configuration on the left to the set 
partition and acyclic orientation illustrated on the right.

Example 5.2. Let n = 17, and let H be the valid hook configuration in Fig. 3. To obtain 
the pair Φ(H) = (ρ, α), begin by coloring the diagram as in Fig. 4. For each hook H, 
color the northeast endpoint of H the same color as H. This yields the diagram shown 
on the left in Fig. 8. The blocks in ρ are the heights of the points in each color class, 
where we put the number n = 17 in the blue block. Specifically, the blocks of ρ are

Bblue = {2, 7, 16, 17}, Bgreen = {3, 5, 9, 10, 11}, Bred = {4, 8, 14, 15},
Bbrown = {1, 6, 12, 13}.

We also have

B̂blue = {1, 2, 16}, B̂green = {3, 4, 5, 6, 7}, B̂red = {8, 9, 14, 15},
B̂brown = {10, 11, 12, 13}.

In this example, every pair of blocks in ρ forms a crossing, so G(ρ) is a complete 
graph on 4 vertices. In the acyclic orientation α, depicted in the right image of Fig. 8, we 
orient the edge connecting Bblue and Bgreen away from Bblue since min B̂blue = 1 < 3 =
min B̂green. We orient an edge from Bred to Bbrown since min B̂red = 8 < 10 = min B̂brown. 
The other edges are oriented similarly.

Theorem 5.3. The map Φ : VHC(Sn−1) → P̃c(n) defined above is a bijection.

Proof. We first check that the pair (ρ, α) is in fact an element of P̃c(n). It is clear that 
the orientation α is acyclic. Let Bblue denote the blue block of ρ. We know that n ∈ Bblue
and min B̂blue = 1. This means that the block containing n is a source; we must show 
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that it is the only source. This will also imply that G(ρ) is connected since each connected 
component contains a source for the acyclic orientation (this is a standard fact about 
acyclic orientations of graphs).

For each color c that we use, let Bc be the block of ρ with the color c. If c is not 
blue, let Hc be the hook with the color c. Choose a non-blue color c1. Our goal is to 
find a block B∗ of ρ such that Bc1 and B∗ form a crossing and min B̂∗ < min B̂c1 . 
Let (u2, πu2) be the southwest endpoint of Hc1 , and let c2 be the color of (u2, πu2). If 
c2 is not blue, then let (u3, πu3) be the southwest endpoint of Hc2 , and let c3 be the 
color of (u3, πu3). Continue in this fashion until eventually defining a point (um, πum

)
whose color cm is blue. It follows from the properties of valid hook configurations that 
min B̂cm < min B̂cm−1 < · · · < min B̂c1 . Therefore, it suffices to show that there is some 
i ∈ {2, . . . , m} such that Bc1 and Bci form a crossing (we can then put B∗ = Bci).

For i ∈ {2, . . . , m}, the point (ui+1, πui+1) is the color ci−1. This means that πui+1 ∈
Bci−1 , so minBci−1 ≤ πui+1. Furthermore, maxBci−1 is the height of the northeast 
endpoint of Hci−1 . Because (ui, πui

) is the southwest endpoint of Hci−1 , we have πui
<

maxBci−1 . We also know that (ui, πui
) is a descent top of π, so πui+1 < πui

. Combining 
these inequalities yields minBci−1 < πui

< maxBci−1 . This is important because πui
∈

Bci . Suppose by way of contradiction that none of the blocks Bc2, . . . , Bcm form a crossing 
with Bc1 . Because Bc2 does not form a crossing with Bc1 , we must have minBc1 <

minBc2 < πu3 < maxBc2 < maxBc1 . Because Bc3 does not form a crossing with Bc1 , 
we must have minBc1 < minBc3 < πu4 < maxBc3 < maxBc1 . Continuing in this 
manner, we eventually find that minBc1 < πum

< maxBc1 . However, Bcm is the blue 
block, so πum

and n are in Bcm . We have minBc1 < πum
< maxBc1 < n, which means 

that Bcm does form a crossing with Bc1 after all, a contradiction.
It remains to show that Φ is a bijection. To do so, we exhibit its inverse. Suppose 

we are given a pair (ρ, α) ∈ P̃c(n). We want to reobtain the valid hook configuration H
with Φ(H) = (ρ, α). We can assume that ρ has more than one block; otherwise, H is the 
valid hook configuration of the identity permutation that has no hooks. Here is where we 
make use of the “top hook decomposition” discussed before the definition of the map Φ. 
If we can determine the southwest and northeast endpoints of the top hook of H along 
with the sets HS and HU , then we can proceed inductively to reconstruct all of H. We 
will see that these endpoints and sets are completely determined by (ρ, α), from which 
it will follow that there is a unique H ∈ VHC(Sn−1) with Φ(H) = (ρ, α).

Begin by coloring the elements of {1, . . . , n} so that two elements have the same color 
if and only if they are in the same block of ρ. Make sure to use the color blue to color 
the elements of the block containing n. Let a be the largest element of {1, . . . , n} that 
is not blue. Because a + 1, . . . , n − 1 are all blue, we need the points with these heights 
to see the sky when they look up. This forces us to put πj = j for all j ∈ {a, . . . , n − 1}
(otherwise, there would be a hook preventing one of these points from seeing the sky). 
The northeast endpoint of the top hook of H must be the highest point that is not blue 
in the coloring induced by H. Our choice of a and the definition of Φ guarantee that 
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this point has height a. Therefore, the northeast endpoint of the top hook of H must be 
(a, a).

Now, the acyclic orientation α defines a partial order � on the blocks of ρ, where 
we declare that B � B′ if and only if there is a directed path from B to B′ in G(ρ)
or B = B′. Let A be the block of ρ containing a. One can show that HS must be 
the union of all of the blocks D satisfying A � D. We then know that HU must be 
{1, . . . , n − 1} \ (HS ∪ {a}). Observe that the numbers a + 1, . . . , n − 1 are elements of 
HU ; the next-largest entry of HU must be the height of the southwest endpoint of the 
top hook of H. More precisely, this southwest endpoint is (b, c), where b = |HU | − (n −a)
and c = max(HU \ {a + 1, . . . , n − 1}). �

Using the notation of Section 2, we now deduce from (2) that −kn(−1) is the total 
number of normalized valid hook configurations on n − 1 points. In fact, we have the 
following more general consequence of (1) and the preceding theorem.

Corollary 5.4. The nth classical cumulant of the free Poisson law with rate λ is given by

kn(λ) = −
∑

H∈VHC(Sn−1)

(−λ)#H+1,

where #H denotes the number of hooks in H.

In the previous two sections, we found bijective correspondences among uniquely 
sorted permutations in S2k+1, normalized valid hook configurations on 2k + 1 points 
with k hooks, and normalized lonely trees on 2k + 1 vertices. We can now finally show 
that these objects are counted by Lassalle’s sequence. Let VHCh(Sn−1) be the set of 
normalized valid hook configurations on n − 1 points with h hooks.

Corollary 5.5. When n = 2k + 2, the map Φ from Theorem 5.3 restricts to a bijection

Φ′ : VHCk(S2k+1) → M̃c(2k + 2).

In particular, ∣∣∣VHCk(S2k+1)
∣∣∣ = Ak+1.

Proof. Let H be a normalized valid hook configuration on 2k+1 points with h hooks, and 
put Φ(H) = (ρ, α). The valid composition (q0, . . . , qh) induced from H is a composition of 
2k+1 −h into h +1 parts. It follows from the definition of Φ that ρ has h +1 blocks, where 
the blocks are of sizes q0 + 1, . . . , qh + 1 in some order. We find that Φ(H) ∈ M̃c(2k+ 2)
(that is, ρ is a matching) if and only if qi = 1 for all i. This occurs if and only if h = k. 
This proves the first statement of the corollary. The second statement follows from the 
first and from (3). �
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In the following additional corollary to Theorem 5.3, we adopt a notational convention 
from [15]. Given a sequence (un)n≥1 and a set partition ρ, write

uρ =
∏
B∈ρ

u|B|.

For example, if ρ = {{1, 4}, {2, 7, 8, 9}, {3, 5, 6}}, then Cρ−1 = C2−1C4−1C3−1 = 1 ·5 ·2 =
10. Recall the notation from (1).

Corollary 5.6. We have
∑

ρ∈Pc(n)

Cρ−1TG(ρ)(1, 0) = (n− 1)!.

Proof. Let Φ be the bijection from Theorem 5.3. Given a normalized valid hook config-
uration H on n − 1 points, let Φ1(H) be the set partition which is the first coordinate 
of Φ(H). In other words, if Φ(H) = (ρ, α), then Φ1(H) = ρ. We know from Theorem 3.2
and the definition of Φ that |s−1(π)| =

∑
H∈VHC(π)

CΦ1(H)−1 for every π ∈ Sn−1. Note that 

the total number of preimages of all permutations in Sn−1 under s is (n − 1)!. Invoking 
Theorem 5.3, we find that

(n− 1)! =
∑

π∈Sn−1

|s−1(π)| =
∑

π∈Sn−1

∑
H∈VHC(π)

CΦ1(H)−1 =
∑

H∈VHC(Sn−1)

CΦ1(H)−1

=
∑

(ρ,α)∈P̃c(n)

Cρ−1 =
∑

ρ∈Pc(n)

Cρ−1TG(ρ)(1, 0).

We have used the fact, which we mentioned in the paragraph following Theorem 2.1, 
that TG(ρ)(1, 0) is the number of acyclic orientations α such that (ρ, α) ∈ P̃c(n). �

Let Ak+1(�) be the number of uniquely sorted permutations in S2k+1 whose first entry 
is �. Corollary 5.5 provides us with a means for proving the following somewhat surprising 
result concerning this refinement of the Lassalle numbers.

Theorem 5.7. For each nonnegative integer k, the sequence (Ak+1(�))2k+1
�=1 is symmetric.

Proof. Let Φ1 be as in the proof of Corollary 5.6. Let M̃c
�(2k + 2) denote the set of 

pairs (ρ, α) ∈ P̃c(2k + 2) such that ρ is a matching that contains the block {�, 2k + 2}. 
If H is the unique valid hook configuration of a uniquely sorted permutation π, then 
{π1, 2k + 2} is one of the blocks of Φ1(H). Therefore, M̃c

�(2k + 2) is the image under Φ
of the set of uniquely sorted permutations π ∈ S2k+1 such that π1 = �. It now suffices 
to find a bijection M̃c

�(2k + 2) → M̃c
2k+2−�(2k + 2).

Suppose (ρ, α) ∈ M̃c
�(2k + 2), and draw an arch diagram of ρ by connecting two 

numbers with an arch if and only if they are in the same block. For example, the arch 
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Fig. 9. The map ρ �→ ρ′ described in the proof of Theorem 5.7. In this specific example, we have ρ =
{{1, 4}, {2, 6}, {3, 8}, {5, 7}} and ρ′ = {{1, 3}, {2, 6}, {4, 7}, {5, 8}}.

diagram of {{1, 4}, {2, 6}, {3, 8}, {5, 7}} is shown on the left in Fig. 9. If we reflect all 
of the numbers in {1, . . . , 2k + 1} across the number k + 1 without breaking any of the 
arches, we obtain a new matching ρ′. More formally, if {a, b} is a block of ρ that does not 
contain 2k+2, then {2k+2 −a, 2k+2 −b} is a block of ρ′. Furthermore, {2k+2 −�, 2k+2}
is a block of ρ′. The crossing graphs G(ρ) and G(ρ′) are naturally isomorphic, so we can 
transfer the acyclic orientation α of G(ρ) to an acyclic orientation α′ of G(ρ′) in the 
obvious fashion. The map M̃c

�(2k + 2) → M̃c
2k+2−�(2k + 2) given by (ρ, α) 
→ (ρ′, α′) is 

our desired bijection. �
Numerical evidence suggests that (Ak+1(�))2k+1

�=1 is log-concave (and therefore uni-
modal) for each nonnegative integer k. We state this as a conjecture in Section 6, where 
we collect several other suggestions for future work.

Each uniquely sorted permutation π ∈ S2k+1 has a unique valid hook configuration 
H, and H has a top hook (assuming k ≥ 1). As discussed above, this hook separates H
into a sheltered piece and an unsheltered piece. Suppose (j, πj) is the leftmost point in 
the sheltered piece. We call πj the eye of π. If we let Φ′(α) = ρ, where Φ′ is the map from 
Corollary 5.5, then the eye of π is also the entry in the same block as 2k + 1 in ρ. We 
saw in Section 3 that π corresponds to a normalized lonely tree T . Let a be the left child 
of the root of T . In the notation introduced at the end of Section 3, the eye of π is the 
label of the leftmost cousin of a. The following theorem shows an interesting relationship 
between the first entry and the eye of a uniquely sorted permutation and also provides 
an alternative method for studying the numbers Ak+1(�) from Theorem 5.7.

Theorem 5.8. If k ≥ 1, then there are exactly Ak+1(�) uniquely sorted permutations in 
S2k+1 with eye � − 1.

Proof. Given a matching ρ ∈ Mc(2k + 2) and a number i ∈ [2k + 2], let parρ(i) denote 
the partner of i in ρ, which is the unique element in the same block as i in ρ. Let ρ∗ be the 
matching of {0, . . . , 2k + 1} obtained from ρ by replacing the number 2k + 2 with 0. Let 

ρ∗∗ be the matching obtained by reflecting ρ∗ about the number 2k + 1
2 . In other words, 

if ρ∗ = {{a1, b1}, . . . , {ak+1, bk+1}}, then ρ∗∗ = {{2k + 1 − a1, 2k + 1 − b1}, . . . , {2k +
1 − ak+1, 2k + 1 − bk+1}}. Finally, let ρ̃ be the matching in M(2k + 2) obtained by 
replacing the number 0 in ρ∗∗ with 2k+2. It is straightforward to check that the crossing 
graphs G(ρ) and G(ρ̃) are isomorphic. Therefore, every acyclic orientation α of G(ρ)
corresponds in the obvious way to an acyclic orientation α̃ of G(ρ̃). Since ρ is connected, 
parρ(2k + 2) �= 2k + 1. This implies that parρ∗(0) �= 2k + 1, so parρ∗∗(2k + 1) �= 0. Thus,
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parρ(2k + 2) = parρ∗(0) = 2k + 1 − parρ∗∗(2k + 1) = 2k + 1 − parρ̃(2k + 1).

As a consequence, we obtain a bijection

{(ρ, α) ∈ M̃c(2k + 2) : parρ(2k + 2) = 2k + 2 − �}
→ {(ρ̃, α̃) ∈ M̃c(2k + 2) : parρ̃(2k + 1) = �− 1}.

Now consider the bijection Φ′ from Corollary 5.5 (which is a restriction of the map 
Φ). The set

(Φ′)−1({(ρ, α) ∈ M̃c(2k + 2) : parρ(2k + 2) = 2k + 2 − �})

is the set of valid hook configurations in VHCk(S2k+1) in which the leftmost point in 
the plot has height 2k + 2 − �. This set is naturally in bijection (by just taking the 
underlying permutation of each valid hook configuration) with the set of uniquely sorted 
permutations π ∈ S2k+1 with π1 = 2k + 2 − �. By definition, the size of this set is 
Ak+1(2k + 2 − �). Therefore, it follows from the above bijection that

|{(ρ̃, α̃) ∈ M̃c(2k + 2) : parρ̃(2k + 1) = �− 1}| = Ak+1(2k + 2 − �).

The set

(Φ′)−1({(ρ̃, α̃) ∈ M̃c(2k + 2) : parρ̃(2k + 1) = �− 1})

is naturally in bijection with the set of uniquely sorted permutations in S2k+1 with eye 
� − 1. Hence, the number of uniquely sorted permutations in S2k+1 with eye � − 1 is 
Ak+1(2k + 2 − �). The desired result now follows from Theorem 5.7, which tells us that 
Ak+1(2k + 2 − �) = Ak+1(�). �
6. New recurrences

We know from (2) and Theorem 5.3 that the total number of normalized valid hook 
configurations on n points is −kn+1(−1). We know from (3) and Corollary 5.5 that the 
total number of normalized valid hook configurations on 2k + 1 points with k hooks is 
Ak+1. In this section, we study the combinatorial properties of valid hook configurations 
in order to derive new recurrence relations for these numbers. These recurrences keep 
track of a permutation statistic that we call the tail length. In what follows, the nor-
malization of a permutation π = π1 · · ·πn is the unique permutation in Sn that is order 
isomorphic to π. For example, the normalization of 26589 is 13245.

Definition 6.1. The tail length of a permutation π = π1 · · ·πn ∈ Sn, denoted tl(π), is the 
smallest nonnegative integer i such that πn−i �= n − i. The tail length of an arbitrary 
permutation is the tail length of its normalization.



20 C. Defant et al. / Journal of Combinatorial Theory, Series A 175 (2020) 105275
For example, the permutation 31524678 has tail length 3, while the permutation 26589
has tail length 2. For an indication of the relevance of this statistic for our purposes, 
observe that a sorted permutation (equivalently, a permutation that has a valid hook 
configuration) must have a positive tail length. Heuristically, we should expect the fer-
tility of a permutation in Sn with a large tail length to be larger than the fertility of a 
permutation in Sn with a small tail length.

Let

Dm(n) =
∑
π∈Sn

tl(π)=m

|VHC(π)|

be the total number of valid hook configurations whose underlying permutations are 
elements of Sn with tail length m. Let

D≥m(n) =
n∑

�=m

D�(n).

In particular, D≥0(n) = −kn+1(−1) is the total number of normalized valid hook con-
figurations on n points.

Theorem 6.2. The numbers Dm(n) and D≥m(n) defined above satisfy the recurrence

Dm(n) =
m∑
j=1

n−m−1∑
i=1

(
n−m− 1

i− 1

)
D≥j(i + j − 1)D≥m−j(n− j − i)

for 0 ≤ m < n. The initial conditions are given by Dn(n) = 1.

Proof. The initial condition Dn(n) = 1 is the statement that the identity permutation 
has a unique valid hook configuration (the one with no hooks). The recurrence is obvious 
when 0 = m < n since a permutation in Sn with tail length 0 has no valid hook 
configurations.

Now suppose 0 < m < n. To produce a valid hook configuration of a permutation 
π = π1 · · ·πn ∈ Sn with tl(π) = m, begin by choosing the index i ∈ {1, . . . , n −m − 1}
such that πi = n −m. Note that i must be a descent of this permutation. This implies 
that there must be a hook H with southwest endpoint (i, n −m). The northeast endpoint 
of this hook is of the form (n − j, n − j) for some j ∈ {0, . . . , m − 1}. There are 

(
n−m−1

i−1
)

choices for the entries in the set {π1, . . . , πi−1}. Note that πi+1 · · ·πn−j will be a (not 
necessarily normalized) permutation of length n − j − i with tail length at least m − j. 
Choosing the part of the valid hook configuration that lies below H amounts to choosing 
πi+1 · · ·πn−j and choosing a valid hook configuration on this permutation. There are 
D≥m−j(n − j− i) ways to do this. Similarly, there are D≥j(i + j− 1) ways to choose the 
hooks on the points that are not (n − j, n − j) and do not lie below H. �
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Fig. 10. Two small valid hook configurations combine into a larger one as described in the proof of Theo-
rem 6.2.

Example 6.3. Fig. 10 shows the construction of a valid hook configuration of a per-
mutation π ∈ S12 with tail length 4. Here, we have chosen i = 5, j = 3, and 
{π1, π2, π3, π4} = {1, 2, 4, 6}. We have also chosen two small valid hook configurations, 
which combine to form the large valid hook configuration on the right. The points coming 
from the first small valid hook configuration are represented as squares while the points 
coming from the second one are represented as triangles. Note that the point (10, 10)
is represented by a disc because it does not come from either of these small valid hook 
configurations (this is because it is the northeast endpoint of the hook H).

Let Em(n) be the number of uniquely sorted permutations in Sn with tail length m. 
Of course, Em(n) = 0 when n is even since there are no uniquely sorted permutations of 
even length. Let

E≥m(n) =
n∑

�=m

E�(n).

In particular, E≥0(2k + 1) = Ak+1 is the total number of uniquely sorted permutations 
in S2k+1.

Theorem 6.4. The numbers Em(n) and E≥m(n) defined above satisfy the recurrence

Em(n) =
m∑
j=1

n−m−1∑
i=1

(
n−m− 1

i− 1

)
E≥j(i + j − 1)E≥m−j(n− j − i)

for 0 ≤ m < n. The initial conditions are given by E1(1) = 1 and En(n) = 0 for n �= 1.

Proof. Suppose H is a valid hook configuration of a permutation π. It follows from the 
discussion preceding Proposition 3.3 that π is uniquely sorted if and only if the coloring 
of the plot of π induced by H does not give any two distinct points the same color. The 
proof of Theorem 6.4 is now virtually identical to that of Theorem 6.2. Specifically, we 
start to construct the valid hook configuration of a uniquely sorted permutation π ∈ Sn
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with tl(π) = m by first choosing the index i such that πi = n −m. As before, (i, n −m)
must be the southwest endpoint of a hook H. We choose j such that (n − j, n − j) is the 
northeast endpoint of H. We then choose the set {π1, . . . , πi−1} in 

(
n−m−1

i−1
)

ways. Finally, 
we choose the part of the valid hook configuration lying below H in E≥m−j(n − j − i)
ways and choose the part not lying below H in E≥j(i + j − 1) ways. �
7. Future work

Through different ways of phrasing the main results of our paper, we obtain several 
possible avenues for potential generalizations. For example, it would be interesting to 
enumerate doubly sorted permutations, which are simply permutations with fertility 2. 
Arguing as in Section 2, one can show that there are no doubly sorted permutations of 
odd length. Letting Bm denote the number of doubly sorted permutations of length 2m, 
we have B1 = 1, B2 = 3, B3 = 31, and B4 = 1186. This sequence appears to be new.

A permutation in Sn is uniquely sorted if and only if it is sorted and has n−1
2 descents. 

From this point of view, it would be interesting to count sorted permutations in Sn with 
exactly k descents, where k could be a function of n. For example, we could ask how 
many sorted permutations in Sn have exactly n−2

2 descents. It might also be interesting 
to enumerate uniquely sorted permutations according to certain statistics, such as the 
number of inversions, the major index, or the number of peaks.

Of course, uniquely sorted permutations in Sn are in bijection with permutations 
π ∈ Sn such that s(π) is uniquely sorted. As mentioned in the previous paragraph, s(π)
is uniquely sorted if and only if s(π) has exactly n−1

2 descents. This leads us to ask for 
the total number of permutations π ∈ Sn such that s(π) has exactly k descents. Again, 
k could be a function of n here.

We have seen that every uniquely sorted permutation has exactly one valid hook 
configuration. It could be interesting to count the total number of permutations in Sn

that have exactly one valid hook configuration.
The current author and Kravitz [13] have formulated two extensions of the stack-

sorting map defined on words. It might be fruitful to consider the appropriate notions 
of “uniquely sorted words.”

In Theorem 5.7, we saw that the sequence (Ak+1(�))2k+1
�=1 is symmetric for each non-

negative integer k. Recall that a sequence a1, . . . , am is called unimodal if there exists 
j ∈ {1, . . . , m} such that a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ am and is called log-
concave if a2

j ≥ aj−1aj+1 for all j ∈ {2, . . . , m −1} [6]. It is well-known that a log-concave 
sequence of nonnegative real numbers is unimodal.

Conjecture 7.1. For each nonnegative integer k, the sequence (Ak+1(�))2k+1
�=1 is log-

concave.

Even if Conjecture 7.1 is too difficult to prove, it would still be of great interest to prove 
the weaker claim that these sequences are unimodal. We have verified Conjecture 7.1 for 
0 ≤ k ≤ 5.
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When defining the bijection Φ that appears in Theorem 5.3, we described how to 
obtain a partition ρ = {B1, . . . , Bk+1} of {1, . . . , n} from a valid hook configuration H
of a permutation π = π1 · · ·πn−1 ∈ Sn−1. This is done by first coloring the points in 
the plot of π and then coloring the number πi the same color as the point (i, πi). After 
coloring n blue, we obtain a partition of {1, . . . , n} into color classes. In the proof of 
Theorem 5.3, we showed that this partition is connected (that is, its crossing graph is 
connected). We can obtain another set partition η = {B̂1, . . . , B̂k+1} from H. To do this, 
color the points (i, πi) as before, but this time, color a number i the same color as (i, πi). 
This will partition {1, . . . , n −1} into color classes. It follows from the rules defining valid 
hook configurations that η is a noncrossing partition (that is, its crossing graph has no 
edges). It would be interesting to investigate possible connections between the partitions 
ρ and η that are obtained from the same valid hook configuration H. We could also study 
the noncrossing partitions arising in this way in their own right. Noncrossing partitions 
are fundamental objects in the combinatorics of free probability theory, so it would be 
interesting to see if the noncrossing partitions obtained from valid hook configurations 
in this manner have some deeper significance.

Let us remark that the first author has now extended the investigations initiated in 
this article by considering uniquely sorted permutations and valid hook configurations 
that avoid various patterns [8,10]. Pattern-avoiding uniquely sorted permutations were 
studied further by Mularczyk [18], and pattern-avoiding valid hook configurations were 
studied further by Sankar [20]. There is still much to be done in both of these lines of 
work. In particular, see the end of Sankar’s paper for some remarkable conjectures about 
312-avoiding “reduced” valid hook configurations.
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